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Abstract

The motivation of using metal oxides is mainly due to its charge storage capabilities, and
electrocatalytic, electrochromic and photoelectrochemical properties. But comparing with
bulk, nanostructured materials present several advantages related with the spatial
confinement, large fraction of surface atoms, high surface energy, strong surface adsorp‐
tion and increased surface to volume ratio, which greatly improves the performances of
these materials. The deposition of this materials can be accomplished by a variety of
physical and chemical techniques but nowadays, electrodeposited metal oxides are gen‐
erally used in both laboratories and industries due to the flexibility to control structure
and morphology of the oxide electrodes combined with a reduced cost. Tungsten oxide
(WO3) is a well-studied semiconductor and is used for several applications as chromo‐
genic material, sensor and catalyst. The major important features is its low cost and avail‐
ability, improved stability, easy morphologic and structural control of the nanostructures,
reversible change of conductivity, high sensitivity, selectivity and biocompatibility. For
the electrodeposition of WO3, more than one method can be adopted: electrodeposition
from a precursor solution, anodic oxidation, and electrodeposition of already produced
nanoparticles; however, in this case the mechanism of the electrodeposition is not fully
understood. In this chapter, a review of the latest published work of electrodeposited
nanostructured metal oxides is provided to the reader, with a more detailed explanation
of WO3 material applied in sensing devices.

Keywords: tungsten oxide, pH sensor, neural recordings, impedance

1. Introduction

Over the past two decades, the revolution in materials science has driven great advances in all
areas of science and engineering. Nanoscience and nanotechnology are leading this revolution
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fueled by the industrial progress, the scientific ability to fabricate, model, and manipulate
objects with a small number of atoms, and the continuous discovery of new phenomena at the
nanoscale [1, 2]. Nanomaterials present unique properties, which are not found in the respec‐
tive bulk materials [3]. Surface and quantum effects arise in nanostructures due to the large
surface-to-volume ratio and to the dimensions that are comparable to the electron wavelength,
respectively [4, 5].

In the metal oxides field, the discovery of superconductivity [6] and large magnetoresistance
[7] has raised researchers’ attention, especially to those with transition metals. Moreover, in
traditional electronics, oxides are widely used as semiconductors, dielectrics, and conductive
electrodes [8]. In the last years, nanostructured metal oxides for sensing applications have
achieved significant advances, mainly due to their better thermal and environmental stability
compared with organic materials. These devices, based on nanomaterials, can operate with
low power consumption and can be easily integrated with nanoelectronics. Furthermore, the
construction of sensors in “low-cost” substrates, such as plastic, paper, or textile, is also in
demand for application in portable consumer devices [9–13]. Electrodeposition, in this case, is
of great interest due to its flexibility to control the structure and morphology of the oxide
electrodes combined with the reduced cost [14, 15].

2. Electrodeposition

The term electrodeposition is often used unclearly, referring either to electroplating or to
electrophoretic deposition (EPD) [16]. The electroplating process is based on a solution of ionic
species, usually in water, while EPD occurs in a suspension of particles. In electroplating, there
is a charge transfer during the deposition to produce the metal or oxide layer in the electrode,
while in EPD the deposition occurs without any reaction involved (Fig. 1). In fact, the principal
driving force for EPD is the charge and the electrophoretic mobility of the particles in the
solvent under the influence of an applied electric field, with the drawback that the solvent
should be organic in order to avoid water electrolysis [16, 17].

Figure 1. Schematic representation of the two types of cathodic electrodeposition processes: (a) electroplating and (b)
electrophoretic deposition (EPD).
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Another variation of an electrochemical deposition is the electroless (autocatalytic) deposition
in which a reducing agent, dissolved in the electrolyte, is the electron source for the redox
reaction, and no external power supply is needed [18]. Nevertheless, the electroless deposition
will not be discussed in this chapter.

The first reports on the electrodeposition technique date back to the 19th century; however,
the understanding of the process and the electrochemistry involved was only developed in the
20th century and it is believed that further research is still needed to optimize the process [16].

In electroplating, the relation between the current and the overpotential of electrodeposition
is given by the Tafel equation (Equation 1), which describes the exponential dependence
between the two parameters. Worth mentioning is that with the increase of the overpotential,
the ionic current that the electrolyte can supply is limited either by material transport or
electrical conductivity [15, 19].
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where i is the current, F is Faraday's constant, k a constant, C the concentration of metal ions
in solution (which can be initially dissolved in the electrolyte or originated from the dissolution
of the metallic anode), α the coefficient of symmetry (∼ 0.5), η the overpotential, R the ideal
gas constant, and T the absolute temperature (K).

The first attempt to correlate the amount of particles deposited by EPD with the different
parameters influencing electrophoresis was first described by Hamaker for electrophoretic
cells with a planar geometry. Over the years, Hamaker’s law has been adapted and more
recently Equation 2 was derived, relating the weight (W) of the charged particles deposited
per unit area of electrode in the initial period, with different parameters, and disregarding the
charge of the free ions [20].
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Here, C is the concentration of the particles;ε 0 and εr the permittivity of vacuum and solvent,
respectively; ξ the zeta potential of the particles;μ the viscosity of the solvent; E the applied
potential; L the distance between the electrodes; and t the deposition time. Equation 2
demonstrates that the deposition weight of the charged particles under ideal EPD depends on
all the previous parameters. However, if the solvent, the particles, and the apparatus for EPD
are not changed, the weight of the deposited particles (W) is a function of C, E, and t. Therefore,
the mass of the deposited particles, namely the thickness of the films, can be easily controlled
by the concentration of the suspension, applied potential, and deposition time [17].

Electrodeposition of conventional metals for coatings has a very long history, with more than
200 years for some metals and alloys. Today, electrodeposition is much more than just a
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technique for coatings fabrication. In addition to applications such as decorative, wear, and
corrosion-protective coatings, electrodeposition is also used for the manufacture of molds,
functional coatings for magnetic and electronic applications, and microelectromechanical
system components production [5]. In the future, though traditional applications will continue,
new ones will rapidly develop, especially in the fields of nanoelectronics, biotechnology, and
energy engineering. The electrodeposition of non-metallic materials will become more
important and the combination of electrodeposition with other processes will lead to nano‐
structured materials with new and improved properties [21, 22]. Electrodeposition is extreme‐
ly versatile and different applications will keep being explored [23].

3. Metal oxide electrodeposition

Metal oxides are an important class of materials, which benefit from the large electronegativity
of oxygen to induce strong bonding with nearby atoms [22]. At the same time, when compared
with bulk materials, nanostructured metal oxides benefit from the spatial confinement, the
large fraction of surface atoms, high surface energy, strong surface adsorption, and increased
surface-to-volume ratio that greatly improves the performance of these materials [24].

The deposition of nanostructured metal oxides has been already reported by both physical
and chemical methods [8, 5]. The advantages of electrodeposition include its speed, low cost,
high purity, industrial applicability, use of different types of substrates, and production of
films with different morphologies and compositions, as multilayers and alloys [21, 22].

In the electroplating of metal oxides, the reaction involved is usually defined by two consec‐
utive steps (Equation 3). First, the hydroxide will precipitate in the surface of the electrode due
to the reaction of the metal ion (Mn+) in an alkaline solution, and secondly, the oxide is formed
through a condensation/dehydration process. This last step can occur either during electro‐
deposition or by a subsequent annealing procedure [15].

( ) ( ) ( ) ( )
n+ -

2aq aq n ads
M OH M OH MO H On n+ ® ® + (3)

Another alternative is the formation of metal oxides by anodic oxidation [15]. In this case, the
source of the metal ions is the metallic anode and the metal oxide film will be deposited on
top of the metal electrode. The general equation can be described as (Equation 4):

( ) ( )
+ -

2 m s aqM H O MO  2 H + 2 em m m+ « + (4)

In EPD, the metal oxide nanoparticles are generally synthesized by different solution based
techniques, e.g., sol-gel, precipitation, and hydrothermal synthesis, prior to deposition. The
main challenge of this technique is the preparation of a stable dispersion that originates a film
with good properties, uniformity, and appropriate thickness. The use of dispersants, binders,
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or other additives that influences the agglomeration and charge of the particles contributes to
the tuning of the properties of the deposited film and need to be considered in defining the
EPD parameters [16].

3.1. Applications

Nowadays, electrodeposited nanostructured metal oxides are generally used for different
applications in laboratories and industry [15]. The latest published reports on the field, listed
in Table 1, evidentiate the diversity of areas where these materials can be applied, as presented
below.

The deposition of metal/metal oxide nanoparticles composites allowed advances on the
protective coatings field. Sajjadnejad et al. [25] improved the corrosion resistance of zinc by
co-depositing TiO2 nanoparticles, while Zeng et al. [26] incorporated CeO2 nanoparticles to
improve the corrosion behavior of nickel coatings. Charlot et al. [27] opened the discussion of
the kinetics and mechanism of the anodic EPD of SiO2 nanoparticles to improve the control of
the thickness and properties of these coatings (Fig. 2).

Figure 2. Scanning electron microscopy (SEM) images of a film cross-section obtained from a suspension with a mass
fraction of 3% of nanoparticles under an applied electric field of (a) 6 V cm−1 and of (b) 60 V cm−1. Reprinted from [27],
with permission from Elsevier.

Metal oxide nanostructures are already known to show good catalytic properties. Tu et al. [28]
produced Cu2O-Cu nanoparticles in carbon paper via electroplating. This procedure is an easy,
one-step technique that can be an attractive candidate as a visible-light-driven photocatalyst.
At the same time, Yoon et al. [29] studied the influence of 2D and 3D structures on electrode‐
posited Cu2O films by controlling the electrolyte pH and by using polystyrene (PS) beads as
template, respectively. This techniques allowed the production of electrodes with increased
surface area. Battaglia et al. [30] also improved the catalytic performance of different Ni
electrodes by electrodepositing IrO2 nanostructures through different electrochemical meth‐
ods. The composites obtained by galvanostatic deposition of the oxide catalyst presented the
best activity for water splitting applications.
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Solid oxide fuel cells (SOFC) have shown to be a good alternative for electric power generation
systems. SOFC show high energy conversion efficiency, clean power generation, reliability,
modularity, fuel adaptability, noise-free, excellent long-term stability, and versatility for direct
conversion of chemical energy to electrical energy. In this field, Das and Basu [31] applied the
EPD technique to deposit yttria-stabilized zirconia (YSZ) nanoparticles on a NiO-YSZ sub‐
strate, which after sintering was suitable for application in SOFC (Fig. 3).

Figure 3. Field-emission SEM images of top view and cross-section of yttria-stabilized zirconia (YSZ) electrophoretic
deposition coating (a) (c) as-deposited and (b) (d) sintered at 1400 °C for 6 h, directly deposited onto the conducting
polymers such as polypyrrole-coated NiO-YSZ substrate at a constant applied voltage of 15 V. Reprinted from [31],
with permission from John Wiley and Sons.

EPD was also the technique used to deposit TiO2 nanoparticles for dye-sensitized solar cells
(DSSC) [32] and Li-ion micro-batteries applications [33]. For DSSC, the thickness of the TiO2

films was controlled by changing the deposition time and the I2 dosage that electrically charge
the nanoparticles, while for batteries, the EPD was performed with different TiO2 structures
and different 3D aluminum collectors configurations (Fig. 4). The effect of the substrate was
also tested in the EPD of ZnO nanoparticles for conductive fabrics applications [34]. Liu et al.
[35] studied the EDP of metal oxides using celestine blue as charging and dispersing agent.
The nanostructured MnO2 films were applied for energy storage in electrochemical superca‐
pacitors with high capacitance and excellent capacitance retention at high charge-discharge
rates.
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Figure 4. SEM micrographs of aluminium rods obtained by pulsed galvanostatic deposition using a PC membrane
with (a) 2 μm-pore size and (c) 1 μm-pore size with electrophoretically deposited P25 particles attached to the respec‐
tive 3D Al substrates (b) and (d). Reprinted from [33], with the permission from Elsevier.

The use of metal oxides offers functionalities that vary from electrically conducting to insu‐
lating and from highly catalytic to inert, which are useful for sensing applications. Different
types of metal oxide sensors have been investigated for several decades, and it has been proved
that the reduction of crystallite size provided a significant increase in the sensing performan‐
ces. Even if less established, these type of sensors are very promising and new developments
are being accomplished every day [36].

Recently, Cu2O nanostructures were electroplated to produce a facile and economic photo‐
electrochemical sensor [37], while Ir2O3 was deposited in stretchable and multiplexed pH
sensors [38]. This sensor combined electrochemical, microfabrication, and printing techniques
and was successfully applied in beating explanted cardiac tissue, with accurate spatiotemporal
monitoring of changes in pH (Fig. 5).

Monitoring analgesic drugs with the use of biosensors allows a rapid, reliable, and sensitive
method without the requirement of a sample pre-treatment. For that, alloys deposition allows
the combination of different materials properties without compromising thickness or surface
area available. The biosensors developed by Narang et al. [39] were produced by EPD of an
Fe2O3 magnetic nanoparticle coated with ZrO suspension containing chitosan, prior to enzyme
(horseradish peroxidase) immobilization. Also the combination of Fe2O3 with carbon nano‐
tubes and chitosan was earlier used by Batra et al. [40] to immobilize hemoglobin and were
applied as an amperometric biosensor.
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Figure 5. (a) Picture of the produced pH sensors with the magnified images of the gold electrodes before (lower left)
and after (lower right) IrOx electroplating. The scale bars correspond to 5 and 0.5 mm for the upper and the lower im‐
ages, respectively. (b) Schematic illustration of the chemical reactions during IrOx electroplating. Reprinted from [38],
with permission from John Wiley and Sons.

Application Nanomaterials/Composites References

Corrosion and wear resistive coatings Zn-TiO2, Ni-CeO2, SiO2 [25][26][27]

Photocatalyst Cu2O-Cu, Cu2O [28][29]

Water splitting Ni-IrO2 [30]

Solid oxide fuel cell Y2O3-ZrO2 (YSZ) [31]

Dye-sensitized solar cell TiO2 [32]

Li-ion micro-battery TiO2 [33]

Conductive fabric ZnO [34]

Supercapacitor MnO2 [35]

Photoelectrochemical sensor Cu2O [37]

pH sensor Ir2O3 [38]

Biosensor ZrO@Fe3O4, cMWCNT-Fe3O4 [39][40]

Table 1. List of the latest published research on electrodeposited metal oxide nanostructures/nanomaterials.
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4. Nanostructured WO3

Tungsten oxide (WO3) is a well-studied semiconductor used for several applications such as
chromogenic material, sensor, and catalyst [41]. The major advantages is its low cost and
availability, improved stability, reversible change of conductivity and optical properties, high
sensitivity, selectivity, and biocompatibility [42].

Transition-metal oxides, especially those with d0 and d10 electronic configurations, as WO3,
TiO2, or ZnO show interesting properties and stability that are important for sensing applica‐
tions [43]. The energy band gap of WO3 corresponds to the difference between the energy levels
of the valence band formed by the filled O 2p orbitals and the conduction band formed by
empty W 5d orbitals, ranging from 2.6 to 3.25 eV [44]. In nanostructured WO3, the bandgap
generally increases with the reduction of the grain size, which is attributed to the quantum
confinement effect [45]. Tungsten oxide is also well known for its properties in a non-stoichio‐
metric form, since its lattice can support a significant concentration of oxygen vacancies [44].

4.1. WO3 electrodeposition

Many liquid and vapor phase synthesis methods have been used to synthesize WO3 [45].
Nevertheless, for the electrodeposition of nanostructured WO3 films, more than one method
can be adopted: electroplating from a precursor solution [46, 47], anodic oxidation from a metal
layer [47–49], and electrodeposition from a WO3 nanoparticles dispersion [50, 51]. A list of the
latest reports is presented in Table 2.

WO3 Precursor Nanostructured film Application References

Na2WO4 WO3 -- [59]

Na2WO4 Pt-WO3 Proton exchange membrane fuel cell [53]

Na2WO4 TiO2-WO3 Photocatalyst [60]

Na2WO4 TiO2-WO3 Water splitting [61]

H2WO4 WO3/PANI Supercapacitor [52]

PTA WO3 Electrochromic film [46]

PTA WO3/PEDOT Electrochromic film [62]

W WO3 -- [57]

W WO3/PANI Electrocatalyst [48]

W TiO2-WO3 Photoelectrocatalyst [63]

W WO3 Photoelectrocatalyst [64]

W WO3 Photocatalyst [65]

W NH4-doped WO3 Water splitting [49]

W TiO2-WO3 Water splitting [66]
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WO3 Precursor Nanostructured film Application References

W WO3 – TiO2 Electrochromic film [54]

W WO3 H2 sensor [67]

WO3 NPs WO3/henna Dye sensitized solar cells [68]

WO3 NPs WO3 Water splitting [51]

WO3 NWs WO3 Electrochromic film [58]

WO3 NPs WO3 Electrochromic film [50]

WO3 NPs WO3 pH sensor [12]

WO3 NPs WO3 Neural electrodes [69]

Table 2. Resume of the latest published research on electrodeposited nanostructured WO3 with the respective
precursors and final applications.

Cathodic electroplating is usually based on the local increase of the pH near the electrode
surface due to the reduction of O2 or H2O, which induces precipitation of metal ions present
in the solution as metal oxide or hydroxide. For the deposition of WO3, the reactions involved
in the formation of the oxide are usually based on the formation of the peroxytungstate
(W2O11

2-) intermediate from a tungstate salt (or from the reaction of metallic tungsten with
hydrogen peroxide), as described in Equations 5 and 6 [46, 52].

2- + 2-
4 2 2 2 11 22WO + 4H O + 2H W O + 5H O® (5)

2- +
2 11 3 2 2W O + 2H 2WO + 2O + H O® (6)

Depending on the electrochemical potential and solution pH, the WO3 phase may also be
involved in other reactions, as the formation of sub-stoichiometric oxide and tungsten bronze
(Equations 7 and 8) or even re-dissolution of the oxide phase (Equation 9). The reduced phases
formed by these reactions have higher conductivity and hydrophilicity than WO3 and should
be considered during characterization of the deposited films [53].

+ -
3 3- 2WO + 2 H + 2 e WO + H Oyy y y« (7)

+ -
3 3WO + H e H WOxx x+ « (8)

2- +
3 2 4WO + H O WO + 2H® (9)
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For the anodic oxidation procedure, the general equation can be expressed as Equation 10 [54]
and the full mechanism is explained by the occurrence of different reactions simultaneously,
as the synthesis of surface oxide films (e.g., W2O5, WO2) and tungstate ions (WO4

2-) [55, 56].
This oxidation is usually followed by the slow dissolution of the oxide phase, as in Equations
11 or 12 depending on the solution pH [55, 57].

+ -
2 3W + 3H O WO + 6H + 6e« (10)

+ 2+
3 2 2WO + 2H WO + H O® (11)

- 2-
3 4 2WO + 2OH WO + H O® (12)

In the case of the deposition from WO3 nanoparticles dispersions (EPD), the mechanism is not
yet fully understood. The majority of the authors agree that the deposition occurs through an
electrophoretic mechanism driven by the surface charge of the particles [51, 58], but in fact,
the potential (or current) applied during deposition can also promote tungsten reduction from
W6+ to W5+ that is counterbalanced by the cation intercalation into the oxide structure, as
described in Equation 8, thus forming tungsten bronze (HxWO3) [50]. In the work of Liu et al.
[50], XRD and optical characterization showed that HWO3 was obtained as the main phase of
the deposited films, which supports the hypothesis of the mechanism via electrochemical
reduction. Furthermore, since the reduced WO3 is significantly more conductive than the
oxidized form, it allowed continuous film growth. In the future, further analysis of the
deposited films should be conducted to confirm the electrochemical deposition mechanism.

4.2. WO3 sensing applications

4.2.1. Gas sensors

Precise and affordable monitoring of chemical gases is a critical issue for human health,
industrial processes, and environmental protection. For that, nanostructured WO3 has been
intensively studied due to its excellent sensing capabilities and reproducibility. These charac‐
teristics are mainly ascribed to the increased surface area and complete depletion of carriers
within the nanostructure when exposed to the target gas [45]. The gas sensing mechanism is
described by the increase or decrease of the conductance of the oxide layer when exposed to
reducing (H2, H2S, CO) or oxidizing (NO2, O3, CO2) gases, respectively.

- -
2 ads 2H + O H O + e® (13)

In Equation 13, H2 adsorbs and reacts with O- formed on the surface of the electrode, increasing
the surface conductance and releasing the captured electrons [67].
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- -
2 2NO + e NO® (14)

- -
2 ads 2 22NO + 2O 2NO + O® (15)

When NO2 is targeted on the WO3 surface, it not only reacts with the electrons from the
conduction band (Equation 14) but also with the chemisorbed oxygen (Equation 15), thus
promoting a depletion on the surface of the electrode and, consequently, the increase on
resistance [70, 71].

An example of a hydrogen gas sensor was built by Yang et al. [67] through anodic oxidation
of a tungsten layer previously deposited by radio frequency magnetron sputtering on a
sapphire substrate (Fig. 6). The nanoporous WO3 film sensor, after annealing at 600°C,
exhibited good sensitivity to H2 gas in air.

Figure 6. SEM images of tungsten oxide films with different anodic oxidation voltages: (a) 20 V, (b) 30 V, (c) 50 V, and
(d) 60 V operating at an electrode distance of 2 cm for 60 min. Reprint from [67], with permission from Cambridge
University Press.

4.2.2. Biosensors

The application of WO3 to other sensing platforms, as in biosensors, is mainly due to the
electrical and optical properties mentioned above [72]. In fact, it was already demonstrated
that nanoparticles of metal oxides applied to suitable electrode surfaces allow protein immo‐
bilization and biocatalytic processes to be driven electrochemically [73]. However, to the best
of the authors’ knowledge, only Feng et al. [74] employed electrodeposited nanostructured
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WO3 films to enhance the hemoglobin protein loadings, accelerate interfacial electron transfer,
and improve thermal stability of the adsorbed protein. The influence of the electrodeposition
time to the response time and peak current of the electrode is demonstrated in Fig. 7.

Figure 7. Influence of electrodeposition time on (a) peak current of the cyclic voltammograms in phosphate buffer sol‐
ution (PBS, pH 6.0) at 100 mV s−1 and (b) typical steady-state response time of Hb/meso-WO3/graphite electrodes. Re‐
printed from [74], with permission from Elsevier.

4.2.3. pH sensors

The pH value can be used as an indicator for disease diagnostics, medical treatment optimi‐
zation, and monitoring of biochemical and biological processes [75]. Nevertheless, the
integration of pH sensing systems into the next generation of wearable devices requires a
different architecture than currently used in typical glass-type electrodes and a minimal
electrode size [76]. In addition, technological and industrial efforts are under way to incorpo‐
rate different sensors into our daily life by assembling these sensors on common substrates
such as plastic, textile, and paper [9]. In the work reported earlier [12], flexible pH sensors were
based on electrodeposited WO3 sensing layer in a gold/polyimide substrate (Fig. 8). The pH
sensing mechanism for this material, even if not fully understood, is believed to be dependent
of the redox reaction involving the production of the tungsten bronze with a higher conduc‐
tivity than the tungsten oxide (Equation 8).

4.2.4. Neural electrodes

Microtechnology allowed the arrangement of multiple microelectrodes on the same substrate
over small distances (Fig. 9a). Nevertheless, in order to provide sufficient recording sensitivity
to small electrodes for measuring neuron electrical activity, they are often coated with different
nanostructured or conducting materials to increase the effective surface area and electrochem‐
ical interface capacitance [77–79]. The interest in utilizing transition metal oxide films is due
to its pseudocapacitive character related to chemisorption processes and redox reactions that
take place at the surface [80]. Since nanostructured WO3 has already proved to enhance
capacitive performances due to its large surface area and low charge transport resistance [52],
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it was used for neural recordings applications [69]. The optimization of the electrodeposition
parameters led to a slight increase on the charge storage capacity (∼10%) and a decrease of the
impedance values, of approximately 40% (Fig. 9b and 9c).

Figure 9. (a) SEM images of the Neuronexus electrode and a detail of the iridium electrode (lighter area) coated with
WO3 nanoparticles, electrodeposited at 30 nA for 15 s; (b) cyclic voltammetry and (c) electrochemical impedance char‐
acterizations of the pristine (black) and coated electrodes (blue) [69].

Figure 8. (a) Voltage response during electrodeposition at 20 μA; (b) topographic and (c) cross-section SEM images of
the WO3 electrodeposited layer; and (d) photograph of the prototype WO3 sensor using a flexible Ag/AgCl reference
electrode in a non-planar surface made of gelatin-based electrolyte [12].
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These preliminary results show the versatility of electrodeposition in different materials and
configurations as well as in different sensing mechanisms.

5. Conclusions

Tungsten oxide (WO3) is one of the most studied metal oxide and the sensing performance of
this material is of great interest due to the capability of reversible change of both its optical
and electrical properties. The evolution in the fields of nanoscience and nanotechnology
allowed these materials to replace many organic and metallic materials in a huge range of
applications besides creating new areas of development. The increased surface area and the
quantum confinement effects in size ranges below 100 nm make nanostructured WO3 a good
platform for gas and pH sensors, along with neural electrodes and biosensors.

In the last decade, the use of electrodeposition for nanostructured metal oxide films has been
growing due to the versatility of this method in different applications and materials. Just in
the last year, applications varied from catalysts and sensors to capacitors. The use of different
types of templates and the deposition of composites will contribute to the continued devel‐
opment of this technique.
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