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Abstract

Hemoglobinopathies are the most common single gene disorders worldwide with a
considerable frequency in certain area particularly Mediterranean and Middle Eastern
countries. Hemoglobinopathies include structural variants of hemoglobin (Hb S, Hb
C, HbE,...) and thalassaemias which are inherited defects in the globin chains synthe‐
sis. The present study was conducted to determine the prevalence of hemoglobinopa‐
thies in western Iranian patients. A total of 344 patients (151 males and 193 females)
with abnormal CBC and/or hemoglobin electrophoresis were enrolled in the present
study. Cellulose acetate gel electrophoresis was performed for all patients and abnor‐
mal bands were identified by citrate agar gel electrophoresis and PCR based methods.
Iron deficiency anemia (IDA) was present in 156 (45.3%) individuals. Thirty four
(9.8%) patients had both iron deficiency anemia and α-thalassemia trait trait,
41(11.9%) patients were with both iron deficiency anemia and minor β-thalassemia.
There were 31(9%) patients with α-thalassemia trait and 5 (2.2%) patients with Hb H
disease. Fifty six (16.2%) patients had minor β-thalassemia. Also, there were 10 (2.9%)
individuals homozygous for hemoglobin D-Punjab and one patient with hemoglobin
G (0.3%). There was one sample with hemoglobin C. Further, we found 3 patients
(0.9%) with sickle cell trait and more 3 patients (0.8%) with S/ β +-thalassemia. Our
results indicated that the most frequent cause of hypochromic and/or microcytic ane‐
mia in our population was IDA and the minor β-thalassemia was the second cause
that needs to more attention in screening programs.

Keywords: Hemoglobinopathies, alpha- thalassemia, beta- thalassemia, anemia

1. Introduction

These two major groups, α- and β-thalassemia, are subclassified according to absent (α0 and
β0) or reduced (α+ and β+) globin chain synthesis. The difference in the amount of fetal
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hemoglobin (HbF) that  persists  into adulthood affects  the severity of  β-thalassemia syn‐
dromes [4]. Hemoglobinopathies are the most common single gene disorders in man. There are
several hundred of these disorders, but the thalassemias—alpha and beta—and the sickling
disorders make up the vast majority [1]. The wide variation in the clinical manifestation of
hemoglobin disorders could be attributed to the influence of various genetic modifiers and
environmental factors. The heterogenous distribution of the disease and the presence of high
variation in the phenotypic manifestation of a specific mutation are major problems with the
development of programs for the control of the hemoglobinopathies [2] Thalassemia is one of
the most common genetic diseases worldwide, with at least 60, 000 severely affected individu‐
als born every year [3].

2. Pathophysiology

At the molecular level, the underlying cause of thalassemia is any of a number of genetic lesions
that reduce or abolish the production of the globin chains of hemoglobin. The resulting chain
imbalance is the key factor initiating the damage to RBC, and it is the major pathophysiologi‐
cal event in all forms of the thalassemia syndromes [4]. Severe IE, chronic anemia, and hypoxia
also cause increased gastrointestinal (GI) tract iron absorption [5]. Repeated blood transfu‐
sions are one of the major causes of iron overload in several of these disorders, including β-
thalassemia major, which is characterized by a defective β-globin gene. In addition to repeated
blood transfusions and increased iron absorption, chronic hemolysis is the major cause of tissue-
iron accumulation in anemic iron-overload disorders caused by hemolytic anemia [6]. Molecu‐
lar  studies  using  nucleic  acid  hybridization  techniques  and  endonuclease  analysis  have
identified loss of alpha-gene function related to gene deletion or nondeletional mutations
causing hypofunctional genes and terminator codon mutations as responsible for the various
alpha-thalassemia syndromes [7]. A number of reports of heterozygous KLF1 mutations in
humans either show concomitant disruption of erythropoiesis or show little effect on HbF
expression, and recent studies suggest that rare variants in KLF1 are indeed associated with
elevations in HbF, but this does not appear to occur consistently or to the same extent even with
similar mutations. The basis of this variation remains to be determined and will be important
to better understand the mechanisms by which KLF1 acts both directly and indirectly to affect
HbF expression [6]. Also, β-thalassemia major is suspected in an infant or child younger than
age 2 years with the following clinical or newborn screening findings: severe microcytic anemia,
mild jaundice and hepatosplenomegaly [8].

Couples and their close relatives should be evaluated for silent or atypical alpha- and beta-
mutations, and if they are detected, prenatal genetic counseling for diagnostic purposes should
be provided [7].

3. Clinical manifestations

Nearly 10% beta-thalassemia patients have beta-thalassemia intermedia (TI) [10]. TI is
associated with a variety of serious clinical complications that require proactive and compre‐
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hensive management such as skeletal deformities and osteopenia, compensatory extramedul‐
lary hematopoiesis and tumor formation, progressive splenomegaly, a hypercoagulable state
resulting in thromboembolic events and pulmonary hypertension, and increased gastrointes‐
tinal iron absorption that often results in nontransfusional iron overload and liver damage [9].
TI patients who develop progressive anemia, fatigue, and cardiopulmonary complications also
require regular transfusions to maintain Hb levels <9–10 g/dL [10, 11]. Beta-thalassemia major
(also called Cooley anemia, Mediterranean anemia, and von Jaksch anemia) denotes the
homozygous or compound heterozygous forms of the disease, which are characterized by
severe anemia (range, 1–7 g/dL of Hb), hemolysis, and massive IE [12]. Affected infants with
thalassemia major fail to thrive and become progressively pale. Feeding problems, diarrhea,
irritability, recurrent bouts of fever, and enlargement of the abdomen may also occur due to
splenomegaly [13].

4. Strategies for TM treatment

4.1. Transfusion therapy

Early and regular blood transfusion therapy in patients with homozygous beta-thalasse‐
mia decreases the complications of severe anemia and prolongs survival that in the long
term. The beneficial effects of transfusions are limited by the organ damage resulting from
iron overload,  a  consequence of  the  body’s  limited capacity  to  excrete  iron,  and by the
complications of infection with blood-borne agents [14]. Current therapeutic approaches for
homozygous  beta-thalassemia  entail  blood transfusions  and iron  chelation  therapy with
deferoxamine or deferiprone for preventing tissue hemosiderosis. Nowadays, much effort
has  focused  on  various  inducers  of  HbF,  such  as  recombinant  human  erythropoietin,
especially  in  beta-thalassemia intermedia  [15].  Cytomegalovirus-negative  blood products
are  recommended  for  potential  candidates  for  curative  stem  cell  transplantation  (SCT).
Parents and first-degree relatives should not be blood donors for these candidates. Hepatitis
B vaccination is given before transfusion therapy [16]. Transfusions of washed, leukocyte-
depleted RBCs are recommended for all the patients to reduce the incidence of febrile and
urticarial  reactions  as  well  as  infectious  cytomegalovirus  contamination.  If  they  are  not
available,  frozen–thawed  RBCs  should  be  administered  [17,  18].  Current  transfusion
regimen guidelines state that the pretransfusion hemoglobin (Hb) should ideally be in the
9- to 10-g/dL range. This recommended transfusion scheme generally leads to the transfu‐
sion of 100–200 mL/kg/year of packed red blood cells, which is equivalent to 0.3–0.6 mg of
iron per kg body weight per day [19].

4.2. Managing of the complications

Cardiac failure and serious arrhythmias are the major causes of life-threatening morbidity and
mortality in iron-overload patients [20]. In the modern era, with iron chelation treatment, the
clinical manifestation of cardiac disease has changed, and pericarditis and myocarditis are now
rare. Historical postmortem studies showed severe replacement cardiac fibrosis [21], but this
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is now rare in more modern cohorts of patients dying of HF [22]. Patients receiving regular
transfusion and iron chelation should be assessed formally for their cardiac status (history,
physical examination, and auscultation) beginning at the age of 10 years and annually
thereafter [23]. There are ongoing clinical trials that are relevant to the treatment of cardiac
iron overload by deferasirox. One that is relevant is the Novartis 2214 trial, with open-label
treatment in TM patients with combined deferoxamine with deferasirox. In addition, clinical
trials of new chelators are ongoing [24]. Diuretics, including loop diuretics (furosemide) and
potassium-sparing agents (spironolactone), as well as angiotensin-converting enzyme (ACE)
inhibitors should be prescribed based on arterial blood pressure. Also, in cases of persistent
normal sinus tachycardia, small doses of carvedilol and digoxin may be given and must be
prescribed to patients with atrial fibrillation resistant to conversion [25].

4.3. Bone disease

Therefore, the detection of low bone mass in many regularly transfused and well-chelated β
TM patients over the last decade was quite unexpected [26]. DiStefano et al. [27] reported that
the etiology of bone disease in thalassemia is poorly understood. Therefore, a number of
studies have examined the effect of various conditions on the pathogenesis of bone disease,
including ineffective erythropoiesis, iron overload, treatment with DFO, vitamin D concen‐
trations, influence of endocrinopathies (such as hypogonadism and growth hormone defi‐
ciency), and thalassemia genotype. Beginning in childhood, yearly examination of bone
mineral density as well as calcium, vitamin D3 metabolism, and thyroid and parathyroid
functions should be performed. Some short-term success has been seen with the administration
of pamidronate in patients with Z-/T-score <2.5. It seems that early administration of iron
chelation is effective in preventing endocrine complications [28].

4.4. Splenectomy

Splenectomy determines immediate drop in blood consumption and iron intake but slow
downtrend of ferritin, which are direct measurements of iron overload [29]. Also, Splenectomy
reduces transfusion requirements in the first year after surgery in patients with thalassemia
major and hypersplenism [30]. Splenectomy should generally be avoided in NTDT patients <5
years, and it should be reserved for the following cases [31]:

a. When transfusion therapy is not possible or iron chelation therapy is unavailable

b. Worsening anemia leading to poor growth and development

c. Hypersplenism and splenomegaly

d. Leading to worsening anemia, leucopenia, or thrombocytopenia and causing clinical
problems such as recurrent bacterial infections or bleeding

e. Accompanied by symptoms such as left upper quadrant pain or early satiety

f. Massive splenomegaly (>20 cm) with concern about possible splenic rupture

The susceptibility to overwhelming infections after splenectomy can be reduced by immuni‐
zation with pneumococcal and meningococcal vaccines before splenectomy and antimicrobial

Inherited Hemoglobin Disorders6



prophylaxis with penicillin after splenectomy [32]. In cases of ongoing transfusion therapy,
with each RBC unit containing >200 mg of iron, cumulative iron burden is an inevitable
consequence [33].

4.5. Prevention: prenatal diagnosis

The prenatal diagnosis of β-thalassemia was accomplished for the first time in the 1970s by
globin chain synthesis analysis on fetal blood obtained by placental aspiration at 18–22 weeks
gestation [34]. Acceptance of prenatal diagnosis and termination of affected fetuses are
dependent on the early identification of couples at risk, culturally sensitive genetic counseling,
cost, and religious beliefs even when PCR technologies are available [35]. Preimplantation
genetic diagnosis is generally defined as the testing of preimplantation stage embryos or
oocytes for genetic defects, and preimplantation embryo diagnosis requires in vitro fertiliza‐
tion, embryo biopsy, and using either fluorescent in situ hybridization or polymerase chain
reaction at the single cell level [36]. Current PCR technologies and precise hybridization assays
to detect single point mutations with great reliability using very small DNA samples have been
developed. New technology using fetal DNA obtained from maternal plasma or maternal
peripheral blood has also been developed but is not routinely available [37].

4.6. Cure: HSCT

Hematopoietic SCT (HSCT) is an established procedure for many acquired and congenital
disorders of the hematopoietic system [38]. The European Group for Bone Marrow Trans‐
plantation analyses in previous years have shown an increase in the annual absolute HSCT
numbers and transplant rates (number of HSCT/10 million inhabitants) of about 4–13%
(median 8%) for allogeneic and 1.5–9.5% (median 4%) for autologous HSCT [39]. The success
of an allogeneic HSCT is dependent on a multitude of factors, including the procurement of
an optimal graft source. Further, the quality of this graft depends on a variety of donor
and/or host characteristics. Most importantly, HLA compatibility between the recipient and
the donor is considered the dominant characteristic in this field [40]. There are other important
donor characteristics that these non-HLA characteristics may be broadly considered to be
either traditional characteristics, such as ABO compatibility or novel, such as cytokine or KIR
polymorphisms [41]. Approximately 10% of SCT patients are transfusion-free for years,
although they experience persistent mixed hematopoietic chimerism [42]. This suggests that
only a few engrafted donor cells are sufficient for correction of donor phenotype. Approxi‐
mately 30% subsequently reject their grafts. Another option is to use matched unrelated donor
if a matched sibling is not available or when patients are not compliant with conventional
therapy [43].

4.7. Cord blood transplantation

Although the clinical application of hematopoietic cell transplantation has relied on marrow
collected from related and unrelated donors as the primary source of donor hematopoietic
cells, umbilical cord blood (UCB) is an alternative source of hematopoietic cells and represents
a suitable allogeneic donor pool in the event that a marrow donor is not available [44]. The
small size or small number of stem cells in the UBC collection relative to the number required
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for engraftment are probably the main causes of failure of UCB transplantation; therefore, this
procedure is being used mainly in pediatric patients [45].

5. Therapies for future

5.1. Fetal hemoglobin inducers

Recently, a novel therapeutic strategy (HbF) has been hypothesized for β-thalassemia, based
on the observation that the coexistence of the hereditary persistence of fetal hemoglobin in
patients with β-thalassemia reduces the severity of the disease [46]. Several drugs, including
erythropoietin, demethylating agents, such as 5-azacytidine, and short chain fatty acids, such
as butyrate, have been studied individually and in various combinations [7]. Hydroxyurea
(HU), which is very effective in increasing HbF levels, has been used extensively for many
years in patients with sickle cell anemia (SCA) [47].

5.2. Gene therapy

Requirements for effective gene transfer for the treatment of β-thalassemia are regulated,
erythroid-specific, consistent, and high-level β-globin or γ-globin expression that Gamma
retroviral vectors have had great success with immune deficiency disorders, but due to vector-
associated limitations, they have limited utility in hemoglobinopathies. Nowadays, lentivirus
vectors have been shown in several studies to correct mouse and animal models of thalassemia
[48]. In total, concerns regarding gene transfer include the need for improved efficiency of gene
delivery and mastery of vector stability, viral titers, nononcogenic insertion, the variable
expression of globin genes, and the variable contributions of the beta-thalassemia phenotype
and other modifiers to the effectiveness of gene transfer [49].
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