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Abstract

Mitochondria play key roles in the cellular metabolism of lipids and iron as well as in
cell death signaling. Mitochondrial dysregulation produces reactive oxygen species
(ROS), which results in oxidative stress. Moreover, the accumulation of damaged mi‐
tochondria leads to cell death and tissue dysfunction. Mitochondrial maintenance in‐
volves mitophagy, a selective autophagy process that removes abnormal
mitochondria. Parkinson’s disease (PD) is a movement disorder caused by the specific
loss of dopaminergic neurons in the substantia nigra of the midbrain. Two genes im‐
plicated in PD, PINK1 and Parkin, regulate mitophagy in cultured cells. Reduction of
the ΔΨm leads to activation of PINK1, which stimulates the recruitment of Parkin to
the mitochondrial outer membrane of damaged mitochondria and activates Parkin’s
ubiquitin-ligase activity. Activated mitochondrial Parkin leads to the ubiquitination of
mitochondrial proteins and subsequent mitophagy. This elaborate molecular mecha‐
nism was recently uncovered and the findings demonstrate the physiological and
pathological roles of the PINK1-Parkin pathway. Here, we review these key findings
on the molecular mechanism and ideas relevant to neurodegeneration caused by dys‐
regulation of the PINK1-Parkin pathway.

Keywords: Dopaminergic neurons, mitochondria, Parkinson’s disease, protein kinase,
ubiquitin ligase

1. Introduction

In eukaryotic cells, mitochondria are highly efficient power-generating systems that perform
aerobic respiration. Injured mitochondria leak ROS, resulting in oxidative stress and reduction
of energy supply; this dysfunction eventually leads to cell death. Therefore, appropriate
regulation of mitochondria is critical for vital activity and anti-aging. Mitochondrial dysregu‐
lation has indeed been implicated in various human diseases, including cancer, diabetes,
myopathy, and a variety of neurodegenerative disorders such as amyotrophic lateral sclerosis
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(ALS), Huntington’s disease, neuropathy, and Parkinson’s disease (PD). PD is a progressive
neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in
the midbrain. The motor symptoms of PD include tremor, rigidity, slowness of movement,
and difficulty with ambulation. Although familial forms of PD are relatively rare cases, the
identification of genes responsible for PD enables a better understanding of the molecular
mechanisms underlying neurodegeneration. Parkin and PINK1 mutations are associated with
autosomal recessive forms of early-onset PD [1, 2]. A series of studies on PINK1 and Parkin
indicates that these two genes work in a coordinated manner in functions related to mito‐
chondrial maintenance including mitochondria motility, proteasomal degradation of mito‐
chondrial proteins, and selective mitochondrial autophagy (also known as mitophagy). These
results strongly imply that dysregulation of mitochondria is one of the major factors in the
etiology of PD. In this chapter, we focus on the latest studies that have made significant
progress in elucidating the molecular mechanisms of mitochondrial quality control via the
PINK1-Parkin pathway.

The selective degradation of mitochondria via an autophagic process was originally reported
as mitophagy by J.J. Lamasters et al. [3]. In yeast, loss of the MDM38 gene product, a component
of the mitochondrial protein export machinery, reduces the content of respiratory chain
complexes, elicits morphological mitochondrial changes, and disturbs mitochondrial K+

homeostasis, resulting in mitophagy [4]. When mammalian reticulocytes mature into eryth‐
rocytes, mitochondria are removed by mitophagy [5]. In fertilized C. elegans oocytes, sperm-
contributed mitochondria are selectively degraded by mitophagy [6, 7]. These observations
indicate that mitophagy plays important roles in mitochondrial maintenance, differentiation,
and developmental processes in eukaryotes.

2. Mitochondrial segregation and mitophagy

Damaged mitochondria are selectively segregated and degraded by mitophagy [3]. Mitochon‐
drial morphology is maintained by mitochondrial fusion and fission. Mitofusin (Mfn) regulates
or mediates mitochondrial fusion whereas Drp1 and Fis1 promote mitochondrial fission in
mammals as well as in yeast [8]. Inhibition of Drp1 or Fis1 activity results in the suppression
of mitophagy and the accumulation of oxidized mitochondrial proteins, leading to reduced
respiration and impaired insulin secretion [9]. Orthologs of Parkin and PINK1 have been
identified in Drosophila [10–12]. Loss of Drosophila PINK1 causes mitochondrial degeneration,
resulting in male sterility, apoptotic muscle degeneration, and increased sensitivity to multiple
stresses, including oxidative stress. Loss of Drosophila Parkin produces phenotypes similar to
those elicited by the loss of PINK1, and Parkin overexpression rescues the mitochondrial
defects observed in PINK1 mutant flies [11–13]. The Drosophila Parkin and PINK1 phenotypes
are suppressed by increased Drp1 activity and are exacerbated by Opa1 or Mfn [14–16]. PINK1
and Parkin collaboratively ubiquitinate Mfn and the steady-state abundance of Mfn is
inversely correlated with the activity of PINK1 and Parkin in Drosophila [17, 18]. Parkin also
ubiquitinates Mfn1 and Mfn2 in mammalian cells, leading to proteasome- and p97/VCP-
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dependent degradation [19–21]. These reports indicate that PINK1 and Parkin positively
regulate mitochondrial fission, which may facilitate mitochondrial clearance via mitophagy.

3. Parkin E3 ligase and ubiquitination

Parkin contains a ubiquitin-like (Ubl) domain at the N-terminus, RING-between-RING (RBR)
domains at the C-terminus, and an atypical RING domain, RING0, in its linker region (Figure
1) [22–24].

Figure 1. Schematic of PINK1 and Parkin proteins MTS: mitochondrial targeting sequence, TM: transmembrane re‐
gion, Ubl: ubiquitin-like domain, RING: really interesting new gene domain, IBR: in between RING domain. Numbers
indicate the positions in the amino acid sequence.

E3 ubiquitin ligases are roughly divided into two groups: RING finger-type E3 ligases and
homologous to the E6AP carboxyl terminus (HECT)-type E3 ligases. HECT-type E3 ligases
form a thioester intermediate between ubiquitin and a catalytic cysteine residue before
transferring ubiquitin from E2 to a substrate. By contrast, RING finger-type E3 ligases mediate
the direct transfer of ubiquitin from E2 to the substrate. Parkin, which was formerly classified
as a RING finger-type E3 ligase, is now categorized as a HECT-RING hybrid E3-ligase [25,
26]. To activate Parkin, a ubiquitin-charged E2 associates with Parkin RING1 and ubiquitin is
transferred from E2 to Cys431 in the RING2 domain of Parkin to form the HECT-like thioester
intermediate [25–27]. Similar molecular behaviors were observed in other RBR proteins such
as HHARI, and proteins containing a RBR domain are thought to be HECT-RING hybrid E3-
ligases [25, 26].

PINK1 encodes a serine–threonine protein kinase with a mitochondrial targeting signal at the
N-terminus (Figure 1) [2]. PINK1 is constitutively processed by mitochondrial proteases at the
mitochondrial membrane of healthy mitochondria, resulting in proteasomal degradation [28–
30]. The reduction in mitochondrial membrane potential (ΔΨm) in damaged mitochondria
leads to the accumulation and activation of PINK1 on the outer mitochondrial membrane [29].
Activated PINK1 recruits Parkin from the cytosol to mitochondria in response to decreased
ΔΨm. This action stimulates Parkin E3 activity, thereby promoting mitochondrial degradation
via mitophagy [29, 31–35]. The Ubl domain in the N-terminal region of Parkin inhibits the E3
activity of Parkin by interacting with the RBR region [36]. PINK1 phosphorylates Ser65 in the
Ubl domain of Parkin to activate Parkin E3 activity (Figure 2) [37–42]. Activated PINK1 also
phosphorylates monomeric ubiquitin at Ser65 in the cytosol. Transient interaction with
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phosphorylated ubiquitin leads to a conformational change in Parkin and subsequent activa‐
tion of Parkin E3 activity [41, 43–45].

Figure 2. PINK1-Parkin-mediated mitophagy (1) Mitochondrial DNA (mtDNA) mutations, ROS overproduction and
misfolded protein accumulation cause a reduction in ΔΨm. (2) PINK1, which is constitutively degraded under steady-
state conditions, accumulates on damaged mitochondria. (3) Accumulated PINK1 activates itself and elicits mitochon‐
drial translocation and Parkin activation through phosphorylation. Activated Parkin ubiquitinates substrates on
mitochondria. (4) Polyubiquitinated proteins on the mitochondrial outer membrane are degraded by the proteasome,
and damaged mitochondria are eliminated concurrently by mitophagy.

It has been reported that Parkin binds to four tandem-repeated mitochondrial ubiquitin chains,
which mimic Lys63-linked polyubiquitin chains only when PINK1 is activated [46]. Subse‐
quent reports have revealed that PINK1 phosphorylates mitochondrial polyubiquitin,
resulting in Parkin activation and mitochondrial relocation (Figure 3) [41, 47]. While PINK1
phosphorylates both monoubiquitin and polyubiquitin, including Lys48- and Lys63-linked
polyubiquitin chains, activated Parkin preferentially associates with Lys63-linked phosphory‐
lated polyubiquitin chains on mitochondria [41]. Lys48-linked polyubiquitin chains are
generally utilized as signals for proteasomal degradation [48], whereas Lys63-linked ubiquitin
chains were first identified in yeast as atypical ubiquitin chains that respond to stress [49]. A
variety of functions of Lys63-linked polyubiquitin chains were subsequently characterized,
including the regulation of kinase activity, DNA damage response, signal transduction
scaffolding, vesicular trafficking, and endocytosis [50]. Thus, the formation of Lys63-linked
ubiquitin chains during mitophagy might have a critical role beyond Parkin recruitment [51].
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Figure 3. Amplification of phospho-polyubiquitin chain production achieves rapid Parkin translocation and activa‐
tion Phospho-polyubiquitin chains on mitochondria are produced in collaboration with PINK1 and Parkin. The mech‐
anism responsible for the formation of initial ubiquitin chains on mitochondria remains unresolved. The ubiquitin
chains might be attached to outer membrane proteins via mitochondrial ubiquitin ligases other than Parkin. Alterna‐
tively, Parkin, which is activated by phospho-monoubiquitin in the cytosol, could attach ubiquitin chains to mitochon‐
drial proteins. Phosphorylation of polyubiquitin chains by PINK1 promotes further Parkin activation and relocation to
the mitochondrial outer membrane, amplifying the generation of phospho-polyubiquitin chains and subsequently re‐
cruiting autophagy machinery to ubiquitinated mitochondria.

Several reports have demonstrated that Parkin-interacting E2 enzymes mediate the ubiquiti‐
nation reaction of Parkin. UBE2N is related to Parkin-mediated Lys63-linked ubiquitination
[51, 52], whereas UBE2N, UBE2L3, and UBE2D2/3 synergistically contribute to Parkin-
mediated mitophagy [53]. Knockdown of UBE2N, UBE2L3, or UBE2D2/3 but not UBE2A,
UBE2S, or UBE2T significantly reduces autophagic clearance of depolarized mitochondria or
Parkin E3 activity [53, 54]. However, recent reports indicate that the linkage property of
polyubiquitination depends on Parkin itself rather than involved E2s [47], and that atypical
Lys6- and Lys11-mediated polyubiquitination chains are also generated by Parkin and
contribute to mitophagy [47, 55].

Deubiquitinating enzymes (DUBs) are also involved in PINK1-Parkin-mediated mitophagy.
Because USP30 preferentially removes Lys6- and Lys11-linked ubiquitin chains generated by
Parkin on damaged mitochondria, USP30 knockdown rescues the defective mitophagy caused
by pathogenic mutations in Parkin [55, 56]. Moreover, knockdown of USP30 improves
mitochondrial morphology in Parkin- or PINK1-deficient flies and protects them from the
paraquat-induced reduction in dopamine, motor dysfunction, and shortened lifespan [56].
Conversely, USP8 removes Lys6-linked polyubiquitin on Parkin, which activates Parkin-
mediated mitophagy [57]. As USP15 does not affect Parkin autoubiquitination and transloca‐
tion to mitochondria, knockdown of CG8334, the closest homolog of USP15 in Drosophila,
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largely rescues the altered mitochondrial morphology and the defective climbing ability in
Parkin knockdown flies [58]. These findings could provide new therapeutic strategies for PD
via the targeting of DUBs.

PINK1 and Parkin promote selective turnover of the respiratory chain complex in Drosophila
independently of mitophagy pathway [59]. Quantitative Lys-є-Gly-Gly (diGly) proteomics
identified a variety of Parkin-dependent ubiquitinated proteins [47, 60]. Interestingly, the
PINK1-Parkin pathway dynamically regulates protein ubiquitination levels in the mitochon‐
drial outer and inner membranes, nucleus, cytoplasm, and cell membrane, suggesting that
Parkin affects cellular events other than mitochondrial maintenance. Parkin-mediated
xenophagy is one such example although it is unclear whether PINK1 is involved in this
mechanism or not [61].

4. Regulators of PINK1

PINK1 stability is regulated by mitochondrial outer and inner membrane proteins, and
upregulation of these proteins triggers PINK1 activation through dimerization and autophos‐
phorylation (Figure 4) [62, 63]. PINK1 interacts with the translocase of the outer membrane
(TOM) complex and is imported to the mitochondrial inner membrane [64, 65]. Under steady-
state conditions, endogenous PINK1 is constitutively and rapidly degraded by the E3 ubiquitin
ligases UBR1, UBR2, and UBR4 through the N-end rule pathway [30]. The PINK1 precursor is
inserted into the mitochondrial inner membrane, where PINK1 is subjected to processing by
mitochondrial proteases. The rhomboid family protease PARL, which is localized at the
mitochondrial inner membrane, cleaves PINK1 at Ala103 in a ΔΨm-dependent manner [66–
70]. Cleaved PINK1 is released to the cytosol or mitochondrial intermembrane space [70].
However, the molecular mechanism of its reverse transport from the mitochondria to the
cytosol remains unclear. The mitochondrial processing peptidase and hetero dimeric matrix
proteases m-AAA and ClpXP are also involved in PINK1 cleavage [71]. These reports indicate
that mitochondrial inner and matrix proteases coordinately regulate PINK1 stability in a
ΔΨm-dependent manner.

In Drosophila, loss of a PINK1-binding mitochondrial phosphatase PGAM5 improves the
muscle degeneration, motor defects, and shorter lifespan caused by the loss of PINK1,
suggesting that PGAM5 negatively regulates the PINK1 pathway related to mitochondrial
maintenance [72]. PGAM5 knockout mice display PD-like motor dysfunction and progressive
degeneration of dopaminergic neurons [73]. PGAM5S, a short form of PGAM5, recruits Drp1
and activates its GTPase activity by dephosphorylating Ser637 in Drp1, causing mitochondrial
fragmentation [74]. Although the precise physiological and pathological roles of PGAM5
remain unclear, PGAM5 may play important roles in mitochondrial maintenance and PINK1-
mediated mitophagy.

Lefebvre et al. identified ATPase inhibitory factor 1 (ATPIF1/IF1) as essential for Parkin
translocation from cytosol to mitochondria and for mitophagy in cultured cells [75]. ATPF1
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inhibits the reversal of F1Fo-ATP synthase and promotes the reduction in ΔΨm, resulting in
the accumulation of PINK1 and the subsequent activation of mitophagy [75].

The master transcriptional factor for lipogenesis, sterol regulatory element binding transcrip‐
tion factor 1 (SREBF1), promotes Parkin translocation and mitophagy [76]. Although SREBF1
knockdown inhibits carbonyl cyanidem-chlorophenylhydrazone (CCCP)-induced PINK1
stabilization and Parkin translocation, the addition of excess amounts of cholesterol rescues
these deficits, suggesting that SREBF1-dependent lipid synthesis may be a key factor in PINK1
stabilization [76].

5. Regulators of Parkin and mitophagy

Parkin-mediated ubiquitination of mitochondrial proteins initiates proteasomal and autopha‐
gic degradation, which involves a variety of regulators and ubiquitin- and/or LC3-binding
proteins (Figure 5). The ubiquitin- and LC3-binding protein p62/SQSTM1 is required for
Parkin-induced clustering of depolarized mitochondria to the perinuclear region [33, 77, 78].
Neighbor of BRCA1 gene 1 (NBR1), a functional homolog of p62, is also a ubiquitin-binding
protein and is recruited to depolarized mitochondria in a PINK1-Parkin-dependent manner
[79]. p62 and NBR1 expression levels coordinately change, suggesting a positive mutual
regulatory relationship between p62 and NBR1 at least during viral infection [80]. Optineurin,

Figure 4. Molecular dynamics of PINK1 in healthy or damaged mitochondria In healthy mitochondria, PINK1 is im‐
ported by the TOM and TIM complexes to the mitochondrial inner membrane (MIM) and is processed by PARL, which
in turn releases PINK1 into the cytosol. PINK1 is subjected to degradation by the ubiquitin ligases UBR1, UBR2, and
UBR4. In damaged mitochondria, when PINK1 interacts with the TOM complex, it cannot be imported into the inter‐
membrane space due to the loss of ΔΨm. Instead, PINK1 accumulates on the mitochondrial outer membrane (MOM),
which leads to the dimerization and autophosphorylation events that activate its kinase activity.
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an autophagy receptor that binds to ubiquitinated mitochondria via ubiquitin-binding
domains, is translocated to damaged mitochondria in a Parkin-dependent manner and recruits
LC3 to induce mitochondrial degradation via autophagosomes [81]. However, optineurin and
p62 are independently recruited to damaged mitochondria [81]. Tank-binding kinase 1 (TBK1)
phosphorylates optineurin and p62, which enhances their binding affinity to LC3 and ubiquitin
[82, 83]. Although TBK1 is activated downstream of Toll-like receptor 3 (TLR3) and the TLR4
signaling pathway, it is unknown which signaling event activates TBK1 during mitophagy
[84]. Ambra1, an autophagy-promoting protein, is not required for Parkin translocation to
depolarized mitochondria [85]. However, the interaction of Parkin with Ambra1 is potentiated
during prolonged mitochondrial depolarization, resulting in the activation of the autophagy-
associated class III phosphatidylinositol 3-kinase (PI3K) complex in mitochondria and their
selective autophagic clearance [85].

Figure 5. Regulators of the PINK1-Parkin pathway Various regulators of the PINK1-Parkin pathway have been char‐
acterized. ATPIF1, TOMM7, PARL, SIAH3, and SREBF1 are involved in PINK1 accumulation and stabilization on mi‐
tochondria. Mitochondrial phospho-polyubiquitin chain, HSPA1L, Hsp72, HK1, and HK2 promote Parkin
translocation to mitochondria. HK2 activity is positively regulated by AKT signaling. By contrast, BAG4 and USP8
suppress Parkin translocation. The deubiquitinating enzymes USP15 and USP30 remove polyubiquitin from mitochon‐
drial substrates of Parkin. The LC3- and ubiquitin-binding proteins p62/SQSTM1, NBR1, and optineurin link polyubi‐
quitin on mitochondria to the autophagosome. TBK1 positively regulates the activities of p62/SQSTM1 and optineurin
through phosphorylation. Ambra1 promotes autophagic clearance by activating the autophagy-associated class III
phosphoinositide 3-kinase (PI3K) complex.
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Recent genome-wide RNAi screens have also identified several regulators of PINK1 and
Parkin. Hasson et al. found that TOMM7, one of the TOM components, is necessary for the
accumulation of PINK1 and Parkin on damaged mitochondria and chaperone proteins,
HSPA1L and BAG4, have mutually opposing roles in Parkin translocation [86]. TOMM7
knockout causes impaired PINK1 import into mitochondria by inhibiting the interaction of
PINK1 with the TOM complex. Moreover, a mitochondrial E3 ligase SIAH3 inhibits PINK1
accumulation probably through ubiquitination-proteasome-dependent degradation, resulting
in decreased Parkin translocation [86]. Another chaperone protein, Hsp72, rapidly translocates
to depolarized mitochondria prior to Parkin recruitment and interacts with both Parkin and
Mfn2 only after specific mitochondrial insults [87]. Myotubes in both Hsp72 knockout mice
and Parkin knockout mice exhibit increased insulin resistance and reduced maximal respira‐
tion [87]. Furthermore, myotubes in Hsp72 knockout mice exhibit impaired CCCP-induced
Mfn2 degradation and Parkin-mediated LC3-II accumulation, suggesting that Hsp72 is a
positive regulator of Parkin in mitophagy [87].

McCoy et al. revealed that knockdown of hexokinase (HK)1 and HK2 inhibits Parkin translo‐
cation from the cytosol to the mitochondria [88]. Inhibition of AKT signaling attenuates Parkin
recruitment to mitochondria and suppresses the translocation of HK2 to mitochondria,
suggesting that AKT promotes Parkin relocation [88].

6. Mitochondrial motility regulated by PINK1-Parkin

PINK1 and Parkin regulate mitochondrial motility in addition to mitophagy, which appears
to be particularly important for neuronal function. In neurons, mitochondria are transported
from the cell body to nerve terminals. Mitochondrial Rho GTPase 1 (Miro1) regulates the
microtubule-dependent transport of mitochondria along with Milton, kinesin, and dynein [89].
In Drosophila, knockdown of PINK1 or overexpression of Miro increases the mitochondrial
length in larval motor neurons and the density within nerve terminals at larval neuromuscular
junctions [90]. Similar to Drosophila, PINK1 or Parkin overexpression suppresses both retro‐
grade and anterograde transport of mitochondria via Miro1 degradation in rat hippocampal
axons [91]. Parkin Ser65 phosphorylation by PINK1 stimulates Lys27-linked polyubiquitina‐
tion of Miro1 by Parkin [40, 92]. Mfn2, a Parkin substrate, is also involved in mitochondrial
transport through binding to the Miro–Milton complex on mitochondria [93]. PINK1-Parkin
is thought to keep damaged mitochondria away from nerve terminals by destroying the Miro–
Milton complex, thereby facilitating the removal of mitochondria in the soma via mitophagy.

7. Mitochondria and PD

Respiratory  complex  I  or  NADH dehydrogenase  activity  is  significantly  reduced in  the
substantia nigra of PD patients [94–96], implying that selective dysregulation of complex I
activity is a key component of PD pathogenesis. The fact that neurotoxin 1-methyl-4-phenylpyr‐
idinium (MPP+) causes selective loss of dopaminergic neurons, which causes symptoms similar
to Parkinsonism, reinforces this idea [97]. MPP+ is produced by the monoamine oxidase (MAO)-
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mediated oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and is imported
into dopaminergic neurons via dopamine reuptake systems [98, 99]. In dopaminergic neu‐
rons, MPP+ is concentrated in the mitochondrial matrix and binds to NADH dehydrogenase,
resulting in the inhibition of OXPHOS, ATP depletion, and dopaminergic neuron death [100].

In addition to PINK1 and Parkin, other genes that have been implicated in PD are also related
to mitochondrial homeostasis. Mutations in DJ-1 are associated with early-onset PD [101, 102].
DJ-1 alleviates oxidative stress through its antioxidant activity and functions as a redox-
sensitive molecular chaperone [103]. Loss of DJ-1 leads to abnormal mitochondrial pheno‐
types, including reduced ΔΨm, increased fragmentation and accumulation of autophagic
markers [104]. CHCHD2 was isolated as a novel PD-associated gene [105] and is thought to
regulate OXPHOS in mitochondria [106]. PINK1 inhibition causes decreased dopaminergic
neuron viability in Drosophila [13, 42] and the loss of Parkin causes dopaminergic neuron-
specific mitochondrial dysfunction [107]. These reports suggest that PINK1 and Parkin play
critical roles in mitochondrial maintenance and dopaminergic neuron survival. Dopaminer‐
gic neurons as well as other neurons and glia cells express MAOs, which are substrates of Parkin
[47, 60, 108]. During the oxidization of cytosolic or vesicular dopamine by MAOs, ROS are
generated. Thus, dysregulation of MAO levels in dopaminergic neurons may account for the
vulnerability of dopaminergic neurons to oxidative stress and the selective degeneration of
dopaminergic neurons.

8. Conclusions

Two genes implicated in PD, PINK1 and Parkin, are involved in the clearance of damaged
mitochondria. DJ-1 and CHCHD2, which are the other gene products associated with PD, are
also involved in mitochondrial homeostasis. Accumulating evidence suggests that these PD-
associated genes have multifaceted roles in mitochondria, including the regulation of mito‐
chondrial motility and quality as well as redox and respiration regulation. Although the
physiological and pathological significance of newly identified phosphorylated polyubiquitin
chains in PD needs to be characterized further, a complete understanding of the PINK1-Parkin
pathway and its modification via therapeutic intervention would provide an opportunity to
overcome a variety of mitochondrial diseases as well as PD.
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