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Abstract

The aim of the chapter is to describe the applications of AAO as a template in metal
nanostructures formation and to present the experimental results obtained by authors
in this field. The basic mechanism of the process of anodic oxidation of aluminum was
described. The influence of oxidation parameters on the AAO structure was dis-
cussed. The processes of electrochemical metal deposition in AAO were described.
The main present as well as future applications of metal nanostructures formed were
listed.

Keywords: anodic oxidation of aluminum (AAO), metal nanostructures

1. Introduction

The aim of this chapter is to describe the applications of AAO as a template in metal nano-
structures formation and to present the experimental results obtained by authors in this field.

Metals in a state of high dispersion currently play an important role in technology. Their
chemical and physical macroscopic properties, such as the rate of their reaction with other
substances, colours and mechanical properties are significantly different from the bulk metals.
Fundamental research and technology development over the last decade have resulted in
wider use and implementation of metal-containing materials in a state of high dispersion into
the industrial practice.

Solid nanoparticles are a system of unstable thermodynamic state, so even precious metals are
not found in this form in nature. However, in the case of metals having a high cohesive energy,
and thus a high melting point, it is possible to obtain and maintain them in the form of
nanodispersion for a long period of time. This is the case of high activation energy of the
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agglomeration process of particles, which is a crucial parameter. This applies in particular to
transition metals. Nanodispersions of these metals are most often applied in practice.

The basic properties of highly dispersed metals are described in monographs of Romanowski
[1] and also of Feldheim and Foss [2]. The authors point out that the systems containing metal
nanoparticles are particularly interesting because their synthesis and chemical modification
are simple. The main directions, according to the authors, of current basic research are given
in the following text.

1.1. Investigation of optical properties

Metal particles often exhibit strong plasmon resonance extinction bands in the visible spec-
trum. While the spectra of molecules can be understood only in terms of quantum mechanics,
the plasmon resonance bands of nanoscopic metal particles can often be described in terms of
classical free-electron theory and electrostatic models for particle polarizability. In contrast to
molecular systems, the linear optical properties of metal nanoparticle composites can be
changed significantly without a change in essential chemical composition.

Optical properties of metal nanoparticles are usually described by Mia theory. Material testing
is mostly done by optical spectroscopy. Deviation from the theoretical and measured values
is unavoidable due to uneven sizes and shapes of metal particles in real systems and the
diversity of their distribution in a material. Therefore, theoretical analytical methods are not
enough to describe the real particle systems and numerical methods are often implemented.
Investigation results of extinction, absorption, scattering, and optical interaction of metal
nanoparticles can be found, among others, in the work of Lin et al. [3] and Noguez et al. [4].

1.2. Investigation of electrical properties

Metal particles and bulk materials are similar taking into account their electrical properties.
Simple classical charging expressions and RC equivalent circuit diagrams can be used in both
cases to describe surface charging and electron transport processes. Description of electric
properties of metal nanoparticles requires knowledge of their size and dielectric properties of
the surrounding medium.

Examples of research in this field are given in the work of Wu et al. [5] on study of metal clusters
of silver, gold, and copper. Static electric polarizability and absorption spectrum have been
measured. Density functional theory (DFT) has been implemented for description of investi-
gated systems. A competition of charge transfer and electron cloud distortion was proposed
for explaining the spacing dependence of both electric and optical properties.

1.3. Investigation of magnetic properties

Small, single-domain ferromagnetic particles, containing a few tens or a few hundred atoms
have a large total magnetic moment. When these ferromagnetic particles are separated by
comparatively large distances, their magnetic moments do not interact strongly and they form
a system of magnetic dipoles, whose relative orientation can be randomized by thermal motion
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even in relatively low temperatures. The overall magnetization of the system is therefore
similar to that of a paramagnetic material, expressed by the Langevin equation.

The study of ferromagnetic nanoparticles systems are mainly targeted to the specific use of
new nanomaterials. In particular, researches are provided to receive improved materials for
high-density data storage, for the construction of high-speed computing components, and for
a new-generation high-performance display.

The test results of the magnetic properties of metal nanoparticles have been published, among
others, by Kim et al. [6]. The authors investigated Ni-Co, Ni-Fe, and Co-Pt alloy nanoparticles.
Magnetic hysteresis loops were presented and values of magnetic susceptibility, the saturation
magnetization, and coercivity were calculated.

Implementation of porous alumina, obtained by anodic oxidation of aluminum, as a template
for producing new nanostructured materials is a quickly developing part of nanotechnology
in recent years. Introducing a metal by electrodeposition inside the AAQO pores, it is possible
to obtain a durable material, characterized by a uniform structure of nanoparticles of a single
metal or alloy in a matrix of dielectric amorphous alumina. The basis of manufacturing
processes of composite materials of this type is presented in the following sections. References
are listed in Table 1.

No. Subject References
1. Basic properties of highly dispersed metals [1, 2]

2. Optical properties of metal particles [3, 4]

3. Electrical properties of metal particles [5]

4. Magnetic properties of metal particles [6]

5. The theories of anodic oxidation of aluminum [7-12]

6. Theoretical modeling of porous oxide growth on aluminum [13-19]

7. Preparation of AAO as a template in nanotechnology [20-48]

8. The processes of metal electrodeposition on AAO template [49-68]

Table 1. Basic studies on AAO as a template for formation of metal nanostructures

2. Anodic oxidation of aluminum

Passivation phenomenon of aluminum spontaneously occurs in contact with oxygen and thin
tilm of alumina on the surface of the metal is formed. Thicker oxide coatings can be produced
by the use of electrochemical anodic polarization in selected solutions. This surface finishing
of aluminum work pieces is widely applied for corrosion and abrasion protection and for
decorative purposes.

In carrying out the anodizing process of aluminum in an electrolyte, which slightly dissolves
alumina, an oxide layer is formed with a unique porous structure on the metal surface. Highly
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ordered pores are perpendicular to the base and pass through almost the entire thickness of the
oxide layer. Directly on the metal surface nonporous barrier layer is grown and it usually has
a thickness of several tens of nanometers. When an aluminum substrate with high purity and
uniform structure is used and the parameters of the operation of the electrochemical oxida-
tion are carefully controlled, homogeneous distribution of pores as a hexagonal network can
be obtained. The pore diameters are uniform; it depends on the oxidation conditions and can
be controlled in the range from 10 to several hundred nanometers. The total thickness of the
oxide layer is determined by the oxidation time. It is usually in the range of tenths of a micron
to tens of microns. The schematic drawing of the AAQO structure is presented in Figure 1.
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Figure 1. (a) Schematic drawing of AAQO structure prepared by electrochemical oxidation of Al. (b) Summary of self-
ordering voltage and corresponding interpore distance of AAO produced within three well-known regimes of electro-
lytes (sulfuric, oxalic, and phosphoric). (c) (Top) SEM cross-sectional view of AAO membrane formed by MA (0.3 M
H,C,0, 1°C, 40 V) and (bottom) by HA (at 140 V) for 2 h (insets: SEM top view of pore structures). Permission Elsevier
[61].

The mechanism of the process of anodic oxidation of aluminum and forming the porous oxide
layer is still under investigation. There are some basic theories, like the Keller, Hunter, and
Robinson geometric model [7] and the colloidal one of Murphy and Michelson [8]. It is believed
that the porous structure is a result of two competitive reactions: Al,O; forming and dissolution
of the oxide. These reactions are stimulated by the electric field that is distributed inside the
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barrier layer. The electric field intensity inside the barrier layer is of the order of 1 V/nm during
the oxidation process. Such high field is needed to excite the ionic current inside the oxide.
This field also stimulates the dissolution reaction (“field-assisted dissolution”). Also, due to
the tunneling effect, additional electron current may occur. The role of that current in the
anodic oxidation of aluminum was described by Palibroda [9-10].

A summary of recent interpretations of the reaction mechanism of anodic oxidation of
aluminum can be found in the Brace monograph [11] and the Wielage et al. work [12]. The
total chemical reaction is as follows:

2A1+3H,0 —» ALO,+ 6H"+ 6e’ (1)
It consists of two partial reactions:

2A1 - 2A1% + 6e” ()

3H,0 — 6H" + 30* 3)

The oxide forms due to migration of AI** ions from basic metal into the solution, while the
movement of ions O* is in the opposite direction. Under the influence of a high electric field,
there is ionic conductivity in the oxide layer where the aluminum and oxygen ions are charge
carriers.

A characteristic porous structure of the alumina layer is formed as a result of the chemical and
electrochemical dissolution of the oxide. Dissolution reaction is promoted by local increase in
hydrogen ion concentration (reaction 1) and high electric field inside the barrier layer (“field-
assisted dissolution”). Due to the high electrical resistance of the barrier layer, the Joule heat
is given off during a flow of electric charge, which causes local increase in temperature and
also enhances the dissolution reaction of the oxide.

Defects and impurities, which are always present in the metal substrate, are precursors of
pores. Due to the contact with an aqueous solution to the oxide layer surface, there are always
various intermediate forms of hydrated oxide, including aluminum hydroxide. In addition,
due to the adsorption of anions from the solution, the oxide material is enriched with other
compounds, like for example sulfates in the case of processing in sulfuric acid.

Oxide layer with porous structure is obtained using solutions of dibasic and tribasic acids, in
which the oxide is dissolved. When the critical thickness of the barrier layer is obtained, pores
are initiated in flows, cracks, and impurities spots. Only some part of embryo pores develops
up to form final porous structure with the hexagonal arrangement. It is determined by the
reactions’ activation energy of oxide formation and dissolution, also by the distribution of
electric field in the barrier layer
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Attempts have been made to create modeling and mathematical description of the electro-
chemical processes of formation of porous aluminum oxide layers [13-18]. Parkhutik and
Shershulsky [13] are the first to prove that the potential distribution inside the oxide layer can
be calculated with the use of Laplace equation. Calculations with the adequate assumptions
of the local moving rate of the solution—oxide and oxide-metal phase boundaries have been
made for a number of cases in the two-dimensional system. As the results pictures of the
development of porous structures have been obtained similar to those observed on the SEM
images of experimental samples. Also, numerical approximations are often used for the
mathematical modeling [19].

Beside the above-described mechanism of aluminum anodic oxidation process and its
mathematical modeling, the authors point to additional important factors that have an impact
on the process of forming a porous oxide structure:

1. The volume of the oxide is higher than the metal consumed and therefore there are strong
strains in oxide layer that cause mechanical stress fractures (cracks). These cracks are often
the beginning of a pore.

2. The process of oxidation may be affected by local differences in the wettability of the
surface of the oxide.

3. Part of the aluminum ions AI** is ejected from the metal to the solution without binding
to the oxide structure. This phenomenon reduces the current efficiency of anodic oxidation
reaction.

4. Inthe presence of phases containing foreign elements in aluminum substrate, itis possible,
as polarization is anodic, side reaction of evolution of oxygen gas to occur. Like the
previous phenomenon, it reduces the current efficiency of the oxidation reaction.

5. Barrier layer thickness, the distance between the pores and their diameters are propor-
tional to the applied voltage, with the other process parameters being fixed.

On the basis of these assumptions, Wu et al. [17] attempted to demonstrate that the chemical
and electrochemical reactions of oxide dissolution do not have significant effect on the process
of forming a porous oxide structure. This statement, however, is not consistent with the
conclusions of other authors.

3. Preparation of AAO template

A porous oxide coating can be obtained by anodic oxidation of aluminum using a number of
different types of electrolyte solutions. Sulfuric, oxalic, phosphoric, or chromic acids solutions
are typically implemented. The porous anodic layer can also be obtained from solutions of
many organic acids, especially the polybasic acids, such as tartaric, citric, sulfosalicylic, maleic,
and succinic acids.

Such coating parameters as the thickness of the barrier layer, pore diameter, the distance
between the pores and their surface density considerably vary depending on the type of
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processing solutions, as is shown in Tables 2 and 3 [20]. For a given type of solution, the
geometric parameters of the net of pores can be controlled by varying the voltage during anodic
oxidation. The thickness of the barrier layer and the diameter of the pores are proportional to
the applied voltage (Table 2). The pore diameter is usually from 10 to a few tens of nanometers.
Pores having higher values of diameter can be obtained from solutions of phosphoric acid or
organic acids at high voltages. Li et al. [21] give the equation that correlates distance between
the pores and the voltage and pH value for processing solutions. Uniform grid of unusually
high pore diameters of up to 200-500 nm have been successfully obtained with properly
selected oxidation conditions in solutions containing phosphoric acid and/or organic acids
with high voltage current in [22-26]. In the solution of citric acid using high current voltage,
Mozalev et al. [27] obtained the interpore distance 1.1 um, barrier layer thickness 0.5 pm, and
pore diameter 0.23 um. Also, lowering the temperature of anodic oxidation, thicker coatings
can be easier to obtain; their porosity is lower and hardness is higher. The examples of SEM
images of AAO coatings are presented in Figures 2 and 3.

Barrier layer

Pore diameter Wall thickness
Electrolyte Conc. % (wt) Temp. °C thickness
nm/volt nm
nm/volt
Phosphoric acid 4 25 1.19 1.10 33
Oxalic acid 2 25 1.18 0.97 17
Chromic acid 3 40 1.25 1.09 24
Sulfuric acid 15 10 1.0 0.80 12
Table 2. Barrier characteristics for various electrolytes [20]
Electrolyte Conc. % (wt) Temp. °C Voltage, V Pores per cm?
15 76 x 10°
Sulfuric acid 15 10 20 52 x 10°
30 28 x 10°
20 35 x 10°
Oxalic acid 2 25 40 11 x 10°
60 6 x10°
20 22 x 10°
Chromic acid 3 50 40 8 x10°
60 4 x10°
20 19 x 10°
Phosphoric acid 4 25 40 8= 10°
60 4 x10°

Table 3. Pore density in oxide coatings [20]
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Figure 2. SEM image of AAO coating obtained in solution of sulfosalicylic acid 50 g/dm? oxalic acid 10 g/dm? and
sulfuric acid 5 g/dm?, 3 A/dm?, 20°C, 30 min. Permission Librant [114].

Figure 3. SEM image of AAO coating obtained in solution of sulfosalicylic acid 50 g/dm? oxalic acid 10 g/dm? and
sulfuric acid 5 g/dm®, 3 A/dm?, 20°C, 30 min. Permission Librant [114].

For many applications of AlL,O; coatings in nanotechnology, including membranes for
nanofiltration, itis necessary to separate oxide layers from aluminum substrates. The following
techniques are most frequently used:
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Screening of a part of the electrode surface with lacquer. After anodizing, the lacquer
coating isremoved, and then the aluminum substrate is entirely dissolved using a solution
that is not aggressive to the oxide, e.g., copper chloride solution containing hydrochloric
acid [28], mercury chloride solution [29], or a saturated solution of iodine in methanol [30].

Programmable voltage reduction in the final stage of anodic oxidation. A thin oxide layer
of high porosity and small pore wall thickness is created bottom-up from the substrate.
The thickness of the nonporous barrier layer also tends to decrease. As a result, the
mechanical properties of the bottom oxide layer are reduced and it can easily be separated
from the substrate [31], sometimes in an additional operation of chemical or electrochem-
ical dissolution. For this purpose, for example, Zhao et al. [32] used a cathodic polarization
in a solution of potassium chloride.

For applications in nanotechnology, it is very important to obtain the pore distribution, which
is homogeneous and uniform over the entire surface in the oxide layer. In order to obtain the
highest possible uniformity of the pore distribution, the following techniques are applied:

1.

The use of additives to the solutions usually in the form of aliphatic alcohols, glycerol, or
ethylene glycol [22,32-35]. The addition of ethanol or methanol facilitates heat removal
from the barrier layer during the process of oxidation and reduces the risk of defects in
the oxide coating. It also allows the use of high current density, which significantly
shortens the creation of oxide coating. Li et al. [36] achieved current density of 4000
A/m? during anodic oxidation process in solution phosphoric acid-ethanol.

Application of programmed pulse current instead of direct current [37-40]. Anodic and
cathodic pulses are used alternately or only anode pulses with a break. According to the
authors, the use of pulsed current allows for better structure uniformity of the oxide layer
and reduces the risk of defects caused by heat generated in the barrier layer during the
oxidation process.

The use of a two-step anodizing process. Today it is a commonly used technique which
allows increasing the distribution uniformity of the pores and reduces the scatter of their
geometrical parameters. Polished aluminum surface is anodically preoxidized. An oxide
layer is selectively removed in a subsequent operation. Usually for this purpose the
etching solution of phosphoric and chromic acids is used, which does not affect the
aluminum substrate. After this operation, the aluminum surface has a scalloped structure,
so the homogeneity of the oxide layer formed in the second stage of anodic oxidation
increases [41-44].

The initial formation of the aluminum surface by mechanical, laser, or other method
[45-47]. Zaraska et al. [45] listed the following surface-shaping techniques:

* Prepatterning using a tip of the scanning probe microscope (SPM) or atomic force
microscope (AFM)

* Focused ion beam lithography

* Holographic lithography
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* Using stamps (molds) with regular array of convexes prepared lithographically
* Optical diffraction grating

* Nanosphere lithography (NSL)

Asoh et al. [46] obtained square layout of cells with centrally located pores after the initial
shaping of a surface using the imprinting process. This square system is fundamentally
different from the natural hexagonal distribution of pores.

Choi et al. [47] implemented a similar technique and got a uniform distribution of pores having
a triangular cross section.

As can be seen there is a great range of possibilities of appropriate selection techniques for
producing the porous aluminum oxide layer in order to achieve a certain distribution and pore
geometry for use in nanotechnology. For example, a typical technique used to obtain a template
for the production of metallic nanostructures is shown in Table 4 [29].

Various tools can be used for evaluation of the uniformity of pore distribution, e.g., Voronoi
diagrams, radial distribution function (RDF) [48], fast Fourier transform (FFT) images,
Delaunay triangulations (defects map), pair distribution functions (PDF), or angular distribu-
tion functions (ADF) [44].

Step no. Process

1. Degreasing of AA 1050 alloy in ethanol and acetone

Electrochemical polishing
2. Perchloric acid (60 wt.%) and ethanol (1:4 vol)
Constant potential 20 V for 1 min at 10°C

Anodic oxidation in 0.3M oxalic acid

Constant potential 45V for 60 min at 20°C

Alumina layer removal by chemical dissolution
4. 6 wt.% H;PO, + 1.8 wt. % H,Cr,0,
Time 12 h, temperature 45°C

Anodic oxidation in 0.3M oxalic acid
5. Constant potential 45V for 1, 2, 4, or 8 h at 20°C

The samples with different coating thicknesses were obtained

Removal of aluminum substrate by chemical dissolution

Saturated HgCl, solution

Chemical etching of alumina barrier layer
5 wt.% H,PO, at 25°C

Table 4. The example of procedure of AAO template formation [29]
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4. Metal deposition

The composite systems AAO-metal can be formed by inexpensive and simple method of
electrochemical metal deposition. It does not require complex equipment as in the case of CVD
or PVD methods.

The first attempts of metals electrodeposition inside the pores of the anodic oxide layer on
aluminum AAQO were associated with the development of electrochemical coloring technolo-
gy. Metal nanoparticles can be deposited into the pores of Al,O; layer by transferring a freshly
prepared sample to the solution of the salt of easily reducible metal and then use of cathodic
polarization. This causes color effect as a result of optical phenomena like absorption and
scattering of light by the deposited metal particles inside the pores. In this way, the oxide layer
which was initially colorless can be converted to durably colored; usually there are shades of
brown or black.

Electrochemical technologies of coloring anodized aluminum were developed in the 1970s and
it is associated with the names of researchers such as Caboni, Langbein, Pfanhauser, Assad,
and Sheasby [49]. Herrmann [50] gives 93 examples of electrochemical coloring processes using
solutions of salts of the following metals: Pb, Cd, Cr, Fe, Au, Co, Cu, Mn, Ni, Se, Ag, Te, Zn,
Sn. If an additional modification of the shape of the pores is introduced before the metal
deposition process, it is possible to get a new color effect due to the interference effect [51].

Electrochemical coloring method of anodized aluminum is currently widely used as durable,
decorative surface treatment for aluminum components, particularly for construction and
architecture applications. Usually, tin nanoparticles are deposited in the pores of AAO using
alternating AC or pulse current. When only cathodic polarization is implemented in that
process, there is a risk of damage to the oxide layer.

The mechanism of electrodeposition of metals in the pores of the oxide layer was investigated
by Skominas et al. [52] and Zemanova et al. [53] and lately by Bograchev et al. [54]. The effects
of the reduction reaction of hydrogen ions and of the current frequency were studied.

Wider research in this field was provided by Tomassi [55].

Anodic oxidation of 99.5% Al samples was conducted in 1.75 M H,SO, solution in temperature
20°C with voltage 16 V. Thickness of oxide layer obtained was 15 um. The oxide layers from
phosphoric acid solutions were also obtained. The electrodeposition of nickel, copper, tin, or
silver was performed in temperature 25°C in the following solutions:

a)NiS0,0,1 M b)CuSO,0,1M ¢)SnS0O,0,1M d)AgNO,0.01 M
H,BO,05M H,50,005M H,50,02M  H,50,01M

The maximum voltage of alternating current was 16 V (Ni) or 14 V (Cu, Sn, Ag). Usually, the
frequency 50 Hz was used, but wide range from 0.1 to 1000 Hz was checked.
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Electrochemical investigations have been performed using transient curves method, polari-
zation methods, and impedance spectroscopy.

The uniform composite layers were obtained in the frequency region 10 — 100 Hz. With
frequencies below 10 Hz the defects in oxide layer appear. In the high frequency region under
500 Hz the electrodeposition does not occur and high capacity current is observed.

Chemical analyses of obtained composite layers as well as structure, magnetic, microbiological
properties, gravimetric and electrochemical investigations have been performed.

The X-ray analysis has confirmed that the metal deposition starts at the bottom of the pores
close to the aluminum surface and the volume occupied by metal increases.

The investigations performed by transmission microscopy have shown that all pores are filled
by metal deposit (Figure 4). The diameter of metal particles depends on pore diameter and has
been found to be from 5 to 30 nm.

Figure 4. TEM image of AAO obtained in 1.75 M sulfuric acid, 20°C, 16 V, 30 min with nickel nanoparticles, AC nickel
deposition, 2 min.

The role of alternating polarization in metal deposition process can be clarified as a result of
the investigations. In the cathodic cycles, the hydrogen ions” reduction occurs simultaneously
to metal electrodeposition. The diffusion of hydrogen ions inside the oxide layer leads to
formation of hydrogen bonds and hydrated regions of higher conductivity (active sites) are
created. In these regions, the probability of electron transport is higher than in the other sites,
where the current is mainly of ionic character. In the cathodic cycles, the new active sites are
formed and filled by metal deposit.
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In the anodic cycles, the repassivation of active sites occurs. This process ensures that the
barrier layer is not damaged. The metal electrodeposition can then be effectively conducted
with the formation of a uniform oxide-metal composite coating.

The optimum current frequencies are in good correlation with a time of charge carriers
formation determined for aluminum oxide layers by Ebling [56], Hassel, and others [57-58].
Authors of this chapter have obtained composite layers consisting of the following metals: Ni,
Cu, Sn, Fe, Co, Zn, Cd, Au, Pd, Ag.

Metal nanoparticles deposited with the method described above may create durable system
with an oxide matrix characterized with interesting scientific and operation properties. Metal
nanoparticles can also be separated from the matrix, after, for example, a selective dissolution
of alumina, and then examined individually. Nanowires, nanotubes, or nanodots can be
similarly obtained. The TEM image of AAO layer with nickel nanoparticles is shown in Figure
4. The bigger diameter of metal nanostructures can be obtained when the oxide matrix is
formed in phosphoric acid solution. The AAO formed in phosphoric acid is presented alone
in Figure 5 and with nickel nanostructures in Figures 6 and 7.

Figure 5. SEM image of AAO obtained in 500 g/dm? phosphoric acid, 30°C, 30 V, 20 min.
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Figure 7. SEM image of AAO obtained in phosphoric acid with nickel particles. AC nickel deposition, 40V, 15 s.

Oxide layers can be of different porosity with branches when anodic oxidation process is
unsteady. The pore branching is clearly visible in the SEM photograph of the oxide layer
obtained in a solution of sulfosalicylic acid (Figure 8). After deposition of the metal within the
pores of oxide layer, the structure of metal nanoparticles is complex, e.g., in the form of
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branches [59-60] as is shown in Figure 9. Anodic oxidation was performed in oxalic acid
solution; various barrier layer thinning procedures (BLT) were used before metal deposition.
Metal structures deposited with DC are usually compact, but when AC pulse current is
implemented, they may be of grained structure.

Figure 8. SEM image of AAO coating obtained in solution of sulfosalicylic acid 50 g/dm?, oxalic acid 10 g/dm? and sul-
furic acid 5 g/dm?, 3 A/dm?, 20°C, 30 min [114].

Figure 9. Nickel branches obtained by anodic oxidation in oxalic acid, 20°C, 45 V, 1 h, and nickel pulse electrodeposi-
tion from Watt’s solution with various BLT procedures (Permission Elsevier [59]).

In the processes for preparing metallic nanostructures with the use of AAO layers, sometimes
additional operations are applied in order to obtain geometrically complex systems, e.g., PVD
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methods, photochemical techniques, and other methods. An excellent overview of these
methods can be found in the monograph of Jani et al. [61]. Some examples of complex
manufacturing of anodic oxide layer and forming of the metal nanostructures are given in
Table 5.

No. Process References

1. Evaporation of aluminum 0.3-1 um layer on oxide surface. After [62]
using a lithographic process the regular patterns of porous oxide

were obtained.

2. Micropatterned substrates were prepared by fabrication of [63]
polyethylene glycol hydrogel microstructures on alumina membranes

with 200 nm nanopores using photolitography.

3. Electroless deposition of nickel-boron nanoparticle structures on [64]
AAO membrane.
4. AAO membranes were immersed in AgNO; solution. As a result of [65]

hydrothermal reaction, the Ag nanoflakes were obtained on the oxide

membrane surface.

5. The AAO membranes were fabricated by a two-step anodizing of AA [66]
1050 alloy followed by removal of Al and pore opening/widening
procedure. Au conducting layer was sputtered on one side of AAO
membrane. The dense arrays of Ag, Au, and Sn nanowires were

fabricated by a DC electrochemical deposition process.

6. Thin Au films with highly ordered arrays of hemispherical dots were [67]
fabricated by evaporating Au on the surface of porous anodic

alumina template.

7. Highly ordered arrays of Ni nanoholes and FeNi dots were prepared [68]
by sputtering and replica processing techniques using nanoporous

alumina membranes as a template.

Table 5. Examples of complex methods of preparation of oxide templates and metal nanostructures

5. Emerging applications

Electrochemically obtained porous layers of aluminum oxide are widely used in nanotech-
nology, not only in scientific research but also in various applications. Porous oxide layer can
be separated from the substrate. After removing the barrier layer membranes are obtained.
They can be applied for example in nanofiltration for removing bacteria from medical
preparations (cold sterilization). They are also used to prepare the solutions of test samples
for liquid chromatography. Revised filtration properties of these membranes can be found in
Lee et al. [69].



Aluminum Anodic Oxide AAO as a Template for Formation of Metal Nanostructures
http://dx.doi.org/10.5772/61263

Alumina is insoluble, nontoxic, and characterizes excellent biocompatibility. AAO porous
layer has a highly developed surface area — about 2 to 3 orders of magnitude higher than the
surface of the aluminum substrate. Hence, importance of these materials is growing and they
are more widely used in chemical catalysis, in bioreactors, and in sensors. Porous anodic
alumina is also an excellent substrate for culturing bacteria in discrete growth compartments.
These cultures are investigated with the use of fluorescence microscopy. A broad overview of
the use of the porous AAO in biotechnology is presented by Ingham et al. [70]. They present
the list of fields of AAO applications as follows:

* Counting and cell identification
* Growth and microcolony imagimg of microorganisms on AAO
* High-throughput microbiology
* Physical detection technologies

The unique properties of porous AAQO are used in sensors and biosensors as already men-
tioned. A review article was published by Santos et al. [71] in which authors distinguished two
types of AAO sensors: optical and electrochemical. The phenomena and techniques used in
both types of sensors are summarized as follows:

Optical Biosensors

* Photoluminescence (PL) spectroscopy

Surface-plasmon resonance (SPR)

Waveguiding spectroscopy (WS)

Localized surface-plasmon resonance (LSPR)

Surface-enhanced Raman scattering spectroscopy (SERS)
* Reflectometric interference spectroscopy (RIfS)
Electrochemical Sensors and Biosensors

* Voltammetric and amperometric

* Impedance spectroscopy (IS)

* Capacitive, conductometric, and resistive sensors

Sensors and biosensors with AAO are used for the detection of gases, vapors, organic mole-
cules, biomolecules, DNA, proteins, antibodies and cells, viruses, bacteria, cancer cells, which
are in air, water, and biological environments.

As described in the previous chapter, complex composite systems produced by deposition
inside the pores of AAO additional phases of metal, carbon, inorganic or organic compounds
have been widely used in basic research and applications. This is especially due to their unique
features like electrical, optical, catalytic, biological, and other properties. Major applications
and references to the literature are given in Table 6.
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No. Application Foreign phases in AAO References
matrix
1. Membranes for ultra- and nanofiltration [69,73]
2. Sensors and biosensors [71,72]
3. Decorative coatings on aluminum Sn, Ni, Cu [20]
4. Formation of metal nanoparticles and Fe, Ni, Co, Au, Ag, Cu, Bi, Pt, [66,74,75]
nanowires Pd, Sn, W, Zn, Sb, Se, alloys
5. Formation of dots and nanodots InAs, SiGe, Si, CdTe, GaAs, [67,68,76,77]
Fe, Ag
6. Formation of carbon structures, carbon C [78-84]
nanotubes, graphene
7 Formation of inorganic compounds GaN, Zn0O, CdS, Agl, PbS [85,86]
nanoparticles
8. Formation of organic compounds Polypyrrole, polyaniline, [87,88]
nanoparticles DNA, polythiophene,
ethylene vinyl acetate
copolymer
9. Examination of optical systems and models  Ni, Co [64,89,90]
10. Examination of magnetic systems and models Fe, Ni, Co, alloys [91-93]
11. Catalysts of chemical reactions Ni, Au, Pd, C [81,94,95]
12. Electronic components, capacitors, C, CdS, ZnO, compounds of [80,96-98]
semiconductors In, Ga
13. Luminescence, electroluminescence, and Cu,O, ZnS, In,0, [96,99-102]
photoluminescence devices
14. Magnetic systems, data storage Fe, Nji, Co, alloys [103-105]
Pt
15. Sliding joints MoS,, Sn [106]
16. Solar collectors Ni, Sn [20]
17. Solar batteries Cds [107,108]
18. Lithium-ion batteries LiMn,0O,, CdS, CoSb [109]
19. Antibacterial materials Ag [110]
20. Photonic crystals [111,112]
21. Fuel cells Solid acid [113]

Table 6. Main applications of AAO layers in science, technology, and nanotechnology
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6. Summary

The structure of AAO layers can be precisely controlled with operation parameters of electro-
chemical oxidation. Complicated and expensive apparatus is not required for their prepara-
tion. It is for this reason that these layers are so widely used in nanotechnology.

Using a variety of techniques, in particular electrochemical methods, various composite
materials of alumina and the foreign phase can be prepared with new or improved physical
or chemical properties. AAO template having a uniform porous structure allows obtaining
sustainable systems of nanoparticles, nanowires, nanotubes, and nanodots with an unlimited
number of materials. AAO has become in recent years one of the most important materials for
nanotechnology development, both in research as well as in applications.

The significant number of publications in this field now exceeds the size of one hundred items
per year. Further applications of the AAO as nanofiltration membranes are anticipated,
including drug delivery, gas permeation, and hemodialysis. Flat membranes are already
commercially available and now efforts have been made to prepare tubular membranes [69].

In biomedical applications, AAO has been confirmed as a good substrate for the study of
biomolecules, cells, and bacteria and their detection by means of optical imaging methods
(SERS, optical waveguides), and fluorescence-based detection methods [70].

In the field of sensors and biosensors, AAO applications allow to broaden choice and minia-
turization of sensors, especially those with optical measurements. The design of implantable
biosensors with the ability to monitor biological systems in vivo and real time is promising for
the application of AAO immunosensors [71-72].

It seems that in order to further the development of manufacturing methods and applications
of metal nanostructures, it is advisable to develop further research in the following areas:

1. Basic research on the process of electrochemical oxidation of aluminum and of forming a
specific porous structure of oxide layers.

2. Improving the methods of producing the best quality AAO with regular distribution of
pores and desired pores geometry.

3. Further study of the effects of various factors on the structure and chemical composition
of the AAQO, such as:

* Multistage oxidation
* Use programmable waveform pulse currents

* The importance of the pretreatment of the surface of aluminum substrate (alloy type,
its structure, impurities)

* Effect of heat pretreatment of the substrate and the final thermal treatment of AAO
layer

4. Basic research of electrodeposition of metals in the pores of oxide layers.
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5. The use of nonaqueous solutions or mixed solvents for metal deposition. In this way, the
range of materials (metals and alloys) for nanostructures creations can be extended.

6. Study of the effect of complex current characteristics, including pulse current on electro-
deposition processes of metals in the AAO template.

7. Examination of the physical (electrical, optical, magnetic, etc.) and chemical properties
(catalytic, antibacterial, etc.); research on novel systems of metal nanoparticles and their
alloys in a matrix of alumina or separated from oxide matrix.
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