
 

 

  
 

Universidade de Aveiro 

2013  

Departamento de Eletrónica, 

Telecomunicações e Informática 

EVARISTE LOGOTA CONTROL DESIGN FOR MULTICAST-
AWARE CLASS-BASED NETWORKS 

 

ESQUEMA DE CONTROLO PARA REDES 
MULTICAST BASEADAS EM CLASSES 

 

 

   

 



 

 

  



 

 

 
 

Universidade de Aveiro 

2013  

Departamento de Eletrónica, 

 Telecomunicações e Informática 

EVARISTE LOGOTA 
 
 
 
 

CONTROL DESIGN FOR MULTICAST-AWARE 
CLASS-BASED NETWORKS 

 

ESQUEMA DE CONTROLO PARA REDES 
MULTICAST BASEADAS COM CLASSES 
 

 

 

 

 Tese apresentada às Universidades de Minho, Aveiro e Porto para 
cumprimento dos requisitos necessários à obtenção do grau de Doutor em 
Engenharia Eletrotécnica, no âmbito do doutoramento conjunto MAP-Tele, 
realizado sob a orientação científica da Doutora Susana Isabel Barreto de 
Miranda Sargento, Professora auxiliar do Departamento de Eletrónica, 
Telecomunicações e Informática (DETI) da Universidade de Aveiro, e co-
orientação do Doutor Augusto José Venâncio Neto, Professor adjunto do 
Instituto de Informática da Universidade Federal de Ceará, Brasil, e colaborador 
no Instituto de Telecomunicações de Aveiro. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Apoio financeiro da Fundação para a 
Ciência e a Tecnologia - FCT através 
da bolsa SFRH / BD / 33443 / 2008 e 
do FSE no âmbito do III Quadro 
Comunitário de Apoio. 
 
 



 

 

  



 

 

  

  
 

 

 
To God, who makes it possible, 
and to my parents, who gave me life 
 
 
 

 



 

 

  



 

 

  

 

 
 
 

 
 

o júri   
 

presidente Prof. Doutor Artur da Rosa Pires 
Professor Catedrático, Universidade de Aveiro 

  

 

 Prof. Doutor Mário Serafim dos Santos Nunes 
Professor Catedrático, Instituto Superior Técnico, Universidade Técnica de Lisboa 

  

 

 Prof. Doutor Rui Luís Andrade Aguiar 
Professor Associado com Agregação, Universidade de Aveiro 

  

 

 Prof. Doutor Paulo Manuel Martins Carvalho 
Professor Associado, Escola de Engenharia, Universidade do Minho 

  
 

 Profª. Doutora Susana Isabel Barreto de Miranda Sargento 
Professora Auxiliar, Universidade de Aveiro (Orientadora) 

  
 

 Prof. Doutor Augusto José Venâncio Neto 
Professor Adjunto, Universidade Federal do Ceará (Coorientador) 

  

  

 

 

 



 

 

  



 

i 

 

  

  
 

acknowledgements 

 
I would like to express my deepest gratitude to my supervisor, Prof. Susana 
Sargento, for her patient guidance, constant support, useful critiques, and 
above all, her friendship. I am also grateful to my co-supervisor, Prof. Augusto 
Neto, for his friendship and valuable advices. 
 
My gratitude is also due to the members of the MAP-Tele doctoral programme 
scientific committee, and to the staff of the Intitute of Telecommunications of 
Aveiro, for providing excellent research environment and facilities to achieve 
this work.  
 
To my friend Carlos Campos, I would like to give my special thanks for his 
great assistance on the simulation platforms of this research work. 
 
I would like to really thank my family and relatives who were always supporting 
and encouraging me, with dedication and prayers, to press forward with this 
PhD.  
 
I am particularly grateful to Joana do Bem, Dr. Pedro Neves, and their families, 
whose friendship and hospitality in Portugal have been of great help for me 
over the years. 
 
I would like to express my thankfulness and appreciation to Maura Outeiral, 
who was always there cheering me up and stood by me through the good and 
hard times of this work.  
 
Special thanks are extended as well to Camila Quadros, Alfredo Matos, 
Georges Favraud, Abubakar Sadiq, Lucas Guardalben, and all my friends, 
colleagues and professors who assisted, advised, and supported my research 
and writing efforts. This Thesis would never have been completed without the 
devotion of my family and friends. 
 

 



 

 

 

  



 

iii 

 

  

 

 

 

 

 

 

 

 

 

 

  

palavras-chave 

 
Qualidade de Serviço, arquitetura e protocolos de rede, centralização, 
descentralização, sobre-aprovisionamento de recursos, recuperação a falhas, 
controlo de recursos e de admissão, reserva de recursos agregados. 
 

resumo 
 

 

À medida que as Tecnologias de Informação (TIs) se tornaram parte 
integrante da nossa sociedade, a expectativa dos cidadãos relativamente ao 
uso desses serviços também demonstrou um aumento, seja no âmbito das 
atividades profissionais, de lazer, aplicações de segurança crítica ou 
negócios. Portanto, as limitações dos projetos de rede tradicionais quanto ao 
fornecimento de serviços inovadores e aplicações avançadas motivaram um 
consenso quanto à integração de todos os serviços e infra-estruturas de 
comutação de pacotes, utilizando o IP, de modo a extrair benefícios 
económicos e um controlo mais flexível nas Redes de Nova Geração (RNG). 
Entretanto, tendo em vista que a Internet não apresenta capacidade de 
diferenciação de serviços, e sabendo que cada serviço apresenta as suas 
necessidades próprias, como por exemplo, a Qualidade de Serviço - QoS, a 
necessidade de formas mais evoluídas de comunicação tem-se tornado cada 
vez mais visível, levando a mudanças radicais na arquitectura das redes, que 
exigem soluções adequadas para a admissão de serviços e controlo de 
recursos de rede. Sendo assim, este trabalho aborda questões de controlo de 
QoS e rede com o objetivo de melhorar o desempenho do controlo de 
recursos total em redes atuais e futuras, através da análise dos serviços de 
acordo com as suas classes de serviço. Esta Tese encontra-se dividida em 
três partes. 
Na primeira parte são propostos dois algoritmos de sobre-reserva, o Class-
based bandwidth Over-Reservation (COR) e uma extensão melhorada do 
COR denominado de Enhanced COR (ECOR). A sobre-reserva significa a 
reserva de uma largura de banda maior para o serviço em questão do que 
uma classe de serviço (CoS) necessita e, portanto, a quantidade de 
sinalização para reserva de recursos é reduzida. COR e ECOR consideram 
uma definição dinâmica de sobre-reserva de parâmetros para CoSs com base 
nas condições da rede, com vista à redução da sobrecarga de sinalização em 
QoS sem que ocorra desperdício de largura de banda. O ECOR, por sua vez, 
difere do COR por permitir a otimização com minimização de controlo de 
overhead. Além disso, nesta Tese é proposto também um mecanismo de 
controlo centralizado chamado Advanced Centralization Architecture (ACA) , 
usando um único Ponto de Controlo de Decisão (CDP) que mantém uma 
visão ampla da topologia de rede e de análise dos recursos ocupados em 
tempo real como base de controlo para a rede global. Nesta Tese são 
utilizadas árvores multicast como base para o transporte de sessão, não só 
para fins de comunicação em grupo, mas principalmente para que os pacotes 
que pertençam a uma sessão que é mapeada numa determinada árvore 
sigam o seu caminho. 
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Os resultados obtidos nas simulações dos mecanismos mostram uma 
redução significativa da sobrecarga da sinalização de controlo, sem a violação 
dos requisitos de QoS ou desperdício de recursos. Além disso, foi proposto 
um modelo analítico no sentido de avaliar o impacto provocado por diversos 
parâmetros (como por exemplo, a capacidade da ligação, a dinâmica das 
sessões, etc), no sobre-provisionamento dos recursos. 
Na segunda parte desta tese propôe-se um mecanismo para controlo 
descentralizado de recursos denominado de Advanced Class-based resource 
OverprRovisioning (ACOR), que permite obter uma melhor escalabilidade do 
que o obtido pelo ACA. O ACOR permite que os pontos de decisão e controlo 
da rede, os CDPs, sejam distribuídos na periferia da rede, cooperem entre si, 
através da troca de dados e controlo adequados (por exemplo, localização 
das árvores e informações sobre o uso da largura de banda), de tal forma que 
cada CDP seja capaz de manter um bom conhecimento da topologia da rede, 
bem como das suas ligações. Do ponto de vista de escalabilidade, a 
cooperação do ACOR é seletiva, o que significa que as informações de 
controlo são trocadas de forma dinâmica apenas entre os CDPs analisados. 
Além disso, a sincronização é feita através do conceito proposto de Recursos 
Virtuais Sobre-Provisionado (VOPR), que partilha as reservas de cada 
interface para cada árvore que usa a interface. Assim, cada CDP pode 
processar pedidos de sessão numa ou mais árvores, sem a necessidade de 
sincronização entre os CDPs correlacionados, enquanto o VOPR da árvore 
não estiver esgotado. Os resultados analíticos e de simulação demonstram 
que o controlo de sobre-reserva é agregado em cenários descentralizados, 
mantendo a sinalização de QoS baixa sem perda de largura de banda. 
Também é desenvolvido um protocolo de controlo de sinalização chamado 
ACOR Protocol (ACOR-P) para suportar as arquitecturas de centralização e 
descentralização deste trabalho. O ACOR Estendido (E-ACOR) agrega a 
VOPR de todas as árvores que se originam no mesmo CDP, e mais pedidos 
de sessão podem ser processados sem a necessidade  de sincronização 
quando comparado com ACOR. Além disso, E-ACOR introduz um mecanismo 
para controlar as informações àcerca do congestionamento da rede, e impede 
a sincronização desnecessária durante o tempo de congestionamento quando 
os VOPRs esgotam consoante cada pedido de sessão. A avaliação de 
desempenho, através de resultados analíticos e de simulação, mostra a 
superioridade do E-ACOR em minimizar o controlo geral da carga da 
sinalização, mantendo todas as vantagens do ACOR, sem apresentar 
violações de QoS ou desperdício de recursos. 
A última parte desta Tese inclui a proposta para recuperação a falhas, o 
Survivability ACOR (SACOR), o qual permite ter QoS estável em caso de 
falhas de ligações e nós. Os resultados de desempenho analisados mostram 
uma capacidade flexível de sobrevivência caracterizada por um tempo de 
convergência rápido e diferenciação de tráfego com uma utilização eficiente 
dos recursos. 
Em resumo, os mecanismos de controlo de recursos propostos nesta Tese 
fornecem um suporte eficiente e escalável para controlo da rede, como 
também para os seus principais sub-sistemas (por exemplo, QoS, controlo de 
recursos, engenharia de tráfego, multicast, etc) e, assim, permitir a otimização 
do desempenho da rede a nível do controlo global. 
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abstract 
 

 

The expectations of citizens from the Information Technologies (ITs) are 
increasing as the ITs have become integral part of our society, serving all kinds 
of activities whether professional, leisure, safety-critical applications or 
business. Hence, the limitations of the traditional network designs to provide 
innovative and enhanced services and applications motivated a consensus to 
integrate all services over packet switching infrastructures, using the Internet 
Protocol, so as to leverage flexible control and economical benefits in the Next 
Generation Networks (NGNs). However, the Internet is not capable of treating 
services differently while each service has its own requirements (e.g., Quality of 
Service - QoS). Therefore, the need for more evolved forms of communications 
has driven to radical changes of architectural and layering designs which 
demand appropriate solutions for service admission and network resources 
control. This Thesis addresses QoS and network control issues, aiming to 
improve overall control performance in current and future networks which 
classify services into classes. The Thesis is divided into three parts. 
In the first part, we propose two resource over-reservation algorithms, a Class-
based bandwidth Over-Reservation (COR) and an Enhanced COR (ECOR). 
The over-reservation means reserving more bandwidth than a Class of Service 
(CoS) needs, so the QoS reservation signalling rate is reduced. COR and 
ECOR allow for dynamically defining over-reservation parameters for CoSs 
based on network interfaces resource conditions; they aim to reduce QoS 
signalling and related overhead without incurring CoS starvation or waste of 
bandwidth. ECOR differs from COR by allowing for optimizing control overhead 
minimization. Further, we propose a centralized control mechanism called 
Advanced Centralization Architecture (ACA), that uses a single state-full 
Control Decision Point (CDP) which maintains a good view of its underlying 
network topology and the related links resource statistics on real-time basis to 
control the overall network. It is very important to mention that, in this Thesis, 
we use multicast trees as the basis for session transport, not only for group 
communication purposes, but mainly to pin packets of a session mapped to a 
tree to follow the desired tree. Our simulation results prove a drastic reduction 
of QoS control signalling and the related overhead without QoS violation or 
waste of resources. Besides, we provide a generic-purpose analytical model to 
assess the impact of various parameters (e.g., link capacity, session dynamics, 
etc.) that generally challenge resource overprovisioning control. 
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In the second part of this Thesis, we propose a decentralization control 
mechanism called Advanced Class-based resource OverpRovisioning (ACOR), 
that aims to achieve better scalability than the ACA approach. ACOR enables 
multiple CDPs, distributed at network edge, to cooperate and exchange 
appropriate control data (e.g., trees and bandwidth usage information) such 
that each CDP is able to maintain a good knowledge of the network topology 
and the related links resource statistics on real-time basis. From scalability 
perspective, ACOR cooperation is selective, meaning that control information is 
exchanged dynamically among only the CDPs which are concerned 
(correlated). 
Moreover, the synchronization is carried out through our proposed concept of 
Virtual Over-Provisioned Resource (VOPR), which is a share of over-
reservations of each interface to each tree that uses the interface. Thus, each 
CDP can process several session requests over a tree without requiring 
synchronization between the correlated CDPs as long as the VOPR of the tree 
is not exhausted. Analytical and simulation results demonstrate that aggregate 
over-reservation control in decentralized scenarios keep low signalling without 
QoS violations or waste of resources. We also introduced a control signalling 
protocol called ACOR Protocol (ACOR-P) to support the centralization and 
decentralization designs in this Thesis. Further, we propose an Extended 
ACOR (E-ACOR) which aggregates the VOPR of all trees that originate at the 
same CDP, and more session requests can be processed without 
synchronization when compared with ACOR. In addition, E-ACOR introduces a 
mechanism to efficiently track network congestion information to prevent 
unnecessary synchronization during congestion time when VOPRs would 
exhaust upon every session request. The performance evaluation through 
analytical and simulation results proves the superiority of E-ACOR in 
minimizing overall control signalling overhead while keeping all advantages of 
ACOR, that is, without incurring QoS violations or waste of resources. 
The last part of this Thesis includes the Survivable ACOR (SACOR) proposal to 
support stable operations of the QoS and network control mechanisms in case 
of failures and recoveries (e.g., of links and nodes). The performance results 
show flexible survivability characterized by fast convergence time and 
differentiation of traffic re-routing under efficient resource utilization i.e. without 
wasting bandwidth. 
In summary, the QoS and architectural control mechanisms proposed in this 
Thesis provide efficient and scalable support for network control key sub-
systems (e.g., QoS and resource control, traffic engineering, multicasting, etc.), 
and thus allow for optimizing network overall control performance. 
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This Thesis deals with scalable QoS and network control for current and future class-based 

networks. We exploit inherent scalability feature of class-based control and propose new control 

mechanisms which allow for optimizing network overall performance by providing scalable 

resources control through descentralized network control with resources overprovisioning. The 

proposed system can be used and extended to support operations for QoS in multicast services, 

traffic engineering, routing, link capacity planning, network virtualization control and mobility.  

This chapter is structured as follows. Section 1.1 presents our motivations for this research 

work. Section 1.2 describes our objectives and our main contributions to advance the state of the art 

in the area. Further, section 1.3 lists our publications and section 1.4 presents the organization of 

the Thesis. 

1.1 Motivations 

In contrast with what one could observe several years ago, there is nowadays a high 

expectation of innovative and attractive services in all human-centric aspects whether professional, 

leisure, health, safety, security and business. The real-time QoS stringent multimedia applications 

(e.g., Internet Protocol Television - IPTV, Videoconferecing, Online Games, etc.), personalized 

and immersive services (e.g., Facebook, Virtual meeting, etc.) are examples of these services. The 

citizens are willing to be able to select from a wide range of user experienced QoS, to get the 

information content they want, anywhere, anytime and over any facilities available. Moreover, 

service consumers are getting into the role of content creators (e.g., YouTube), while the advent of 

multihomed terminals (terminal with multiple interfaces) increased the need for QoS and mobility 

support across heterogeneous access technologies (e.g., Universal Mobile Telecommunications 
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System/Multimedia Broadcast Multicast Services - UMTS/MBMS, Worldwide Interoperability for 

Microwave Access - WiMAX, Wireless Local Area Network - WiFi, and Digital Video 

Broadcasting - DVB).  

In this context, the NGN, as defined by the International Telecommunication Union – 

Telecommunication (ITU-T) [1], is a packet-based network able to provide telecommunication 

services and able to make use of multiple broadband, QoS-enabled transport technologies and in 

which service-related functions are independent from underlying transport related technologies. It 

enables unfettered access for users to networks and to competing service providers and/or services 

of their choice. It supports generalized mobility which will allow consistent and ubiquitous 

provision of services to users. 

However, besides flexibility and scalability features, the widely adopted packet-based Internet 

technology does not provide means for traffic differentiation control while each service has its own 

requirements (e.g., QoS). In other words, the legacy Internet only treats all services equally and 

thus raises major concerns for reconsideration of our traditional network design philosophy.  

In order to provide QoS to each individual traffic flow in the Internet, the Internet Engineering 

Task Force (IETF) proposed the Integrated Services (IntServ) QoS architecture [2] which bases on 

fine-grained control principles such that, the network nodes on communication path are signalled 

upon service request to perform admission control and to reserve resources (e.g., bandwidth) for 

the session establishment. This implies that a service request may be accepted or rejected 

depending on the QoS requirements of the service and the available resource conditions in the 

network. Consequently, this approach confronts scalability and long session setup time issues since 

signalling is generated on per-flow basis and every router on the path must maintain reservation 

state, carry out scheduling functions and admission control for each flow.  

Therefore, IETF introduced the Differentiated Services (DiffServ) QoS architecture as a 

scalable approach [3]. In DiffServ, traffic flows are classified into a limited number of CoSs at 

network entrance points (border/edge) and are treated aggregately without resource reservation 

signalling or admission control mechanism along a path. At each interior router in a DiffServ 

domain, packets are simply forwarded based on the CoS parameter (class Identification - class ID) 

available in the Internet Protocol (IP) packet header and the pre-configured forwarding treatment of 

the CoS. However, the Internet routing protocols mainly rely on shortest path first [4] to route 

traffic flows, which raises inefficient resource utilization problems, since some segments of 

network may be congested or even over-utilized while other segments may be under-utilized. 

Hence, the lack of appropriate control on paths exposes DiffServ to QoS degradation, where the 

http://en.wikipedia.org/wiki/Wireless_LAN
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amount of resource required by the flows in a CoS may happen to exceed the affordable capacity of 

the CoS. 

The approaches, such as IP over Asynchronous Transfer Mode (ATM) and IP over frame relay 

[5], cope with QoS as overlay control models. Basically, the overlays extend the traditional design 

space by enabling the provision of arbitrary virtual topologies on top of real network infrastructures 

(underlays). They provide explicit virtual paths, constraint-based routing, and robustness as 

additional functions to improve traffic and resource control. Thus, the IETF standardized the 

Multiprotocol Label Switching (MPLS) [6] which potentially provides most of the functionality 

available from the overlay models in an integrated and more cost-effective manner when compared 

to existing alternatives. Hence, the MPLS-based networks (e.g., Generalized MPLS - GMPLS [7], 

MPLS Transport Profile - MPLS-TP [8], [9]) offer the possibility to automate key control features 

such as traffic engineering aspects, which are indispensable functions to efficiently minimize 

unnecessary congestion occurrence, and to allow for improving resource and control performance 

over the Internet.  

As such, network resource and admission control functions and protocols have been considered 

and intensively discussed as one of the key functionalities to improve networking performance 

[10]. It is broadly studied that a good knowledge of network topological information along with 

available resources [11] on bottleneck interfaces (interfaces with smallest available resources) and 

their location on paths [12], are of paramount importance to allow for improving control 

performance. In other words, a good view of underlying networks infrastructures (e.g., network 

nodes, interfaces capacities, etc.) is essential to improve performance [13]. The ITU-T G.1081 [14] 

defines five monitoring points in networks, allowing service providers to monitor networks and 

services performance in terms of resources utilization and optimization. In the literature, existing 

network monitoring or measurement proposals mostly employ paths’ probing techniques [15], [16] 

to acquire knowledge of network resource utilization conditions. However, research results [17], 

[18], [19] show that paths’ probing raises major performance concerns mainly in terms of heavy 

signalling overhead (depending on probing frequency), complexity, as well as accuracy issues. An 

example is that excessive signalling events can easily overwhelm socket Input/Output interfaces 

[20], and therefore, networking control design must be carefully addressed [21] in the NGN.  

As a result, it is deemed crucial that QoS and resource reservation control be performed 

aggregately [22], meaning that a single signalling set can be used for a bulk or surplus of resource 

reservation for CoSs across a domain, so as to reduce the signalling rate and the related control 

state granularity. This is also known as dynamic aggregate resource over-reservation. However, 

network interfaces are usually shared by multiple paths originated at different sources, which 
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results in dynamic consumptions of network resources, especially in distributed control scenarios 

[23]. Hence, aggregate bandwidth reservation or over-reservation strongly requires a good 

knowledge of available bandwidth information in each CoS on the outgoing interfaces along paths 

on real-time-basis without signalling the paths as long as possible. In this sense, while the 

aggregation of reservations allows for reducing QoS control signalling and state overhead, the 

impact of resource fragmentation [24], [25] and waste of resources is a major trade-off since 

surplus of reservations may not be efficiently used, and service blocking probability would increase 

unnecessarily. Moreover, inefficient admission control, seeking optimization of resource 

utilization, can still place excessive signalling, especially under severe network conditions such as 

congestion periods of time. 

Furthermore, IP Multicast [26] has been broadly investigated as the best promising technology 

for group communications such as multimedia sharing, collaboration between people, social 

networking over the Internet. Many proposals [27], [28], [29], [30] have sprung in the research 

community to provide QoS for multicast sessions. The designs started to incorporate logical and 

intelligent entities (e.g., tree manager, Multicast Controller, QoS Broker, etc.) that focus on QoS 

routing, admission control, resource reservation, group-to-tree matching, and policy control [31], 

[32], [33]. In [34], asymmetric routing problem is addressed by populating/updating Multicast 

Routing Information Base (MRIB) with the more suitable routes information, which is used by 

Protocol Independent Multicast for Source Specific Multicast (PIM-SSM) [35] to build the best 

distribution trees that data are to follow. However, while multiple multicast flows may be also 

aggregated [36] into a single flow through encapsulation mechanism [37], [38] to reduce multicast 

forwarding states information, the QoS control signalling is mostly per-flow based, and particular 

attention is still necessary for the sake of scalability. 

The advances in fibre optic transport technology, offering high capacity, are expected to 

alleviate the effects of congestion. However, service demands and the requirements are also 

growing rapidly due to increasing dependence of citizens and businesses on the Information 

Technologies. In addition, the service demands and traffic behaviors are mostly unpredictable. As it 

is studied in [23], service admission control in a network cannot be planned; it should dynamically 

take into account current traffic demands and available network resources to achieve cost-effective 

performance. Therefore, the need for appropriate solutions and mechanisms for the networking and 

resource management prevailed, which drove to radical changes in the architectural layering 

control in the scope of the NGNs. In particular, it is expected that service-related functions must be 

completely decoupled from the underlying transport-related technologies. This way, applications 

can be developed independently from the underlying connectivity considerations and the transport 

control intelligence layer would provide support for all types of services and information over the 
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packet-based network. Basically, the transport will address traffic-oriented objectives in terms of 

QoS requirements (e.g., bandwidth, delay, jitter and packet loss), and resource-oriented objectives 

to allow for efficient management of the network resources. This implies that transport intelligence 

will be aware of the services (e.g., Voice over IP - VoIP, data, etc.) that they carry and be able to 

assure differentiated service treatments according to the requirements of each service. It becomes 

clear that the future networking control is expected to take on a much broader meaning than just 

relating to routing of connections based on simple database look-ups. 

It is also claimed that decentralization approaches, supporting redundant connectivity and 

multihoming with automated control capabilities, are more promising for scalability, robustness, 

and availability than centralized solutions, especially in large scale network environment [39], [40], 

[41], [42]. Indeed, the explosive expectations from the ITs are making central controllers 

bottlenecked. As stated in [43], distributed control efforts focus on mechanisms for enabling 

networks with self-awareness, self-optimization, and self-management capabilities, whereby 

network elements can adapt themselves to contextual changes without any external intervention. 

Thus, decentralization allows the support of simultaneous operations at different entities throughout 

a network, seeking better performance with less resources (e.g., bandwidth, Central Processing 

Unit - CPU, memory and energy) consumption. However, it requires the synchronization of control 

information among the distributed entities to avoid wrong and incompatible decisions [44] while 

exceeding signalling (e.g., as in P2P networks [45] and Ad hoc networks [46]) consumes too much 

resources. Moreover, the lack of appropriate solutions for decentralization is forcing major designs 

to centralization (e.g., Enthrone [47], EuQoS [48]), or each distributed system to deploy its own 

strategies in the form of overlay; the complexity of the Internet continues to increase even more by 

the addition of new protocols and mechanisms atop of the current layers [45]. Considering the 

inexistence of appropriate analysis of the pros and cons of each of the two approaches in the 

literature, Song et al. in [49], provide results demonstrating that distributed system is preferable in 

large network or when traffic load is high and uniformly distributed. Centralized system performs 

better in simpler scenarios or when the majority of calls are initiated or destined to one edge node. 

It is therefore apparent that decentralization will play a key role in the current and future networks 

as they start to extend service to human-surrounded objects (e.g., Internet of the things). 

Bearing the aforementioned issues and challenges in mind, the research community, in both 

academia and industry, recognizes the increasing limitations of the current Internet in terms of 

network management which is difficult to deploy, has security concerns, and the “best effort 

forwarding” has failed to meet requirements for QoS and added-value applications. It is broadly 

studied that the Internet architecture design strongly needs reconsideration and many proposals 

[50], [51] including “clean slate” approach [52] were made available. Efforts in OpenFlow [53] and 
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GENI [54] attempt to encourage networking vendors for programmable switches and routers (e.g., 

using virtualization) that can process packets for multiple isolated experimental networks 

simultaneously. The main objective is to exploit practical and sufficiently realistic environments 

(e.g., real traffic at large scale) to allow for experimenting innovative ideas to gain the confidence 

needed for widespread deployment of new approaches including alternatives to IP. In GENI, 

nationwide research facility was suggested for experimentation where a researcher will be allocated 

a slice of resources (e.g., links, packet processing elements, end-hosts) across the whole network so 

that researchers can program their slices to behave as they wish. The OpenFlow proposes to 

circumvent costly settings by envisaging that vendors add OpenFlow protocol to the equipments in 

college campus. The idea relies on flow-tables (available in most of modern Ethernet switches and 

routers) which includes packet header field that defines flows, and specifies how the packets of a 

flow should be processed. Usually, it runs at line-rate to implement firewalls, Network Address 

Translation (NAT), QoS, and to collect statistics of each flow [53]. Hence, the open protocol is 

introduced to program the flow-table in different devices in a way that network administrator can 

partition traffic into production and research flows where the latter could be exploited by 

researchers. There is no longer doubt that significant efforts were still necessary to evolve the 

networking control technologies. 

From system survivability perspectives, unpredictable failures (e.g., of links and nodes), 

usually caused by natural disasters (e.g., fire, earthquake, etc.), malicious attacks, hardware faults, 

and human mistakes, threaten network normal operations. The term survivability refers to the 

ability of a network to assure service continuity to a certain degree in the presence of these 

challenges [55]. The survivability approaches are generally classified into protection-based and 

restoration-based [55], [56]. The main objective is to achieve service stability through minimum 

recovery time while assuring differentiated control and maintaining maximum resource utilization 

at low cost [57]. It has been one of the fundamental design goals, in all existing networking 

technologies (e.g., IP, ATM, MPLS, etc.) [55], to provide stable operations regardless of the scale, 

the magnitude, the duration and the type of failures [58], [59]. As an example in IP infrastructures, 

the widely deployed routing protocols (e.g., Open Shortest Path First - OSPF [4], Intermediate 

System to Intermediate System - IS-IS [60]) are able to reestablish connectivity after the failure of 

network elements. Hence, survivability control must be an integral part of any new design for the 

current or future networking scenarios.  

1.2 Objectives and Main Contributions 

The main objectives of this Thesis consist in investigating scalable QoS architectures and 

network control mechanisms to allow for optimizing networking control overall performance. For 
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this purpose, we steered our focus on the trade-off between scalability in terms of control signalling 

rate/frequency minimization and the waste of resources confronted in aggregate resource over-

reservation approaches due to dynamic characteristics of network environments such as in 

distributed scenarios. Our goal is not to propose a “clean slate” design, but a pragmatic and 

compatible technology with existing standards to flexibly advance the state-of-the-art in the area of 

networking control. 

The overall control designs proposed in this Thesis are targeted at a single networking domain 

(e.g., area or Autonomous System - AS) with well-defined boundary (similarly to DiffServ or 

MPLS domains) composed of edge nodes (ingress and egress nodes) through which traffic may 

enter or exit the domain respectively, and core nodes are placed inside the domain. This assumes 

that each network domain can deploy its own control technology and inter-domain connections 

(e.g., between different administrative domains) can be assured through any specific approach such 

as negotiable Service Level Agreements (SLAs) and Service Level Specifications (SLSs) [47].  

Hence, we propose new QoS and networking control mechanisms for centralization and 

decentralization designs with support for survivability, using aggregate resource overprovisioning 

concept. In our centralized design, a central server implements a CDP entity, while every edge 

node embeds a CDP in the decentralized approach. The internal architecture of a CDP depends on 

the design model, that is, whether it is centralized or decentralized, as we will detail later in the 

Thesis. A CDP is therefore the responsible for maintaining a good knowledge of the underlying 

network topology and related resource conditions in real-time manner for making policy and 

control decisions based on accurate information inside the network. To achieve this in the 

decentralized approach, all available CDPs cooperate as a means to dynamically exchange 

appropriate control information for synchronization to changes in network topology and related 

resource states. The decisions taken by a CDP are translated into commands and conveyed in 

signalling messages to the core nodes which host a Decision Enforcement Point (DEP) entity for 

the enforcements while being kept simpler.  

Besides, every edge node implements the DEP entity with additional key functions (e.g., gate 

control and traffic conditioning), which are usually pushed to network border. Further, a CDP 

builds multiple QoS-aware edge-to-edges multicast trees and dynamically manages aggregate 

bandwidth over-reservation among the CoSs configured on the trees, aiming to establish sessions 

without per-flow signalling for QoS or synchronization among distributed CDPs. The use of 

multicast trees is a means to ensure that the packets that belong to a flow mapped to a tree are 

pinned to the tree so they enjoy the QoS destined to them. Therefore, in the description of our 

designs in this Thesis, the terms path and tree are interchangeable. Moreover, the terms edge 
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node/router and border node/router are interchangeable. The main contributions of this Thesis are 

summarized in the following. 

Scalable QoS and Architecture for Centralization of Network Control 

We propose a new centralized control architecture design called ACA. In ACA, a central 

server, embedding a CDP, creates all possible edge-to-edges trees inside the network under its 

control, and records key control information of every outgoing interface on the trees (e.g., interface 

capacity, interface ID and CoSs configured on the interface). Any session request to the network is 

sent to the CDP which maps authorized requests to appropriate CoS and best trees through 

admission process (depending on requested QoS and network current conditions) in a way that 

balances traffic load across the domain. Upon granting access for a new session, releasing or 

readjusting an ongoing session requirements in a CoS on a tree, the CDP automatically updates, in 

its local database, the resource utilization parameters of the CoS for every outgoing interface that 

belongs to the tree. This way, the CDP maintains a good knowledge of the whole network 

topology, the existing trees and the related link resource usage statistics in real-time manner, which 

provides support for network control sub-systems such as QoS, traffic engineering, network 

planning and mobility. This reduces the need for frequent trees’ probing which is very important to 

improve scalability. Moreover, such real-time view on resources (bandwidth) statistics of 

underlying network is a key requirement to efficiently support aggregate resource over-reservation 

for addressing the trade-off between QoS signalling overhead minimization, QoS violation, waste 

of resources, and therefore, unnecessary increase of session blocking probability.  

Based on the hereinabove architectural support of the ACA, we propose two aggregate 

resource over-reservation control algorithms, the COR and the ECOR. COR and ECOR allow for 

dynamically defining over-reservation (surplus of reservation) parameters for CoSs configured on 

each outgoing interface on a tree, based on the current resource conditions of the interface to avoid 

per-flow QoS signalling. More importantly, the computational functions of both COR and ECOR 

prevent CoS starvation and waste of resources, while the signalling overhead is significantly 

reduced. While COR avoids over-reserving too much resources for each CoS, the ECOR allows as 

much over-reservation as possible and thus, the latter enables for optimizing the minimization of 

signalling and related processing overhead. We implement these algorithms in the ACA and in our 

decentralized designs described below, and study their performance metrics. 

Scalable QoS and Architecture for Decentralization of Network Control 

We propose a generic mechanism for decentralization of network control called ACOR. ACOR 

enables multiple CDPs distributed at network border to cooperate to exchange communication trees 

and related resource usage information, such that each CDP is able to maintain a good knowledge 
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of the network topology (e.g., nodes and links) and the related links resources statistics in real-time 

manner. From scalability perspective, ACOR cooperation is selective, meaning that information is 

exchanged between only the CDPs which are concerned and unnecessary broadcasting is avoided 

dynamically. Moreover, we propose a VOPR concept which allocates a share of aggregate over-

reservation of each interface to each of the trees that use the interface. As a result, each CDP is 

enabled to process several service requests on a tree without requiring synchronization, as long as 

the VOPR of the tree is not exhausted, and thus, the ACOR synchronization signalling rate is also 

kept low. Further, we exploit the ACOR support for aggregate resource over-reservation 

techniques, and implement the COR and ECOR algorithms to provide scalable resource and 

admission control functions with low QoS reservation signalling and the related overhead without 

wasting resources. Moreover, we propose a Next Steps In Signalling (NSIS) compliant control 

signalling protocol, called ACOR-P, which defines appropriate message structures, fields and 

objects in support for all the control mechanisms proposed in this Thesis. 

E-ACOR and Architecture for Decentralization of Network Control 

While ACOR allows for optimizing QoS reservation signalling overhead, its synchronization 

signalling rate increases rapidly with the increase of the number of trees that use bottleneck 

interfaces inside a network. Moreover, as the VOPR exhausts upon every session request during 

network congestion period of time, it forces ACOR to per-request synchronization in congestion 

situations. Therefore, we propose the E-ACOR. In particular, E-ACOR extends the VOPR concept 

by aggregately allocating the over-reservation of an interface to all the trees that originate at the 

same CDP. This way, each CDP may process more session requests on a tree without requiring 

synchronization when compared with ACOR using the VOPR per tree, since session demands are 

mostly unpredictable. Moreover, E-ACOR enables each CDP to efficiently track network 

congestion information without undue control signalling overhead in a way to prevent unnecessary 

synchronization signalling when network is congested. More importantly, E-ACOR allows for 

optimizing the synchronization overhead reduction while keeping the optimization capabilities of 

ACOR in terms of QoS reservation signalling overhead reduction without QoS violation or waste 

of resources.  

Advanced Control for Network Survivability  

We propose the SACOR in support for stable operations and service continuity in ACOR in 

case of failures “Down” (e.g., links/nodes failures) or when previous failures recover “Up”. In 

particular, core nodes mainly detect and announce failure or recovery events to all CDPs using our 

proposed flooding-based approach. Hence, upon receipt of failure or recovery notification(s), the 

CDPs are enabled to cooperate to quickly adapt to the changes imposed in terms of topology, links 
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resource conditions, and timely re-routing of traffic flows. In other words, SACOR pushes 

survivability control load and complexity to CDPs, and core nodes are left simpler for fast 

convergence and scalability purposes. Regarding differentiation of flows re-routing, we propose 

VOPR-based Re-routing (VR) and Preemptive-based Re-routing (PR) techniques, which allow for 

fast traffic switchover upon failures without requiring ACOR synchronization or resource 

reservation signalling. The VR re-routes flows based on available VOPRs, and the PR preempts 

lower priority flows to accommodate higher priority ones. Further, Available Reservation-based 

Re-routing (ARR) and Reservation Readjustment-based Re-routing (RRR) schemes are introduced 

for re-routing remained flows after the VR’s and PR’s operations. The ARR re-routes traffic after 

the CDPs’ synchronization to overall changes occurred in network resource utilization statistics, 

and the RRR enables for readjusting reservations parameters on trees upon need to avoid dropping 

traffic unnecessarily or wasting resources upon failures. Our simulation results show that SACOR 

effectively provides differentiated survivability under fast convergence operations while efficiently 

using the network resources. 

1.3 Publications 

The contributions of this Thesis work resulted in the following number of publications. 

1.3.1 Pending Patents 

 Evariste Logota, Sargento Sargento, Augusto Neto, “Um Método para Controlo Avançado de 

Sobre-Reservas Baseado em Class de Serviço e Sistema para a sua Execução (A Method and 

Apparatus for Advanced Class-based Bandwidth Over-reservation Control)”, 105305, 

September, 2010.  

 Evariste Logota, Sargento Sargento, Augusto Neto, “A Method and Apparatus for Class-Based 

Networks Control”, CI-12-029, January, 2013.  

1.3.2 Pending Journals 

 Evariste Logota, Carlos Campus, Susana Sargento, Augusto Neto, “Advanced Multicast Class-

based Bandwidth Over-Provisioning”, Elsevier Computer Networks Journal, 2012 (submitted 

in July 2012). 

 Evariste Logota, Carlos Campus, Susana Sargento, Augusto Neto, “SACOR: Survivable 

Advanced Class-based resource Over-Reservation”, Elsevier Computer Networks Journal, 

2012 (submitted in November 2012).  

http://www.it.pt/person_detail_p.asp?id=3983
http://www.it.pt/person_detail_p.asp?id=501
http://www.it.pt/person_detail_p.asp?id=3983
http://www.it.pt/person_detail_p.asp?id=501
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1.3.3 Pending Conference 

 Evariste Logota, Carlos Campus, Susana Sargento, Augusto Neto, “Scalable Resource and 

Admission Management in Class-based Networks”, (submitted to the Institute of Electrical and 

Electronics Engineers (IEEE) International Conference on Communications (ICC 2013)). 

1.3.4 International Proceedings with Independent Reviewers 

 Evariste Logota, Augusto Neto, Susana Sargento, “COR: an Efficient Class-based Resource 

Over-pRovisioning Mechanism for Future Networks”, IEEE Symposium on Computers and 

Communications (ISCC 2010), Riccione, Italy, June 2010.  

 Evariste Logota, Augusto Neto, Susana Sargento, “A New Strategy for Efficient Decentralized 

Network Control”, IEEE Global Telecommunications Conference, (IEEE GLOBECOM 2010), 

Miami, Florida (USA), December 2010. 

 Augusto Neto, S. Sargento, Evariste Logota, J. Antoniou, F.C Pinto, “Multiparty Session and 

Network Resource Control in the Context Casting (C-CAST) project”, Second International 

Workshop on Future Multimedia Networking (FMN 2009), Coimbra, Portugal, June 2009. 

 Augusto Neto, S. Sargento, F. C. Pinto, Evariste Logota, “Context-Aware Session and Network 

Control in Future Internet”, IEEE International Conference on Communications (ICC 2009), 

Dresden, Germany, June 2009. 

1.4 Thesis Organization 

This section introduces the structure of the Thesis as in the following. 

Chapter 2 provides an overview of the more relevant work within the scope of this Thesis in a 

way that facilitates the understanding of the state of the art of the research aspects addressed in the 

Thesis. In particular, it presents the major IETF standardized QoS and resources control 

architectures such as the InServ, DiffServ and MPLS. Moreover, it describes the existing admission 

control models (the active measurement-based, the passive measurement based, and the parameter-

based), and introduces IP multicast technology. Besides control signalling protocols, the 

architecture and requirements of NGNs have also been explored together with resources and 

admission control standards, and the related key building functional blocks. Further, it introduces 

networking control models with focus on centralization and decentralization approaches, including 

scalable resources and admission control proposals along with key control frameworks. Relevant 

proposals and mechanisms for network survivability, and context-awareness have also been 

surveyed in this chapter.  
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Chapter 3 introduces our novel resource over-reservation algorithms (COR and ECOR). It also 

describes our ACA architecture which deploys a single CDP as the responsible for maintaining 

global network topology and the related links resource statistics to assure the overall network 

control. ACA integrates the COR and ECOR, and demonstrates superiority over state-of-the-art 

solution by drastically reducing control signalling, and therefore, the related processing overhead. 

This chapter provides also a generic-purpose analytical model, which allows for assessing key 

control parameters that generally challenge resource over-reservation performance in terms of 

signalling minimization and waste of resources.  

Chapter 4 describes the self-organizing multiple edge nodes decentralization control 

mechanism, called ACOR. It includes an introduction to highlight the driving motivation behind 

the work. ACOR provides a generic-purpose protocol for decentralization control, and supports 

network control sub-systems through a good knowledge of network topology and the related links 

resources statistics, which are obtained by keeping low signalling and related overhead. This 

chapter provides both analytical and simulation studies of the proposed approach. It also describes 

our ACOR-P control signalling protocol, an NSIS compliant protocol, proposed to support our 

centralization and decentralization control mechanisms in this Thesis.  

Chapter 5 describes the E-ACOR decentralization control mechanism. E-ACOR introduces an 

aggregate VOPR concept which consists in aggregating the fine-grained VOPR approach of 

ACOR. Moreover, E-ACOR tracks network congestion information efficiently to allow for 

optimizing the synchronization signalling overhead reduction. As a result, E-ACOR allows for 

optimizing overall control signalling (QoS reservation and synchronization between CDPs) 

overhead in decentralized network environment. Finally, the chapter includes analytical and 

simulation evaluation for comparison between the E-ACOR and ACOR. 

Chapter 6 describes the survivability mechanism of SACOR proposed in support for stable 

operations of ACOR (e.g., fast convergence and differentiation of flows re-routing) in the face of 

failures or recoveries. The proposed functions also apply to ACA and to the E-ACOR architectures. 

Chapter 7 introduces the final conclusions and the main contributions of the Thesis. It also 

highlights possible directions for further developments of the research aspects addressed in this 

Thesis. 
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The networking transport performance objectives are generally achieved from traffic-oriented 

perspective in terms of QoS requirements (e.g., bandwidth, delay, etc.), and resource-oriented 

perspective in terms of network resource management taking into account key features such as 

efficiency, scalability, cost-effectiveness, etc. From the beginning of the NGNs study, resource and 

admission control functions and protocols have been considered and intensively discussed as one of 

the main functionalities for transport service (unicast or multicast) provisioning with acceptable 

quality and cost [10]. This chapter introduces general background of network architectural control 

as well as resource and admission control in the scope of the NGNs as being the focus of this 

Thesis. 

This chapter is organized as follows. Section 2.1 presents the major IETF frameworks for QoS 

control and section 2.2 describes the main existing admission control models. Section 2.3 

introduces IP multicast technology while section 2.4 focuses on control signalling protocols. The 

section 2.5 presents an overview of NGNs architecture and requirements together with resources 

and admission control standards, including related key building blocks. Moreover, the section 2.6 

introduces network control models with centralization and decentralization approaches, and section 

2.7 describes scalable resources and admission control proposals along with key frameworks. 

Further, section 2.8 introduces proposals and mechanisms for network survivability, and section 2.9 

addresses context-awareness. Finally, section 2.10 concludes the chapter. 

2.1 Major Frameworks for QoS Control 

In order to provide QoS support over the originally best-effort-based IETF standardized three 

major frameworks: (1) IntServ [2]; (2) DiffServ [3], and (3) MPLS [6]. Unlike IntServ, which was 
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designed to provide strick QoS for each individual flow admitted over the Internet, DiffServ was 

introduced as an extremely scalable QoS architecture. Besides, MPLS was introduced not only to 

integrate QoS and traffic engineering features, but also it achieves fast routing based on labels.  

2.1.1 Integrated Services 

In order to provide end-to-end QoS for each service over the best-effort-based Internet, the 

IETF developed a fine-grained QoS control architecture, the IntServ [2]. IntServ model supports 

two types of services: (1) Guaranteed Service (GS) [61], targeting hard real-time applications, 

which can mathematically guarantee bandwidth, delay and jitter; (2) Controlled-Load (CL) service 

[62], which provides soft guarantees to applications that can adapt to network conditions within a 

certain performance window. The QoS guarantee of a flow is obtained through the reservation of 

adequate resources at every node that happens to lie on the communication path taken by the flow 

from its source to its destination, usually resorting to the Resource Reservation Protocol (RSVP) 

[63]. To this end, a user’s application, the traffic source, must identify its flows, using the 5-tuple 

(source IP address, destination IP address, source port, destination port, transport protocol), and 

specify the flows characteristics and the service requirements in terms of traffic envelope and the 

amount of bandwidth to be reserved for each flow.  

Hence, the source/sender side encapsulates the traffic characteristics using a container called 

Traffic Specifications (TSpec) in an RSVP specific message, the PATH message, and sends it to the 

traffic receiver. Upon receiving the message, the receiver specifies the desired QoS as a 

Reservation Specification (RSpec) object in a specific message called RESV message and sends it 

to the source. Hence, every node on a path must interpret the RSVP messages and perform 

admission control based on the required QoS and its available resources. In case the admission 

control succeeds, the node retrieves the QoS required from the message and enforces the 

reservations on its corresponding interface(s), by configuring the scheduler on the interface(s) [64], 

[65]. Also, the node records the traffic identification parameters and properly configures its routing 

tables. As illustrated in Figure 2.1, every node on a path must be RSVP-aware not only to reserve 

QoS, but also to maintain states for each flow so as to assure an end-to-end QoS control for each 

flow. 
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Figure 2.1. Illustration of IntServ aware network scenario. 

As a consequence, such per-flow fine-grained states and signalling operations in IntServ lack 

scalability due to excessive control overhead and have been severely criticized [20]. Therefore, 

IETF introduced the DiffServ as an alternative QoS architecture standard for the Internet. 

2.1.2 Differentiated Services 

The DiffServ [3] has been introduced by the IETF as a coarse-grained, a class-based alternative 

mechanism to the IntServ paradigm. It entends to cope with key shortcomings (scalability and 

flexibility) of the IntServ while keeping QoS support over the Internet. Different from the end-to-

end IntServ approach, a Differentiated Service (DS) domain has a well-defined boundary 

composed of ingress and egress nodes through which traffic may enter or exit a DS domain, 

respectively, while core nodes are placed inside the domain, as in Figure 2.2. There are two types 

of DS domains: (1) stub domains in which the nodes are typically endpoints in a network flow — 

network traffic either originates at or is destined for a node in a stub domain (a router at a local 

Internet Service Provider - ISP); (2) transit domains in which the nodes are typically intermediate 

in a network flow — traffic usually pass through it (backbone routers). Two important concepts 

such as SLA and Traffic Conditioning Agreement (TCA) have been defined in DiffServ 

architecture. An SLA defines a contract between a provider and a customer in terms of the 

specifications of the service(s) to be provided, where a SLS includes the traffic treatment and 

performance metrics. A customer may be a single user, a user organization source domain or 

another DS domain (upstream domain). In addition, a TCA may be included in an SLA to specify 

the traffic conditioning rules, that is, the rules for packet classification, the traffic profile and the 

corresponding rules for metering, marking, shaping or dropping. 

All traffics entering a DS domain are classified into a limited number of CoSs (a.k.a., 

Aggregates behavior) supported inside the domain such that traffic are treated aggregately and not 

per-flow. Packet classification may base on multi-field in packets header (e.g., source address, 

destination address, source port, destination port, protocol type). An aggregate behavior or a CoS of 
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a packet is identified by a single 6 bits Differentiated Service Code Point (DSCP) [66], thus 

allowing traffics to be treated aggregately, and not per-flow. Hence, based on a domain’s service 

provisioning policy, a Per-Hop Behavior (PHB), consisting of a means by which a node allocates 

its resources to a particular CoS on its interfaces, is implemented by employing some buffer 

management (e.g., Random Early Detection - RED) and packet scheduling mechanisms (e.g., 

Weighted Fair Queuing - WFQ). These per-hop behaviors are required in network nodes to assure 

differentiated treatment of packets along the communication paths.  

 
Figure 2.2. Illustration of DiffServ aware network scenario. 

In addition to Best-Effort (BE), DiffServ defines the Assured Forwarding (AF) [67] and 

Expedited Forwarding (EF) [68] PHB groups. The EF service is used to build a low loss, low 

latency, low jitter, assured capacity with peak rate allocation (“Virtual Leased Line” or Premium 

service), achieved by using priority queuing, along with a rate limiting on the CoS. The AF service 

provides relative guarantees, assuring high probability of forwarding conformant packets, meaning 

that some packets may be dropped more aggressively during congestion period of time.  

However, packet classification and prioritization are implemented for different service levels 

[69] and control degradation can worsen in dynamics re-routing situations [70] since traffic flows 

may change their routes without taking into account the available resource conditions in the new 

paths. Moreover, high priority traffics can deprive lower priority services of resource. Pengxuan et 

al., [71] argue that it is very difficult to guarantee differentiated QoS in multiple distributed edge 

nodes environment. As the core nodes are required to be simpler, it is easy that they get 

overwhelmed when edge nodes inject traffic packets on them in distributed manner and there is no 

synchronization between the edge nodes. They combine the functionalities of DiffServ and MPLS 

(Multiprotocol Label Switching) to alleviate the impact of this probem on QoS performance. In 

particular, edge nodes implement DiffServ functions mainly for marking and dropping packets, and 
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exploit MPLS Traffic Engineering functions to dynamically re-route/remap traffic flows to reduce 

the congestion problem. The core routers are mainly responsible to forward the packets which are 

scheduled according to the PHB of each packet as defined by edge node using DiffServ.  

Considering the scalability features in DiffServ and the QoS guarantee capabilities assured in 

IntServ through end-to-end admission control and dedicated resource allocation strategy [72], 

RSVP has been extended to support scalability by means of aggregate reservations [22]. The 

protocol has also evolved to support features such as security [73], MPLS [74] and GMPLS [75]. 

2.1.3 MPLS and MPLS-based Approaches 

The MPLS is a connection-oriented packet-switching technology which inherently supports 

traffic engineering by using explicit paths and offers a great deal of flexibility to route traffic 

around link failures, congestion and bottlenecks. As illustrated in Figure 2.3, an MPLS Label 

Switching Domain (LSD) consists of well-defined boundaries, encompassing entry and exit nodes 

called Label Edge Routers (LERs), and interior nodes called Label Switch Routers (LSRs). In 

MPLS, the Constraint-based Routing Label Distribution Protocol (CR-LDP) [76] and RSVP are 

well-known two signalling approaches to manage label space to provide QoS reservation and 

traffic engineering. In particular, the CR-LDP takes various metrics (e.g., link bandwidth, delay, 

hop count, etc.) into account to provide explicit routes based on QoS and CoS requirements, while 

the RSVP-Traffic Engineering (RSVP-TE) [74] allows for QoS reservations along the paths upon 

need. Note therefore that Label Switched Paths (LSPs) may be established without bandwidth 

reservation, unless bandwidth requirements for the LSP are signalled at LSP establishment time 

[77]. 

In order to assure a proper transport of services along a given LSP, all LSRs on the LSP must 

agree in advance on the meaning of the labels to be used to forward traffic flows between and 

through them along the LSP. This means that an LSP must be established between LERs and LSRs 

prior to any data forwarding, which is achieved through the Label Distribution Protocol (LDP). 

This way, LSPs are protocol agnostic (e.g., independent on a particular layer-2 technology), while 

they permit quasi circuit switching capabilities for aggregate traffic transport. In order to push 

control complexity to the border, the LERs are responsible for defining the explicit LSPs 

throughout a network. Moreover, they potentially maintain and leverage the knowledge of the 

underlying network resource capabilities and a set of pre-defined control policies to select less 

congested LSPs to map traffic flows, thus balancing traffic load across the network.  

Furthermore, the LERs are responsible for classifying every ingress packet into a three bits 

Forwarding Equivalence Class (FEC). Basically, an FEC describes how aggregate traffic flows are 

forwarded (the treatment) along the LSPs. After that, each classified packet is mapped to an LSP 
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through encapsulation with appropriate label pushed atop its header and then forwarded to the next 

LSR on the selected LSP. Upon receiving a packet, an LSR looks up the label and re-labels it 

according to the corresponding FEC [78] and the packet is forwarded to the next LSR. This 

encapsulation and forwarding process is repeated hop-by-hop until the last router pops the shim 

header to deliver the packet to the endpoint or to the next router in subsequent domain based on the 

IP header of the packet.  

 
Figure 2.3. Illustration of MPLS enabled network scenario. 

Moreover, the RSVP has been extended to support multicast, especially the Traffic Engineered 

(TE) point-to-multipoint (P2MP) LSPs in MPLS and GMPLS networks [79], where the solution 

relies on RSVP-TE and not on the legacy multicast routing protocol in the Service Provider core. 

Although the potential of deterministic LSPs and the pertained control concepts are fundamental 

for Traffic Engineering, the dynamic label handling (encapsulation) is a major problem in MPLS. 

This means that, besides the forwarding function, all routers within an LSD must examine every 

incoming packet label and decide whether the packet should be encapsulated by adding a new label 

to the topmost of the label stack of the packet, swapped by another label or removed. Moreover, 

while constraint-based routing increases network utilization, it adds more complexity to routing 

calculations, since the path selected must satisfy QoS requirements. Also, the excessive control 

signalling is another crucial shortcoming, since QoS reservations and LSP paths setup signalling 

frequency increases with the number of session connection requests.  

As discussed in [9], key features such as scalability, service convergence, QoS and cost-

efficiency are essential requirements for the emerging network transport technologies to cope with 

the current strong need of transforming operators’ network infrastructures with reduced capital and 

operational expenditures in support for the growing demands of packet-based services. This has 

been a driving force to the birth of MPLS-TP [8] which is being defined in IETF (groups – MPLS, 

Pseudo Wire Emulation Edge-to-Edge architecture - PWE3, and Common Control and 

Measurement Plane - CCAMP) and the ITU-T SG15 as a simplified and enhanced version of 

MPLS. In particular, MPLS-TP turns off some of the MPLS functions such as Penultimate Hop 
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Popping (outermost label of a packet is removed by a LSR before the adjacent LER), LSPs merge, 

and Equal Cost Multi Path, and adds a few enhancements, mainly in the area of Operation, 

Administration, and Management [8], [80]. Hence, it enhances the protocols and mechanisms that 

are used to set up the LSPs, and those (e.g., Framing, forwarding, encapsulation and resilience) that 

are used to forward the data packets. Moreover, while MPLS supports a robust and mature dynamic 

control plane with protocols such as Open Shortest Path First-Traffic Enginering (OSPF-TE) [81], 

Intermediate System to Intermediate System-Traffic Engineering (IS-IS-TE) [82], RSVP [74], LDP 

[83], and Border Gateway Protocol (BGP) [84], dynamic control plane is optional in MPLS-TP, 

knowing that GMPLS and Label Distribution Protocol [83] can be used to set up LSPs and 

pseudowires respectively in the context of MPLS-TP [80].  

In [23], a bandwidth management system is demonstrated in multiple edge nodes environment 

for assuring QoS using a combination of IP flow control at network edge and MPLS DiffServ-TE 

(control of traffic on per CoS basis and not on per-flow basis over LSP). The authors show that 

Call Admission Control (CAC) and traffic control can be implemented on edge nodes to allow for 

preventing excessive QoS reservation signalling to core nodes inside a network control domain. To 

achieve this, they studied that the CAC at each edge node requires a proper bandwidth management 

system to take into account the dynamically shared resource utilization statistics of the core links 

which are shared by the LSPs originated by all edge nodes. Hence, they deploy a central network 

management system (NMS) which manages the LSPs, IP flows and the bandwidth to be used by 

CAC of the edge nodes routers. The NMS is connected and collects this vital information from 

Management Information Base (MIB) available on network elements via the Simple Network 

Management Protocol (SNMP) and IP flow via Netflow [85]. While this demonstrates key issue 

and challenges to be addressed in the modern networking to improve performance, the proposed 

solution is centralized and confronts serious scalability problems. 

As being class-based architectures, the approaches proposed in this Thesis can be deployed in 

DiffServ, MPLS and the MPLS derivatives enabled scenarios.  

2.2 Admission Control Models 

Network Resource Admission Control techniques, consisting of accepting or denying service 

requests are generally classified as active measurement-based, passive measurement-based, and 

parameter-based. 

2.2.1  Active Measurement-based Admission Control 

Also known as probing-based admission control, the AMAC consists of probing 

communication paths, usually based on a packet sequence or traffic with the same characteristics as 
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those of the service which is waiting for admission decision [15], [16]. This usually provides 

available bandwidth, delay or packet loss information about candidate paths to assist admission 

decisions. This approach, in essence, does not require resource reservation for services along paths. 

However, it imposes long session setup time while signalling overhead is of major concerns, since 

paths must be probed before admission decisions. Moreover, the existing probing techniques mostly 

suffer from complexity, accuracy issues, and only provide soft QoS guarantees [17], [15], [19]. 

Studies show that probing may lead to “Trashing Regime” [18] in multiple distributed ingress nodes 

environment. This means that multiple simultaneous probing traffic easily overload network 

especially during congestion time.  

2.2.2 Passive Measurement-based Admission Control 

In Passive Measurement-based Admission Control (PMAC) control models, each node on a path 

is expected to measure and be aware of the average real traffic data load on each of its interfaces, so 

as to obtain the available bandwidth based on the capacity of the interface [86]. In class-based 

networks, each node must measure the user’s real traffic load in each CoS on each of its interfaces, 

so as to deduce the available resource in each CoS based on the maximum allowable traffic load per 

CoS (maximum allocated bandwidth per CoS) [16]. Hence, upon receiving a service request, a 

network Control Decision Point usually signals the candidate path(s) along which each node may 

accept or deny the request according to its available resources. Besides the signalling overhead, 

computational overhead is another concern in this approach. Moreover, it mostly applies in the 

context of soft QoS services due to performance degradation, which is subject to dynamic traffic 

characteristics and the fine-tuning of measurement design model’s parameters on nodes across a 

network [87], [88].  

2.2.3  Parameter-based Admission Control 

As alternative to the previous two approaches, the PAC considers the amount of resources 

already granted to currently running services (sum of bandwidths granted) and the total allowable 

capacity to obtain available resource (capacity minus sum of granted bandwidth) to assist admission 

decision. As a result, this model is simple and suitable to deliver various types of services including 

Premium services or hard QoS services (e.g., Guaranteed Service and Expedited Service) without 

performance degradation [89], [90]. More importantly, this allows for providing each user with what 

he/she has bought from the service or network provider regardless of whether the user consumes its 

resource or not. Note therefore that one can opportunistically use the unused resource of users in 

order to increase revenue, which is a control policy issue. 
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As one could see, the studies in this section reveal that, the PAC provides better support for QoS 

guarantees with less complexity. Moreover, it prevents undue signalling load and inaccuracy 

drawbacks suffered in AMAC and in PMAC). Therefore, the PAC is adopted in this Thesis. 

2.3 IP Multicast Technology 

In late 1980s, Dr. Steve Deering first suggested IP Multicast [26], which consists of using 

special network addressing [91] to send one single traffic stream to any number of recipients in a 

group, called a multicast group. As illustrated in Figure 2.4, a single multicast stream sent to an 

interested group of destinations (destination No. 1 through 4) replicates at branching nodes, and 

thus, offers efficient network resource utilization in contrast to unicast stream, which unnecessarily 

sends on shared links as many copies of the same stream as there are users (destination No. 5 

through 8) expecting to receive it.  

 
Figure 2.4. Illustration of multicasting scenario.  

However, IP Multicast was used only rarely as a communication tool between IP routers and 

switches until it was approved as the best promising technology for group communications such as 

multimedia sharing, collaboration between people, social networking (e.g., You Tube [92], Bebo 

[93], Facebook [94]) over the Internet. Other examples of applications include Internet TV [95], 

Massive Multiplayer Online Games [96], file sharing, software updates, video conferencing, etc. 

When using Internet Standard Multicast (ISM) multicast model, a receiver does not need to know 

the identity of the media source. To receive a datagram destined to a particular group, an upper-

layer protocol invokes the IP module to join that group on a specific interface (e.g., JoinHostGroup 

(group-address, interface)). Likewise, a user may simply leave a group by issuing a 

LeaveHostGroup (group-address, interface). As such, a node may join the same group on more 
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than one interface, or more than one upper-layer protocol can join the same group. However, this 

raises media source filtering and security concerns in multicast delivery. Hence, the multicast has 

evolved to the Source Specific Multicast (SSM) model [35]. With SSM, a receiver must know a 

multicast channel (S, G) where S is the media source address and G is the Group address, and 

explicitly join the channel [97] to be able to receive the data traffic. There also exists a Small 

Group Multicast (SGM) model which allows a packet from sender to contain the list of all receivers 

and may be used when the group is small and the overhead introduced is neglected. In general, a 

multicast session procedure involves: (1) multicast session/group creation; (2) multicast tree 

construction; (3) data transmission, and (4) multicast session termination [98] where the multicast 

protocols, classified into dense and sparse modes, are the responsible for finding multicast paths, 

managing the multicast group(s), and building the distribution trees which may be source trees or 

shared trees.  

2.3.1 Multicast Routing and QoS Control Protocols 

The source multicast tree algorithms use the notion of shortest path tree rooted at the source. 

Each branch of a tree is the shortest path from the source to each group member and delay may be 

minimized [99]. However, they pose scalability issues under large number of groups with each 

group having a large number of sources, since routers storage capability can be stressed. Several 

existing source-based Multicast routing protocols include Distance Vector Multicast Routing 

Protocol (DVMRP) [100], Protocol Independent Multicast - Dense-Mode (PIM-DM) [101], and 

Multicast Open Shortest Path First (MOSPF) [102]. Derived from Routing Information Protocol 

(RIP), the DVMRP is a broadcast-and-prune style algorithm, meaning that a packet multicast by a 

source is flooded to all end hosts and those who are not interested send “prune” message up the 

distribution tree. It keeps track of the return paths to the source (Reverse Path Forwarding - RPF no 

spanning trees) and builds efficient shortest-path trees from any source. The PIM-DM, similar to 

DVMRP, also floods multicast datagrams to all multicast routers and uses “prune” messages to 

prevent future messages from propagating to routers without group receivers. Hence, these 

protocols scale poorly due to flooding overhead. Besides, the MOSPF is a link state routing 

protocol which, in addition to its link state advertisement, associates the list of groups for which it 

has local receivers. Thus, it builds the map of the network topology and selects the best path to the 

required receivers using Djikstra’s shortest path algorithm and thus, it is limited to link-state 

protocol capable networks.  

Regarding the shared multicast tree algorithms, they introduce a single location in the network 

called core or Rendezvous Point (RP), and build a single shared tree which spans all the members 

whose root is the RP node. The sources register to the RP and receivers join sources through the 
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RP. These algorithms are more scalable and highly suitable for sparse groups, since they drastically 

minimize protocol overhead and the amount of state information that needs to be maintained at 

each router. Nevertheless, the sharing does not favour the scenarios which run with multiple high 

data rate sources due to traffic concentration, while the end-to-end delay is not optimized. Some 

existing shared tree based multicast protocols include Core Based Tree (CBT) [103] and PIM-

Sparse Mode (PIM-SM) [104]. Ken Carlberg et al, proposed a one-to-many algorithm based on 

shared tree [27]. With these protocols, new join messages instantiate the forwarding state at routers 

along their way towards the core/rendezvous point. Thus, the CBT (hard state protocol) builds a 

single bidirectional Shared Tree, while the PIM-SM (soft state protocol) sets up uni-directional 

shared distribution trees for data transmission from the source(s) to the receivers. In PIM-SM 

enabled networks, a router with highest IP address is Designated Router (DR) for its subnet, and 

therefore, is responsible for sending Prune/Join messages to the RP. DR determines the RP for a 

group using a hash function, while the information about RP is obtained by sending Bootstrap 

messages. It is worth noting that PIM-SM offers a particular advantage by allowing switching of 

receiver connectivity from shared tree to source tree [105]. It turns out that shared tree improves 

scalability, but the tree obtained is not necessarily optimal. Moreover, while the placement and the 

discovery of the RP pose major problems, the RP is a single point of failure and ISPs are reluctant 

to depending on RPs run by other ISPs [106]. 

In order to address the aforementioned issues that hinder scalability in multicast aware 

networks, several solutions have been proposed. It is suggested that the PIM-SM uses the next hop 

information provided by the Multiprotocol Border Gateway Protocol (MBGP) [107], and to build 

the inter-domain multicast distribution tree, while the Multicast Source Discovery Protocol 

(MSDP) [108] is used to disseminate (by flooding) source information of one domain to other 

domains. Hence, the interested users in a domain can receive data multicast by sources, and even 

switch to a shortest path tree when needed. However, MSDP peers exchange messages using 

Transmission Control Protocol (TCP) connections and RPF-flooding methods, and thus confront 

scalability problems; other solutions such as the Border Gateway Multicast Protocol (BGMP) 

[109]/Multicast Address Set Claim (MASC) [110], EXPRESS multicast [111], Simple Multicast 

[105] have emerged. Generally implemented at edge router(s) of AS domains, the BGMP builds 

inter-domain bidirectional shared trees rooted at a single AS domain and allows any multicast 

routing protocol to be used within the domains. The address allocation required for the root located 

at the domain is performed using MASC. The EXPRESS protocol [111], which has evolved to the 

well-known PIM-SSM today [35], proposes a single-source service and supports large-scale single 

source applications (SSM model) such as Internet TV where any interested receiver must join/leave 

an (S,G) channel.  
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However, as they have their roots in the best effort based Internet technology, IP Multicast 

inherently has no support for QoS sensitive sessions. In this sense, many proposals [27], [28], [29], 

[30] have focused on network resource provisioning with the objectives of maintaining sessions 

with improved QoS during their entire lifetime. The research papers on QoS multicast mostly 

concentrate on QoS-constrained multicast routing problem, using per-flow state, and scalability 

concern were still prevailing [28]. In other words, establishing and maintaining a multicast tree per-

group leads to large memory requirement and slow packet forwarding, since a large number of 

groups implies a large amount of information to be maintained at routers. Moreover, signalling on 

per-flow basis and packet handling leads to control explosion. Aggregated multicast [36] was then 

introduced as tree sharing mechanism to reduce multicast forwarding states information, and 

therefore improve multicast scalability within a transit domain. These techniques enable multicast 

flows to be aggregated into one flow at ingress router(s) through packet encapsulation, translation 

[37], [38] or MPLS techniques, and delivered to egress routers via a single multicast tree 

(aggregated tree). Jin et al addressed the problem of IP multicast flow aggregation over 

Wavelength Division Multiplexing (WDM) in order to efficiently utilize light-tree [238]. However, 

by simply deploying DiffServ-based aggregation, the dynamic addition of new members of the 

multicast group can negatively affect or even violate the quality of the session of other existing 

traffic if resources were not explicitly reserved before use. This problem and other limitations in 

terms of asymmetric routes problem required additional functionalities like admission control, 

resource reservation. Thus, many QoS multicast aggregation proposals started to incorporate 

logical and intelligent entities (e.g., tree manager, Multicast Controller, QoS Broker, etc.) that focus 

on QoS routing, admission control, resource reservation, group-to-tree matching, and policy control 

as in [31], [32], [33]. An Overlay for Source-Specific Multicast in Asymmetric Routing 

environments protocol (OSMAR) [34], addresses Asymmetric Routing problem, considering that 

multicast tree creation is normally triggered from receiver to sender. In particular, OSMAR 

operations assist tree creation on specific paths by changing the next hop values of the MRIB tables 

on the path from the source to receivers for requested multicast channel (Source, Group). Then, 

PIM-SSM will use the information to create tree on desired paths. In other words, OSMAR helps 

building trees where QoS characteristics of certain paths can be taken into account to create QoS-

aware trees for data to follow, which is essential to increase network value as envisaged in this 

Thesis. 

2.4 Control Signalling Protocols 

Signalling in communication networks is defined as a means for network nodes to exchange 

information between themselves to establish, maintain, and remove control states or configurations. 
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With the integration of networks and services on packet-based networks, signalling is used to 

improve the ability to control the increasing diversity of services offered across the Internet. It is 

therefore used for many purposes, such as resource and admission control, QoS negotiation control, 

diagnosing communication paths status, configuring devices, firewall pinholes and NAT bindings.  

The Diameter protocol [112] is the ITU-T proposed protocol intended to mainly provide 

Authentication, Authorization and Accounting (AAA) framework for applications, such as network 

access or IP mobility including roaming. It is also used for general interaction within resource and 

admission control decision entities (e.g., Resource and Admission Control Function - RACF), 

which may reside in different operators’ networks.  

The SNMP [113] commonly bridges communication between network management stations 

and the managed elements (e.g., hosts, gateways, terminals, etc). In particular, a network 

management sub-system can collect vital control information (e.g., interface bandwidth, interface 

ID, dropped packets statistics, etc.) from MIB available on network elements via the SNMP and IP 

flow via Netflow [85]. 

The IETF Resource Allocation Protocol Working Group has defined the Common Open Policy 

Service (COPS) for support of policy provisioning (COPS-PR) [114] as a scalable protocol that 

allows policy servers (Policy Decision Points - PDPs) to communicate policy decisions to network 

devices (Policy Enforcement Points - PEPs) [116] with support for multiple types of policy clients. 

It is based on a query/response protocol using the reliable TCP such that, one side (client or server) 

would notice quickly whenever the other side is rebooted (or restarted), and communication is on 

real-time basis between the PEP and PDP. For instance, when a PEP boots up, it can set up a COPS 

connection to its Primary PDP, provide the latter with information about itself (e.g., hardware type, 

software release, etc.) and issue a request for certain configurations. COPS is a well fitted protocol 

for vertical communication between components in the context of Policy Based Management.  

The Session Initiation Protocol (SIP) [117] is an application-layer control protocol which is 

generally used for creating, modifying, and terminating sessions, such as Internet multimedia 

conferences, Internet telephone calls, and multimedia distribution. The SIP messages used to create 

sessions carry session descriptions commonly formatted using Session Description Protocol (SDP) 

[118], and allow participants to negotiate a set of compatible media types and QoS parameters. The 

multimedia content (e.g., audio, video, etc.) is exchanged between session participants using 

appropriate transport protocol (e.g., Real-Time Transport Protocol - RTP). A standard SIP 

configuration includes the elements such as User Agent, Redirect Server, Proxy Server, Registrar 

and a Location Service. The User Agent resides in every SIP end station which may be a client to 

issue SIP requests, or a server to receive requests and generate responses. Besides, a caller uses the 

Redirect Server during session initiation to determine the address of a called device. A caller’s SIP 
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Proxy server is responsible for routing all SIP messages to another entity (e.g., proxy) closer to the 

targeted user while SIP Registrar handles the registration by placing the information received (the 

SIP address and associated IP address of the registering device) into the Location Service for its 

domain. Hence, a Location Service maintains a database of SIP-address/ IP-address mappings 

which are used by SIP Redirect or Proxy Server to obtain information about callee’s possible 

locations. The SIP messages are text-based similar to HTTP format, and can either be a request or a 

response to request, and SIP REGISTER message (for registering a user with a service) and 

INVITE message (for inviting another user in a session) are the pre-dominant messages used. 

Driven by the overwhelming integration of services over the Internet, the original Resource 

Reservation Protocol (e.g., RSVP [63]) developed in early 1990s, has been extended in order to 

support security [73], scalability [22], MPLS [74], GMPLS [75] and DiffServ. However, the 

protocol and its derivatives were not designed for more general signalling services, as they fail to 

accommodate new signalling needs [20]. Hence, in 2001, IETF formed a new working group, the 

NSIS, to investigate a more flexible and extensible IP signalling architecture and protocols suite 

with respect to mobility and QoS interoperability [119]. The NSIS was therefore designed using a 

two-layer model consisting of a generic signalling transport layer supported by the General Internet 

Signalling Transport - NTLP/GIST [120], which provides transport services to an upper signalling 

application layer supported by the NSIS Signalling Layer Protocol - QoS NSLP [121]. 

Hence, GIST properly indexes and manages control messages transport (e.g., reserve, response, 

etc.) on behalf of various NSLP signalling protocols, by using a 3-tuple which consists of an NSLP 

identifier (NSLPID), a Session Identifier (SID) and a Message Routing Information (MRI). In 

particular, the NSLPID uniquely identifies NSLP protocols since a node is allowed to run several 

NSLP protocols (e.g., QoS NSLP and NSLP for NAT/Firewall traversal), the MRI describes the 

flow or the set of flows to which the signalling applies, and the SID indexes the signalling 

application states in all the NSLPs. This way, the state information is decoupled from the IP 

address, so changes in IP addresses (e.g., due to mobility, etc.) do not impose complete tear down 

and re-initiation of a signalling application state (the state parameters, especially the MRI, may be 

simply updated). Moreover, GIST employs three-way handshake techniques to perform Messaging 

Associations with adjacent GIST peers, and install security and forwarding state to be used 

between the peers for each SID. Besides, it is responsible to report nodes/links failure to NSLP, for 

the later to decide on how to handle failures. While a signalling message makes a complete round 

trip either on end-to-end basis or within a limited signalling control scope, NSLP-aware nodes may 

intercept the NSLP messages by means of User Datagram Protocol (UDP) port recognition in 

routers (as routers are permanently listening on UDP port) or the IP Router Alert Option (RAO) 

[122]. Then, the message is interpreted and the node decides on how to process the message.  
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The QoS NSLP provides a generic signalling means able to install, maintain or remove control 

state on nodes along communication path across heterogeneous QoS enabled transport 

technologies. To this end, the signalling is decoupled from the QoS resource reservation Model 

(QoSM) or architecture. This means that a QoS NSLP protocol can signal a network for QoS 

reservations independently of the specific QoSM, such as IntServ or DiffServ implemented inside 

the control domain. By definition, a QoSM consists of a QoS architecture and the related QoS 

provisioning methods, defining the behavior of the Resource Management Function (RMF) [119], 

as being the responsible for reserving resource for flows. Hence, a QoSM specifies a set of QoS 

Specifications - Q SPEC parameters [123] as a common language to express QoS requirements and 

how resources will be managed by the RMF within a domain or between different domains and 

QoS models. As long as a domain knows how to perform admission control for a given QoS 

specification object - QSPEC (e.g., mapping data flow to appropriate CoSs), the QoS NSLP does 

not care about how the specified constraints are enforced and met, since the particular QoS 

configuration is up to the QoSM of the domain. 

As illustrated in Figure 2.5, a media source initiating an NSIS signalling to request a session 

establishment with specific QoS requirements adds an initiator QSPEC, which indicates the 

QSPEC parameters that must be interpreted by the downstream nodes unless the reservation fails, 

thereby ensuring that the intention of the NSIS initiator is preserved along the signalling path. Note 

that a source or a destination in this example can be a single user or another network upstream or 

downstream domain. The signalling messages are mainly used to carry or convey the initiator 

QSPEC, and/or other specific objects such as Record Route Object (RRO) [124] as opaque objects 

to GIST, which assures the transport so each domain (e.g., QoSM A) intercepts messages and 

properly processes the relevant objects. As one can see in Figure 2.5, the initiator QSPEC object is 

translated at the entrance of the QoSM A domain to adapt to the local QoSM specifications, in a 

way to allow local QoSM-specific RMF to understand and process the required QoS, so as to 

assure that equivalent QoS is assured for the flow. In order to allow the downstream domains to 

provide the QoS according to the original QSPEC, the original QSPEC must be kept as is and 

forwarded to downstream domains which will process the message accordingly. 
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Figure 2.5. Illustration of sender initiated reservation signalling. 

In particular, the QSPEC defines four main objects: (1) QoS desired which specifies QoS 

required by the session requestor; (2) minimum QoS which indicates the minimum QoS to be 

assured for the services; (3) QoS Available provides the maximum available QoS capabilities of a 

path; (4) QoS reserved which describes the reservation committed for the requested service. In 

order to obtain the QoS Available as the resources currently available on a path, each visited node 

on the path inspects all parameters of the QoS Available object, carried in the signalling message, 

and if resource available on a node is less than what a particular parameter indicates from the 

previous nodes, the node updates the parameter in the QSPEC object accordingly. Hence, at the last 

recipient of a message, the QoS Available object reflects the resources currently available on the 

bottleneck of the path [125], [30], [126]. Moreover, NSIS supports sender- or receiver- initiated 

reservations, and bi-directional reservations, and reservations between arbitrary nodes (e.g., edge-

to-edge, end-to-access, etc).  

Another important object in a QoS NSLP message is the RRO used to build a sequential list of 

uniquely defined IDs of all nodes on a path. This list may base on, but not limited to, the IDs of the 

nodes, outgoing interfaces of the nodes on the path, and/or label of the nodes on the path in MPLS-

based networks. The RRO is usually built as in the following. The initial RRO contains only one 

sub-object - the sender’s ID. In MPLS-enabled networks, while a node can also collect the 

switching labels along a path, the labels should not be recorded without the related nodes’ ID (e.g., 

IP addresses) as further details can be found in [74]. In the literature, the concept of RRO object is 

used for many network optimization purposes. While it serves for explicit route (e.g., specification 

of groups of nodes or group of ASs to be traversed from a source to a destination) and allows for 

detecting route changes (e.g., when next hop indicated by RRO differs from that in the Routing 

Information Base - RIB), it also allows for detecting routing loops. In MPLS-based networks, a 
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PLR’s (Point of Local Repair) such as an ingress node maintains the RRO information as being all 

the interfaces attached to the tail-end of the backup tunnel. Hence, a PLR exploits this knowledge 

and the topology database to find the merging point and suitable backup tunnels, by simply 

comparing the node-ids present in the RROs of both the protected and backup tunnels to improve 

control performance. Many examples of efforts to extend NSIS exist to support multicasting [30], 

Inter-Domain Reservation Aggregation in support for large-scale deployment of the QoS NSLP 

[127] and path-decoupled signalling and QoS reservations [128]. 

It turns out that NSIS, among other protocols, provides a generic IP signalling platform with 

more flexible and extensible architecture, which is very important to address QoS and network 

interoperability in the NGN. Therefore, we exploited this potential and developed an NSIS 

compliant signalling protocol to support the mechanisms proposed in this Thesis. 

2.5 Next Generation Networks Overview 

As the number of applications to support and their requirements increase, it becomes quite 

inefficient to provide specialized mechanisms for session control, connectivity control, 

middleware, signalling, as any single network is usually optimized for some particular services 

only. These limitations of the traditional design to cope with innovative and enhanced services and 

applications motivated the research community towards the NGNs [129]. Commonly built around 

the Internet Protocol, the NGN is a packet-based network able to provide broad range of services 

including Telecommunication Services. It has been approved that a multitude of different network 

topologies will have to co-exist or be inter-connected in the future, to optimize the overall network 

performances and services in a heterogeneous networks environment [130]. The aim is to provide 

the necessary service capabilities to support present and future multimedia applications and 

services, and enable enhanced development of new and attractive types of services. In this sense, 

future network intelligence will no longer just relate to the creative routing of connections based on 

simple database look-ups, but may take on a much broader meaning (e.g., intelligent 

management/operations of sessions, multi-technology connections), advanced security, true user 

agents, user-installable scripts/applets, on-line directory services, and proxy agents). Therefore, an 

NGN shall simultaneously support wired (e.g., Ethernet) and/or wireless technologies (e.g., WiFi, 

WiMAX, beyond 3G, 4/5 Generation (3G, 4G/5G) networks).  

As illustrated in Figure 2.6, there is a more defined separation between the service/session 

control and the underlying transport (connectivity) elements of the network, shielding users from 

the complexity of information gathering, processing, customization, and transportation. Thus, 

whenever providers want to enable a new service, they can do so by defining it directly at the 

service layer without considering the transport layer details. End users terminals (e.g., multihomed 
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terminals with multiple access interfaces) will have access to different service providers and 

technologies with generalized mobility support, which will allow consistent and ubiquitous 

provision of services to users. Besides, functions of gateway, registration, authentication and 

authorization at service level are performed through application support functions and service 

support functions (ASF&SSF), which work in conjunction with the Service Control Functions 

(SCF) to provide end users and applications with the services they request. Further, the SCF uses a 

functional database to accommodate service user profiles as a combination of the user information 

and other control data into a single user profile function. Then, the Content Delivery Functions 

(CDFs), under the SCF are responsible for receiving content from the ASF&SSF, storing, 

processing and delivering it to the end users based on the transport functions capabilities.  

 
Figure 2.6. NGN Architecture Overview (ITU-T Y.2012). 

In the Transport Stratum, the Transport Functions basically provide connectivity for all 

physically separated functions in terms of the transfer of media, control and management 

information. In contrast, the Transport Control Functions (TCF) encompass Network Attachment 

Control Functions (NACF), which hosts user profile at transport layer as a functional database, 

combining a user’s information and other control data into a single “user profile” function (e.g., 

transport layer level identification/authentication of IP addresses, registration and initialization of 

end-user functions for accessing NGN services). It also includes Mobility Management and Control 
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Functions (MMCF) [131] to support mobility within and between its various access network types, 

and mobility technologies as details on the mobility management requirements are available in 

[132]. Moreover, the TCF include RACF which bridges between the SCF and the Transport 

Functions, and provides the SCF with an abstract view of the transport facilities such as network 

topology, connectivity, resource utilization and QoS mechanisms/technology, etc. Upon the request 

of the SCF, RACF determines the transport resource availability and admission, and instructs the 

transport functions to enforce the policy decision, including resource reservation, admission control 

and gate control, firewall control, etc. It is also responsible for controlling the following functions 

such as packet filtering; traffic classification, marking, policing, and priority handling; network 

address and port translation taking into account the transport networks capabilities and the 

subscribers transport subscription information. Furthermore, the Management Functions (MF) 

provide the ability to manage the networks for service provisioning with the expected quality, 

security and reliability, while the Identity Management (IdM) functions assure the identity of 

entities and support business and security applications (e.g., access control and authorization) 

including identity-based services. 

Hence, the separation of service control from transport functions in the NGN has led to the 

introduction of Resource and Admission Control (RAC) between the service control and the bearer 

transport layers to assure QoS. Thus, RAC is responsible for hiding the details of transport network 

to the service layer, and detecting the resource status of the former to ensure proper and reasonable 

usage of the transport network resources. Therefore, RAC is a key component that must be well 

investigated and designed in a way to provide acceptable QoS level to applications by guaranteeing 

sufficient available resources without wastage or undue control overhead. 

2.5.1 Resource and Admission Control Standards 

While session demands in a network are generally unpredictable, they mostly request 

predictable QoS through the network. This situation strongly imposes that network resource and 

session admission control functions must be carefully performed, since the demands can 

occasionally exceed the capacity offered by the network. In this sense, the primarily standardized 

QoS control architectures in the scope of the NGN include the Resource and Admission Control 

Sub-System (RACS) [133] architecture of the European Telecommunications Standards 

Institute/Telecommunications and Internet converged Services and Protocols for Advanced 

Networking (ETSI/TISPAN), the RACF (ITU-T) [134] and the IP Multimedia Sub-system - IMS 

(3GPP) [135], as further detailed in the following.  
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2.5.2 RACS QoS and Admission Control Architecture  

The main objective is to introduce the QoS and Admission Control reference architecture of the 

ETSI ES 282 003 [133] ETSI ES 282 001 [136] ETSI TS 183 060 [137], known as TISPAN; NGN 

Functional Architecture; RACS. 

2.5.2.1 Architecture Overview 

As shown in Figure 2.7 (extracted from ES 282 003 [133]), TISPAN QoS control architecture 

is composed by four main sub-systems: (1) Application Function (AF) sub-system is the functional 

entity that shall provide explicit session description with session QoS requirements to express the 

service expected from a network; (2) RACS is the TISPAN NGN sub-system responsible for the 

implementation of procedures and mechanisms to handle policy-based resource reservation and 

admission control for both unicast and multicast traffic in access networks, core networks and 

customer premise networks, enabling applications to request and reserve resources from the 

transport networks within the scope of RACS; (3) Transport Processing Functions sub-system that 

includes basic elementary functions supporting resource reservation enforcement, packet 

forwarding and routing, and more specific group of functions defined as functional entities; (4) The 

Network Attachment Sub-system (NASS), which is used for dynamic provision of IP addresses, 

other terminal configuration parameters as well as authorization of network access based on user 

profiles.  

 
Figure 2.7. TISPAN RACS reference architecture. 

The following subsections provide an overview of the main functional entities and interfaces 

that compose each of the sub-systems shown in Figure 2.7.  

2.5.2.2 Application Function 
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The AF is a sub-system that maps application layer QoS information into appropriate QoS 

request information to be sent to the Service Policy Definition Function (SPDF) on the Gq’ 

reference point [133] in order to request a service. In particular, it provides explicit session 

description and session QoS requirements (e.g., IP realm identifier, requestor name/service class, 

media description, and service priority) in a way that expresses the service expected from RACS. 

Thus, the requests may comprise Resource Reservation for new session, Resource reservation 

modification (e.g., quality upgrading or downgrading) for ongoing sessions, and Resource Release 

for terminated sessions. 

2.5.2.3 Service Policy Definition Function 

The SPDF is a functional element responsible for making policy decisions (e.g., service 

authorization) on service requests to the network, based on the local service policy rules defined by 

the network operator. It carries out a coordination function between the AF through Gq’ reference 

point, the generic RACF (x-RACF) through Rq reference point, the Border Gateway Function 

(BGF) through Ia reference point, the interconnected SPDFs through Rd’ in case of intra-domain 

SPDF or through Ri’ for inter-domain SPDF, or any combination of them. The SPDF is also 

responsible for providing charging information for the Request/Modify/Release/Abort commands 

via the Rf reference point, upon need. It may reside either in the access as well as in the core 

administrative domains. In case the authorization of a request is successful, the SPDF sends the 

requested service along with the service requirements received (e.g., from AF) to the x-RACF, to the 

BGF, to the interconnected SPDF, or any combination of those, according to the local control 

policies. 

2.5.2.4 Border Gateway Function 

The BGF is a control element which provides the interface between two IP-transport domains 

for user plane media traffic and resides at network boundary (e.g., a gateway). It operates on micro-

flows and may implement traffic conditioning functions (e.g., QoS marking, traffic shaping, 

bandwidth limiting, bandwidth usage metering, etc.) as well as address latching and NAT. In 

addition, it handles a pool of IP addresses/ports, provides an address independent media session 

identifier, the address information may change during the media session, and also acts as a dynamic 

gate to open/close for particular flow according to the instructions received from the SPDF.  

2.5.2.5 x-Resource and Admission Control Function 

The x-RACF entity receives requests for resources (e.g., bandwidth) from the SPDF via the Rq 

reference point in the Push mode, or from the Resource Control Enforcement Function (RCEF) via 

the Re reference point in the Pull mode, indicating the desired QoS characteristics (e.g., bandwidth, 
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IP Realm Identifier, Requestor Name/Service Class, etc.). The Push mode consists of the scenario 

where the RACS “pushes” traffic policies to the transport functions to enforce its policy Decisions. 

In Pull mode, RACS may receive request from the transport processing functions and then provide 

traffic policies to the transport processing functions. Hence, the request from the transport 

processing functions may itself, for example, be triggered by path-coupled requests coming from 

user equipment and/or transport network elements. Further details on Push or Pull modes are 

available in ES 282 003 [133]. Then, RACF performs Admission Control based on information such 

as session QoS information, user profiles received from NASS via e4 interface, and network 

resource availability obtained based on its view on the underlying network topology and the related 

resource status. In this sense, RACF may have a complete or partial view of the network topology 

and the related resources, including congestion point(s) and the current reservations, etc. Thus, in 

order to reserve resources, readjust resources, or release resources on the Transport bearer upon 

need, the so-called dynamic QoS reservation control, RACF derives the resource reservation 

policies (e.g., bandwidth reservation or over-reservation processing functions) and sends appropriate 

instructions (e.g., appropriate command or signalling) to the RCEF, which is responsible for 

enforcing policies (e.g., reservation installation, maintenance, readjustment, removal, etc.) on 

transport infrastructures. Thus, proper QoS control decisions are enforced along communications 

paths across a network to assure QoS-aware unicast or multicast service delivery over session 

lifetime. The RACS is also enabled to send the Charging Information directly to the Charging 

Functions through the Rf reference point, except the offline charging which may terminate on both 

x-RACF and SPDF (e.g., pull mode).  

It is important to note that a transport segment may have multiple instances of x-RACFs, and 

that each x-RACF may be involved in resource admission control for unicast services, multicast 

services, or both (each of them may have a complete or partial view of the network topology and/or 

resources). Hence, the x-RACF involved in controlling the same transport resource (e.g., a path), 

shall be arranged in a tree structure (top tier and lower tier) where the top tier x-RACF in this 

structure is the one interacting with SPDF. Moreover, the Rr reference point allows x-RACF 

instances to cooperate/synchronize with each other on the topology, the allocated and available 

resources to avoid uncontrolled overbooking while reserving resources spanning multiple transport 

segments. Such design needs to be carefully addressed since synchronization between x-RACF 

instances can be achieved at various granularity (per-flow or not), thus allowing for different trade-

offs between synchronization overhead and the resource sharing efficiency. 

2.5.2.6 Resource Control Enforcement Function 
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The RCEF is a transport processing functional entity that performs L2/L3 policy enforcement 

functions for unicast and/or multicast under the control of the RACF through the Re reference point. 

Hence, RCEF either enforces the policy autonomously or in conjunction with the Basic Transport 

Function (BTF) to trigger service transport control actions. In this sense, RCEF may interact with 

BTF to enforce policies which impact data forwarding behaviour, such as data replication for 

multicast traffic. Besides, RCEF includes functionalities such as resource allocation for upstream 

and downstream traffic. Moreover, depending on local control policies, RCEF may notify RACF 

about certain events (e.g., feedback messages, links/nodes failures, control malfunction, etc.) 

occurred on the network elements. Then, RACF may decide to modify/remove existing policies, 

install new policies or escalate the event to higher layer.  

2.5.2.7 Basic Transport Function 

The BTF is an integral part of all network transport segments. It implements the so-called 

Elementary Forwarding Functions (EFFs) which is used for traffic flows forwarding, and the 

Elementary Control Functions (ECFs) used to process control protocol data for unicast as well as 

multicast (e.g., control signalling, routing protocol, etc.). Hence, the ECF on a node might decide to 

send control protocol data to other ECF, or interact with one or more EFF to establish new or 

modify existing forwarding behaviour by manipulating the related routing or forwarding databases 

on nodes. In general, almost all physical network elements (e.g., a bridge, a router etc.) typically 

contain a BTF and might contain additional functional entities such as RCEF.  

2.5.2.8 Network Attachment Sub-system 

The NASS provides attachment information such as dynamic provision of IP addresses, terminal 

configuration parameters, the authentication taking place at the IP layer prior or during the address 

allocation procedure, the authorization of network access based on user profiles, and location 

management taking place at the IP layer. 

2.5.3 RACF QoS and Admission Control Architecture  

The generic architecture of RACF [134] specified by the ITU-T in Y.2111 is illustrated in 

Figure 2.8. In particular, two primary Functional Entities (FEs), being the Policy Decision 

Functional Entity (PD-FE) and Transport Resource Control Functional Entity (TRC-FE), have been 

defined. The PD-FE is responsible for making the final session admission decision based on the 

network policy rules, the session information received from the SCF via Rs interface, the transport 

subscription profile provided by the NACF through Ru interface in access networks, and the 

resource-based admission decision results obtained from the TRC-FE on the Rt interface. For this 

purpose, the TRC-FE collects network topology and related resource status information (e.g., using 
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COPS or SNMP protocol) via the Rc interface and provides resource-based admission control 

decision results to PD-FE. Besides, the Policy Enforcement Functional Entity (PE-FE) is a gateway 

which can be located between the Customer Premise Equipment (CPE) and Access Network (AN), 

AN and Core Network (CN), CN and CN. It receives intructions from the PD-FE via the Rw 

interface and performs the transport functions (e.g., in routers) such as gate control, bandwidth 

allocation, rate limiting, IP packet marking, Network Address and Port Translation (NAPT) control, 

etc. Further, the Transport Resource Enforcement Functional Entity (TRE-FE) enforces transport 

resource policy rules as instructed by TRC-FE through the Rn interface. 

 
Figure 2.8. ITU-T RACF reference architecture. 

Thus, the RACF architecture is consistent with that of the RACS detailed in subsection 2.5.2. 

This implies that, the PD-FE and the NACF are similar to the SPDF and the NASS respectively, 

while the TRC-FE and the PE-FE can be considered as in correspondence with the x-RACF and 

BGF (including the RCEF), respectively, even though there are differences in the functions and 

reference points.  

2.5.4 IMS QoS and Admission Control Architecture  

The IMS [135] architecture has been introduced by 3GPP to provide a secure and reliable 

means for terminals and applications to negotiate and communicate with each other. It is access 

independent i.e. the same service can be provided over various access technologies, and allows for 

tracking services to enable flexible means for charging such as the traditional time-based as well as 

packet and service-based charging. As illustrated in Figure 2.9, the “core” of IMS in the service 

stratum encompasses two main elements: the Call Session Control Function (CSCF) and the Home 

Subscriber Server (HSS).  

The HSS is a database that maintains user and subscriber information to provide the following 

functions: identification handling, access authorization, authentication, mobility management 
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(keeping track of which session control entity is serving the user), session establishment support, 

service provisioning support. Besides, the CSCF is mainly used to assure session control for 

terminals, and applications using the IMS network and can play three different roles: Serving-, 

Interrogating- and Proxy- Call Session Control Function (S-, I- and P-CSCF). The P-CSCF is the 

first point of contact for users with the IMS system and the I-CSCF is the first point of contact 

between peered networks. Hence, while the P-CSCF is used to ensure security of the messages 

between user and the network, or to allocate resources for the sessions, the I-CSCF is responsible 

for querying the HSS to determine the S-CSCF for a user and may also hide the operator’s 

topology from peer networks. Further, the S-CSCF is key component which allows for processing 

registrations and maintaining record of users’ location, authentication, and the sessions processing 

based on control policy stored in the HSS.  

Besides the IMS application plane in the service stratum which is not included in RACF or 

RACS, the resource and admission control in the transport stratum using RACF, RACS, or IMS is 

commonly implemented by two FEs, namely, the PDP and the PEP. This policy-based QoS 

management provides complete network control, including traffic congestion management, traffic 

shaping and policing, bandwidth control and traffic balancing [21]. In the transport stratum, these 

standards differ mainly in QoS coverage, terminology, and the corresponding FEs and the main 

functions usually deployed for the resource and admission control in the transport stratum are 

detailed using the RACS architecture in subsection 2.5.2. It is important to mention that the aim of 

the RAC functional architectures is to provide a general resource control framework which is 

independent of the physical implementation of either access or core networks. 

 

Figure 2.9. 3GPP IMS architecture overview. 

In order to facilitate the understanding of possible interactions between the service stratum and 

the transport stratum in the NGN, we use Figure 2.9 to illustrate a successful session setup between 

two users located in different administrative domains. Hence, suppose that a User Equipment in a 

network domain 1 (UE1) (please Figure 2.9) wants to establish a QoS-sensitive session connection 
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with a UE2 in a network domain 2. First, UE1 specifies its QoS parameters in a SDP and sends a 

SIP message (i.e., INVITE) to the P-CSCF1. After authentication and security checks, P-CSCF1 

forwards the SIP message to the S-CSCF1 for authorization of the session requested based on the 

service policy and the registration status of the UE1 stored in the HSS1. Afterwards, the message is 

forwarded to the I-CSCF2 at the entry point of domain 2, which in turn sends it to the UE2 through 

the P-CSCF2. Then, UE2 also defines its desired QoS parameters and sends a SIP response to the 

UE1 via the same IMS signalling path. Thus, UE1 and UE2 repeat this SIP message exchange until 

they agree on a set of QoS parameters to be used for the communication. Then, the P-CSCF1 

consults the PDP, triggering the resource and admission control process in the transport stratum. To 

this end, the PDP decides whether to grant or deny the request by taking into account the requested 

QoS parameters, the UE1 profile, network current resource availability, and local control policy. 

Upon successful operations, the PDP1 maps the negotiated QoS parameters to its local QoS 

parameters semantics, and instructs the PEP1 to enforce the reservation when the user requests it. 

In this case, P-CSCF1 forwards the SIP message to UE1, informing that the latter can request 

resource reservation in the transport stratum. As UE1 initiates reservation request to the PEP1, it 

sends a SIP message to UE2 so that the latter can start requesting its resource reservation process 

after replying to the SIP message. In terms of comparison of IMS RAC functions with those of 

RACS and RACF, the hereinabove illustration shows that, the P-CSCF is enabled to request 

resources and admission similarly to AF and SCF respectively in RACS and in RACF. Moreover, 

the PDP is queried to carry out the roles of SPDF and x-RACF in RACS, and those of PD-FE and 

TRC-FE in RACF architectures. Therefore, the IMS core is compatible with the RAC operations of 

both the RACS and the RACF. 

This study shows that the control of QoS-sensitive session (e.g., interactive video streaming) 

establishment is commonly divided into two phases: a QoS parameters negotiation, and a network 

resource and admission control phases. The QoS negotiation is executed in the service stratum 

where the session participants (e.g., caller and callee) exchange their expected QoS parameters 

(e.g., bandwidth, type of media, transport protocol, type of codes, delay, jitter and loss 

requirements). At this stage, the participants must first agree on a set of negotiated QoS parameters 

before the session can be set up. During the resource and admission phase, which is performed in 

the transport stratum through the RAC, the network resources required by the negotiated QoS 

parameters may be granted or denied depending on the QoS parameters, the users’ profiles, the 

current network resource availability, and local control policy [21].  

In order to demonstrate the pragmatism of the approaches proposed in this Thesis with the 

existing standards, we use the RACS reference architecture to implement the ACA functions and 
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operations which are detailed later in Chapter 3. This intends to facilitate further understanding of 

how our designs can integrate with standardized architectures. 

2.6 Network Control Models 

This section surveys network control models mainly in terms of centralization and 

decentralization of networking control. 

2.6.1 Centralized Models 

The Figure 2.10 illustrates a centralized architecture in which the Central Controller (CC) is in 

charge of the overall control of the network. Generally, the CC maintains the network topology and 

is responsible for defining the policies and amount of resources to enforce in the underlying 

network upon need. Therefore, session demands for network resources should be addressed to the 

CC, usually through the access points (e.g., gateway, border nodes, etc.). 

 
Figure 2.10. Illustration of centralized network scenario. 

Many centralized network proposals for resource management, signalling and admission control 

are available in the literature [138], [139]. The central entities may be referred under different names 

such as Bandwidth Brokers [140], [141], QoS Brokers [89]. The work in [142], [47], [143], [48] 

addresses comprehensive end-to-end QoS-aware content distribution chain spanning heterogeneous 

centralized networks. As each domain deploys its own centralized architecture, the end-to-end 

control is coordinated hierarchically through SLAs/SLSs between the different domains on the 

chain. Each network implements aggregate resource control, and the end-to-end provisioning is 

performed periodically. However, studies [23] show that admission control should not be planned 

(e.g., based on SLAs and provider SLSs - pSLSs); it needs to dynamically reconfigure parameters 

taking QoS demands and current network conditions into account to effectively cope with network 

under utilization. Therefore, the periodic provisioning strategies in these approaches confront serious 

limitation in terms of waste of resources. A QoS broker control approach is proposed in [144] to 

demonstrate how the end-to-end QoS control architecture developed by the ITU-T NGN/GSI for the 
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NGN can be applied to smart grid to assure stringent QoS provisioning in a centralized and 

standardized manner. One may see this as similar to design in wireless systems due to the 

unpredictable characteristics of broadband power line (e.g., unpredictable frequency, impulse and 

background noise and their wide variability, attenuation, limited bandwidth, variability of 

bandwidth, etc).  

In [145], research efforts show that self-organization with policy-based configuration and 

reconfiguration of IMS components and corresponding nodes, to dynamically adapt themselves 

based on the features like network load, number of users and available system resources, is 

necessary to succeed the IMS deployment at reduced cost and complexity. With respect to 

centralization, a master node maintains operator policy and state information of all nodes under its 

control, and assigns functionalities and roles to other nodes based on the capabilities of the nodes to 

dynamically improve performance (e.g., load balance). The master node determines the functional 

behavior of all other nodes in a network through a periodic messaging mechanism. However, this 

study is focused on IMS functional components merging, splitting and relocation between IMS-

capable nodes without external intervention, and therefore, it is not pragmatic for general network 

control purpose.  

The existing centralized approaches, besides ease to manage, present a single point of failure 

while the central entity is getting more and more bottlenecked with the explosive growth of network 

demands and their dynamism. As it is studied in [49], centralized networks are preferable in small 

scenarios or when the majority of demands are initiated or destined to one edge node. Otherwise, 

decentralization better fits in large scale network or when traffic load is high and uniformly 

distributed. This means that the network design must take several input parameters (e.g., network 

size, number of customers, dynamicity of the QoS request, performance of the control servers, etc.) 

in its choice for centralization or decentralization. 

2.6.2 Decentralized Models 

Network decentralization paradigm allows for taking control decisions at distributed entities 

(decision points) throughout a network with no central controller, as illustrated in Figure 2.11. As in 

[43], distributed control efforts focus on mechanisms for enabling networks with self-awareness, 

self-optimization, and self management capabilities, whereby network elements can adapt 

themselves to contextual changes without any external intervention. This way, the control load is 

distributed across the network, as being a key requirement for scalability. It is also investigated in 

[13] that a decision point requires a good knowledge of its underlying network topology along with 

the available resources [11], and their location on communication paths [12] to allow for improving 

performance in the NGN. Hence, in decentralization environment, synchronization between the 
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distributed decision points is essential for the latter to maintain consistent control information to 

avoid wrong decisions, which is very challenging since excessive signalling and the related 

processing overhead would jeopardize scalability. This has its root in the design philosophy of the 

Internet Protocols. In [146], Clark stated: “because of the distributed nature of the replication, 

algorithms to ensure robust replication are themselves difficult to build, and few networks with 

distributed state information provide any sort of protection against failure.”.  

In the field of multi-agent systems [147], self-organization studies mostly emerge from 

naturally inspired approaches such as ants, termites and honey bees swarming or immune systems. 

The bio-inspired self-organizing systems based on reactive agents have been used to implement 

diverse applications such as ubiquitous service oriented networks [148], distributed coordination of 

robot and synchronization of their movement to achieve group locomotion [149], emergent 

forecasting in manufacturing coordination and control systems [150], load balancing [151] and 

security [152]. Kvalbein et al in [153] propose that network nodes perform forwarding decisions and 

traffic load-balance over multiple paths, independently, based on their local knowledge of the 

network control information, so there is no synchronization orchestrated among the distributed 

nodes. This way, the nodes lack global view of network conditions required to improve 

performance, and the proposal focuses on robustness and simplicity rather than optimality. 

  
Figure 2.11. Illustration of decentralized network scenario. 

The authors in [154] argue on decentralization, self-organization, embedding of functionalities 

and autonomy as the guiding principles for In-Network Management (INM) to achieve scalable, 

robust management systems with low complexity for large-scale, dynamic network environments. 

They propose ways for monitoring network-wide aggregates (e.g., total number of flows, the 

maximum link utilization, packet drop rate, etc.) in real-time through computation across nodes in a 

neighborhood, a network domain or the entire network using aggregation functions. In literature, 

spanning tree based (incrementally computation from leaves to the root) [155], [156] and gossiping 

based (computation result is available on all nodes and converges probabilistically to the true 

value) [157], [158] protocols are two main approaches for computing the aggregates in a 
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distributed way. While continuous monitoring is a major requirement to provide accurate inputs to 

decision-making processes in these solutions, the signalling and processing overhead increases with 

the decrease of adaptation time, which poses scalability issue.  

A mechanism for resource control among virtual networks using a managed self-organizing 

network concept, and a dynamic resource allocation technique taking into account the correlation 

of traffic demand and route diversity has been investigated in [159]. The impact of correlation of 

traffic of the same source and destination pairs is considered to improve resource utilization for 

competing virtual networks. This approach focuses on the traffic of the same source-destination 

pair, but further research is still necessary to address a more generic environment with dynamic 

correlation of traffic from multiple sources to multiple destinations. Moreover, resource over-

reservation could be studied in such systems to reduce control signalling frequency to further 

improve performance.  

A decentralized approach for IMS components and corresponding nodes is introduced in [145] 

with policy-based dynamic configuration and reconfiguration based on system demands and the 

network resources, aiming to reduce both deployment cost and complexity. In particular, each new 

IMS node announces its presence through a multicast message, and existing nodes reply if they 

need to transfer some of their current functionalities, and the new node may accept transfer request 

in a first in first out (FIFO) fashion. In case the new node receives no role transfer request, it takes 

over all roles. A major limitation of this approach is its focus on dynamic IMS functional 

components merging, splitting and relocation between IMS-capable nodes rather than on a broader 

application. 

In [43], a Decentralized Adaptive Coordinated Resource Management (DACoRM) approach is 

introduced for intra-domain IP networks resource management. DACoRM enables source nodes, 

formed by ingress routers in full-mesh or ring topology, to cooperate and exchange information 

about new configurations inside a network with support for multiple paths between any source-

destination pair using the multi topology routing (MTR) protocol [160]. In this proposal, the intra-

domain links are statically and logically partitioned into a number of disjoint subsets, which are 

distributed among the different source nodes, such that each subset is placed under the 

responsibility of only one source (ingress) for future control decisions making. Every source node 

achieves this by adjusting splitting ratios of traffic flows computed through a sequence of re-

configuration processes, according to link utilization information disseminated through traffic 

engineering (TE) enabled OSPF which incorporates TE metrics into link state advertisement [81]. 

Hence, upon receiving information about a highly loaded link, a source node checks whether the 

link belongs to its subset, so as to assume the role of the new reconfiguration. A node can also 

delegate a re-configuration task to other nodes in case it is not able to determine the configuration 
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by itself in such a way that only one source node is permitted to perform a splitting ratio adjustment 

at a time. Besides complexity, the focus of DACoRM is on load-balance and not a means for 

overall intra-domain network control. Another drawback here is the periodic cooperation among 

sources (ingress nodes), since periodic techniques mostly confront a trade-off between signalling 

overhead, information accuracy and network under-utilization issues. 

Wakamiya et al., [44] argued that centralized mechanism is ineffective for considerable 

maintenance overhead to collect and keep up-to-date and consistent information on a whole 

network system due to the increase of the number of nodes and the size of network. On the other 

hand, a self-organizing system may sacrifice performance to some extent to achieve scalability, 

adaptability, and robustness when each node only communicates with neighbor nodes to obtain 

local information and not a global knowledge of network status. Besides, self-organization system 

may take time to converge to become stable, and it would be difficult to maintain and control the 

whole system. Even though one can make all nodes report their status to a central controller, this 

would waste bandwidth and energy. Bearing these challenges in mind, “Clean slate” approaches 

and design requirements for the new generation network can be found in [52]. Therefore, 

significant research efforts were still expected in the field of the overall network control designs.  

2.7 Scalable Resources and Admission Control Proposals 

The severe issues over per-flow resource reservation approaches [63] has motivated the 

research community towards aggregate bandwidth resource and QoS control for many years, 

intending to minimize control cost in terms of signalling, states and related processing overhead. 

This subsection introduces the most important and relevant proposals within the scope of this 

Thesis. 

2.7.1 IntServ over DiffServ 

The Figure 2.12 shows an example of IntServ over DiffServ [161] scenario consisting of a 

Diffserv region in the middle of a larger IntServ end-to-end enabled network, meaning that the 

regions outside the Diffserv region contain at least some nodes which support the Integrated 

Services architecture. 

 
Figure 2.12. Illustration of IntServ over DiffServ network scenario. 
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In such network environment, end-hosts must be enabled to request per-flow, quantifiable 

resources, along end-to-end data paths and to obtain feedback regarding admissibility of these 

requests, resorting to RSVP, before sessions can be established to provide expected QoS. In the 

IntServ-aware networks outside the DiffServ domain, each individual flow is subject to explicit 

control functions (e.g., admission control, classification, resource reservation, etc.). In the DiffServ 

domain, the requests for IntServ services must be subject to classification to select appropriate PHB, 

admission control that takes into account the availability of resource in the DiffServ domain and 

admitted traffic must be conditioned (e.g., metering, marking, shaping, policing). Besides, the 

resource provisioning may be performed in many different ways.  

 Resource may be statically provisioned to the existing aggregate traffic according to SLA. 

 Resource may be dynamically provisioned to aggregate traffic, resorting to RSVP or by 

other means such as Bandwidth Brokers. 

In the first case, the RSVP signalling is transparently carried across the DiffServ region as the 

nodes inside the domain may not be RSVP aware. To achieve expected service levels, customer(s) 

of the Diffserv network regions and the owner of the Diffserv network region negotiate static 

contract through the SLS, which determines the transmit capacity to be provided to the customer 

across the Diffserv domain, and exchange of resource availability between two adjacent domains. 

As indicated in [161], the “transmit capacity” may be simply an amount of bandwidth or it could be 

a more complex “profile” involving a number of factors such as burst size, peak rate, time of day 

etc. Although this is scalable, it is quite inefficient and inflexible, and therefore it is not suitable for 

highly dynamic scenarios.  

As an alternative in the second case, the nodes inside the DiffServ domain are able to participate 

in some form of RSVP signalling and thus, the resource is provisioned dynamically (e.g., increase or 

reduced) for every PHB depending on the demand of the latter while classifications and scheduling 

functions are handled aggregately, based on DSCP, not on the per-flow basis. Hence, this approach 

is more scalable than the pure RSPV/IntServ [1]. However, the signalling per-flow remains a major 

limitation for scalability and more scalable approaches such as aggregate RSVP was still deemed to 

be investigated. 

There are other approaches which use aggregate resource reservation control, seeking to create 

scalable networking environment for provisioning and maintaining end-to-end agreed QoS through 

heterogeneous networks, owned by different operators [142], [47].  
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2.7.2 DAIDALOS 

In the context of DAIDALOS QoS approach [89], an administrative domain may contain several 

access networks (ANs) attached to a core sub-domain via sub-domain routers while different 

administrative domains inter-connect via Edge Routers (ERs). In this approach, each AN deploys a 

QoS Broker which performs resource management using per-flow reservation control while the QoS 

Broker in the core sub-domain manages resource on aggregate basis following DiffServ model. 

Hence, to achieve fine-grained end-to-end resource and admission control while keeping scalability 

features in the core sub-domain, QoS information on the aggregates inside the core sub-domain and 

the inter-domain segments is provided to QoS Broker of core sub-domain through active and passive 

probing, and then propagated to the QoS Brokers in the ANs. 

2.7.3 ENTHRONE 

Within the European ENTHRONE project [47], a comprehensive end-to-end audio-visual 

distribution chain, ranging from content generation and protection, and with distribution across 

QoS-enabled heterogeneous networks to the delivery of content at user terminals have been 

investigated. ENTHRONE architecture defines a Service Plane for appropriate SLAs/SLSs 

establishment among operators, providers and customers. Besides, a Management Plane (MPl) is 

dedicated for long term actions over resource and traffic management for QoS and control 

efficiency purposes, while a Control Plane (CPl) is used to assure short term actions on resource 

and traffic engineering control, including routing. In terms of QoS control scalability within 

Enthrone, an aggregate resource provisioning solution is adopted as available in [139].  

In this approach, Service Provider establishes provider SLA (pSLA) contract with one or 

several content providers, which give the former with information such as the location of content 

servers, details about the contents and access rights to Digital Items. This allows the Service 

Provider to negotiate and conclude pSLSs with Network Providers to establish aggregated QoS 

enabled pipes (traffic trunk) through inter-domain from Contents Servers region towards regions 

where potential Content Consumers are located (based on estimation on resource usage by 

customers). Thus, a virtual network provisioned with aggregated pipes (e.g., bandwidth and PHBs) 

is established at inter-domain level in advance to avoid per-flow QoS reservation signalling. Such 

aggregate resources provisioning is negotiated and redimensioned periodically as defined by the 

network management. While large periodic for aggregate pipes re-dimensioning is necessary to 

optimize signalling frequency, it would lead to significant waste of resources especially when 

deploying multiple edge nodes. On the other hand, short periodic operations would place undue 

signalling overhead. Kashihara et al. [23] studied that network resource and admission control 

should not be planned (e.g., based on SLAs/SLSs) to achieve optimization of resource utilization, it 
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should be dynamically reconfigured by taking current need of resource usage into account. 

Moreover, Enthrone is a centralized approach which raises other limitations such bottlenecked 

central station in large scenarios or single point of failure issue. 

2.7.4 EuQoS 

The IST European Project EuQoS [48] also sets its objective to build, integrate and validate 

end-to-end scalable QoS provisioning across different administrative domains, and heterogeneous 

networking technologies for advanced QoS-aware multimedia applications. EuQoS system 

emphasizes on preserving the Internet openness by providing a simple multi-protocol interface 

implemented with Simple Object Access Protocol - SOAP that allows end users to request any kind 

of service without being required any specific application signalling protocol (e.g., SIP, H.323, 

etc.), in contrast to IMS, which requires the usage of SIP protocol to interact with the P-CSCF 

(Proxy Call Session Control Function) [143]. The architecture is divided into Service, Control and 

Transport Planes along the vertical axis, and the horizontal axis encompasses various technologies 

spanning Core and Access Networks. Hence, the service plane enables customers to request session 

establishement/release/modification, while a Diameter [112] server is in charge of Authentication 

(managing the user access to network resource), Authorization (granting services and QoS level to 

the requesting user) and Accounting (collecting accounting data) with support for roaming features. 

Based upon centralized approach, the control plane manages and provides end-to-end QoS paths 

(EQ-Paths) assured through inter-domain coordination, and maintains network topology and 

monitors the resources usage information by means of traditional measurement tools. In particular, 

intra-domain control and policy decisions are taken by a central entity, and the decisions 

enforcement and devices configurations inside the domain are performed using COPS protocol 

while inter-domain QoS requests process is based on NSIS protocol.  

From scalability perspective, EuQoS system bases on the concept of end-to-end QoS-link (EQ-

link), consisting of virtualizing border router to border router link which explicitly establishes 

known QoS characteristics (e.g., bandwidth, buffer) to specific CoS (not to any specific session) in 

order to carry aggregate traffic. Then, the end-to-end paths (EQ-Paths) provisioning is carried out 

periodically (in order of hours or days) by selecting appropriate EQ-links between various 

networks. The best path computation is dedicated to a central PCE (Path Computation Element) 

server which uses hierarchical approach to scale by managing only a fixed amount of tunnels (e.g., 

no more than a full mesh of tunnel per CoS), independently of the number of ASs on the end-to-

end paths. Hence, upon receiving a service request from a user, the admission process selects the 

appropriate EQ-Paths aiming to minimize congestion occurrence. Major limitations of this solution 

include not only the periodic EQ-Paths provisioning which confronts wastage resources issues, but 
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also the use of traditional measurement tool while being centralized. As we described in sub-

section 2.2, path probing places undue signalling overhead which needs careful attention. 

2.7.5 Q3M 

The recognition of the limitations of centralized solutions to provide QoS-enabled access and 

connectivity to network supporting seamless mobility for multi-user sessions across heterogeneous 

wired and wireless environments motivated the advent of the QoS architecture for Multi-user 

Mobile Multimedia (Q3M) architecture [162]. Q3M system pushes control intelligence to network 

edge nodes (network border nodes) configured as network CDPs, and core nodes are used mainly 

for the decision enforcement, using a modular approach without a central controller. The Q3M 

architecture integrates three main components denotes as Cache-based Seamless Mobility (CASM) 

[163], Multi-service Resource Allocation (MIRA) [30] and Multi-user Session Control (MUSC) 

[164]. While CASM provides seamless mobility to users between heterogeneous clusters, MIRA 

controls intra-domain network bandwidth and multicast trees resources for multi-user session 

distribution based on the DiffServ model, and the MUSC performs QoS mapping, QoS adaptation 

and connectivity control for fixed and mobile users ubiquitous access in heterogeneous network 

environments. In particular, every edge node implements the MUSC and MIRA components and a 

core node only hosts MIRA. In addition, the edge nodes located at access-domain include the 

CASM to deal with mobility. MIRA allocates surplus of multicast distribution trees in advance and 

controls connectivity on-demand to improve flow re-routing. However, its per-flow QoS 

reservation signalling approach is not scalable.  

2.7.6 MARA 

In order to address this issue within Q3M, the Multi-user Aggregated Resource Allocation 

(MARA) [125], [162] was introduced with a set of functions to dynamically control bandwidth 

over-reservation for CoSs inside each network domain. The MARA resource over-reservation 

algorithm is embedded in edge nodes where resource over-reservations parameters are defined, and 

the decisions are conveyed in NSIS compliant signalling message to be enforced on core nodes 

inside a network domain in which resides the corresponding edge node. The operations of MARA 

are divided into network initialization phase and running phase. At network initialization phase, 

MARA defines a peak threshold 
i and a certain amount of bandwidth reservation 

iB for each CoSi 

inside a network domain. Then, as long as 
i is not exhausted and the reservation of a CoSi is 

exhausted, it computes new surplus of reservation 
iB for the CoSi. In MARA, an ingress edge node 

maintains resource utilization statistics of paths’ bottleneck interfaces only, which information is 

acquired using periodic and on-demand probing operations. This implies that MARA also 
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confronts paths probing problems. Further, when a threshold
i is exhausted, it readjusts all the 

thresholds dynamically by attempting to grant a congested CoS with a portion of residual 

bandwidth from each of the remaining CoSs. As we studied later in this Thesis, these MARA’s 

resource computation functions, in essence, suffer from waste of bandwidth or unnecessary 

blocking, especially when network is near congestion, and thus fails to efficiently utilize resources. 

Moreover, there is no synchronization mechanism between the edge nodes in Q3M architecture 

while MARA does not provide any information on how multiple distributed edge nodes could 

effectively maintain consistent resource utilization statistics information about core nodes to 

prevent control inconsistency which could lead to QoS violations, waste of resources and therefore 

unnecessary increase of session blocking probability. Kashihara et al. [23] demonstrate that, in a 

network domain which deploys multiple edge nodes, a central entity is mandatory for a proper 

resource management at edge nodes without per-flow signalling on core nodes unless the edge 

nodes are well synchronized to avoid incorrect decisions.  

2.7.7 Aggregate Resource and Admission Control Schemes 

In terms of scalable resource reservation control, Pan et al. [165] proposed to delay resource 

release events and to over-reserve bandwidth surplus as a multiple of a fixed integer quantity, 

namely “quantization”, in the Border Gateway Reservation Protocol (BGRP) for aggregate flows 

destined to a certain domain - a Sink-Tree-Based Aggregation Protocol. This solution does not 

comply with network dynamics, and therefore, it fails to efficiently utilize the network resources. 

Further, Sofia et al. [166], [167] proposed the use of bandwidth over-reservation to reduce 

excessive QoS signalling load of the Shared-segment Inter-domain Control Aggregation Protocol 

(SICAP). In SICAP, the authors provided valuable analysis of over-reservation schemes in a broad 

range of settings and compared results with previous representative solutions such as the BGRP. In 

particular, BGRP and SICAP rely on path probing techniques to acquire resource statistics on 

bottleneck links and prevent over-reserving too much resources; the more resources they over-

reserve, the more session requests are blocked unnecessarily. Moreover, these are inter-domain 

aggregation control solutions, in contrast to ACOR which is an intra-domain approach. 

The Simple Inter-Domain QoS Signalling Protocol (SIDSP) [168] system suggests to over-

provision virtual trunks of aggregate flows based on a predictive algorithm (e.g., based on past 

history) without appropriate mechanism to dynamically control the residual bandwidth between 

various trunks. Besides being an inter-domain mechanism, SIDSP focuses on aggregation of 

reservations, not on over-reservation, and demonstrates superiority over BGRP in terms of 

reservations state load reduction on border routers implemented in transit Autonomous Systems 

(ASs). Furthermore, the Dynamic Aggregation of Reservations for Internet Services (DARIS) 
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[169] proposed to aggregate reservations along ASs paths to reduce stored states and studied 

bandwidth over-reservation as a means to prevent excessive signalling overhead when compared 

with protocols which do not perform aggregation. However, DARIS is a centralized solution which 

uses central entities similar to bandwidth brokers and thus presents scalability as well as single 

point of failure problems.  

Prior et al. [170] investigated the inefficiency issues confronted in over-reservation proposals 

by comparing per-flow reservation solutions with the IETF proposed aggregate reservation [22] 

approach. They found out that, per-flow signalling allows for preventing the wastage of resources 

at the expense of undue signalling overhead and thus, fails to scale. Besides, while aggregate 

approach can reduce the signalling overhead by means of over-reservations, it increases session 

requests blocking probability unnecessarily with the increase of the over-reservations. Hence, 

further research was still deemed necessary to address this major trade-off, that is, whether a 

reasonable operating point can be achieved to allow for over-reserving as much as necessary to 

significantly reduce signalling overhead without wasting resources. 

The work in [171] proposes an overprovisioning-centric and load balance-aided solution called 

QoS-RRC, using the MARA [125] described earlier in sub-section 2.7.6 and shows interesting 

results. Although the QoS-RRC deploys a central server called Generic Path Factory, each ingress 

router hosting a QoS-RRC decision agent, simply performs control in a decentralized manner. Each 

ingress router deploying the MARA algorithm decides and readjusts over-reservation parameters 

independently and dynamically on links of which the resource is shared by all the ingresses, while 

there is no cooperation mechanism between the ingress routers to jointly exploit appropriate 

information to improve performance. Another over-reservation proposal is available in [172]. 

Besides being centralized, this work relies on traditional periodic paths probing techniques to 

acquire resource conditions on network bottleneck links as in C-CAST project [173], and the 

resource utilization statistics are not recorded on real-time basis for all the interfaces used inside 

the network. Hence, the inefficiency of over-reservation computation functions of MARA [125] 

(detailed earlier) together with signalling overhead and inaccuracy issues of probing techniques 

used in C-CAST project expose the approach to QoS violation and waste of resource problems. It is 

studied in [24] that, although aggregation of reservation allows for reducing both control signalling 

and state overhead, it needs to be carefully designed since inefficient solution incurs network 

under-utilization or waste of resource, while the number of aggregates to be maintained can still be 

quite large in a network with many edge routers. 

Although the aggregation of reservations allows for reducing QoS control signalling and state 

overhead, the trade-off imposed in terms of waste of resources is a major challenge for aggregate 

resource control. In distributed scenario, it is generally argued that, increasing the number of 
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distributed control entities improves scalability and reliability, but at an eventual cost of 

coordination between distributed entities, the impact of resource fragmentation [24], [25] and waste 

of resources. Hence, many recent proposals have focused on using per-flow admission control 

signalling mechanism [174], [89] with reduced states overhead (improved scalability feature) 

instead of admission based on aggregate resources over-reservation. In this sense, the Resource 

Management in DiffServ [175] was introduced as a dynamic resource reservation control within 

DiffServ network domains. In particular, it proposed two main protocols designated Per Domain 

Reservation (PDR) protocol and Per Hop Reservation (PHR) protocol.  

The PDR is a full state protocol (i.e., maintains per-flow states) designed to manage resource 

reservation in the entire DiffServ domain. It is implemented only in the edge nodes of the domain 

and assures the interconnection between external protocols and the protocols inside the DiffServ 

domain. In this sense, the PDR may implement appropriate functions for performing admission 

control for incoming QoS-aware service requests based on resource availability, and mapping 

incoming requests to appropriate DSCP or PHB inside the domain. Moreover, it exploits signalling 

protocol (e.g., RSVP, NSIS [176], etc.), on per-flow basis, to request resource reservation for the 

PHB selected for each incoming flow, aiming at assuring a minimum bandwidth for admitted flows, 

implying that a flow is denied if there is not enough available bandwidth in a requested PHB. 

Further, the IP address of an ingress node on a path is notified to the corresponding egress node, 

allowing the egress nodes for notifying the ingresses about whether a requested reservation was 

successful on every node on a path. Also, egress nodes are responsible for notifying the ingresses 

about severe congestion situation that may occur (e.g., route changes due to link or node failures) 

such that ingress may react by stopping some affected flows and rejecting new requests according to 

the local control policies [86]. 

The PHR protocol is an extension to the PHB in Diffserv with support for resource reservation 

per PHB or traffic class and is implemented in each node within the Diffserv domain, thus the 

interior nodes only implement the PHR functions. To assist PDR in the management of resource 

within the domain, the signalling messages generated by PDR (e.g., QoS reservation request, refresh 

or release messages), usually on per-flow basis, are encapsulated in PHR messages at ingress nodes 

and sent down the network towards the corresponding egress nodes. Hence, the Resource 

Management in DiffServ (RMD) framework defines two PHR groups, namely the Reservation-

based PHR group and the Measurement-based Admission Control (MBAC) PHR group.  

Specified as the RMD On-demAnd (RODA) PHR protocol [177], the Reservation-based PHR 

group is a unicast edge-to-edge single DiffServ domain protocol, aiming at simplicity, cost-

effectiveness and scalability. It enables each node, hosting the PHR, to perform admission control 
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for each QoS request based on parameter values conveyed in the reservation request signalling 

message and the available resources per traffic class. The admission is not based on typical 

measurement of data traffic load and available resource on the node, but on the parameters 

obtainable at each node since every interior node maintains reservation state per PHB (not per-flow) 

in terms of resource units. 

The major limitations of the RMD approach can be summarized as in the following. The per-

flow QoS reservation, refresh and the release signalling approach introduces not only undue control 

signalling and related processing overhead, but also a long session setup time. Moreover, each PHB 

is statically pre-configured on each node, leading to inflexible approach which would fail to satisfy 

highly dynamic and unpredictable resource demand inside a network. Besides, each node must 

perform admission control using the PHB reservation states and the pre-configured threshold 

parameters as inputs, which performance could be pushed to the network edge to improve 

scalability. 

Besides, the work in [89] also addresses the resource under-utilization issues of aggregate RSVP 

proposals, by proposing a Scalable Reservation-based QoS (SRBQ) model for per-flow signalling-

based resource reservation mechanisms. In SRBQ, it is considered that per-flow state, requiring 

memory, is no longer a problem in existing routers and efforts were concentrated on reducing the 

computational complexity and time associated with processing of every signalling message. In 

particular, signalling messages carry a label which provides each router with direct access to the 

corresponding flow reservation structures’ address on memory, while an algorithm was developed 

for the efficient implementation of expiration timers used in the soft reservations.  

To the best of our knowledge, existing aggregate resource over-reservation solutions showed 

serious limitations by wasting resources in attempt to reduce the control signalling overhead; the 

more the signalling overhead decreases, the lower the resource utilization efficiency goes, and 

operators would lose revenues. Moreover, periodic and on-demand probing in previous works 

increases design complexity, while inaccuracy and QoS violations are among other concerns. 

Further, none of them orchestrates synchronizations among edge nodes to leverage performance. 

Therefore, further investigations of aggregate resource over-reservations were strongly necessary to 

allow for system overall performance optimization with low control signalling load and high 

performance in terms of waste of resources or QoS violation. Besides the scope of BGRP, DARIS 

and SICAP is inter-domain, they are expected to generate instant signalling events, and thus the 

results of MARA show the superiority capability of over-reservation control against per-flow 

approaches. To the best of our knowledge, MARA is the most competitive and closely related to the 
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work carried out in this Thesis, and we will use it for comparison purposes in the analytical and 

simulations results. 

2.8 Network Survivability Control Proposals 

Network survivability has been one of the fundamental design goals to provide essential 

services in the presence of links/nodes failures and recover full service in a timely manner 

regardless of the scale, the magnitude, the duration and the type of failures [58], [59]. In general, 

application traffic might be divided into three categories requiring different levels of network 

survivability [57]. This includes: (1) High-resilience-requirement traffic (e.g., mission-critical, 

interactive tele-surgery, remote database transactions); (2) Medium-resilience-requirement traffic 

(e.g., standard VoIP and multimedia applications); (3) Low-resilience-requirement traffic (e.g., e-

mail, File Transfer Protocol - FTP or standard World Wide Web - WWW). Thiran et al. [178] 

studied the differentiation of protection levels of two service classes as Fully Protected and Best 

Effort Protected. The Fully Protected is based on 1+1 or 1:1 protection at the WDM layer and 

offers a guarantee of fast survivability (e.g., 50ms or so). The Best Effort Protected is based on IP 

level restoration and relies on the amount of available spare capacity inside the network. A spare 

capacity allocation scheme consists in creating sufficient redundant capacity that is to be 

preallocated in a network and can be dedicated or shared [239]. In IP infrastructures, the widely 

deployed routing protocols (e.g., OSPF [4], Intermediate System to Intermediate System - IS-IS 

[60]) are able to reestablish connectivity after almost any failure of network elements. Table 2.1 

summarizes standardized key tasks and related time constants as studied in [179], [180] upon 

failures to show OSPF convergence behavior divided into detection of failures, flooding of Links 

States Advertisements (LSAs), scheduling time of a Shortest Path First (SPF) calculation, and 

Forwarding Information Base (FIB) update.  

Table 2.1. Main time constants in OSPF. 

Name Typically Short Description. 

THello 10s Interval between successive Hello packets. 

TDead 4x THello Router Dead Interval (detect failure). 

Tspf 1-40 ms [179] SPF calculation (Depends on the node in the network). 

Tspf delay 5s Minimum time between LSA reception and start of SPF computation. 

Tspf hold 10s Minimum time between consecutive SPF computations. 

Tlsa 0.6-1.1ms Process LSA: check if LSA is new and update database. 

Tlsa flood 33ms LSA flooding time: process LSA, bundle LSAs and pacing time. 

Tfib 100-300ms Update the FIB: from end of LSA processing to end to end of new routes 

installation. 

 



 

53 

 

From Table 2.1, it is clear that IP networks typically take a few tens of seconds to converge, 

since all routers must update their FIB and synchronize with a consistent view of the network 

topology for packet forwarding to resume properly. Hence, they cannot satistify a large range of 

current and future applications (e.g., Telemedicine, IPTV, etc.), which only allow interruptions on 

the order of a few hundred milliseconds and less. Another issue with these protocols is the 

connectivity which may be restored through congested paths, even when there are other under 

utilized links in the network. Smita et al. [181] provide a classification of various proposals using 

dynamic and static link weights assignment to take traffic demands into account for SPF 

computation to minimize the congestion problems. However, complexity makes these solutions 

less suitable in dynamic scenarios. Moreover, tier-1 ISPs are opting for IP level restoration based 

on dynamic routing protocols, such as ISIS and OSPF [182], and careful design to couple IP 

restoration with adequate capacity provisioning is highly expected to achieve acceptable IP 

network survivability. The survivability complexity, flow re-routing  and convergence time could 

be reduced if control could be pushed to network border, and forwarding tables of core nodes 

would not be required heavy updating effort upon failures.  

Self-healing in ATM networks, as being the capability of a network to automatically recover 

itself from a failure of its components, has been intensively investigated to provide support for 

Virtual Circuits (VCs) route restoration [183]. The proposals can be classified into flooding type 

[184], [185] and backup Virtual Paths (VPs) type [186], [187], [188] with the goal to determine the 

optimal link capacities, link flows, and restoration routes in the network, while minimizing the total 

network cost [239]. The Capacity Allocation and Flow Assignment problem in ATM networks 

(CAFA problem) can be decomposed into optimal/near optimal network design problems, and the 

network survivability (network reliability evaluation) problem. In literature, these approaches have 

been broadly researched using linear programming, mixed integer linear programming, multi-

commodity flow models, taking into account link/node failures scenarios and hop limit constraints 

[239], [189], [190]. However, none of them deploys aggregate resource over-reservation and 

control signalling overhead in finding resources for affected traffic remains a challenging issue. 

Taishi et al. [191] proposed priority control functions, splitting VPs into Guaranteed group and 

Best Effort group to achieve multi-reliability levels for VPs. By basing on protection techniques 

upon failures, the guaranteed VPs are first processed based on the VPs’ reliability priority stored in 

each switching nodes’ database. In case high reliability VPs cannot be recovered all using the 

existing backup VPs, it breaks the connectivity of the lower priority VPs to accommodate the 

higher ones as many as possible. While this solution provides valuable functions for priority-based 

flows re-routing, per-flow resource reservation and release signalling messages overhead pose 

scalability problems.  
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In MPLS enabled networks (e.g., MPLS-TP [192] and GMPLS [193]), system protection 

techniques are implemented by several architectures such as 1+1, 1:1, 1:n and m:n, which are 

usually referred to as Automatic Protection Switching in the context of Synchronous Digital 

Hierarchy/Synchronous Optical Networking (SDH/SONET). In 1:n architecture, a dedicated 

protection entity is shared by n working entities, and the m:n architecture is a generalization of the 

1:n architecture. The shared protection methods improve system availability at smaller cost 

increases than the dedicated protection (1+1). Nonetheless, the recovery is delayed by signalling 

message exchanges in the management, control, or data planes to achieve the communication 

switchover after failures [194]. Moreover, the restoration approach is also used since local control 

policies can dictate paths setup priorities, such that recovery paths can preempt existing paths from 

lower priorities flows. In terms of cost-effectiveness, the shared-mesh restoration approach, which 

is the closest to our proposal, is known to allow multiple protecting paths, which may not have the 

same end points, to share common link and node resources, and thus assuring system availability 

with a more flexible resource-sharing and therefore less resource requirements. Hence, MPLS-

enabled networks provide different grades of protection for different traffic classes within the same 

path based on the service requirements [192] using both protection and restoration recovery 

methods. A recovery time of 50 milliseconds has become the benchmark for emerging protection 

capabilities in MPLS, Dense Wave Division Multiplexing (DWDM), and the so-called wavelength 

routers (WR) [195]. Besides, the restoration time is much longer (hundreds of milliseconds), but 

outperforms the restoration time of tens of seconds in traditional IP re-routing. Moreover, existing 

network planning and the coordination of protection state after a recovery action are complex in 

shared-mesh restoration systems [196], [197]. In contrast to existing shared-mesh restoration 

approach, our proposal provides distributed CDPs at network border with good view of network 

topology and related resource conditions on real-time manner through aggregate resource over-

reservation techniques. As such, the solution aims to prevent undue signalling overhead, while 

assuring differentiated QoS, which is mandatory to reduce session setup time for faster operations 

and flexible and flows re-routing. 

Considering the modern communication networks as being constructed using a layered 

approach, significant research efforts have yielded many proposals of survivability in architectures 

such as IP/MPLS over WDM, ATM or SONET [198], [199], [200], [201]. Kayi et al [202] 

demonstrated that standard survivability metrics, such as the minimum cut and maximum disjoint 

paths [203], which have been widely used in characterizing the survivability properties of single-

layer networks, lose much of their meaning in the context of cross-layer architecture. The authors 

propose two new survivability metrics, Min Cross Layer Cut to be the minimum number of 

physical failures that would disconnect logical topology, and Weighted Load Factor to quantify the 

http://en.wikipedia.org/wiki/Synchronous_Digital_Hierarchy
http://en.wikipedia.org/wiki/Synchronous_Digital_Hierarchy
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“impact” of each physical failure on the connectivity of multilayer networks. However, these 

approaches mostly target for theoretical and analytical studies. The work in [204] introduces an 

approach to achieve differentiated levels of service resilience using a dedicated protection scheme. 

It adjusts the size of working path areas protected by single backup paths according to the service 

class being protected, considering that the delay to restore broken connections depends on the 

length of backup paths. Nonetheless, this solution is strongly limited to single node failure 

scenarios and does not comply with very dynamic situations. Vadrevu et al [205] propose 

methodologies for integrated provisioning of wavelength and IP services with backup capacity 

sharing in IP-over-WDM networks. It uses Integer Linear Programming (ILP) formulation for 

ensuring connectivity of overlay IP topology (on top of WDM based physical topology) with 

sufficient capacity for re-routing all affected IP requests in the IP network under all single physical 

link failures. However, the focus on single link failure is a major limitation in this approach, since 

links and nodes may fail dynamically in real networks scenarios. 

In [206], survivability is investigated in the context of network virtualization, where the impact 

of location-awareness is explored to address survivable network embedding using ILP solution for 

both active and backup traffic accommodation. While the authors address key challenges of 

survivable network embedding problem, the solution is too location-constrained. Survivability has 

also been broadly investigated in wireless technologies [207]. While the need for addressing 

multiple failures, in contrast to previous solutions, is gaining attention in the research community, 

existing studies are mostly yielding results from heuristic and probabilistic perspectives [208], 

[209], [210]. Hamza et al develop a p-cycle design solution in support for mixed-line rate 

(heterogeneous rate) optical networks aiming to reduce transponders and spare capacity 

requirements. Basically, the p-cycle concept [211] achieve very fast protection switching by 

routing pre-configured protection cycles over spare capacity in the network. It is more flexible than 

ring architectures where it can provide protection for both on-cycle links and the links (straddling) 

which are not directly on the cycle but whose end nodes are both on the p-cycle. However, it 

requires pre-configurations of the cycles. Therefore, survivability studies were deemed necessary to 

demonstrate support for stable operations of ACOR aware networks in presence of links/nodes 

failures. 

From the previous described studies, there are no approaches addressing overprovisioning and 

QoS in the survivability approaches. Therefore, investigating survivability to assure stable 

operations, in presence of failures (e.g., of links and nodes), of the overprovisioning centric control 

mechanisms proposed in this Thesis, was deemed necessary. 
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2.9 Context-Awareness  

Context-awareness has been broadly investigated within the European C-CAST project [173] 

with the main objective to evolve mobile multimedia multicasting to exploit the increasing 

integration of mobile devices with our everyday physical world and environment. C-CAST 

potentiates the use of sensor and smart devices environments (a.k.a. as smart space) to enable new 

personalization dimension to the global telecommunication market. A smart space could be any 

well-defined enclosed area such as a meeting room or school, or a well-defined open area such as a 

city square or national park. It typically comprises numerous heterogeneous sensors, smart devices 

and context information sinks, along with data servers with relevant (local public/environment) 

information, which interact with each other to provide enriched services and hence facilitate user 

immersive activities seamlessly. In literature, several definitions of context can be seen in [212]. 

Context may be any information that can be used to characterize the situation of entities (e.g., a 

person, a place, an object) that are considered relevant to the interaction between a user and an 

application, including the user and the application themselves. Examples of context information 

from network user side are user geo-location, speed, direction, activity, battery power, device 

capability, transportation means, idle time, etc. From network perspective, context information may 

include congestion situation, resource usage, unpredictable re-routing, available network access 

points, QoS mapping statistics, and different QoS models models [213]. 

It is argued in [214] that a context-aware system must be able to sense and understand the 

answers to the types of questions generated from: who, what, when, where, and why; while context 

awareness is the state wherein a device or software program is aware of the environment and 

performs productive functions automatically. This implies that context-aware devices and programs 

are no longer passive entities waiting for instructions or commands, that is, they are alive and 

capable of intelligent behavior. Networks and services would exploit relevant context information 

to adapt their behavior to the changing circumstances in a very dynamic manner. The ubiquitous 

computing is also rapidly developing with mobile computing technologies, and there are several 

proposals which exploit sensor- and device-rich environment for personalized and pervasive 

human-centric computing as one can see in Projects Aura [215], Oxygen [216], BlueSpace [217] 

and Cooltown [218]. The same way, numerous proposals for service-oriented context-aware 

middleware have sprung in the community, Gaia Project [219], SOCAM [220], Context Toolkit 

[221], CoBrA [222], CMF [223]. More examples on context-aware applications can also be seen in 

[224], [225], [226], [214]. 

Network context-awareness is the ability of a system to use network context information to 

self-adapt or to the provision of services [227]. Hojin et al [228] use context server and Context-
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Aware Messaging Server, and propose a “Join message free” context-based messaging services 

with multicast trees built in a top-down manner while they expect packet format to be more flexible 

in the future network. Roel et al [229] demonstrate context based flow classification and refer that 

currently, it is not possible to consider and classify flows comprehensively in terms of their wider 

context, simultaneously considering parameters that are internal and external to the flow itself, such 

as the kind of application that generated the flow, the characteristics of the device that will be 

consuming the flow, the activities of the user who generated the flow, etc.  

This is a fundamental concept in the work developed in this Thesis since network entities (e.g., 

CDPs) are expected to dynmically learn from one another’s context information (e.g., resource 

usage, congestion situation, etc.) for a proper self-organization and self-control.  

2.10 Summary 

This chapter introduced some background for the work achieved in this Thesis with focus on 

the most relevant related work. It includes the main IETF standardized QoS and resource control 

architectures such as the InServ, DiffServ and MPLS, and depicts the existing admission control 

models (the active measurement-based, the passive measurement based, and the parameter-based). 

Besides, we described IP multicast technology, presented signalling protocols, and introduced the 

architecture and requirements of NGNs along with the three major standards for resources and 

admission control (e.g., IMS, RACF and RACS). Due to the similarity between these standards, 

their overall functionalities and the standardized control operations in terms of session 

establishment and the related QoS-aware transport within the NGNs were illustrated using the 

IMS-enabled network, and the key building functional blocks of the RACS were described to ease 

the understanding of the functionalities and the similarity. Networking control paradigms and 

proposals for centralization and decentralization have been studied to highlight the advantages and 

disadvantages of each approach. Moreover, we explored scalable resources and admission control 

proposals along with key frameworks which combine the QoS guarantees benefits of IntServ with 

the scalability and the flexibility features of DiffServ. Further, we also surveyed the most relevant 

proposals on network survivability control, and described context-awareness and its relevance in 

current and future networking scenarios, since these approaches are integral parts of the research 

work carried out in this Thesis. 
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Chapter 3 Overprovisioning in Class-Based 

Networks: COR and ECOR 

 

 

 

 

 

As we studied in the previous chapters, aggregate resource overprovisioning approach 

envisions reserving to each CoS more bandwidth than currently required, also known as over-

reservation, such that admission control can process several session requests (admission, release or 

readjustment) with less signalling overhead than in per-flow mechanisms. However, this requires 

that each admission decision inside a network is based on a good view of the network topology and 

the related link resource statuses in every CoS, on real-time basis, to avoid QoS violation and waste 

of resources. Moreover, appropriate algorithms can exploit the updated resources information and 

dynamically distribute residual resources (over-reserved but unused) among CoSs on network 

interfaces in order to prevent CoS starvation [230]. In the context of over-reservation in this Thesis, 

QoS violation refers to the situation where the number of sessions admitted in a CoS exceeds the 

maximum allowable, which affects not only the newly admitted sessions, but all existing ones in 

the CoS. Waste of resources or network under-utilization occurs when inefficient admission 

decision rejects an authorized demand for a certain amount of resources which is currently 

available in the network, thus increasing session blocking probability unnecessarily.  

To the best of our knowledge, existing overprovisioning solutions mostly acquire network 

resource capabilities based on periodic and on-demand probing techniques, which increases 

signalling and the related processing overhead when attempting to decrease the probing period to 

improve information consistency for admission decisions. The recently proposed MARA [125] 

approach distinguishes itself from earlier state-of-the-art over-reservation solutions by 

implementing specific functions to dynamically deal with residual resources among CoSs. 
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Nonetheless, the solution relies on the traditional periodic probing schemes and avoids reserving 

too much surplus of resources to each CoS in attempt to alleviate the issue of QoS violation and 

waste of resources. Moreover, the resource readjustment functions of MARA fail to properly 

distribute residual resources among CoSs. Hence, although very interesting in terms of dynamic 

resources over-reservation control in the NGN, the approach shows serious limitations in terms of 

CoS starvation, waste of resources and QoS violations, which attracted our attention for further 

investigation. 

This chapter proposes two aggregate resource over-reservation algorithms, the COR and the 

ECOR. The main objective of COR is to improve MARA’s resource readjustment algorithm. To 

this end, COR uses MARA’s function to compute surplus of reservation for CoSs, and introduces 

key functions to efficiently deal with residual reservations among CoSs in a way to prevent CoS 

starvation, waste of bandwidth or unnecessary session blocking. This way, COR and MARA 

cannot reserve too much surplus per CoS and clearly fail to allow for optimizing signalling and the 

related processing overhead minimization. This motivates our efforts to design the ECOR, which 

allows for reserving as much resources as possible for each CoS while being able to efficiently 

negotiate the residual bandwidth to prevent CoS starvation or waste of resources as well. Further, 

we provide an analytical model for analyzing the impact of a set of parameters (e.g., session 

lifetime, bandwidth usage, interface capacity, etc.) on aggregate resource over-reservation control 

performance in general, in terms of signalling overhead minimization, waste of resources, and 

therefore, the increase of session blocking.  

We propose the ACA centralized architecture in which a central CDP is enabled to maintain its 

underlying network topology and the related links resource conditions on real-time. For this 

purpose, ACA creates multiple edge-to-edges multicast trees and records the lists of outgoing 

interfaces of each tree in its local database called Network Context Information Base (NetCIB). 

Hence, whenever the CDP admits, releases, or readjusts a session requirements in a CoS on a tree, 

it automatically updates the resource utilization statistics for each outgoing interface that composes 

the concerned tree in its NetCIB, thus keeping a good knowledge of resource statistics in each CoS 

on every interface. The data sessions enjoy the QoS destined to them on trees and the CDP can 

assure consistency of its local database information while avoiding signalling the trees. Hence, we 

implement COR, ECOR and MARA as use cases in the ACA architecture, and evaluate its 

performance analytically and through simulation. The results that we obtain demonstrate that it is 

possible to significantly reduce QoS reservation control signalling, and therefore, the related 

processing overhead to achieve scalability using the concept of aggregate resource over-reservation 

without suffering QoS violations, CoS starvation, waste of resources or unnecessary increase of 

session blocking probability. 
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This chapter is organized as follows. Section 3.1 describes the COR algorithm and section 3.2 

presents the ECOR scheme. In section 3.3, we provide a generic analytical model for resources 

over-reservation using COR, ECOR and MARA as use cases. Section 3.4 describes the ACA 

architecture and section 3.5 presents the performance analysis for both analytical and simulation 

results. Finally, section 3.6 concludes the chapter. 

3.1 COR Scheme 

The COR is a resource computational procedure which provides a set of functions that allow 

for dynamically defining bandwidth over-reservation parameters among various CoSs on network 

interfaces upon need. The main objective of COR is to improve the performance of MARA, mainly 

by efficiently reusing residual resources on network interfaces such that the over-reserved but 

unused bandwidth can always be dynamically provisioned to the CoSs which need it, in a way to 

prevent resource starvation and waste, which is very important to avoid increasing session blocking 

probability unnecessarily. In general, the proposed functions are classified into two categories: 1) 

Reservations Initialization functions which provision each CoS on an interface with a certain 

amount of bandwidth, considering that the interface is not being used currently (e.g., at system 

bootstrapping); 2) Reservations Parameters Readjustment functions which allow for redefining 

reservation parameters on an interface dynamically during system running-time. Hence, these 

functions can be used in network admission control mechanisms to dynamically compute 

bandwidth parameters to be enforced through schedulers in network upon need [64], [65] to 

provide QoS. The way COR initializes resources reservation parameters and readjusts them on 

demand for CoSs implemented on a given network interface is detailed in subsection 3.1.1 and 

subsection 3.1.2 respectively. 

3.1.1 Reservations Parameters Initialization Functions. 

In order to perform a flexible resource distribution among CoSs for a given network interface, 

COR allows for assigning a weight 
iw  to each service CoSi on the interface. The weights can be 

specified by the network administrator (e.g., taking resource needs of CoSs into account). 

Moreover, COR uses the reservation parameters of MARA, such as, a parameter  BWR i  which 

represents the amount of bandwidth to be reserved for each CoSi, a parameter  BW i  which stands 

for the maximum (threshold) that  BWR i  must not exceed in the CoSi, and a global initialization 

factor Index (e.g., 1/2, 1/3, 1/4, etc.) as being a fraction of the threshold  BW i , which prevents 

from reserving the overall resources of an interface at system initialization phase. To facilitate the 
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understanding, let’s consider that a network interface Ie, implementing one control CoS and k  

service CoSs has a total capacity C, and a fixed amount of bandwidth b is reserved for the control 

CoS. Hence, the initial reservation parameters computation process for Ie, as illustrated using steps 

1, 2 and 3 in Figure 3.1, is detailed in the following. For the sake of simplicity, COR assigns a 

weight to each CoSi (1 i k  ) as: 

 
1

iw
k

  (3.1) 

Then, the reservation  ,BW eR i I  and the threshold  ,BW ei I  of each CoSi are defined based 

on its weight using the following functions:  

    , *BW e ii I w C b    (3.2) 

    , * ,BW e BW eR i I Index i I
 

(3.3) 

3.1.2 System Operating Functions 

As we referred in Chapter 2 when resources are over-reserved and a network is running, an 

admission decision point (e.g., QoS Broker, ingress router, etc.) can process several session 

requests (e.g., session setup, release or traffic requirements readjustment) without issuing QoS 

reservation signalling into the network, thus reducing signalling and related processing overhead, in 

contrast to per-flow approaches. However, when the reservation of a requested CoSj (1 j k  ) is 

insufficient in all candidate trees to admit a new request jr  (    , ,BW e BW e jR j I U j I r  ), where 

 ,BW eU j I  is the used bandwidth in CoSj, the COR may be triggered for reservation parameters 

readjustment among CoSs on relevant interfaces inside the network. It is very important to notice 

that the decision about which interface(s) should be processed is taken by the concerned admission 

decision point. Hence, the way COR computes reservation readjustment parameters on an interface 

Ie is summarised in Figure 3.1 (steps 4 through 16) and detailed in the following. 

First, the total amount of unused bandwidth 
T on Ie is computed in step 4 of Figure 3.1 as:  

      
1

, ,
k

T e BW e BW e

i

I i I U i I


       (3.4) 

When  T eI  is insufficient for the incoming request jr , COR reports that the interface Ie is 

considered as in step 16. Otherwise, COR proceeds with the process as described in the following.  
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Figure 3.1. COR algorithm flow chart. 

When the maximum reservation threshold of CoSj is not exhausted

   ( , , )BW e BW e jj I U j I r   , new amount of over-reservation bandwidth j  is computed (step 6) 

using the same function of MARA [125] as: 

 
 

 
   

,
* , ,

,

BW e

j BW e BW e j

BW e

U j I
j I U j I r

j I
 


      (3.5) 

Then, new reservation parameter  ,BW eR j I  is obtained for the congested CoSj using the 

following functions (steps 7-8 or 7-9), depending on the resource conditions on the interface:  

IF    , ,BW e j j BW eR j I r j I    , update: 

    , ,BW e BW e j jR j I R j I r     (3.6) 

Otherwise 

    , ,BW e BW eR j I j I  (3.7) 

where  ,BW eR j I is the old reservation to be updated for the CoSj. 
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However, when the maximum reservation threshold of CoSj is exhausted 

   ( , , )BW e BW e jj I U j I r   , MARA reduces unused bandwidth from all other CoSi with ( i j ) 

to decongest CoSj, which functions show serious limitation in terms of waste of resources as we 

detail later in section 3.3. In contrast, COR redistributes the total unused bandwidth among all 

service CoSs on the interface based on the weights assigned to the CoSs, thus aiming at achieving a 

more balanced resource redistribution than MARA. To this end, COR first computes a certain 

amount of unused bandwidth 
i  that can be allocated to each CoSi according to its weight as:  

  *i i T ew I    (3.8) 

Hence, according to the output of equation (3.8), one of the following three situations will occur:  

 If the amount of bandwidth j  of CoSj is sufficient (step 10) to admit the request ( j jr  ), the 

maximum reservation threshold  ,BW ei I  of every CoSi on the interface is readjusted in step 11 

by:  

      , , *BW e BW e i T ei I U i I w I     (3.9) 

Consequently, the new reservation parameter  ,BW eR i I  of each CoSi (1 i k  ) on the interface is 

readjusted (steps 12-13 or 12-14), depending on the amount of the available resources on the 

interface as follows: 

IF (    , ,BW e j i BW eR i I r i I    ), compute:  

    , ,BW e BW e j iR i I R i I r     (3.10) 

Otherwise,  

    , ,BW e BW eR i I i I  (3.11) 

Where  ,BW eR i I  is the old reservation to be updated for CoSi.  

 However, if the output j  of CoSj in equation (3.8) is insufficient to admit the request ( j jr  ), 

the amount  T eI  obtained in equation (3.4) is allocated to the CoSj (step 15) to allow for 

admitting the request successfully, since the condition (  j T er I  ) is guaranteed in step 4. This 

means that COR readjustment functions always allow for admission provided that the total unused 

resource on an interface is enough for the incoming demand which has invoked the computations. 

Thus, COR effectively avoids CoS starvation, unnecessary waste of bandwidth and unnecessary 
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increase of session blocking probability. Hence, new threshold and reservation parameters of CoSj 

are computed as:  

 
     

     

, ,

, ,

BW e BW e T e

BW e BW e T e

j I U j I I

R j I U j I I

   

  
 (3.12) 

Consequently, the reservation and threshold parameters of each of the remaining CoSi with ( i j ) 

are updated using the following functions: 

 
   

   

, ,

, ,

BW e BW e

BW e BW e

i I U i I

R i I U i I

 


 (3.13) 

This way, COR is able to define new reservation parameters for CoSs on any interface inside a 

network. Hence, it becomes clear that a session admission decision point can exploit COR to 

dynamically regulate resource allocation among CoSs on network interfaces in support for scalable 

QoS provisioning without jeopardizing performance in terms of CoS starvation and waste of 

resources. In master-client such as in PDP-PEP mode, the specified reservations parameters by a 

PDP can be encapsulated and conveyed in appropriate control signalling messages to relevant 

nodes (PEPs) inside a network to carry out the reservations decisions enforcement to assure that 

traffic will receive the QoS expected. As we referred, admission decision and the related signalling 

control procedures are provided in section 3.4. 

3.2 ECOR Scheme 

COR demonstrates significant contributions to improve the performance of MARA by 

providing appropriate functions to efficiently control over-reservation parameters across a network 

without incurring CoS starvation and waste of resources. However, the solution is too dependent on 

MARA. In particular, it uses the same function (please see equation (3.5)) as MARA to compute 

the amount of surplus to reserve for each CoS, which function strickly prevents from reserving too 

much resources to CoSs. As a consequence, both COR and MARA clearly fail to allow for 

optimizing the signalling and related processing overhead minimization. Moreover, the algorithm 

involves computational steps and parameters and thus raises scalability problems.  

Bearing this in mind, we propose the ECOR which allows for reserving to each CoS on an 

interface as much resources as there are available on the interface, while efficiently dealing with 

the residual reservations in a way that prevents CoS starvation and waste of resources. This way, 

ECOR focuses on allowing the optimization of control overhead, while incorporating all the 

benefits of COR by avoiding resource starvation and waste. Like COR, it is important to mention 

that ECOR is not an admission control mechanism. Rather, it is a scheme that can be exploited by 
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an admission control system to dynamically define and readjust reservation parameters for CoSs on 

any network interface upon need for support to QoS provisioning. Hence, the functions introduced 

by ECOR are also classified into Reservations Initialization functions and Reservations Parameters 

Readjustment functions as we detail in sections 3.2.1 and 3.2.2 respectively. 

3.2.1 System Initialization Functions 

In order to allow for flexible resource management among CoSs, ECOR assigns a weight 
iw  to 

each service CoSi like in COR using the equation (3.1). However, ECOR control bandwidth 

distribution among CoSs on an interface is based on the amount of the available resources and the 

weights assigned to the CoSs on the interface without defining any reservation threshold, in 

contrast to COR and MARA. Moreover, ECOR removes the use of a global factor called Index in 

COR which inherited it from MARA, since the primary goal of ECOR is to allow for reserving as 

much resources as possible, and relies on efficient redistribution to improve the resource sharing in 

a network. As such, ECOR initializes (steps 1-2-3 in Figure 3.2) reservation parameters for each 

service CoSi on an interface based on the weight of each CoSi using the following function. 

    , *BW e iR i I w C b   (3.14) 

3.2.2 System Operating Functions 

When an admission control mechanism, which implements ECOR, receives a session request 

jr  in a CoSj and realizes that the available reservation in the CoSj is insufficient for admission, 

ECOR should be invoked to obtain possible new reservation parameters for reconfigurations on 

relevant interfaces inside the network so that the request may be admitted. Hence, the way ECOR 

defines new reservation parameters for CoSs on an interface is detailed in the following.  

First, the total unused bandwidth 
T  on the interface is obtained as: 

      
1

, ,
k

T e BW e BW e

i

I R i I U i I


       (3.15) 

where  ,BW eR i I and  ,BW eU i I  are respectively the reservation and used bandwidth of each CoSi, 

with 1 i k   on the interface Ie. Hence, in case 
T is smaller that the demand jr  (in step 4 in 

Figure 3.2), ECOR reports that the interface Ie is congested as in step 8. Otherwise, ECOR defines 

new parameters for each CoSi on the interface as in the following. First, the request jr  is compared 

with the weighted portion of the total unused bandwidth on the interface as in step 5. Hence, if this 
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portion is sufficient for the request to the CoSj (  *j j T er w I  ), new reservation parameters 

 ,BW eR i I  are defined for each CoSi on the interface in step 6 as:  

      , , *BW e BW e i T eR i I U i I w I    (3.16) 

However, in case the weighted portion is insufficient, ECOR allows for efficiently utilizing the 

residual reservations to avoid waste of bandwidth, CoS starvation or unnecessary service requests 

blocking. In particular, it defines new reservations  ,BW eB j I  for the requested CoSj and 

 ,BW eB i I  for each of the remaining CoSi on the interface as in step 7 using the following 

expressions: 

 
      

      

, , *

, , *  ,       1 ,   ( )

BW e BW e j j T e j

BW e BW e i T e j

R j I U j I r w I r

R i I U i I w I r i k i j

    

      
 (3.17) 

From equation (3.17), one can see that the reservations  ,BW eR j I  of the CoSj (demanded 

CoS) are updated by granting the requested amount jr  from the total unused resources on the 

interfaces. Then, the remained unused resources are distributed among all the CoSi based on the 

weight of each CoS. This proves that the resource readjustment functions of ECOR would always 

succeed to allow for admission through an interface as long as the total unused bandwidth on the 

interface is greater than the demand, thus preventing CoS starvation and waste of resources, and 

therefore avoids unnecessary increase of session blocking probability. Moreover, ECOR requires 

less control parameters and procedures (please see Figure 3.1 and Figure 3.2) which is of 

paramount importance to scale.  
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Figure 3.2. ECOR algorithm flow chart. 

To get the insight of COR, ECOR and MARA, as well as the impact of various control 

parameters on their performance in terms of signalling overhead minimization and waste of 

resources, the subsequent section provides an analytical study to assess over-reservations schemes 

in general. 

3.3 Analytical Model for Resource Over-Reservation Schemes 

As we studied in Chapter 2, aggregate bandwidth over-reservation is a promising approach to 

reduce QoS reservation signalling and the related overhead. Therefore, this section provides 

analytical studies to facilitate a good understanding of major benefits and challenges when 

referring to aggregate bandwidth over-reservation control. Our study bases on three major use cases 

such as COR, ECOR and the competing state-of-the-art MARA’s solution. Knowing that QoS 

reservation signalling is usually triggered by reservation exhaustion on bottleneck interfaces inside 

a network, we use Figure 3.3 to illustrate a bottleneck outgoing interface Ib of a network node A 

towards a node B on a communication path.  

3.3.1 Over-Reservation Model  

Let’s consider that the bottleneck interface Ib, as in Figure 3.3, has a capacity C and implements 

one control CoS with a certain dedicated bandwidth reservation b, and k service CoSs (e.g., EF, AF, 

BE, etc.) to which the remained capacity (C-b) is destined for sessions transport. 

Hence, the amount of bandwidth surplus  ,BW bR i I  that an over-reservation algorithm (e.g., 

COR, ECOR or MARA) computes for a given CoSi with (1≤ i ≤ k) on the interface can be 
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expressed as: 

  , ( )BW bR i I f   (3.18) 

where, ψ stands for the bandwidth over-reservation computational procedure (e.g., equations) of the 

algorithm in use. 

For the sake of simplicity, we assume that session requests to a CoSi through the interface Ib are 

Poisson processes with rate λi and the mean amount of bandwidth demand of each session in a CoS 

is r . This way, the total number n of sessions that a surplus of over-reserved bandwidth  ,BW bR i I  

of a CoSi (obtained in equation (3.18)) can accommodate simultaneously on the interface Ib without 

requiring a reservation readjustment signalling event can be obtained as: 

 
 ,BW b

i

R i I
n

r

 
  
 

 (3.19) 

Then, it is assumed that a session’s lifetime τ is exponentially distributed such that 1


 , 

where μ is a real number (service rate) in sessions per time unit. This means that the longer a 

session lifetime is, the smaller the related service rate is.  

 
Figure 3.3. Bottleneck interface model. 

This way, it turns out that an over-reserved bandwidth  ,BW bR i I  of a CoSi is characterised by:  

 n possible sessions slots of a mean bandwidth r ; 

 Session requests to a CoSi are Poisson processes with rate λi; 

 A session’s lifetime is exponentially distributed with mean τ; 
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 Session requests arrival process is independent of the session lifetime; 

 A given amount of over-reserved bandwidth  ,BW bR i I  can only accommodate n sessions 

simultaneously.  

The over-reservation readjustment control approach is then modelled as an M/M/n/n queuing 

system as depicted in Figure 3.3, where the first n is the number of slots reserved for sessions while 

the second n is the maximum number of sessions that can be running at a time. Thus, the 

probability 
iP  that the over-reserved bandwidth of a CoSi exhausts on the bottleneck outgoing 

interface of a path to trigger reservation readjustment event is the probability that an incoming 

service request finds all n over-reserved sessions slots occupied. Hence, the probability 
iP  can be 

obtained using Erlang B formula as: 
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 (3.20) 

where, n is obtained in equation (3.19) and α is an integer number.  

From the equations (3.18), (3.19), (3.20), it becomes clear that the frequency of over-

reservation readjustment events depends on several parameters. These parameters include the mean 

bandwidth r allocated to each session, session requests arrival rate λi to the CoSi, session mean 

lifetime τ, the number of CoSs implemented on interfaces and network interface’s capacity C or 

interface resource utilization level. This means that over-reservation algorithms must be carefully 

designed to achieve improved performance as we further study in the subsequent subsection based 

on COR, ECOR and MARA. 

3.3.2 Over-Reservation Algorithm Model 

In order to model the behaviors of the over-reservation algorithms and ease further 

understanding on over-reservation approach, especially during a dynamic system operation phase, 

the over-reservation computation functions of COR, ECOR and MARA are studied under different 

resource utilization conditions such as Low and High utilization levels separately. This is important 

as we take into account the general behaviors of each of the algorithms being studied. Hence, by 

knowing b and the capacity C, the total amount of used bandwidth  
BW

Total

bU I  on the interface Ib can 

be obtained as: 
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   * ,     0
BW

Total

b

C b C b
U I r Q Q

r r

     
       

    
 (3.21) 

where, r  is the mean bandwidth required by each session on the interface, Q is the integer number 

of unused session slots (free resource slots) on the interface Ib, and    is the nearest integer value 

which is smaller than or equal to “ ”. Hence, given the parameters r , C and b, an interface 

utilization level (low or high) can be inferred through Q: the higher the integer Q is, the lower the 

interface resource utilization level is.  

Based on the equation (3.21), the total unused resources  T bI  on the interface Ib are obtained 

by:  

   *T bI r Q   (3.22) 

Then, the bandwidth surplus computation functions of each algorithm, under low or high resource 

utilization conditions, considering that the process is triggered by a requested CoSj, are provided in 

the following. 

Low Utilization Phase: traffic density is considered Low as long as the following condition (3.23) 

is fulfilled.  

 * ( ) 1j T b

Q
r w I

k
     (3.23) 

Then, the computation functions of each algorithm can be summarized as in the following.  

ECOR: it computes a new surplus  ,BW bR i I  for each CoSi based on the equation (3.16) as: 

  
*

, * ( )BW b i T b

r Q
R i I w I

k
    (3.24) 

MARA: First, MARA computes a bandwidth index (B_Idxi) of each CoSi  1 ,  i k i j   , except 

for the requested CoSj and defines a threshold index (Th_Idxi) of each CoSi. It computes a certain 

amount of bandwidth (Brl_Xi) that it removes from the threshold  ,BW bi I  of the CoSi to increase 

the threshold of the congested CoSj where: 

   
_ _

_ * ,
2

i i
i BW b i

B Idx Th Idx
Brl i I Bref 

 
  
 

 (3.25) 

Brefi is a bandwidth reference, which is either the bandwidth currently reserved for the CoSi or the 

Committed Reservation threshold CRthi of the CoSi (if ui(Ib) is lower than the CRthi). This way, 
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MARA uses the equation (3.25) to remove a certain amount of bandwidth from each of other CoSi 

and uses the sum to increase the threshold  ,BW bj I of the requested CoSj. Assuring that it 

removes no more than the unused resource on each CoSi, it computes a new amount γj (non 

negative) of bandwidth for the CoSj using equation (3.5) and uses the output to compute a new 

surplus of over-reservation  ,BW bR j I  within the threshold  ,BW bj I  for the CoSj as: 

  ,BW b jR j I r   (3.26) 

COR: it readjusts the threshold  ,BW bi I of every CoSi with 1 i k  as: 

      
* *

, , * ( ) , i
BW b BW b i T b BW b

r Q w
i I U i I w I U i I

k
       (3.27) 

where  ,BW bU i I  is the used bandwidth in the CoSi. 

Then, it computes new surplus of bandwidth over-reservation  ,BW bR j I  for the requested CoSj 

like MARA by using the equation (3.26). 

High Utilization Phase: with respect to the algorithms, resource utilization level is said high on an 

interface whenever the following condition is met: 

 * ( ) ( ) 1j T b T b

Q
w I r I Q

k
        (3.28) 

In this case, each scheme computes the over-reservations as in the following.  

ECOR: it computes new surplus of bandwidth  ,BW bR j I  for the congested CoSj on an interface Ib 

using the equation (3.17) as:  

    
1

, * ( ) *BW b j T b

Q k
R j I r w I r r

k

 
      (3.29) 

Besides the requested CoSj, it distributes the remained unused resource to each of the other CoSi in 

an attempt to reduce resource exhaustion probability where:  

    
1

, * ( ) *BW b i T b

Q
R i I w I r r

k


     (3.30) 

MARA: In such case, MARA increases the threshold of the requested CoSj by removing a certain 

amount of resource from each other CoSi, using the same functions in the equation (3.25).  

COR: In this situation, COR readjusts the thresholds  ,BW bj I  of the requested CoSj and 
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 ,BW bi I  of the other CoSi as: 

 
     

   

, , ( ) , *

, ,

BW b BW b T b BW b

BW b BW b

j I U j I I U j I r Q

i I U i I





    


 (3.31) 

Then, it defines new surplus of bandwidth  ,BW bR j I  and  ,BW bR i I  for the requested CoSj and 

each of the other CoSi as:  

 
 

 

, ( ) *

, 0

BW b T b

BW b

R j I I r Q

R i I

  


 (3.32) 

When compared with MARA, the readjustment method of COR exploits weights of CoSs for better 

redistribution of resources.  

3.4 ACA Control Mechanism 

The existing networks mostly implement centralized solutions [173], which require scalable 

support for their control to facilitate service creation. As we observed in the previous and in this 

chapter, aggregate resource over-reservation is promising for scalability. The major challenge is 

that the approach strongly requires a good knowledge of network topology and the related resource 

utilization statistics in real-time to prevent performance degradation in terms of QoS violations and 

waste of resources. In sections 3.1 and 3.2, we introduced COR and ECOR respectively, to address 

the issue of efficient management of residual reservations to overcome resource starvation and 

related unnecessary session blocking. Nonetheless, these algorithms, as well as any over-

reservation algorithm (e.g., MARA) need adequate network support to obtrain accurate resources 

statistics to effectively attain results.  

Therefore, we propose the ACA in which a central network CDP is enabled to maintain its 

underlying network topology and the related links resources statistics on real-time basis. The ACA 

operations are based on two fundamental principles: 1) Explicit Routes Implementation, deployed 

by means of multicast trees to assure that the packets of a session mapped to a tree are forced to 

follow the desired tree; 2) Real-Time Topology and Resource Statistics Update, which is achieved 

by recording the lists of outgoing interfaces that compose every tree created inside the network. 

Moreover, whenever the CDP admits, releases or readjusts a session in a CoS on a tree, it 

automatically updates the resources statistics in the CoS on each of the outgoing interfaces on that 

tree in its local NetCIB database accordingly. The rest of this section describes the ACA’s 

architecture and the proposed functionalities using the QoS and admission control reference model 

of ETSI/TISPAN introduced in subsection 2.5.2 in Chapter 2. 
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3.4.1 ACA Control Architecture 

In ACA, a central CDP is responsible for the overall control of the underlying network 

infrastructure as illustrated with Figure 3.4, encompassing a CDP, 5 Border Routers (BRs) and 4 

Core nodes (Cs). Based on TISPAN reference architecture and taking network nodes’ locations 

(e.g., border, core, etc.) and functionalities into account, ACA defines three control agents that 

various nodes can implement for proper interactions and control in the network. These agents 

include: (1) ACA-Full agent (ACA-F) which is a state-full agent specified for the CDP and 

therefore embeds the SPDF and RACF functions; (2) ACA-Border agent (ACA-B), a semi-full 

state agent specified for the BRs by including the BGF, RCEF and BTF functions; (3) ACA-Light 

agent (ACA-L) as a light weight agent defined with basic functionalities of RCEF and BTF (e.g., 

packet forwarding, QoS enforcement, etc.) as required in all nodes which handle traffic. Further 

details on these agents and their operations are provided in subsequent sub-sections. 

3.4.1.1 ACA-Full Agent 

Designed for the CDP as a state-full agent, ACA-F implements the SPDF functions to enable 

the CDP for receiving session requests (e.g., session setup, release, session readjustment) and 

taking appropriate decisions (e.g., AAA, policies and traffic control decisions) as defined by the 

network operator. Besides, the NASS is used for terminal configuration parameters (dynamic 

provision of IP addresses) as well as authorization of network access based on user profiles. 

Moreover, it includes the RACF functions to coordinate the multicast trees creation inside a 

network. It is important to mention that ACA provides a certain flexibility to use any technique 

specified by network administrator (e.g., shortest paths techniques [4], [121], flooding-based 

techniques [231], spanning trees techniques [232], etc.) to create the edge-to-edge multicast trees 

for data transport across the network. In addition, the RACF defines appropriate resource and 

admission control system which allows implementing any over-reservation control algorithm such 

as COR, ECOR or MARA in order to control resource aggregately to scale. It assures the session-

to-multicast tree mapping decisions which in turn, are translated into commands and sent to BRs 

and core nodes for the enforcement which is further detailed in subsequent subsections.  
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Figure 3.4. Illustration of ACA centralization with TISPAN functional modules mapping. 

3.4.1.2 ACA-Light Agent  

The ACA-L is a lightweight agent which implements the normal functionalities required in any 

network normal node (e.g., ingress routers and core routers). These functions include, but are not 

limited to, control message interception and processing, data forwarding, QoS and multicast trees 

enforcement, data replication on multicast trees, control feedback, and network element failure 

notification. Hence, ACA-L implements the RCEF and the BTF functions in a way to properly 

intercept, interpret and process messages and assure QoS-aware data transport across a network. To 

assure that control instructions, conveyed through commands in signalling messages, are 

intercepted on visited nodes along a tree, ACA-L enables UDP port recognition (as routers are 

permanently listening on UDP port) or the RAO [122] on nodes. Moreover, it is able to interact 

with RMF [119] to configure schedulers on nodes [64], [65] to assure that each CoS receives the 

amount of bandwidth allocated to it. Furthermore, it interacts with legacy protocols (e.g., routing 

protocols) or manipulates appropriate databases on nodes (e.g., MIB, RIB or MRIB, and FIB) 

according to the control instructions received. It enables nodes to store the ID of previous outgoing 

interface visited by signalling message, which information is used to avoid asymmetric route issues 

in reverse path [63], [121]. As an example, ACA-L allows collecting the lists of outgoing interfaces 

IDs (e.g., RRO [121], [124]) on the trees together with the interfaces’ QoS capabilities (e.g., 

interface capacity) as required by the CDP to build its local NetCIB database.  
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3.4.1.3 ACA-Border Agent 

The ACA-B as a semi-lightweight agent designed for BRs residing at network borders, embeds 

the ACA-L agent since the latter implements the functionalities which are required at BRs as well. 

In addition, ACA-B implements the BGF functions in order to execute traffic conditioning (e.g., 

metering bandwidth usage, reshaping and policing out-of-shape traffics, etc.) to control traffic 

throughput of every flow according to the control instructions it receives from the ACA-F. 

Moreover, it bridges inter-domain connectivity on the data plane, knowing that the control plane is 

managed by the CDP. The inter-domain operations may be based on SLAs/SLSs as we observed in 

Chapter 2. The interactions between the agents and the overall ACA operations functions are 

described in the following. 

3.4.2 ACA Operations  

The main objective of this subsection is to describe the ACA operations and the interactions 

between the ACA-F, ACA-B and ACA-L agents to assure a proper networking mechanism. To 

facilitate the understanding, our description is illustrated based on Figure 3.5 and uses the ECOR 

algorithm to demonstrate how to integrate over-reservation scheme to achieve scalable QoS 

overprovisioning in a network without incurring QoS violation or waste of resources. In this sense, 

we assume that each BR-Core link inside the network has a capacity C=1Gbps and Core-Core has 

C=100Mbps, and implements four CoSs: one Control Signalling CoS (CS) and three service CoSs 

such as EF, AF and BE. Further, we assume that a fixed amount of bandwidth b = 1Mbps is 

allocated to the control CoS and the weights 40%, 30% and 30% are allocated to EF, AF and BE 

CoSs, respectively.  

As shown in Figure 3.5, ACA follows the traditional master-client control model where the 

CDP hosting the ACA-F agent is acting as the control decision maker (master), and the BRs and 

the cores nodes embedding ACA-B and ACA-L respectively, play the role of client for decisions 

enforcement. The decisions made at the CDP are translated into commands and conveyed to 

relevant nodes inside the network through appropriate signalling messages. As we further detail in 

the following subsections, the operations of ACA are divided into Network Initialization phase and 

Network Running phase. 

3.4.2.1 ACA Network Initialization Mechanism 

The network initialization is characterized by the phase when the nodes inside the network are 

booting and there is no seesion running yet. Hence, when a node boots up, it announces its presence 

to the CDP in a message which includes its neighbour nodes. This way, the CDP is aware when all 

nodes have booted up and uses the information to build the network topology. By using specific 
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algorithm (e.g., Dijkstra) to the topological information, the CDP can create all the possible edge-

edges routes inside the network. In particular, every node implements the ECOR initialization 

function in equation (3.14) such that the initial reservations are configured on each interface of 

every node automatically as the node boots up. It is very important to mention that each node is 

able to modify these configurations upon instructions from the CDP. After all nodes have booted 

up, the CDP instructs each of the BRs (BR1 through BR5) to create all possible multicast trees 

from its self to each of the other BRs inside the network as in the following. 

To build its trees, a BR sends a packet out on each of its interfaces (except on the inter-domain 

interfaces) into the network with each packet including the ID and the capacity of the interface 

through which it was sent. As a packet is travelling across the network, every visited node 

intercepts it, and forwards a copy on each of its interfaces (except the one on which the packet was 

received) after appending the ID and the capacity of the interface, leading to the so-called flooding 

approach. Every node is enabled to drop loop packets when it detects that the received packet 

already contains an ID of its local interface. This procedure is repeated until the packets reach other 

BRs. When a BR receives a packet which was not initiated by itself, it sends it to the CDP. This 

way, the CDP obtains all the edge-to-edge possible routes inside the network together with the 

corresponding list of outgoing interfaces and the capacities. Then, it uses the interfaces IDs and the 

corresponding capacities, and applies the equation (3.14) to the capacities to build its initial 

TOPOLOGY table as in Figure 3.5. Afterwards, it transforms the routes into multicast trees in its 

global TREES table by assigning a multicast channel and an ID to each of the routes. Note that the 

CDP can also compute all possible edge-to-edges routes through combination of unbrached edge-

to-edge ones as in [162]. Further, the global TREES table records the available bandwidth on each 

tree as being the bottleneck available bandwidth (minimum available bandwidth) on the tree, 

obtained based on the information maintained in the TOPOLOGY table and the list of outgoing 

interfaces on the trees. For simplicity, the databases in Figure 3.5 do not include all the possible 

trees. 

Then, the CDP instructs each BR to enforce the multicast trees inside the network by sending 

them the assigned channel, the trees IDs and the list of outgoing interfaces. Hence, upon receiving 

the command, each BR enforces the multicast trees by configuring the MRIB on its local 

interfaces. After that, it sends the command to the core nodes using source routing to ensure that 

each multicast channel is properly configured on the correct interfaces as recorded by the CDP. 

When a tree is successfully created up to a remote BR which must reply, the initiator BR records 

the information in its local TREES table as in Figure 3.5 and sends the feedback to the CDP for the 

latter to save the information. This way, the network is initialized and the system run-time 

operations are described in subsection 3.4.2.2. 
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Figure 3.5. Illustration of ACA control operations. 

3.4.2.2 ACA Network Running Mechanism 

As the network in Figure 3.5 is initialized and set to operate, all session requests are sent to the 

CDP to be processed according to the local admission control policies, the requested application 

QoS requirements (obtained from AF functions via Gq’ interface -Figure 2.7), the user profiles 

(obtained from NASS via e4 interface -Figure 2.7), and a good knowledge of underlying network 

topology and related links and paths resource status. Hence, all authorized requests are passed to 

the admission control module RACF embedded in the CDP which retrieves the candidate trees 

(from its Global PATHS table) that can be used to map the incoming requests according to the 

available resources on the trees. Hence, when there are sufficient available resources on certain 

candidate trees, the tree with the highest available resources is selected and the session is thus 

mapped to the tree. As ECOR is deployed and the resource is over-reserved, the CDP can process 

several session requests (session setup, release, readjustment) into appropriate trees without QoS 

reservation signalling as long as the available over-reservation is sufficient in the trees. Thus, ACA 
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deploys aggregate resource overprovisioning in order to scale by reducing signalling and the 

related processing overhead. Hence, it is very important to mention that, whenever ACA-F admits, 

readjusts or terminates a session belonging to a CoS in a given tree, the resource status (e.g., the 

reserved, the used and the available bandwidth) in each CoS on each outgoing interfaces on the 

tree, is automatically updated in the local TOPOLOGY table accordingly. Moreover, ACA-F 

records every active session together with the related flows’ information in terms of session’s 

description and QoS requirements (e.g., session ID, flows IDs, session source and destination IDs, 

the CoS and path mapped to a flow, the bandwidth granted to each flow, etc.). The CDP uses this 

information to instruct ACA-B agents implementing BGF functions at network border to properly 

control active sessions (e.g., traffic conditioning – metering, marking, shaping or policing) to 

assure differentiated QoS granted to session flows during QoS negotiation. Also, the packets that 

belong to a session are pinned to the tree mapped to the session, assuring that the session enjoys the 

treatment destined to it in the network. It becomes clear that the trees and interfaces capabilities are 

accurately maintained in local database in real-time manner without being required to signal the 

network. Therefore, the CDP is aware of the network accurate resource conditions at any time to 

prevent wrong admission decisions.  

However, in case the CDP’s admission functions realize that the available reservation in a 

requested CoS is insufficient to assure acceptable quality in the candidate trees, the ACA-F agent 

implementing ECOR through the RACF triggers the ECOR resource over-reservation readjustment 

functions described in section 3.2.2. The main objective of the CDP is to profit from ECOR to 

attempt readjustment of the reservation parameters among CoSs on candidate trees to avoid CoS 

starvation or waste of resource which increase session blocking unnecessarily. This way, ECOR is 

dynamically invoked to define parameters for reservation readjustment on outgoing interfaces on 

trees upon need. It is also very important to mention that existing solutions mostly readjust 

parameters of the outgoing interfaces on a tree by using the parameters obtained based on the 

bottleneck resource conditions of the tree [125]. We believe that, this limitation is imposed to such 

solutions, since they mainly rely on the bottleneck information collected through periodic and on-

demand measurement techniques (e.g., probing). In contrast, ACA provides a good knowledge of 

resource statistics on every interface, and uses ECOR to define parameters for an interface on a tree 

based on the resource conditions of the interface itself.  

When new reservation parameters are successfully defined for the outgoing interfaces on a tree, 

the CDP encapsulates the parameters in appropriate QSPECs objects and associates each QSPEC 

with the corresponding interface ID. Afterwards, it sends the information to the BR that roots the 

tree, which first enforces the new configurations destined to its local outgoing interface before 

forwarding the message down the network to the remaining nodes on the concerned tree. As the 
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message is travelling along the tree, each visited node, hosting ACA-L agent, retrieves the 

reservation parameters destined to its local outgoing interface(s) on the tree and enforces the 

required configurations before forwarding the message. A node at which reservations fail due to 

node malfunction or link failure must send a failure notification to the CDP. This procedure is 

repeated on each visited node until the message reaches the corresponding egress BR. Hence, upon 

receiving the message, the egress BR composes the corresponding response message with a 

successful reservation flag and sends it to related ingress BR, which in turn, notifies the CDP about 

the successful reservation operations. Then, the CDP updates the new configuration parameters in 

its local database accordingly and the request can be accommodated. 

3.5 Performance Evaluation  

The benefits of overprovisioning approach (e.g., COR, ECOR and MARA) and the impact of 

key parameters that affect its performance were evaluated analytically by comparing COR and 

ECOR against MARA’s algorithm. Moreover, we implement ACA architecture integrating COR, 

ECOR and MARA to assess and validate results through simulations using the Network Simulator 

version 2 - ns-2 [233]. Hence, we study performance in terms of control signalling overhead 

minimization and avoidance of waste of resources, and therefore, the issue of unnecessary increase 

of session blocking probability. 

3.5.1 Assumptions for Analytical Evaluation 

As reservation readjustment is usually triggered when the over-reservation is exhausted in a 

requested CoS on the bottleneck outgoing interface on a desired tree, Figure 3.6 is used to illustrate 

bottleneck scenarios for our analytical assessment of over-reservation approach. Hence, we assume 

that a bottleneck outgoing interface Ib is shared by many trees (T1, … , Tx, … , Tm) rooted at various 

border routers (BR1, … , BRX, … , BRZ) which are dynamically injecting traffic into the network. 

Besides, it is considered that Ib has a capacity C and implements k CoSs as we studied in subsection 

3.3.  
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Figure 3.6. Topology for analytical study. 

To perform the resources readjustment, the current resource status of each CoS on the 

bottleneck interface Ib is obtained based on the following assumptions. It is assumed that the 

current reservation  ,BW bR j I  and the threshold  ,BW bj I  of the congested CoSj on Ib are: 

    , ,BW b BW bR j I U j I  (3.33) 

    , ,BW b BW bj I U j I   (3.34) 

In equations (3.33) and (3.34),  ,BW bU j I  is the current used bandwidth in the requested CoSj and 

is obtained based on the total amount of used bandwidth  Total

BW bR I  and the sum of the used in the 

remaining (k-1) CoSs on the interface Ib: 

      , ( 1)* ,Total

BW b BW b BW bU j I U I k U i I    (3.35) 

where,  Total

BW bU I  is determined by equation (3.21),  ,BW bU i I  is the amount of used bandwidth in 

each of the remaining CoSi,  1 ,  i k i j    on the interface Ib and is set based on the total used 

bandwidth as: 
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 (3.36) 

Considering that the requested CoSj is currently set with no available resource as in equations 

(3.33) and (3.34), the current peak threshold  ,BW bi I  of each CoSi of the remaining (k-1) CoSs 

on the interface is assumed to be: 
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Thus, in ECOR, the residual over-reserved bandwidth  e _ ,BW bR sidual R i I  in each of the 

remaining CoSi is obtained based on the unused resource in equation (3.37) and is configured as: 
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 (3.38) 

In COR or MARA, the residual over-reserved bandwidth  e _ ,BW bR sidual R i I  in each of the 

remaining CoSi is considered as half of the latest over-reservation computed by the algorithm, that 

is, half of the previous output of the equation (3.5). This way, the residual over-reserved bandwidth 

and the used bandwidth in each of the remaining CoSi are known, and the current reservation 

 ,BW bR i I  of each of the remaining CoSi in ECOR, COR or MARA is configured as: 

      , , _ ,BW b BW b BW bR i I U i I Residual R i I   (3.39) 

Based on these assumptions each algorithm computes new surplus of bandwidth to readjust the 

reservation parameters of the CoSs on the interface. Recall that, under Low resource utilization 

conditions, ECOR computes new surplus of reservation using the equation (3.24). COR uses 

equations (3.26) and (3.27), while MARA uses the equations (3.25), (3.26). Under High Utilization 

conditions, ECOR computes new surplus using the equation (3.29), COR uses equation (3.32) and 

MARA uses the same functions as in low utilization conditions. 

3.5.2 Analytical Results  

Based on the configurations in Table 3.1 and using the scenario of Figure 3.6, Figure 3.7 plots 

the probability of QoS reservation events occurrence as a function of network bottleneck interface’s 

resource utilization level on communication paths.  

                        Table 3.1. Available resource scenario configuration parameters. 

k = 3 Number of service CoSs implemented on the interface. 

r  = 1 Mean bandwidth requested by each session (Mbps). 

μ = 1/4 Mean service rate per session (requests/time unit). 

λi = 20 Session requests arrival rate to a CoSi (requests/time unit). 

C = 1000 Interface capacity (Mbps). 

 

As one can see in Figure 3.7, the more there are unused session slots on the bottleneck 

interface, the lower the probability of signalling occurrence is, regardless of the algorithm in use. 

This shows that, the more resources are available, the more each algorithm over-reserves. However, 
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we observe that ECOR outperforms both COR and MARA in terms of probability of signalling 

events occurrence. This is due to the fact that ECOR allows for over-reserving as much resources 

as a CoS requires, while it is able to efficiently reuse the residual resources among existing CoSs 

dynamically to prevent waste of resources or CoS starvation, as we explained earlier. Both COR 

and MARA over-reserve a relatively small portion of unused resources each time in order to reduce 

the impact of CoS starvation and waste of resources. The main reason behind this behavior of COR 

and MARA is that efficient over-reservation scheme strongly requires resource utilization statistics 

in each CoS on each bottleneck interface inside a network on real-time basis and without signalling 

the network. However, this requires a new approach for resources information transfer between 

network elements, that will be detailed in Chapter 4. 

We observe that MARA is subject to high probability of signalling when Q is smaller than 400, 

i.e. when the network is close to congestion. This is due to the fact that MARA computational 

procedure, consisting of taking a certain amount of resources from the other CoSs to decongest a 

given CoS, shows serious inefficiency problems when the network is close to congestion. This 

inefficiency induces waste of resources and CoS starvation problems as we will see in Figure 3.10. 

Indeed, MARA shows different behaviors when Q is higher than 400, lower network utilization 

phase. It is important to note that MARA seems to outperform COR when Q is higher than 400, but 

it is not. We must therefore recall that, for simplicity in this analytical model, a particular CoSi 

always congests first to trigger the control events on the bottleneck interface. This obviously favors 

MARA which removes a certain amount of resource from each of the remaining CoSs to increase 

the threshold of the always congested CoSi. In other words, the scenario allows MARA to increase 

the threshold of the concerned CoSi much more than the COR, which seeks more balanced control 

by using weights of CoSs; therefore MARA, can over-reserve more than the COR since both use 

the same function in equation (3.5) to compute surplus of reservation. In real network scenarios, it 

is less likely that only a particular CoS gets congested all the time on a long term. Therefore, a 

steadier behavior of COR, ECOR and MARA will be further observed through large scale 

simulation results using the ns-2 in Chapter 4, since the main objective of this chapter is to provide 

insight of major issues that can be addressed to improve scalability in current and future network 

scenarios. This also explains that with higher interface capacity, the more suitable over-reservation 

approach will apply. More importantly, QoS control would not be necessary if network resource 

were unlimited. One can also notice that the ECOR reservations are “Not a Number - NaN” when 

the number of unused slots is 571 or 666 (too high), which implies that resource control would not 

be necessary if link bandwidth were unlimited. 
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Figure 3.7. Effect of resource utilization level on reservation signalling frequency. 

Figure 3.8 analyses the effect of session lifetime (e.g., short-lived, long-lived, etc…) and the 

suitability of resource over-reservation in dynamic network scenarios. The model is configured 

with the parameters in Table 3.2.  

                        Table 3.2. Lifetime scenario configuration parameters. 

k = 8 Number of CoSs implemented on the interface. 

r  = 1 Mean bandwidth requested by each session (Mbps). 

λi = 70 Session requests arrival rate to a CoSi (requests/time unit). 

C = 1000 Interface capacity (Mbps). 

Q = 666 Interface utilization level. 

 

We observe in Figure 3.8 that, in a scenario where most of sessions are short-lived (the higher 

the service rate, the shorter the lifetime), the probability of signalling occurrence is lower than 

when sessions’ lifetime increases. This shows that short-lived sessions leave the reservations more 

quickly, and these reservations can be reused for accommodating other incoming requests without 

signalling the network. 
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Figure 3.8. Effect of sessions lifetime on reservation signalling frequency. 

Figure 3.9 analyses the impact of bandwidth demand of the services requested over the 

network. In this sense, one can see that the probability of QoS signalling events occurrence 

increases with the increase of the demand. This explains the fact that the over-reserved resource are 

consumed more rapidly, and hence, it justifies the increasing need for reservation parameters 

readjustment among the compteting CoSs. 

 
Figure 3.9. Effect of bandwidth demands on reservation signalling frequency. 

Figure 3.10 plots the number of session requests that may be blocked unnecessarily when the 

requested bandwidth by incoming services is available on the bottleneck interface of a desired path. 

This is the major issue of CoS starvation, waste of resource or unnecessary increase of blocking 

probability. One can see that neither COR nor ECOR blocks any request when there is a free slot, 

knowing that each request only demands one slot. This confirms our study in sections (3.1) and 
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(3.2): COR and ECOR are able to use the sum of all residual resources from all existing CoSs in an 

efficient manner. In contrast, when the number of unused slots is smaller than 400 (note that each 

slot has 1Mbps), MARA denied all the requests unnecessarily (please see the segment of line (y = 

x) where y is the number of blocked while x slots were free). This is due to the fact that MARA is 

not able to collect all residual resources from existing CoSs, which is crucial when links are close 

to congestion. Indeed, as the number of free slots increases beyond 400 and there is a larger amount 

of available resources on the bottleneck interface, MARA starts admitting requests since it can take 

enough resources from the other existing CoSs. 

 
Figure 3.10. Unnecessary increase of requests blocking or waste of resources. 

3.5.3 Simulation Scenario 

In order to show stable results in dynamic network scenarios, the ACA architecture and the 

over-reservation algorithms (COR, ECOR and MARA) were developed in the ns-2 [233]. The 

simulations were carried out using 4 randomly generated topologies (number of ingress routers 

ranging from 3 to 6; core routers: 5 to 15, egress routers: 3 to 6, and one CDP per network to take 

overall control). One of the simulated network topology is presented in Figure 3.11.  
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Figure 3.11. Example of ACA simulation network topology. 

For simplicity, 4 CoSs configurations are implemented in each network interface, as in the 

following: one CS, one EF, one AF and one BE [234] under the WFQ scheduling discipline [64]. 

Considering that bottleneck interfaces’ locations inside real networks depend on traffic load 

dynamics inside the network, each network interface is configured with the same capacity 

C=1Gbps; three different traffic types such as Constant Bit Rate (CBR), Pareto and Exponential are 

randomly generated based on Poisson processes. Traffic requests belonging to various CoSs, are 

generated using uniform distribution between 128Kbps and 8Mbps, and are mapped to ingress-

egress pairs based on Poisson processes. Among the requests generated, 30% are long-lived 

sessions (with lifetime of the whole simulation time), 40% are relatively long-lived sessions (with 

lifetime of 60 minutes) and 30% are short-lived sessions (with lifetime of 10 minutes). It is very 

important to note that the requests to a network are sent to the corresponding CDP, since the overall 

control is centralized on the CDP.  

We obtain network overall resource utilization in percentage (%) in each simulation results, it 

is computed as a mean of the resource utilization level on the bottleneck interfaces of all trees 

inside the network. The studied metrics include the QoS reservation signalling overhead (signalling 

events and load), the overhead reduction by ECOR in relation to both the COR and MARA, and the 

issue of waste of resources shown in terms of the number of sessions blocked unnecessary. To show 

more accurate results, each simulation runs 10 times with different seeds of random mapping of 

requests to CoSs, and ingress egress pairs for each topology. Then, the mean values are plotted for 

all topologies and seeds with a confidence interval of 95%. 

3.5.4 Simulation Results 

Figure 3.12 plots the number of QoS reservation signalling events at different network resource 
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overall utilization levels, and Figure 3.13 shows the corresponding signalling message load. Hence, 

we observe that, below 60% of network resource utilization level, COR and MARA generate a 

similar number of reservation signalling events and load. This is mainly due to the fact that COR 

and MARA use the same function (equation (3.5)) to define resource surplus for CoSs. This shows 

that the main benefit of COR algorithm over MARA is not on the minimization of the signalling 

overhead. Rather, it resides in the way that COR distributes residual resources among CoSs to 

prevent waste of resources or unnecessary increase of session blocking as depicted in Figure 3.16. 

Hence, one can see that COR triggers more reservation readjustment signalling messages than 

MARA in the situations of high network resource utilization situation (above 60%). It is very 

important to notice that this does not mean that MARA outperforms COR in terms of signalling 

overhead. MARA places less signalling events since it fails to efficienly redistributing residual 

reservations among CoSs, especially when network is close to congestion or get congested, which 

is a strong limitation since it leads to a significant waste of resources as in Figure 3.16. ECOR does 

not issue any reservation signalling messages up to about 85% of network overall resource 

utilization level. This is because ECOR over-reserves as much resources as possible to each CoS at 

system initialization, in contrast to COR and MARA. The data points are not visible in these cases 

due to the log scale plotting of zero (0). Moreover, ECOR maintains its superiority over COR and 

MARA in terms of signalling events and load overhead under high network resource utilization 

level. Thus, ECOR proves that one should be able to over-reserve as much resources as possible to 

effectively reduce the QoS signalling and related processing overhead. 

 
Figure 3.12. Number of reservation signalling events. 
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Figure 3.13. Reservation signalling load. 

In order to better observe the performance in terms of signalling overhead reduction by ECOR 

against COR or MARA, Figure 3.14 plots the percentage of signalling events reduction of ECOR 

over COR or MARA, while Figure 3.15 plots the corresponding signalling load reduction. We 

observe that ECOR is able to reduce the QoS reservation signalling events of COR and that of 

MARA between 3% and 100%, depending on the level of network resource overall utilization. 

While the signalling events number is reduced between 2.9% and 100%, the corresponding 

signalling load is reduced between 11% and 100%. It is therefore very important to notice that 

ECOR reduces even more in terms of signalling load as we expected, since ECOR deploys less 

reservation parameters (e.g., ECOR has no threshold parameter per CoS) than COR and MARA, 

and thus, the size of the signalling messages generated by ECOR is smaller. It is also important to 

mention that the data points of MARA around 85%, 97.5% and 99.98% are not visible due to log 

scale plotting of negative values, since ECOR generates more signalling events than MARA under 

the situations of high resource utilization, when MARA readjusts less the reservations and leads to 

CoS starvations and unnecessarily increase of session blocking probability. 
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Figure 3.14 Reduction of signalling events number of ECOR vs. COR and MARA. 

 
Figure 3.15. Reduction of signalling load of ECOR vs. COR and MARA. 

Moreover, Figure 3.16 plots the number of service requests that were blocked when the 

requested resources were available in the network. As we detailed in subsections 3.1, 3.2 and 3.3, 

COR and ECOR are able to efficiently reuse residual reservations while MARA fails to do so. As a 

consequence, MARA increases service blocking probability unnecessarily when network is close to 

congestion or congested. 
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Figure 3.16. Number of session requests blocked unnecessarily. 

Hence, it becomes clear that ACA integrating ECOR is able to allow for optimizing network 

control performance. 

3.6 Conclusion 

In this chapter, we showed that efficient aggregate resource over-reservation algorithms can 

effectively prevent CoS starvation, waste of resources or unnecessary increase of service blocking 

probability, while the QoS reservation signalling and the related overhead minimization can be 

optimized. In particular, we proposed COR which properly deals with CoS starvation and waste of 

bandwidth, and compared its results with MARA. However, COR and MARA prevent from over-

reserving too much resources to CoSs, and thus, fail to allow for optimizing the performance in 

terms of signalling overhead minimization. Therefore, we proposed the ECOR which enables for 

reserving to each CoS as much resources as possible, and efficiently redistributes the reservations 

among CoSs in a way to avoid CoS starvation and waste of resources. ECOR demonstrates its 

capabilities in allowing for optimizing the overall QoS reservation performance through analytical 

and simulation results.  

Moreover, we studied that over-reservation approaches strongly require network resources 

statistics in each CoS on each relevant network link in real-time manner. In this sense, we propose 

the ACA centralized architecture in which a central CDP is enabled to create and maintain many 

multicast trees inside a network under its control. Thus, packets that belong to a session mapped to 

a tree are forced to follow that tree. Moreover, it records in its NetCIB database the lists of 

outgoing interfaces that lie on the existing trees, and automatically updates the resources statistics 

on every outgoing interface of a tree as soon as it processes a session on the tree. This way, ACA 
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maintains a good knowledge of network topology and the related links resources statistics in real-

time manner without undesired signalling overhead inside the network. This support for over-

reservation motivated our implementation of COR, ECOR and MARA in ACA to show results as a 

use case. Thus, ACA integrating ECOR demonstrated a promising solution for optimization in 

terms of signalling overhead reduction without wasting resources or QoS violations. Nonetheless, 

centralized systems such as ACA suffer from single point of failure issues while a central controller 

can be easily bottlenecked in large network scenarios. Therefore, further investigations to 

decentralize network control, while assuring efficient support for aggregate over-reservation 

functions, remained our major concerns in the rest of the Thesis. 
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As we studied in Chapter 1 and Chapter 2, decentralization of network control is promising for 

the current and future network scenarios since it can scale better than the centralized paradigm. 

However, decentralization imposes many challenges. On one hand, while it distributes the control 

load to improve scalability, it requires a correct synchronization of control data between distributed 

network CDPs to avoid wrong and incompatible decisions. Hence, decentralization must be 

carefully designed to prevent excessive synchronization signalling and the related processing 

overhead to effectively scale. On the other hand, resource over-reservation approach consists of 

reserving more resources than a CoS may currently need, and thus, allows for reducing QoS 

reservation signalling overhead. However, the approach strongly requires a good knowledge of 

network topology and the related links resources statistics in each CoS, on real-time basis without 

signalling the network. Therefore, a new decentralized resource control approach is required to 

address these issues.  

Moreover, we saw in Chapter 2 that, NSIS protocol suite [119] provides flexible and extensible 

support for QoS signalling services over heterogeneous QoS Models (QoSMs) through the QoS 

Signalling Layer Protocol (QoS-NSLP) [123]. Examples of QoSMs include the IntServ, the 

DiffServ, the ACA in Chapter 3, and the Self-Organizing Multiple Edge Nodes Mechanism to be 

described in this chapter. Basically, the QoS-NSLP signalling protocol allows for carrying control 

information specific to a QoSM using appropriate QSPEC objects which are interpretable by the 

RMF [119] implemented in that domain. This way, NSIS is flexible and extensible, such that, new 
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control parameters and signalling message processing rules can be defined to enhance control 

performance inside a network without requiring changes in the neighbouring networks.  

This chapter introduces the ACOR, a generic-purpose mechanism to provide communication 

and synchronization between the edge nodes in a network to support decentralized resources 

control. The main idea consists in enabling multiple distributed CDPs (e.g., at network edges) to 

selectively cooperate and self-control, by jointly exploiting control data inside a network in a way 

that allows each CDP for maintaining a good view of network topology and the related links’ 

resources statistics in each CoS, on real-time manner, with low signalling overhead. This way, 

ACOR aims to provide good support for network resources key control sub-systems (e.g., traffic 

engineering, QoS over-reservation, end-to-end transport control, link capacity planning, etc.), such 

that system overall performance can be improved in a flexible and cost-effective manner. Hence, 

ACOR implements the ECOR algorithm introduced in Chapter 3 to minimize QoS reservation 

signalling overhead without incurring QoS violation, CoS starvation and waste of resources. 

Moreover, we propose a concept of virtual resource sharing, the VOPR, which allows for keeping 

low rate of synchronization signalling between CDPs peers. 

In order to demonstrate the effective support of ACOR in terms of resource over-reservation 

integration besides the ECOR implementation, we also implement the over-reservation algorithms 

proposed in Chapter 3, the COR [235] and MARA [125]. Furthermore, we introduce the ACOR-P, 

an NSIS compliant signalling protocol, which is designed to support the overall control mechanism 

proposed in this Thesis. The evaluation of ACOR was carried out through analytical and simulation 

studies, which analyzed the decrease in the control signalling and the improved resource utilization 

without damaging system performance in terms of waste of resources, unnecessary blocking and 

QoS violation. 

This chapter is organized as follows. We describe the ACOR control mechanism integrating 

the ECOR algorithm in section 4.1, and present the ACOR-P protocol in section 4.2. Then, the 

section 4.3 provides an analytical model of ACOR and section 4.4 addresses the performance 

evaluation with both the analytical and simulation results. Finally, section 4.5 concludes the 

chapter. 

4.1 ACOR Control Mechanism 

The ACOR specifies a decentralization control mechanism which deployes differentiated QoS 

provisioning in class-based networks by dynamically controlling aggregate bandwidth over-

reservation, seeking significant reduction of control overhead. The intelligence in ACOR is pushed 

to the network border, where each node (i.e., ingress/egress node) hosts the so-called CDP entity 
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and interior/core nodes are left simpler. The CDPs are responsible for making policies and control 

decisions, which in turn, are translated into commands and conveyed in signalling messages to the 

core nodes for the enforcement. As we illustrate using Figure 4.1 to facilitate the understanding, all 

available CDPs cooperate as a means to dynamically exchange appropriate control information for 

synchronization to changes of network resource states, and therefore, to assist control decisions 

with accurate information in distributed manner. It is very important to mention that every CDP in 

ACOR creates and manages multiple edge-to-edges multicast trees which are used, not only for 

group communication purposes, but more primarily to force every packet of a session mapped to a 

tree to follow the desired tree. This way, each CDP is able to use the correlation patterns of the 

trees and the traffic dynamics in each correlated tree to infer resource statistics in each CoS on each 

interface inside the network, thus providing a good view of network topological and related 

resource information. A correlation pattern of trees on an outgoing interface reflects the number of 

trees that share the interface, the interface’s Sharing Factor, together with the trees’ relevant 

information, such as the trees IDs and the CDPs from which the trees originate.  

ACOR is able to achieve this with significantly low signalling overhead mainly through a two-

layering control approach, which bases on the concept of aggregate resources control in class-based 

networks. On one hand, ACOR implements ECOR techniques for dynamic control of aggregate 

bandwidth over-reservation, and thus, allows for minimizing the rates of QoS reservation signalling 

in the sense to optimize performance (e.g., with low CPU and memory consumption by networking 

processing), without QoS violation or waste of resources. On the other hand, it introduces the 

VOPR concept [236], which consists in a way of virtually allocating a share of aggregate over-

reservations of every CoS on each outgoing interface to each edge-to-edges tree that uses the 

interface. This way, a CDP can process several session requests to a CoS on a tree without 

requiring synchronization as long as the VOPR of the tree for the CoS is not exhausted, and thus 

allows for reducing the synchronization frequency. Moreover, the ACOR synchronization 

operation is selective, that is, only the CDPs, which are correlated with the information to be 

updated, are dynamically included in a collaboration group such that the information is not 

broadcasted unnecessarily. 
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Figure 4.1. Illustration of ACOR decentralized network topology. 

As in Figure 4.1, the ACOR architecture is composed of the following components and control 

functionalities: 

 Network Control Information Base used by each CDP to store and maintain appropriate 

control information inside the network. The NetCIB of a CDP is mainly composed by 

four information tables, including: 1) TREES table to store the CDP’s selected trees and 

the related control information, where each tree is associated with a list of correlated 

CDPs which is dynamically used to assist the selective cooperation between CDPs (two 

CDPs are considered correlated when their selected trees happen to correlate by sharing 

outgoing interface(s)); 2) TOPOLOGY table to store the IDs of the outgoing interfaces 

of the CDP’s selected trees and the related control information (e.g., interface capacity, 

reserved and used bandwidth, etc.); 3) VOPRS table to store the VOPR of each selected 

tree for each CoS on each outgoing interface on the tree; and 4) SESSIONS table to 

store the characteristics and QoS requirements of flows composing admitted sessions. 

 Admission Control (AC) to accept or deny a service request depending on the service 

requirements and network resource availability. 

 Synchronization Control (SC) for the cooperation between CDPs to assure a proper 

synchronization of topology and the related links’ resource status through the concept of 

VOPR. 

 Resource Control (RC) responsible for the QoS over-reservation decisions and the 

dynamic readjustment of the reservations upon need. 
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 Basic Functions (BF) such as packet forwarding, QoS reservations and multicast trees 

enforcement, failure events reports, and interaction with legacy control functions (e.g., 

packet schedulers, buffer management, etc.). 

These features are implemented in software agents classified as ACOR-Edge (ACOR-E) and 

ACOR-Core (ACOR-C). The ACOR-E is a statefull agent embedded in each ingress and egress 

node (i.e., CDP), and therefore, implements all the components such as NetCIB, AC, SC, RC and 

the BF components as depicted in Figure 4.1. The ACOR-C is a lightweight-state agent embedded 

in all core nodes and implements the BF component, seeking to react upon ACOR-E decisions 

enforcement requests, to assure packets forwarding, operations feedback (successful/unsuccessful) 

or failure reports. As in Figure 4.1, the focus of this Thesis is on a single control domain which is 

not limited to Autonomous System, but can be defined by the network administrator (e.g., a cluster 

or an area as in OSPF-based domains [4]). This assumes that each domain can deploy its own 

control model, and inter-domain connections can be assured in many different ways (e.g., using 

SLAs/SLSs) depending on specific design objectives and control policies. In this sense, we use 

Figure 4.2 to show a larger ACOR-enabled network spanning three different control domains. Each 

domain deploys multiple border nodes which embed the ACOR-E, while the core nodes implement 

the ACOR-C agents. Moreover, the domains inter-connect through redundant links, which is 

important to improve robustness and availability in networks. 

 
Figure 4.2. Illustration of large ACOR enabled network scenario. 
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The ACOR operations are divided into network initialization and network running phases and 

are described in the following. 

4.1.1 ACOR Operations at Network Initialization Phase 

In order to ease the understanding, our description is illustrated using Figure 4.3. We consider 

that each interface in the network has a capacity (C=1Gpbs), and implements one dedicated 

Control Class for control packets and k  service CoSs (we use 3 classes as example, such as one 

EF, one AF and one BE CoS [234]). Considering the integration of ECOR for the resource control, 

we allocate a fixed amount of bandwidth (b=1Mbps) to the control CoS and assign a weight 40%, 

30% and 30% to the EF, AF and BE CoSs, respectively. The term CoS will be used to refer to a 

service CoS, unless if it is indicated as a control CoS or CS. The ACOR initialization functions are 

divided into two parts: 1) Initial Resource Control and Basic Functions which assure the 

bandwidth-aware multicast trees creation and the selection of the best trees as in step (a) in Figure 

4.3; 2) Initial Synchronization Control Functions by which the CDPs exchange initial control data 

as in step (b), and build initial knowledge of the network and related resources, as being, the 

NetCIBs creation in step (b). Further details are provided in the following. 

4.1.1.1 Initial Resource Control and Basic Functions 

To assure a dynamic initialization and adaptation of the network as nodes (e.g., CDPs or core 

routers) boot up, each node publishes its presence with its connection information (e.g., list of 

neighboring nodes) using a flooding mechanism. Flooding approach is preferred for a fast and 

reliable notification of presence to all CDPs inside a network (similarly to the OSPF [4]). This way, 

each CDP is able to realize when a node boots up or when all nodes have booted up, so as to 

maintain a consistent view of the network. 
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Figure 4.3. Illustration for ACOR operations. 

After all nodes have booted up, the RC module exploits the ACOR-P signalling protocol 

described in section 4.2, and discovers all possible edge-to-edge routes from itself to each CDP 

inside the network using a flooding-based technique similar to the approach in [236]. In particular, 

it creates a signalling message and sends it down the network through each of its interfaces except 

the inter-domain interfaces. The information carried in the message includes the weights assigned 

to each CoS, the amount of bandwidth b dedicated to the control CoS, the ID and the capacity of 

the interface through which the message is sent. Notice that the interface ID collected must be 

stable and unique during the whole network operations for control stability, and may be the IP 

address configured on the interface, the interface Medium Access Control (MAC) address or the ID 

of the node. Hence, when visited by a message, any node implementing the BF functions retrieves 

the information carried in the message and enforces the reservation b of the control CoS, and the 

initial over-reservations for each CoS on each of its interfaces Ie using the equation (3.14). After 

that, the node records the ID of the previous node visited by the message in its local MRIB to avoid 

asymmetric routing in the reverse direction. Then, it forwards a copy of the message on each of its 

interface (except the one on which it was received) after appending the capacity and the ID of the 

interface to the Route Record Object carried in the message. A node does not append its initial 

reservations parameters for simplicity, the CDPs computes them since they include the functions of 

the core nodes and the interfaces capacities are collected. Every node is enabled to discard loop 

messages by checking the list of interfaces’ IDs carried in each message, and the initial reservations 

are also enforced only once to avoid duplications. This process is repeated on every node visited 

until a message is received by a remote CDP.  
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Hence, when a CDP receives a message which was not initiated by itself, it creates a 

corresponding response message and sends it back in the reverse route to the CDP which initiated 

the message. A response message carries the information collected by the original message, such as 

the list of interfaces’ IDs and the corresponding list of capacities. This way, a CDP creates and 

collects key information on all the possible routes from itself to other CDPs inside the network. 

Afterwards, the CDP assigns a multicast channel per route and signals the latter to enforce the 

channel, thus transforming each route into bandwidth-aware multicast tree (with the initial over-

reservations configured). After a CDP has created all its possible trees, the QoS-aware trees, it 

selects the best trees which can be exploited for sessions transport during the system running time. 

For simplicity in this Thesis, a CDP selects its trees based on the number of hops and the available 

bandwidth on the bottleneck outgoing interface of the tree. To improve system throughput and 

resource utilization, a CDP is allowed to maintain multiple trees and the remained trees are kept for 

use upon need for system robustness. However, for simplicity in this illustrative description using 

Figure 4.3 in step (a), a CDP simply selects a single unbranched tree to connect each of the remote 

CDPs.  

4.1.1.2 Initial Synchronization Control Functions 

The initial synchronization functions mainly enable each CDP to build its knowledge of the 

initial status of the network. For this purpose, after a CDP has selected its useful trees, it invokes 

the initial Synchronization Functions to advertise other CDPs about its selected trees IDs, and to 

advertise the non-selected also with the list of outgoing interfaces on each tree. This way, the CDPs 

exchange their trees and the related key information in step (b) on Figure 4.3, thus allowing every 

CDP to be aware of all trees created (selected and non-selected) in the network. Then, every CDP 

builds its own NetCIB control database to store network topology and appropriate control data (see 

step (c) on Figure 4.3). A CDP stores its own selected trees and the related control information in 

the TREES table (see Table 4.1) in its NetCIB. This information includes the trees indexes, the 

multicast channel of each tree (to mark packets merged on a tree), and the list of interfaces IDs on 

each tree. The TREES table stores also the total amount of bandwidth that the CDP grants to all 

active flows in each CoSi on each of its tree Tx, denoted as  ,BW xU i T . In addition, it stores a list of 

correlated CDPs for each tree, which indicates the CDPs whose trees happen to share outgoing 

interfaces with that particular tree. As we referred earlier, the list of correlated CDPs of a tree is 

very important, since it allows a selective cooperation among CDPs for dynamically minimizing 

the overhead: the resource status on the outgoing interfaces of a given tree is exchanged among the 

correlated CDPs only.  

Besides, the CDP records the outgoing interfaces IDs of its selected trees and related key 
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control information in its TOPOLOGY table (see Table 4.2). This information includes the 

interface’s ID (e.g., Ie), interface capacity, the interface sharing factors (number of selected trees 

that use the interface), the amount of bandwidth reserved for each CoSi on each interface Ie, 

denoted as  ,BW eR i I , the total amount of used bandwidth in each CoSi. The IDs of the selected 

trees that use the interface are also recorded together with the ID of the CDP to which the tree 

belongs, which is the Tree Correlations Pattern on the concerned interface. 

               Table 4.1. TREES table. 

 

Table 4.2. TOPOLOGY table. 

 

Finally, the VOPRS table (Table 4.3) is used to store the VOPR of each of the CDP’s selected 

tree for each CoS on each outgoing interface composing the tree. A VOPR in a CoSi for a tree Tx on 

an interface Ie,  , ,e xVopr i I T , is a share of the reserved bandwidth on the CoSi for the tree Tx on 

that interface, and is given by: 

 
( , ) ( , )

( , , ) ( , )
( )

BW e BW e
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(4.1) 

where  ,BW eR i I  is the current reservation of the CoSi on the interface Ie, Factor(Ie) is the sharing 

factor of Ie which is the number of trees that share Ie (see Table 4.2),  ,BW xU i T  is the sum of the 

amount of bandwidth  f

i xr T  granted to each active flow f mapped in CoSi onto the path Tx (see 

Table 4.1), and  ,BW eU i I  is the total amount of bandwidth granted to the active flows (on all 



 

102 

 

trees) in the CoSi through Ie (see Table 4.2). Hence,  ,BW xU i T  and  ,BW eU i I  are respectively 

obtained using the following equations (4.2) and (4.3): 
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where m is the total number of trees that use the interface Ie and Φ is the total number of flows 

mapped in CoSi onto each path Tx.  

Therefore, a CDP can admit multiple flows in a CoSi on a tree Tx without requiring 

synchronization as long as the related VOPR is available. As a result, the VOPR concept provides 

means to hide cross-traffic loads dynamics from remote CDPs, while sharing resources and allows 

for improving performance. To prevent CoS starvation and waste of VOPRs, the SC functions are 

responsible for dynamically readjusting the VOPRs in a way that properly redistributes the 

allocated but unused VOPRs in correlated trees upon need, as we further detail in subsequent 

subsection.  

           Table 4.3. VOPRS table. 

 

4.1.2 ACOR Operations at Network Running Time 

The ACOR operations at network running time consist on the interactions between the ACOR 

components to assure proper session admission, and the transport in a network with QoS 

guarantees, and at low control cost in terms of signalling and related overhead reduction without 

incurring in QoS violations or waste of bandwidth. The resource and admission process of ACOR 

can be classified into two phases based on the VOPR availability: 1) Resource and Admission 

without Signalling Phase (RAoutS), consists of processing sessions without synchronization or 

QoS reservation signalling into the network as long as requested VOPRs are available in the 

network; 2) Resource and Admission upon Signalling Phase (RAuS), which encompasses four 

steps: a) Tringgering Synchronization, which triggers cooperation between CDPs for 

synchronization; b) Successful Admission without Reservation Signalling; c) Successful Admission 
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upon Reservation Signalling; and d) Unsuccessful Admission, where thre request is denied due to 

insufficient resource availability. To facilitate the understanding, the subsections 4.1.2.1, 4.1.2.2, 

and 4.1.2.3 describe these operations with respect to the AC, SC, and RC and BF components 

respectively, based on Figure 4.4. 

4.1.2.1 Admission Control Functions  

When an ingress CDPA receives an authorized multicast session request 
ir  to a CoSi and 

destined to a given egress CDPB in the control domain (see Figure 4.4), the CDPA processes the 

flow admission control (Phase I) as in the following. First, it collects the candidate trees of the 

incoming request, being its own trees that connect to the desired egress CDPB. Then, among the 

candidate trees, it selects the one (e.g., Tx) which has the highest available VOPR denoted as 

 ,Vopr xA i T , that is, (  ,i Vopr xr A i T ). It is important to note that an available VOPR  ,Vopr xA i T  of 

a CoSi (1 i k  ) on a tree Tx is the amount of VOPR of the tree which has not been allocated to 

any flow on its bottleneck outgoing interface, and is obtained using the following function:  

     ( , ) min , , ,Vopr x e x BW xA i T Vopr i I T U i T   (4.4) 

where Ie is an outgoing interface on the tree Tx,  , ,e xVopr i I T  is obtained from equation (4.1), and 

 ,BW xU i T  is obtained using the equation (4.2). 

If the admission is successful (  ,i Vopr xr A i T ), CDPA maps the request to the CoSi on that tree 

Tx without synchronization or reservation readjustment signalling event. The same way, a CDP 

does not trigger synchronization or reservation readjustment signalling event when it 

releases/terminates an active flow from a CoSi on a tree Tx. Hence, after admitting a new flow or 

releasing an active flow in a CoSi on a tree Tx, a CDP updates the used bandwidth statistics 

 ,BW xU i T  of the concerned CoSi and tree Tx in its NetCIB, according to the used bandwidth of the 

flow, that is, (    , ,BW x BW x iU i T U i T r  ) – (see Table 4.1.)  
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Figure 4.4. Illustration of ACOR messages sequence chart. 

In addition to updating the local database, traffic conditioning (e.g., flows shaping and 

policing) is enforced at each ingress CDP, thus forcing active flows to comply with the contracted 

behavior during QoS negotiation control. Also, the packets of each admitted session are pinned to 

the multicast tree mapped to the session, so that they enjoy the QoS destined to them on the tree, 

while allowing the CDPs to maintain consistent data information at the edge without excessive 
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signalling into the network. Thus, each CDP maintains information of the available VOPRs in each 

CoS on every outgoing interface in real-time based on equation (4.4) (    , , ,e x BW xVopr i I T U i T ) 

to avoid QoS violation and waste of resources.  

However, in case the VOPR is insufficient on the bottleneck outgoing interfaces of all its 

candidate trees (  ,i Vopr xr A i T ) using the equation (4.4), the operations Phase II (see Figure 4.4) is 

triggered as it is detailed in the following. 

4.1.2.2 Synchronization Control Functions 

The synchronization control functions are triggered in step (a) in Figure 4.4 uon the requested 

VOPR exhaustion so that the network overall resource status of each CoS can be properly updated 

to prevent VOPR starvation or waste of resource. To this end, the CDPA collects the correlated 

CDPs (e.g., CDP1 and CDPY) of the candidate trees from its TREES table (see Table 4.1) and 

advertises the latter with the IDs of the candidate trees in a control message. This way, every CDP 

exploits the list of correlated CDPs dynamically to assure selective cooperation. Then, each remote 

CDP retrieves the common interfaces between its own and the candidate trees conveyed in the 

message based on the tree correlations patterns in its TOPOLOGY table (see Table 4.2). Let h be 

the number of interfaces stored in the TOPOLOGY table, m the number of candidate trees, and 

LPattern(Ie) the list of trees’ IDs which compose the correlations pattern on a given interface Ie. Thus, 

given two integers e and x, the process can be the following: 

 

This way, each CDP obtains a list of the common interfaces, together with the IDs of own 

correlated trees per interface. After that, it sets the own correlated trees on the common interfaces 

to Standby Mode. The Standby Mode is a means to carefully prevent admitting new flows on a tree 

when the resource reservation parameters are being readjusted on the interfaces that belong to the 

tree, which is important to avoid QoS violation. Hence, it affects only the requests that see VOPR 

exhaustion on their desired trees; otherwise, the requests are processed without signalling as 
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explained earlier in subsection 4.1.2.1. After that, the CDP computes the aggregate used bandwidth 

 ,AggrBW eU i I  of its own trees in each CoSi on each common own interface Ie, the aggregate used 

bandwidth on Ie, as: 
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  (4.5) 

where, m’ is the number of the own trees that share the common interface Ie.  

Then, the CDP encapsulates its aggregate used bandwidth in each CoS in a control message, 

and sends it to the CDPA which initiated the synchronization. Thus, the CDPA collects the 

aggregate used bandwidth statistics of every correlated CDP on the outgoing interfaces of the 

candidate trees, and therefore computes the total amount of used bandwidth in each CoS on each of 

the interfaces. Then, it updates the total used bandwidth statistics of the interfaces in its 

TOPOLOGY table accordingly. Afterwards, it triggers the AC functions in step (b) to process the 

incoming requests. AC first checks the available reservation  ,RservBW xA i T  (the over-reserved but 

unused) in requested CoSi on the bottleneck interfaces of the candidate trees as: 

 ( , ) min{ ( , ) ( , )}RservBW x BW e BW eA i T R i I U i I   (4.6) 

where Ie is an outgoing interface on a candidate tree Tx.  

Thus, in case the admission succeeds on a candidate tree (  ,i RservBW xr A i T ), the CDP admits 

the flow on the candidate tree which has the highest available over-reservation (load balancing) 

without QoS reservation readjustment on any candidate tree.  

After the flows have been admitted, CDPA updates the used bandwidth statistics in requested 

CoSs on the used tree(s) in its TREES table, according to the amount of the bandwidth granted to 

the new flows 
ir . Besides, it updates in its TOPOLOGY table the total amount of used bandwidth 

statistics of the requested CoSi on each outgoing interface, which lies on the candidate tree(s) used 

for the admission. Also, it updates the VOPRs of each CoSi on each outgoing interface that belongs 

to the candidate trees used to admit the flows, in its VOPRS table (see Table 4.3) using the equation 

(4.1). Finally, CDPA encapsulates the updated total used bandwidth statistics of each CoSi on the 

outgoing interfaces of the candidate trees used to admit flows in control messages, and sends them 

to each of the other correlated CDPs. Hence, each remote CDP also updates its local database 

accordingly and resets its correlated trees to Normal Mode. Finally, it acknowledges CDPA of the 

receipt of the message. This way, CDPs are enabled to selectively cooperate in a way to properly 

update their local databases upon need to avoid QoS violations and VOPR resource starvation.  
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However, in case the admission control cannot succeed using the function in equation (4.6), the 

CDP triggers the RC functions in step (c) to allow for readjustment of the residual bandwidths 

among CoSs to avoid CoS starvation, waste of resources and unnecessary increase of session 

blocking probability. The RC functions are detailed in subsection 4.1.2.3. 

It is also assured a proper process of synchronization when several CDPs happen to trigger 

synchronization events simultaneously over the same correlated trees, through a unique priority tag. 

In case several events show incoming requests with the same priority, the CDP with the smallest ID 

is automatically elected.  

4.1.2.3 Resource Control Functions  

When the RC funtions are invoked in step (c) in Figure 4.4, the candidate trees to process are 

set to Standby Mode. Then, RC component implementing ECOR algorithm computes the total 

unused bandwidth  ,T b xI T  on the bottleneck outgoing interface Ib of each candidate tree Tx as: 
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    (4.7) 

where  ,BW eR i I  and  ,BW eU i I  are respectively the reservation and used bandwidth of each CoSi 

(1 i k  ) on each outgoing interface Ie which lies on the tree Tx. While expression (4.6) provides 

the smallest amount of unused bandwidth in a CoSi along a tree Tx, the expression (4.7) refers to 

the smallest amount of the total unused bandwidth (of all CoSs) on the outgoing interfaces that 

belong to a tree Tx. 

In case the function in equation (4.7) succeeds (  ,i T b xr I T  ) on a candidate tree Tx, the CDP 

selects the tree Tx which has the highest unused resources on its bottleneck outgoing interface, and 

ECOR algorithm is triggered to define new reservation parameters for each outgoing interface Ie on 

the selected tree Tx. Hence, besides ECOR, any over-reservation algorithm (e.g., COR or MARA 

detailed in Chapter 3) could be thus deployed to compute new reservation parameters in ACOR. 

This way, ACOR obtains new reservation parameters for every CoS on each outgoing interface 

of a tree based on the resource conditions on the interface itself. Once the new reservation 

parameters are successfully defined, they are encapsulated in appropriate QoS objects inside a 

reservation control message and conveyed to the nodes on the tree. Hence, as the message is 

travelling along a tree, each node, hosting the Basic Functions, intercepts the message and retrieves 

the parameters destined to its local outgoing interface on the tree. Then, the node enforces the new 

configurations on the interface accordingly, so that each CoS receives the amount of resources 

allocated to it. Then, the egress CDPB creates a response message and acknowledges the ingress 
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CDPA which initiated the reservations. After that, the AC functions are triggered and CDPA admits 

the request and updates the used bandwidths in its TREES and TOPOLOGY tables. After that, it 

updates the VOPRs of each CoS on each of the interfaces that compose the candidate tree(s) 

readjusted, and resets its candidate paths and the correlated ones to Normal Mode. Finally, the SC 

module is triggered to encapsulate the updated used bandwidth, and the new reservations of each 

CoS on the outgoing interfaces that compose the candidate trees. 

If the incoming flow request cannot be admitted on any candidate tree (  ,i T b xr I T  ), the 

network is said to be congested, and CDPA denies the request. In this case, CDPA resets its 

candidate trees and the correlated ones to Normal Mode and acknowledges the correlated CDPs. 

Hence, upon receiving the acknowledgement, each CDP resets its correlated trees to Normal Mode 

and acknowledges the CDPA, and the control process resumes to normal. The signalling protocol 

developed to support the mechanisms designed in this Thesis is described in the following section 

4.2. 

4.2 ACOR Control Signalling Protocol 

The ACOR-P is an NSIS compliant signalling protocol, which provides support for the overall 

control mechanisms designed in this Thesis. In particular, ACOR-P extends the generic 

functionalities of the QoS-NSLP signalling protocol with specific control parameters, QSPECs, 

Synchronization Context Information Specification (CXT_SPEC) objects, and appropriate message 

processing rules to achieve proper operations of the ACA described in Chapter 3 and the ACOR in 

this chapter, for example. The main objective of this section is to provide an overview of the 

ACOR-P common objects, the QoS and synchronization control object specifications, including the 

message structures and transport mechanism, knowing that further detailed on the message fields, 

format, and types and values are provided in appendix. 

4.2.1 ACOR-P Common Objects 

In terms of control signalling message fields and objects, ACOR-P reuses the Common Header, 

detailed in QoS NSLP [123], in order to define message type and the general control specification 

flags. It also uses the Request Identification Information (RII) object to properly associate a 

response message to its corresponding original (e.g., reserve) message, since the message type 

uniquely identifies each particular message. Further, the Record Route Object (RRO) is exploited 

to collect sequential list of the visited nodes’ IDs (e.g., IP or MAC addresses of the nodes’outgoing 

interfaces) on the communication paths (e.g., in ACA and ACOR initialialization phase). To 

properly report feedback on control operations (e.g., error, failures, etc.), the Information 
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Specification object (INFO_SPEC) has been extended while multicast operations are supported by 

means of the Multicast Specification (MSPEC) object introduced in [125]. The NSLP QSPECs 

objects detailed in [123] have also been adapted according to the requirements of the QoS model 

designed in this Thesis (e.g., ACA and ACOR QoS Model). Further, ACOR-P introduces 

CXT_SPEC objects to provide support for dynamic synchronization between CDPs, scalable QoS 

and survivability control. The QSPEC, CXT_SPEC, Message structures and message transport are 

introduced in the following. 

4.2.1.1 QSPEC Specification 

The QSPEC object is used to carry the QoS information required on each relevant outgoing 

interface on trees to assure the QoS provisioning approach proposed in this Thesis. As one can see 

in Figure 4.5, an ACOR-P QSPEC is tagged with the ID of the interface to which the QoS 

parameters carried are destined. This is very important in our designs, since the QoS control on an 

interface depends on the resource conditions on the interface, and one message may convey 

different information to different nodes along a tree. Hence, as a message is travelling along a tree, 

each node on the tree is enabled to intercept it, and to retrieve the object destined to its local 

interfaces so as to take proper processing actions accordingly. Basically, an ACOR-P QSPEC 

object contains a common header, the ID of the corresponding outgoing interface, along with the 

appropriate QoS objects (e.g., QoS desired, QoS available, etc.). As it is specified in QoS-NSLP 

protocol, each QoS object is composed of an object header and the object parameters, while each 

parameter consists on a parameter header and the parameter itself, respectively as illustrated in 

Figure 4.5. Further details on the fields and format are provided in the appendix B. 

 
Figure 4.5. ACOR QSPEC structure. 

4.2.1.2 Synchronization Context Information Specification (CXT_SPEC) 

The synchronization CXT_SPEC object, illustrated in Figure 4.6, provides support for the 

synchronization and survivability control mechanisms designed in this Thesis. As being an NSIS 

compliant protocol, the CXT_SPEC object uses the same Type Length Value (TLV) format as the 

QSPEC object, and each CXT_SPEC object (e.g., VOPR, Survivability) has a common header 
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along with the CXTSPEC objects. For example, the VOPR object is used to convey the information 

exchanged between CDPs for the purpose of synchronization, while the Survivability object is used 

in the context of network survivability control as in Chapter 6. This way, each CXTSPEC object is 

composed by its own Object header and the context information parameters to be exchanged 

between CDPs. Further, each context parameter is made of the parameter itself together with the 

parameter header which structure is further described in appendix B. 

 
Figure 4.6. ACOR CXTSPEC structure. 

4.2.2 ACOR-P Signalling Message Genercic Structure 

A generic structure of the ACOR-P control message is illustrated in Figure 4.7. In particular, it 

reuses some of the generic functionalities provided by QoS-NSLP [123] such as Common Header 

(to define message type and general control specification flags), Message ID (to uniquely identify 

messages), the Request Identification Information (to correctly associate a response message to the 

original message), and information specification (to report feedback about control operations). In 

addition, a control message (e.g., reserve message, synchronization message, response message, 

etc.), identified by the message type, may carry specific control information according to the 

operations in course. This information includes Initiator QoS Specification (to describe original 

traffic and QoS characteristics from media source), Local QoS Specification (converted Initiator 

QSPEC into local QSPEC in heterogeneous QoS Models environment). A message may also carry 

Multicast Channel Specification to be enforced on routes for media transport, Record Route Object 

as topological and route information, while the Synchronization Context Information Specification 

is used to assure proper decentralization of the control. For the sake of simplicity, we only define 

two types of messages: REQUEST message which is used to initiate a communication, and the 

RESPONSE message which is used as the corresponding feedback. Hence, different message types 

(e.g., QoS reservation, synchronization, survivability, multicast tree control, etc.) are identified by 

means of appropriate control flags. 
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Figure 4.7. ACOR-P messages generic structure. 

4.2.3 ACOR-P Signalling Message Transport 

As we illustrate in Figure 4.8 using the ACOR architecture described in this chapter, ACOR-P 

messages are transported in UDP datagram with UDP port recognition in routers (as routers are 

permanently listening on UDP port), or Router Allert Option (RAO) [122] is activated which 

allows routers for capturing the control messages. It is assumed that reliability of the control 

messages transport is assured, since all control packets are mapped to bandwidth-aware and 

dedicated control CoS, and a feedback is expected for all control messages. In this sense, Figure 4.8 

illustrates the transport of a QoS reservation message from an ingress node to an egress node inside 

a single network control domain, where the CDPs at the edge are connected to external users 

represented by a media source and a media destination. Hence, the ingress node generates a QoS 

reservation message, encapsulates it in a UDP datagram in step 1, and sends it down the network in 

step 2. When the message is captured by a core router in step 3, the latter interprets and processes 

the message according to the control instructions conveyed in the message. Afterwards, the 

message is encapsulated in step 4 and forwarded in step 5. This procedure is repeated at every 

visited core node until the message is received by the egress node in step 6. Hence, after processing 

the message, the egress node encapsulates the corresponding response message in step 7, and sends 

it back in step 8 to the ingress node which initiated the process. Then, the message is forwarded as 

in step 9 until it is received by the ingress node in step 10. 

 
Figure 4.8. ACOR-P messages transport. 

The subsequent section provides analytical model for generic purpose assessment of ACOR, 

especially the influence of various control parameters (e.g., sessions, dynamics, link capacity, etc) 

on the performance of resource overprovisioning approach in general.  
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4.3 ACOR Analytical Model  

Figure 4.9 is used to illustrate bottleneck scenarios and to provide analytical model of the 

proposed approach. For this purpose, it is assumed that m trees (T1, … , Tx, … , Tm) originated 

respectively from the CDP1, … , CDPX, … , CDPZ happen to share a bottleneck outgoing interface 

Ib in a network. Besides, it is considered that each interface in the network has a capacity C and 

implements k CoSs (e.g., EF, AF and BE) and one control CoS. 

 
Figure 4.9. Topology for analytical study. 

In order to facilitate the understanding of this study, Figure 4.10 illustrates the description using 

a bottleneck outgoing interface of a node A towards a node B. 

 
Figure 4.10. Proposed control model. 

Hence, the m trees (T1, …, Tx ,…, Tm) share the interface (A B), and an amount of bandwidth 

 ,BW bR i I  is over-reserved for each CoSi with (1 i k  ) on the interface. Flow connection 
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requests to a CoSi on the trees that use the interface (A B) are Poisson processes with rate λi, and 

the requests to a CoSi on a given tree Tx that use the interface (A B) are Poisson processes with 

rate λi,x such that:  

 ,

1

m

i i x

x

 


  (4.8) 

4.3.1 ACOR Synchronization Control Model 

By considering that m trees share a bottleneck interface Ib (AB) as in Figure 4.10, the surplus 

or available VOPR  ,Vopr xA i T  of a CoSi for a given tree Tx with (1 x m  ) within a given surplus 

of over-reserved bandwidth  ,BW bR i I  on the interface is obtained by:  
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  (4.9) 

Thus, the total number n of sessions that an available VOPR  ,Vopr xA i T  of a CoSi can 

accommodate simultaneously without requiring synchronization event for a given tree Tx sharing 

the interface can be obtained by: 
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Therefore, an available VOPR  ,Vopr xA i T  of a CoSi for a given tree Tx is characterised by: 

 n possible sessions slots of a mean bandwidth ir  each are over-allocated for each tree Tx in 

CoSi as  ,Vopr xA i T  within  ,BW bR i I ; 

 Session requests to a CoSi on a tree Tx are Poisson processes with rate λi,x; 

 Session’s lifetime is exponentially distributed with mean τ; 

 Session requests arrival process is independent of the session lifetime (service time); 

 An available VOPR  ,Vopr xA i T  can only accommodate n sessions simultaneously without 

requiring synchronization. 

The VOPR control approach is then modelled as an M/M/n/n queuing system as depicted in 

Figure 4.10. Thus, the probability
,i xP that the available VOPR  ,Vopr xA i T  of a tree Tx in a CoSi 

exhausts to trigger synchronization is the probability that an incoming request to the CoSi on the 
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tree Tx finds all the n “VOPRed sessions” slots occupied. Therefore, it can be obtained using Erlang 

B formula as: 
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 (4.11) 

From the equations (4.9), (4.10), (4.11), one can see that the frequency of synchronization 

events depends on several parameters such as interfaces’ capacity C, resource utilization level, 

mean bandwidth ir  allocated to each session, session requests arrival rate λi to a CoSi, session 

requests arrival rate λi,x to CoSi on the tree Tx sharing the bottleneck interface, session mean lifetime 

τ, the number of CoSs implemented on interfaces, and the number of trees that share the bottleneck 

interface. It also depends, as we observed in Chapter 3, on the over-reservation algorithm in use 

(COR, ECOR or MARA). 

4.4 Performance Evaluation  

The benefits of ACOR control mechanism (ACOR architecture embedding ECOR – 

ECOR/ACOR) were evaluated through analytical study and simulation analysis using the ns-2. To 

compare results, we embedded the resource over-reservation computation algorithms of COR and 

the competing state-of-the-art MARA in the ACOR RC module described earlier in section 4.1, 

thus allowing each of the algorithms to benefit from the ACOR Admission and Synchronization 

Control functions to prevent QoS violation. Hence, while ACOR refers to the ACOR architecture 

embedding ECOR algorithm, the terms COR and MARA will be used to refer respectively to 

ACOR architecture embedding COR and MARA algorithms, in order to ease the understanding of 

our description in the rest of this section. Regarding the analytical results using the over-reservation 

algorithm of COR, ECOR and MARA, our analysis bases on the same assumption detailed in 

Chapter 3 - section 3.5.1 and therefore will not be repeated here.  

4.4.1 Analytical Results  

Based on the configurations in Table 4.4, Figure 4.11 plots the probability of both the 

synchronization and the reservation signalling events occurrence as a function of network 

bottleneck interface’s resource utilization level on communication trees. The reservation results are 

obtained using the over-reservation control model and assumptions described in Chapter 3. 
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                     Table 4.4. Configuration parameters for resource utilization level scenario. 

m = 3 Bottleneck interface sharing factor 

k = 3 Number of service CoSs implemented on the interface 

r  = 1 Mean bandwidth requested by each session (Mbps) 

μ = 1/4 Mean service rate per session (requests/time unit) 

λi = 20 Session requests arrival rate to a CoSi (requests/time unit) 

λi,x = 9 Arrival rate of session requests to a CoSi on a tree Tx 

C = 1000 Interface capacity (Mbps) 

 

As one can see in Figure 4.11, the increase in the unused session slots on the bottleneck 

interface of a tree decreases the probability of signalling occurrence. The probability of 

synchronization events is higher than that of reservation events, as expected according to equations 

(3.19) and (4.10) respectively. Hence, by allowing for over-reserving as much resources as a CoS 

requires and efficiently reusing the residual resources among existing CoSs dynamically to prevent 

waste of resources, ACOR outperforms both COR and MARA in terms of probability of signalling 

events occurrence. Both COR and MARA over-reserve a relatively small portion of unused 

resources each time in order to reduce performance’s negative impacts, since they were not 

designed with ACOR’s knowledge of network topology and related links resource statistics on real-

time basis. Besides, MARA is subject to high probability of signalling when Q is smaller than 400, 

i.e. network is close to congestion, and shows different behavior when Q is higher than 400, in the 

lower network utilization phase; the same reasons to which we referred in Chapter 3 are applied 

here. One can also notice that the ACOR reservations are “Not a Number - NaN” when the number 

of unused slots is 571 or 666 (too high), which implies that resource control would not be necessary 

if link bandwidth were unlimited. 

 
Figure 4.11. Effect of resource utilization level on overall signalling frequency. 
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Figure 4.12 analyses the effect of session lifetime (e.g., short-lived, long-lived, etc…) and the 

suitability of resource over-reservation in dynamic network scenarios. In order to clearly observe 

the effect of session lifetime on performance in terms of signalling occurrence rate, we increase 

session arrival rates, the number of CoSs and set the number of free slots to 666 as summarized in 

Table 4.5. 

                  Table 4.5. Configuration parameters for sessions lifetime scenario. 

m   = 3 Bottleneck interface sharing factor. 

k    = 8 Number of CoSs implemented on the interface. 

r   = 1 Mean bandwidth requested by each session (Mbps). 

λi   = 70 Session requests arrival rate to a CoSi (requests/time unit). 

λi,x = 40 Arrival rate of session requests to a CoSi on a tree Tx. 

C   = 1000 Interface capacity (Mbps). 

Q   = 666 Interface utilization level. 

 

Hence, we observe in Figure 4.12 that, in a scenario where most of sessions are short-lived (the 

higher the service rate, the shorter the lifetime), the probability of signalling occurrence is lower 

than when sessions’ lifetime increases. This shows that short-lived sessions leave the reservations 

more quickly, and these reservations can be reused for accepting other incoming requests without 

signalling the network. 

 
Figure 4.12. Effect of sessions lifetime on overall signalling frequency. 

Further, Figure 4.13 analyses the impact of interface sharing factor on the performance. In 

particular, the probability of synchronization events occurrence increases with the number of trees 

that share bottleneck interfaces. The higher the number of trees on a bottleneck interface, the more 

synchronization may be required depending on traffic dynamics on the trees. Besides, it is 
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important to notice that the interface sharing factor does not affect the reservation signalling events, 

since reservations are aggregate, and therefore, the readjustment depends on resources exhaustion 

on the classes. These results could be inferred from equations (3.19) and (4.10). It turns out that 

appropriate tree filtering techniques allow for further reduction of synchronization events, as 

described earlier in section 4.1. 

 
Figure 4.13. Effect of interface sharing factor on signalling frequency. 

We analyse also the number of session requests that may be blocked unnecessarily while there 

are enough unused session slots on the bottleneck interface of a requested tree, and observe the 

same results as in Figure 3.10 in Chapter 3. In particular, we observe, as in Figure 3.10 that, neither 

COR nor ACOR blocked any request when there is a free slot, confirming the study in subsection 

4.1: COR and ACOR are able to use the sum of residual resources from all existing CoSs to allow 

for admission of incoming requests until the total unused resources are not enough. However, 

MARA denied several requests unnecessarily as it is not able to collect all residual resource from 

existing CoSs, which is crucial when links are close to congestion. These results are confirmed 

with the simulation results in Figure 4.18.  

In summary, we show that it is effectively possible to achieve dynamic aggregate 

synchronization of multiple control decision points, by means of the VOPR, thus allowing for 

distributed control in multicast networks, keeping low overall signalling overhead. In general, the 

more resource is over-reserved for a CoS, the less likely the CoS triggers signalling. However, this 

must be carefully controlled to prevent waste of bandwidth, which strongly requires a good view on 

real-time basis of underlying network topology and the related resource status in each CoS. 
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4.4.2 Simulation Results 

In order to obtain results in dynamic and larger scenarios, the over-reservation mechanisms and 

corresponding architectures were developed in the ns-2 [233]. The simulations were carried out 

using 4 randomly generated topologies (number of ingress routers ranging from 3 to 6; core 

routers: 5 to 15, egress routers: 3 to 6) with different degrees of correlations on the links. One of 

the simulated network topology is presented in Figure 4.14. The obtained results are therefore the 

mean results of all seeds and topologies. 

 
Figure 4.14. Example of simulation network topology. 

For simplicity, configurations of CoSs and network interface capacity, and the generation of 

traffic types and session requests are implemented as in subsection 3.5.3 in Chapter 3 

The network overall resource utilization (%) in each simulation results’ figure is obtained as a 

mean of the resource utilization level on the bottleneck interfaces of all trees inside the network. 

The studied metrics include the QoS reservation signalling, the synchronization signalling, the 

signalling events and load reduction of ACOR in relation to both the COR and MARA, and the 

unnecessary blocking. To show more accurate results, each simulation is run 10 times with different 

seeds of random mapping of requests to CoSs, CDPs and egress routers, for each topology. Then, 

the mean values are plotted for all topologies with a confidence interval of 95%. 

Figure 4.15 plots the number of the reservation (Reserv.) and synchronization (Sync.) 

signalling events and Figure 4.16 plots the corresponding amount of signalling messages load. The 

messages load is obtained based on the ACOR-P described in section 4.2, which was developed for 

the overall control mechanism described earlier in section 4.1. As one can see, the reservation 

signalling events number is lower than that of the synchronization events. More importantly, 

ACOR clearly outperforms COR and MARA by keeping significantly lower signalling events 

number and messages load, which confirms our analytical results in sub-section 4.4.1. 
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Further, we observe that certain data points are null (y = 0), and therefore, are not visible on the 

graphs due to the log scale plotting. In this sense, one can observe that, after the networks start to 

operate, synchronization events occur earlier than the reservation events. In particular, around 22% 

of network overall resource utilization level in Figure 4.15, COR and MARA were already 

triggering synchronization events, but without any reservation events by then. This demonstrates 

our two-layer control approach. On one hand, synchronization is triggered upon VOPR exhaustion 

to allow for proper resource sharing among multiple distributed control decision points. On the 

other, reservation events occur only when an over-reservation exhausts. 

Moreover, the simulation results show similar performance for COR and MARA in terms of 

number of signalling events and messages load as steadier results. Recall therefore that COR and 

MARA use the same methods (see equation (3.5) in Chapter 3) to compute surplus of reservation, 

which is determinant in these performances. Besides, Figure 4.15 and Figure 4.16 do not show a 

linear relation between the events and the load. Hence, it is important to mention that, the 

signalling messages triggered by two different signalling events (e.g., reservations) may not carry 

the same information (e.g., different number of hops on trees). 

 
Figure 4.15. Number of reservation and synchronization signalling events. 
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Figure 4.16. Reservation and synchronization signalling load. 

Figure 4.17 shows that ACOR is able to reduce the overall signalling events of COR and 

MARA of a percentage ranging between 9% and 100%, and the signalling messages load of a 

percentage ranging between 15% and 100%, depending on the network resource utilization level. 

The percentage of the load reduction is higher than that of the events reduction in general. As we 

stated earlier in this sub-section, the relation between number of events and load is not linear, as it 

depends on the amount of information carried by the control messages triggered upon each event. 

 
Figure 4.17. Total signalling events and load reduction of ACOR over COR and MARA. 

Figure 4.18 shows the number of session requests that each of the algorithms has denied when 

there were still sufficient unused residual resources on the bottleneck outgoing interfaces of the 

candidate trees, as studied earlier analytically and seen in Figure 3.10. Hence, provided that the 

total unused residual resources are sufficient on the bottleneck outgoing interface of a requested 
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tree, it is confirmed that neither ACOR nor COR blocks incoming requests, and therefore, they 

effectively avoid wasting resources unnecessarily. Besides, MARA does not deny incoming 

requests unnecessarily when the network is under very low resource utilization conditions. 

However, MARA blocks many of the requests (more than 500 requests), especially with the start of 

the network congestion period of time. As it is described earlier, this is due to the inherent 

limitations of MARA’s resource computation functions. Thus, it becomes apparent that ACOR is 

able to significantly reduce the overall control signalling overhead of the COR and the MARA 

without incurring unnecessary blockings or waste of resource, especially in dynamic scenarios with 

distributed network control decision points. 

 
Figure 4.18. Number of denied requests while there were enough unused resources. 

It is important to show that the ACOR control mechanism effectively supports differentiated 

QoS without QoS violation while implementing resource over-reservation dynamically in 

distributed network scenarios. Hence, Figure 4.19 is used to plot packet loss, while Figure 4.20 

shows the delay experienced in each service CoS. 

Moreover, the support of ACOR to effectively avoid QoS violation in distributed and dynamic 

scenario has also been studied through packets-based (with real traffics activated) simulation 

results. In particular, each network link capacity is set to 10Mbps and the bandwidth demand per 

request ranges between 128Kbps and 1Mbps. Then, the BE traffic sources are configured to 

generate packets at higher rate (out-of-profile) than expected. Besides, each traffic that belongs to 

EF CoS or to AF CoS is configured to comply with the rate granted to it (in-profile). Thus, we 

observe that only the BE traffic has experienced packets loss, between 0% and 18%, which was 

punished for the non compliance (out-of-profile). This demonstrates that misbehaviors of BE 

traffics did not affect other CoSs in terms of the packets dropping. However, one may argue that, 
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even though the BE traffic is out-of-profile, there are no dropping packets when the network 

overall utilization level is around 15%. Note therefore that WFQ is a work-conserving scheduler, 

which means that a network link is never empty as long as there is packet in a queue on the related 

outgoing interface.  

 
Figure 4.19. Packets loss with EF/AF traffic in-profile and BE traffic out-of-profile. 

 
Figure 4.20. Packets delay with EF/AF traffic in-profile and BE traffic out-of-profile. 

Moreover, Figure 4.20 provides the delay experienced by packets in each CoS. The delay 

increases slightly in all CoSs with the increase of network overall utilization level. Hence, at low 

link utilization level, the delay is very small. Traffic may experience less delay than they required, 

due to work-conserving scheduling discipline. More importantly and representative in Figure 4.20, 

we observe a steadier differentiated delay among the three CoSs when the network overall 

utilization level is around 100% (congestion time). In particular, the EF traffic flows experience the 
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lowest delay, the AF traffic shows longer delay, while the BE traffic incurs the longest delay. Thus, 

these packets based results confirm that the ACOR system effectively provide support for 

differentiation of services in dynamic scenarios. 

4.4.3 Discussion 

The main objective of this subsection is to provide a general discussion of our findings on 

aggregate resource over-provisioning based on the results obtained in this work. The analytical 

results in Figure 4.11 showed that more reservation surplus can effectively allow for more 

reduction of the signalling overhead since a single reservation signalling would leverage admission 

of several session requests. Further, Figure 4.12 depicted that, over-provisioning is even more 

attractive in terms of signalling overhead reduction in scenarios where sessions are mostly short-

lived (with short lifetime). This is due to the fact that, the resources released by a session may be 

used by future one(s) without requiring a new reservation signalling. We also observed in Figure 

3.10 that efficient over-reservation mechanism can avoid wasting resources. To achieve this, an 

over-reservation solution strongly requires a real-time knowledge of network topology and related 

links resources statistics to avoid QoS violations. Moreover, such view of network resources is of 

paramount importance to allow for efficient redistribution of residual reservations among various 

CoSs to prevent CoS starvations or waste of resources.  

In the face of these challenges, existing solutions (e.g., BGRP, SICAP, MARA and COR) 

acquire network resource statistics periodically or on-demand basis using probing techniques and 

there is no synchronization among the edge nodes. As a consequence, they suffer from waste of 

resources which translates into unnecessary increase of session requests blocking probability. In 

order to minimize this performance issue, they prevent over-reserving too much resource and thus, 

fail to allow for the optimization of the signalling overhead reduction. In contrast to previous 

solutions, ACOR enables edge nodes to properly cooperate to obtain resource statistics in each CoS 

on each interface in a network in real-time manner under low signalling overhead. This way, ACOR 

allows for over-reserving as much resources as possible so that the reduction of signalling overhead 

can be optimized. Further, the analytical results in Figure 4.13 showed that, the increase of the 

number of communication paths on bottleneck links increases the signalling frequency due to the 

corresponding high demand of resources. Hence, one may improve performance by controlling 

(e.g., filtering) the link sharing of the paths inside a network, which is out of the focus of this 

Thesis.  

In general, the ACOR demonstrates superiority over existing solutions by significantly 

reducing the signalling overhead without increasing session blocking probability unnecessarily, that 

is, without wasting resources. These results were validated through simulations carried out in ns-2, 
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which has been properly extended to support the ACOR functionalities. Hence, the reduction of 

signalling overhead is confirmed in Figure 4.15, Figure 4.16 and Figure 4.17, while the avoidance 

of resources wastage is shown in Figure 4.18. Moreover, the results in Figure 4.19 and Figure 4.20 

are used to demonstrate the ACOR’s support for differentiated QoS control which is of paramount 

importance for network and service convergence in the current and future class-based networks. 

4.5 Conclusion  

This chapter presented a novel multicast-based decentralization control model characterized by 

a well coordinated two-layer control mechanism to achieve improved performance. On one hand, 

ACOR implements advanced techniques for dynamic control of aggregate bandwidth over-

reservation in networks deploying multiple distributed edge nodes without QoS violation, CoS 

starvation, waste of resources or unnecessary increase of service blocking, while keeping 

significantly low QoS reservation signalling overhead. Traffic flows are controlled and mapped to 

explicit edge-to-edge trees, and control load is pushed to the network border. 

On the other hand, it uses a VOPR concept which consists in a way of virtually allocating the 

over-reservations of CoSs to each correlated communication path/tree on each link in the network. 

Thus, it is possible to process multiple services requests in each path/tree dynamically without 

being negatively affected by cross-traffics from other correlated paths as long as the VOPRs are 

available. Hence, the VOPR concept allows for enabling collaborating CDPs to require 

synchronization signalling only when there is VOPR exhaustion. Further, the cooperation is 

selective, that is, only the CDPs which are correlated with the information to be updated are 

dynamically included in the collaboration group, while unnecessary information exchange is also 

avoided and synchronization signalling overhead is also reduced.  

As a result, ACOR is able to reduce both reservation and synchronization signalling and related 

overhead to improve control scalability. Moreover, the ACOR good knowledge of network 

topology and the related resource statistics acquired on real-time basis, keeping low signalling 

overhead is of paramount importance for key netwotk control sub-systems (e.g., admission control 

to avoid QoS violation, traffic engineering, etc.). We believe that this is a strong approach for QoS 

control in current and future class-based networks. One limitation of ACOR resides in the fact that 

it triggers synchronization whenever a VOPR exhausts upon receiving a session request. However, 

the VOPR would exhaust frequently or even on per request basis during network congestion period 

of time. This implies that ACOR would place per-flow synchronization at congestion time. 

Moreover, the increase of link sharing factor increases rapidly the synchronization frequency due to 

the granularity of the VOPR allocation per tree. Therefore, further investigation is still necessary to 

allow for optimizing the synchronization signalling overhead to effectively scale.   
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Chapter 4 introduces a novel decentralization control mechanism, the ACOR, which uses 

aggregate bandwidth over-reservation and is able to provide good knowledge of network topology 

and related links resources statistics. In particular, ACOR enables distributed edge nodes 

configured as network CDPs to cooperate, exchange appropriate control information to synchronize 

to changes of resource states inside a network, so as to take control decisions with accurate 

information and increased resource utilization keeping low signalling overhead. A major approach 

in ACOR is its two-layering aggregate resource control mechanism, which consists in deploying 

resource over-reservation techniques such as ECOR (described in Chapter 3) to reduce QoS 

reservations overhead, and using VOPR to keep low synchronization signalling overhead. 

While ACOR effectively allows for optimizing QoS reservations signalling and therefore the 

related processing overhead through ECOR, its performance of the VOPR allocation per multicast 

tree is limited by trees’ density on interfaces, that is, the number of trees that share outgoing 

interfaces inside a network. In other words, the increase of the number of trees on outgoing 

interfaces, especially on bottleneck interfaces, rapidly increases the rate of the synchronization 

signalling between the collaborating CDPs. This is shown analytically in Figure 4.13 in Chapter 4, 

and thus raises scalability issues. Moreover, ACOR triggers synchronization signalling whenever 

the VOPR of a requested tree for a CoS is exhausted. This is very important to avoid VOPR 

starvation and waste of resources that increase session blocking probability unnecessarily. 

However, in critical network situations, as being close to congestion or congested, the VOPR may 

exhaust upon every session request due to resource unavailability. In these scenarios, ACOR is 

forced to synchronize per request, which would jeopardize performance, especially in large scale 
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networks or during prolonged network congestion periods of time. Therefore, further studies were 

still deemed necessary. 

This chapter proposes the E-ACOR, a new approach that extends the ACOR architecture to 

manage VOPR aggregately per CDP, and not per tree, in the sense to alleviate performance 

dependence of ACOR from trees’ density on network links. In addition, E-ACOR introduces a 

mechanism to efficiently track congestion information throughout a network in a way that allows 

for preventing unnecessary synchronization signalling when network or trees are congested. This 

way, E-ACOR aims to allow for reducing synchronization signalling rate, and to keep all the 

benefits of ACOR by assuring differentiated QoS under low QoS reservation signalling load 

without incurring QoS violations, unnecessary waste of resources or increase of service blocking 

probability. As such, the network overall performance can be optimized. Analytical and simulation 

results demonstrate the effectiveness of E-ACOR and its superiority over ACOR in terms of 

signalling overhead minimization and waste of resources, while guaranteeing improved QoS in 

dynamic and distributed networks. 

This chapter is organized as follows. Section 5.1 describes the E-ACOR decentralization 

mechanism with focus on the main extensions to ACOR in terms of functionalities. Section 5.2 

provides an analytical model of E-ACOR and section 5.3 discusses the performance evaluation. 

Finally, section 5.4 concludes the chapter. 

5.1 E-ACOR Control Mechanism  

The E-ACOR aims at optimizing the impact in the network performance of ACOR. For this 

purpose, E-ACOR introduces an Aggregate VOPR concept and a Congestion Information Tracking 

System (CITS), as two main features to improve the functionalities and behaviour of the CDPs. On 

one hand, E-ACOR proposes to aggregate VOPRs per CDP, in contrast to the fine-grained control 

in ACOR where the VOPR in a CoS on an outgoing interface is allocated per tree that uses the 

interface. The main objective of the VOPRs aggregation is to enable all trees rooted at the same 

CDP to share a common VOPR allocated to the CDP on their correlated outgoing interfaces, to 

allow for further reduction of synchronization rate since session demands are mostly unpredictable 

in individual trees. On the other hand, E-ACOR introduces the CITS mechanism, which enables 

each CDP to dynamically track congestion information about trees inside a network on real-time 

basis with low signalling and processing overhead. Hence, every CDP exploits appropriate 

congestion information of trees in a way that allows for preventing synchronization signalling 

when candidate trees are congested and incoming session requests would not be successfully 

admitted after synchronization. 



 

127 

 

In order to achieve these objectives, E-ACOR mainly improves the functionalities and 

interactions between components in ACOR, keeping in mind to assure compatibility with the latter. 

For example, we illustrate, using Figure 5.1, that E-ACOR maintains the general architecture of 

ACOR in which a system initialization phase may be characterized by multicast trees creation in 

step (a), synchronization between CDPs in step (b), and CDPs’ local databases creation in step (c), 

following the principles detailed in Chapter 4. In particular, E-ACOR extends the NetCIB functions 

in support for the information required by the Aggregate VOPR and the CITS mechanism, the 

Extended NetCIB (ENetCIB). Moreover, the AC functions of ACOR are extended to efficiently 

exploit the congestion information available in the ENetCIB to effectively avoid triggering 

unnecessary synchronizations. Besides, the SC functions are improved to prevent the CITS from 

placing undue signalling overhead by opportunistically using the VOPR synchronization messages 

for tracking congestion information. Notice that the RC functions of ACOR are reused, and the 

ECOR is embedded to optimize the reduction of QoS reservation signalling overhead. Moreover, 

E-ACOR reuses the BF functions implemented as ACOR-C agent (see Figure 5.1) which performs 

the basic functionalities required in all nodes. Thus, E-ACOR implements the BF, the RC and the 

extended AC, SC and NetCIB functions in software agent called E-ACOR-Edge (E-ACOR-E) 

agent to configure CDPs. 

 
Figure 5.1. Illustration of E-ACOR decentralization network. 

To ease the understanding, the remaining of this chapter will describe E-ACOR control 

mechanism with focus on the main extensions to the functionalities of ACOR and their technical 

effects on the performance. 

5.1.1 Extension to VOPR Concept 

In order to aggregate VOPRs per CDP, E-ACOR redefines the Sharing Factor of an outgoing 

interface, which denotes the number of ingress CDPs that deploy trees through the interface, 
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instead of the number of trees using the interface as in ACOR. The Sharing Factor FactorCDP(Ie) of 

any interface Ie in E-ACOR is thus limited to the number of correlated CDPs on the interface Ie. In 

order to facilitate understanding based on Figure 5.1, one can observe that the outgoing interface I2 

belongs to 3 trees, all of them with the same root CDP1, and each with leaf nodes CDP4 (tree 1), 

CDP3 (tree 2) and CDP2 (tree 3). In this case, the sharing factor of I2 in E-ACOR (FactorCDP(Ie)) is 

set to 1, whilst ACOR sets to 3. Thus, E-ACOR prevents the granularity of VOPR per tree, 

meaning that all the trees that a CDP deploys through an outgoing interface share the same pool of 

VOPR allocated to the CDP on the interface. The aggregate VOPRs can also be implemented as 

being the sum of the individual VOPRs of the trees which originate at the same CDP. Therefore, 

the VOPR aggregation allows for further reducing the frequency of VOPR exhaustion or 

synchronization signalling events where the VOPR per tree would exhaust more often due to highly 

unpredictable service demands to each tree inside a network. The aggregate VOPR of a CDPA in a 

CoSi on an outgoing interface Ie, denoted as  , ,e AVopr i I CDP , is therefore a share of the 

bandwidth over-reservation of the CoSi for the CDPA on the interface Ie, and is obtained as: 

 
( , ) ( , )

( , , ) ( , , )
( )

A

BW e BW e
e A Agg e A

CDP e

R i I U i I
Vopr i I CDP U i I CDP

Factor I


   (5.1) 

where  ,BW eR i I  and  ,BW eU i I  are the reservation and used bandwidth obtained as in equation 

(4.1), and  , ,Agg e AU i I CDP  is the total amount of bandwidth granted to the currently active flows 

(aggregate used bandwidth) in CoSi on all the trees Tx deployed by the CDPA through the outgoing 

interface Ie, and is obtained using the equation (4.3) where m is the number of the trees of the 

CDPA. 

5.1.2 Extension to NetCIB Database 

The E-ACOR architecture embeds the database called the ENetCIB. In particular, the E-

ACOR’s ENetCIB extends the TOPOLOGY and VOPRs tables of ACOR’s NetCIB, and 

introduces a new table called CONGESTION, to store congestion information about existing trees 

as in the following. 

TOPOLOGY Table: the TOPOLOGY table stores the interface Sharing Factor of each 

outgoing interface as being the number of correlated CDPs on the interface (see subsection 5.1.1). 

Moreover, it stores the CDP’s Aggregate Used bandwidth obtained using equation (4.3) for each 

CoS on each outgoing interface of the CDP’s trees.  
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VOPRS Table: the VOPR table of a CDPA in E-ACOR stores the aggregate VOPRs of the 

CDPA in each CoSi on each outgoing interface Ie that lies on the CDPA’s trees as defined by 

equation (5.1). A CDP’s tree is a tree that originates at the CDP. 

CONGESTION Table: this (Table 5.1) is introduced to track congestion information about 

trees inside a network. The main idea is to enable every CDP to exploit appropriate congestion 

information in a way that can prevent unnecessary synchronization signalling when all candidate 

trees are congested and incoming requests cannot be admitted after synchronization. To facilitate 

the understanding, our description is illustrated with the CONGESTION table of CDP1 from 

Figure 5.1.  

                                     Table 5.1. CONGESTION Table. 

 

As shown in Table 5.1, each CDP maintains the ID of the trees inside a network, where the ID 

of a CDP’s tree is a tuple composed of the CDP’s ID and the tree’s index (CDP_ID, Tree_Index) to 

assure uniqueness. Note therefore that the indices of trees rooted at different CDPs may overlap, 

since they are assigned by CDPs independently. In Table 5.1, the indices of CDP1’s trees ranges 

from 0 to 3 as in Figure 5.1, since it only maintains a single tree from itself to each of the 

remaining 4 CDPs for the sake of simplicity in our illustration. Further, each CDP (e.g., CDP1 in 

Table 5.1) maintains the total available bandwidth  ,BW b xA I T  on the bottleneck outgoing interface 

Ib of each of its own trees, using the following function: 

 ( , ) min ( , )
k

BW b x BW e

i

A I T C b U i I
 

   
 

  (5.2) 

where, C is the capacity of each outgoing interface Ie on its own tree Tx, b is the bandwidth 

dedicated to the control CoS, and  ,BW eU i I  is the total amount of the used bandwidth in each 

service CoSi on the interface Ie; these parameters are obtained from the TOPOLOGY table (Table 

4.2 in Chapter 4). This is illustrated in Table 5.1, considering that each outgoing interface in Figure 

5.1 has a capacity (C=1000Mbps), a certain amount of bandwidth (b=0.5Mbps) is dedicated to the 

Control CoS on each interface, and the total used bandwidth is null as at network initialization. 

The available bandwidth  ,BW b xA I T  parameter obtained in equation (5.2) enables each CDP 

(e.g., CDP1) to be aware of the congestion level of each of its trees. Unfortunately, this parameter 
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is not updated on real time basis; it is updated only upon synchronization since network bandwidth 

is shared by multiple trees originated at distributed CDPs under unpredictable traffic behaviour. 

This imposes that a CDP cannot simply rely on the available bandwidth shown in the 

CONGESTION table to avoid synchronization without taking wrong decisions or wasting 

resources. E-ACOR addresses this challenge by associating another control parameter, the 

Congestion Flag, to each of the trees inside a network. In particular, a Congestion Flag of a tree Tx 

is either ON (Flag(Tx) = 1) to refer that the related tree is set to congestion status, or it is OFF 

(Flag(Tx) = 0) to indicate that the related tree is not set to congestion status. Hence, all Congestion 

Flags are initialized to OFF. The way the Congestion Flags of trees are jointly exploited with the 

total available bandwidth of trees to allow for preventing unnecessary synchronization signalling 

without wasting resources is detailed in the rest of this chapter. 

5.1.3 Extension to Admission Control Functions 

When a network is running and a given ingress CDPA receives an authorized service request ir  

to a CoSi and destined to a given egress CDPB in the control domain, CDPA collects the candidate 

trees of the incoming request, that is, the trees it roots to connect the desired egress CDPB. Then, 

among the candidate trees, it selects the one (Tx) holding the highest available VOPR. An available 

VOPR in a CoSi on a CDPA’s tree Tx, denoted  ,Vopr xA i T , is the aggregate VOPR of the CDPA 

which has not yet been granted to any flow in CoSi on the bottleneck outgoing interface of the tree 

Tx. It is obtained by the following function: 

  ( , ) min ( , , ) ( , , )Vopr x e A Agg e AA i T Vopr i I CDP U i I CDP   (5.3) 

where  , ,e AVopr i I CDP  is obtained using the equation (5.1),  , ,Agg e AU i I CDP  is obtained using 

the equation (4.3), and Ie is an outgoing interface on the tree Tx. 

If the admission is successful (  ,i Vopr xr A i T ), CDPA maps the request to the requested CoSi 

on that tree Tx without synchronization or QoS reservation signalling event. Then, the CDP 

automatically updates its used bandwidth in the TREES table, as well as the Aggregate Used 

bandwidth in the admitted CoSi for each of the outgoing interfaces of the tree Tx in its TOPOLOGY 

table, according to the bandwidth ir  granted to the flow. This way, every CDP updates its 

Aggregate Used bandwidth in all relevant CoSs and interfaces on real-time basis in its local 

database. As a result, the available VOPRs are also deduced in real-time manner using equation 

(5.3), and thus allowing each CDP to admit several service requests without synchronization or 

QoS reservation signalling into the network, as long as the VOPRs are available. Likewise, 
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whenever a service belonging to a CoSi terminates from a tree Tx, the CDP automatically updates 

its used bandwidth in the TREES table and the Aggregate Used bandwidth in the concerned CoSi 

for each of the outgoing interfaces of the tree Tx in its TOPOLOGY table accordingly. Note that, 

there is no QoS release signalling into a tree from which a service terminates, since the bandwidth 

is over-reserved.  

However, if the attempt to admit a request based on available VOPR fails (  ,i Vopr xr A i T ), 

being the unused VOPR insufficient on the bottleneck outgoing interfaces of all candidate trees, 

let’s recall that ACOR immediately triggers synchronization among the correlated CDPs of the 

candidate trees in order to avoid QoS violations or waste of resources. While synchronization is 

imposed by unpredictable service demands and the resource sharing by distributed CDPs, it forces 

ACOR to unnecessary synchronization signalling per session request due to the VOPRs 

exhaustions during congestion period. E-ACOR addresses this challenge by introducing the CITS, 

which is able to make use of trees’ congestion information dynamically to avoid unnecessary 

synchronization signalling without incurring waste of resources or blocking services unnecessarily. 

This mechanism is detailed in the subsequent subsection. 

5.1.4 Extension to Synchronization Control Functions 

The E-ACOR congestion information tracking mechanism maintains trees’ congestion 

information on real-time basis using Table 5.1, which enables each CDP to avoid unnecessary 

synchronization signalling during congestion time. As we detailed in subsection 5.1.2, a tree’s 

congestion information includes its total available bandwidth and the associated congestion Flag. 

Hence, this subsection focuses on how this information is used to achieve performance. 

To facilitate the understanding, we consider that the VOPR in a CoSi on a tree Tx exhausts (

 ,i Vopr xr A i T ), and the available bandwidth seen in CONGESTION table (please see Table 5.1) is 

insufficient to admit an incoming request (  ,i BW b xr A I T ). In this case, one may consider that the 

tree Tx is congested, and block the incoming request without synchronization signalling. 

Unfortunately, the available bandwidth  ,BW b xA I T  is updated only upon synchronization as we 

explained earlier in subsection 5.1.2. In other words, note that certain traffic flows may terminate 

from correlated trees of a Tx, and the available bandwidth in the tree Tx may increase in the 

meantime between two synchronization events. Therefore, denying session requests based on 

previous knowledge of available bandwidth  ,BW b xA I T  only without synchronization would 

increase session blocking probability unnecessarily or waste resources. A simple solution to cope 

with this issue may consist in enabling every CDP to advertise the correlated CDPs (with the 
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amount of bandwidth released and the related tree’s ID) whenever there is a service termination, so 

that each CDP can update the related available bandwidth on real-time basis. However, while this 

would allow for avoiding synchronization signalling, it would lead to excessive release notification 

signalling and database processing overhead between correlated CDPs. 

In this sense, E-ACOR proposes the joint use of available bandwidth parameters and 

congestion Flags associated to trees to achieve scalable performance without wasting resources as 

further detailed in the following steps. 

 Step 1: VOPR exhausted (  ,i Vopr xr A i T ) while available bandwidth is insufficient in all 

candidate trees (  ,i BW b xr A I T ) upon receiving a session request ir , and the congestion 

Flag of the tree Tx which shows the highest available resource is OFF (Flag(Tx)=0). 

In this case, the CDP turns the congestion Flag ON (Flag(Tx) = 1) and triggers 

synchronization, including the updated Flag status of Tx in the synchronization message for 

the remote CDPs to update the Flag status of Tx accordingly. Thus, each relevant CDP is 

enabled to update the status of Tx’s flag accordingly without any extra signalling message. 

Hence, the control metrics, such as the total used bandwidth, the VOPRs and the 

reservations parameters of the outgoing interfaces of certain candidate trees, may be 

readjusted to allow for session admission. In case the incoming service request is 

successfully admitted, the congestion Flag of the tree Tx is set to OFF and included in the 

synchronization message sent to correlated CDPs after the local database is thus processed. 

However, if the incoming request is not admitted after the synchronization, the status of 

Tx’s Flag is left ON.  

 Step 2: VOPR exhausted (  ,i Vopr xr A i T ) while available bandwidth is insufficient in all 

candidate trees (  ,i BW b xr A I T ) upon receiving a session request ir , and the congestion 

Flag of the tree Tx which shows the highest available resource is ON (Flag(Tx)=1). 

In this case, the CDP considers that the candidate trees are congested and blocks the 

incoming request without synchronization signalling. The request may be mapped to a CoS 

with lower QoS level depending on the service agreement between customer and service 

provider.  

 Step 3: VOPR exhausted (  ,i Vopr xr A i T ) and available resource is sufficient in a 

candidate tree Tx (  ,i BW b xr A I T ) upon receiving a session request ir . 
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In this case, the CDP automatically triggers synchronization to allow for updating the 

resource status on all relevant interfaces, so that relevant metrics such as the total used 

bandwidth, the VOPRs and the reservations parameters, may be readjusted upon need for 

the admission purpose. In this situation, the congestion Flag of the tree Tx is turned OFF if 

it was ON, and is included in the synchronization message for the remote CDPs to update 

the Flags status accordingly. 

 Step 4: Procedure upon session termination from a tree Tx. 

In this case, the CDP takes the following actions. In case the Flags of the correlated trees 

of Tx happen to be ON, the CDP turns them OFF and sends a notification message to the 

corresponding CDPs carrying the ID of the tree Tx from which the session terminated. This 

way, the concerned CDPs are able to reset their Flags accordingly to allow for future 

synchronization upon need, for the purpose of reusing the resources made available by the 

terminated session. However, if none of the Flags of the correlated trees of Tx is ON, the 

CDP does not issue any notification. Also, a CDP resets the Flag of its tree Tx upon service 

termination from the tree without issuing notification to the correlated CDPs. This way, E-

ACOR aims to allow for preventing unnecessary synchronization without being forced to 

notify correlated CDPs upon every service termination, and scalability can be achieved in a 

way that avoids blocking service requests unnecessarily or wasting resources. Moreover, 

no service is admitted without assuring a minimum available reservation, and thus 

avoiding QoS violations. 

5.2 E-ACOR Analytical Model 

This section provides a model to compare the performance of the E-ACOR aggregate VOPR 

with that of the ACOR VOPR described in Chapter 4 in terms of minimization of synchronization 

signalling frequency. For this purpose, we use the network topology in Figure 5.2 to illustrate 

bottleneck link sharing scenarios where each ingress CDP deploys several trees from itself to each 

of the egress CDPs. 

Then, we consider that a certain amount of bandwidth  ,BW bR i I  is over-reserved to each CoSi 

on a bottleneck outgoing interface Ib inside the network. Besides, service requests arrival to a CoSi 

on a given tree Tx that uses the interface Ib is as Poisson process with rate λi,x, and therefore, the 

sum λi of service requests arrival rates to a set of trees in a CoSi on the Ib is also a Poisson process. 

In this sense, the overall session requests arrival rate λi,CDPx from all m’ trees of a CDPx into the 

CoSi over the interface (A B) is also as Poisson process such that: 
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Figure 5.2. Topology for analytical study. 

Hence, considering that m number of trees rooted at q different ingress CDPs share the 

bottleneck interface Ib, we model the performance of the aggregate VOPR and that of the ACOR 

VOPR as in the following.  

ACOR: the available VOPR  ,Vopr xA i T  of a given tree Tx in a CoSi within a surplus of 

reservation  ,BW bR i I  on the interface Ib is obtained as in equation (4.9), and the total number n of 

sessions that it can accommodate simultaneously without requiring synchronization event for a 

given tree Tx sharing the interface Ib is obtained using equation (4.10).  

E-ACOR: the available aggregate VOPR  ,AggVopr xA i CDP  of a given CDPx in a CoSi within 

 ,BW bR i I  on the interface Ib is obtained by:  

  
 ,

,
BW b

AggVopr x

R i I
A i CDP

q
  (5.5) 

Then, the total number n’ of sessions that an available aggregate VOPR  ,AggVopr xA i CDP  of 

CDPx can accommodate simultaneously in a CoSi without requiring synchronization event for any 

of its correlated tree Tx on the interface Ib is expressed as: 

 
 ,

'
*

BW b

i

R i I
n

r q

 
  
 

 (5.6) 



 

135 

 

This way, we use the analytical study principles detailed in section 4.3 in Chapter 4, and model 

the ACOR VOPR as an M/M/n/n queuing system and the aggregate VOPR of E-ACOR as an 

M/M/n’/n’ queuing system. As such, the probability ,

ACOR

i xP that the available VOPR  ,Vopr xA i T  (see 

equation (4.9)) exhausts to trigger synchronization in ACOR is obtained as in equation (4.11). 

Likewise, the probability 
2

,

A COR

i xP  that the available aggregate VOPR  ,AggVopr xA i CDP  (see 

equation (5.5)) exhausts to trigger synchronization in E-ACOR systems is the probability that an 

incoming request to the CoSi on any of the CDPx’s tree on the bottleneck interface finds all the n’ 

“VOPRed sessions” slots occupied, and is also obtained using Erlang B formula as: 
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where μ is a real number (service rate) as in equation (4.11) and , xi CDP is obtained as in equation 

(5.4). 

5.3 Performance Evaluation 

In order to show the benefits of E-ACOR in comparison with ACOR, our performance 

evaluations are carried out as in the following. First, the advantages of VOPRs aggregation of E-

ACOR over the per-tree VOPR approach of ACOR, as studied in section 5.2, are assessed 

analytically. Furthermore, we focus our analysis on the overall improvement of E-ACOR over 

ACOR in terms of minimization of synchronization signalling overhead through simulations using 

the ns-2 [233], which was appropriately extended with ACOR and E-ACOR functionalities. The 

performance characteristics concerning QoS reservation signalling overhead minimization, 

avoidance of QoS violations and waste of resources are incorporated in E-ACOR as inherent 

advantages of ACOR (see Chapter 4), and therefore, the related results are not repeated in this 

chapter. In order to clearly observe the advantages of VOPRs aggregation and the benefits of the 

congestion tracking mechanism of E-ACOR separately through simulations results, we implement 

a third control mechanism called C-ACOR. Basically, the C-ACOR is equal to ACOR embedding 

the congestion tracking mechanism of E-ACOR, but without the VOPR aggregation. In other 

words, the C-ACOR is a combination of VOPR per tree and the congestion tracking mechanism of 

E-ACOR. Then, we plot the simulation results for these three approaches (E-ACOR, ACOR and C-

ACOR) in a way that facilitates analysis of each enhancement function (VOPR aggregation and 

congestion information tracking mechanism) of E-ACOR over ACOR.  
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5.3.1 Analytical Parameters Configuration  

To facilitate the understanding of the description, the ingress CDPs which deploy trees through 

Ib are called correlated ingresses, and the egress CDPs which are connected through Ib are called 

correlated egresses. Moreover, each correlated ingress deploys at least 1 tree and at most N’ trees 

through the interface Ib, such that an ingress deploys through Ib at most 1 tree to any of the 

egresses. This leads to a lower bound and an upper bound of Sharing Factor of the bottleneck 

interface Ib, called respectively the Smallest Sharing Factor (SSF) and the Highest Sharing Factor 

(HSF). Basically, SSF corresponds to a scenario where each correlated ingress deploys 1 tree 

through Ib, and HSF corresponds to a scenario in which each correlated ingress maintains N’ trees 

through Ib. Hence, given a number c_Ing of correlated ingress CDPs and a number c_Eg of 

correlated egress CDPs for Ib, the corresponding lower and upper bounds of sharing factors are 

obtained as:  
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  (5.9) 

Then, we use the SSF and the HSF to compare the lower and upper bounds of synchronization 

rate of E-ACOR and ACOR approaches by varying the number of ingress CDPs (similar when 

varying the number of egress CDPs) on one hand. On the other hand, we vary the amount of 

bandwidth over-reservation in CoSi, and show results as in subsequent subsection. 

5.3.2 Analytical Results 

Figure 5.3 is used to plot the probability of synchronization signalling frequency in ACOR and 

in E-ACOR, as a function of the number of correlated ingresses. In particular, the number of 

correlated ingresses is varied between 1 and 20 with a fixed number of 12 correlated egresses. The 

configurations of the scenario are summarized in Table 5.2. 

                             Table 5.2. Analytical parameters configurations. 

Bi  = 100 Over-reserved BW in CoSi on the interface Ib (Mpbs) 

r   = 1 Mean bandwidth requested per session (Mbps) 

μ   = 3 Mean service rate per session (requests/time unit) 

λi,x = 10 Requests arrival rate to a given tree Tx in CoSi on Ib 

N  = 20 Total number of ingress CDPs 

N’ = 12 Total number of egress CDPs 
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Analytical results obtained using Erlang B formula in (4.3) in Chapter 4 and Figure 5.3 show 

that E-ACOR incurs lower synchronization signalling rate than ACOR, as we expected due to the 

aggregation of the VOPRs in E-ACOR. We also observe that the synchronization frequency grows 

more rapidly in ACOR than in E-ACOR with the increasing number of ingress CDPs; it reaches 

about 100% probability of signalling in ACOR when the number of ingress CDPs is beyond 9. This 

shows the limitation of VOPR granularity per tree in ACOR. E-ACOR and ACOR show the same 

lower bound synchronization rate. Note that in the lower bound scenario as we defined earlier, 

every correlated ingress CDP deploys only one tree through the bottleneck interface Ib, and thus 

showing no difference between the aggregate VOPR of E-ACOR and the VOPR per tree of ACOR 

to confirm results. 

 
Figure 5.3. Effect of number of ingress CDPs on signalling events. 

Figure 5.4 shows the probability of synchronization signalling event rate in ACOR and in E-

ACOR as a function of the amount of bandwidth over-reserved for the CoSi on the bottleneck 

outgoing interface Ib. The scenario is based on the parameter configurations in Table 5.2, with the 

only difference that the amount of over-reserved bandwidth  ,BW bR i I  to the CoSi is varied 

between 50 Mbps and 2Gbps. E-ACOR shows better performance than the ACOR approach since 

the upper bound of synchronization frequency in E-ACOR is lower than that of ACOR. Figure 5.4 

also confirms that E-ACOR and ACOR experience the same lower bound synchronization 

frequency as expected.  
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Figure 5.4. Effect of over-reserved bandwdith on signalling events. 

5.3.3 Simulation Scenario and results 

The simulation setup is carried out as described in subsection 4.4.2 in Chapter 4. In the 

methodology we adopted for the network overall resource utilization level, any of the 4 networks 

simulated gets congested with about 10,000 session requests. However, we performed each 

simulation with 25,000 requests such that allowing for observing prolonged network congestion 

periods of time to study the benefits of congestion tracking mechanism of E-ACOR more precisely. 

The simulation is run 5 times with different seeds of random mapping of requests to CoSs, CDPs 

and egress routers, for each topology. Then, the averaging values are plotted for all topologies and 

seeds with a confidence interval of 95%. 

Then, we collected the number of synchronization signalling events and signalling load in E-

ACOR, in ACOR, and in C-ACOR. We analyzed also the minimization of synchronization 

signalling number of E-ACOR in terms of percentage, to ease the comparison between the different 

approaches. 

Figure 5.5 depicts the number of signalling events used for synchronization over the number of 

session requests in the experiments configured with ACOR, C-ACOR and E-ACOR solutions, and 

Figure 5.6 plots the corresponding signalling messages load. Recall that the load is obtained based 

on the ACOR-P described in section 4.2 in Chapter 4. 
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Figure 5.5. Number of synchronization signalling events. 

 
Figure 5.6. Synchronization signalling load. 

The results of Figure 5.5 show that E-ACOR allows for significantly reducing the overall 

synchronization signalling event number of both the ACOR and the C-ACOR. Note that, in the 

following results, we count release notification signalling events of E-ACOR as synchronization 

event. To clearly observe how much signalling is reduced by means of VOPRs aggregation and 

how much is achieved through the congestion tracking mechanism of E-ACOR, let’s first compare 

the C-ACOR with the ACOR. Recall that C-ACOR consists of ACOR integrated with the 

congestion tracking mechanism of E-ACOR. Hence, one can observe that, under low network 

resource utilization level with less than 5.000 requests, there is no noticeable difference between 

ACOR and the C-ACOR, as is expected since the communication trees may not have experienced 

congestion as yet. Indeed, C-ACOR effectively demonstrates increasing superiority over ACOR 
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with the increasing overall resource utilization level (beyond 5,000 requests). This implies that 

certain trees may happen to start getting congested when the number of requests is larger than 

5.000. 

When comparing E-ACOR with the C-ACOR, since both implement the same congestion 

tracking mechanism of E-ACOR, it becomes clear that E-ACOR outperforms the C-ACOR due to 

the VOPRs aggregation techniques, which makes E-ACOR less sensitive to trees density on 

bottleneck outgoing interfaces inside a network. Therefore, the E-ACOR is able to drastically 

reduce synchronization signalling further when compared with ACOR. To better appreciate the 

benefits of E-ACOR, Figure 5.7 is used to show its synchronization signalling events and load 

reduction in terms of percentage.  

 
Figure 5.7. Reduction of synchronization signalling events number and load. 

First, we compare the performance of C-ACOR with that of ACOR. Thus, we observe that, 

during very low network utilization level (below 2.000 requests), the C-ACOR stays equal to 

ACOR, since the trees may not have yet experienced congestion. However, the former outperforms 

the latter very rapidly as the network resource utilization increases (bottleneck outgoing interfaces 

are experiencing congestion). This shows that the congestion tracking mechanism is effectively 

useful to achieve scalability during network congestion periods of time.  

Second, we compare the E-ACOR with the C-ACOR and observe that, during very low 

network utilization level (below 2,000 requests), the E-ACOR is able to reduce up to 100% of the 

synchronization events and load of the C-ACOR. This implies that E-ACOR does not generate 

signalling events in these conditions, where the trees may be far from being congested. One can see 

that the aggregation of VOPRs can profit more from resource sharing than the VOPR per tree, and 

thus, allows for further avoiding unnecessary synchronization signalling even at low resource 
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utilization level on the bottleneck interfaces. During prolonged network congestion periods of time, 

E-ACOR maintains its superiority above 22% over the C-ACOR. This shows that the VOPR 

aggregation concept is important to reduce the synchronization signalling overhead during network 

operations time.  

E-ACOR allows for significantly reducing the synchronization signalling overhead of ACOR 

above 40%, since it combines both the VOPRs aggregation and the congestion tracking 

mechanism.  Moreover, the signalling overhead (events and load) reduction increases rapidly 

during prolonged congestion period of time, which is of paramount importance to improve system 

overall performance. It also important to mention that, no service is admitted while there is not 

sufficient resource for admission and QoS violation is also avoided.  

5.4 Conclusion 

This chapter presented a novel approach, the E-ACOR, for resource and admission control, 

which is able to allow for optimizing control scalability in terms of signalling and related overhead 

reduction in class-based networks. In order to achieve this, E-ACOR implements appropriate 

techniques to significantly reduce QoS reservation signalling overhead with increased resource 

utilization, by aggregating bandwidth over-reservation control. Moreover, E-ACOR is able to track 

congestion information on bottleneck interfaces throughout a network in a way that enables self-

controlling CDPs to avoid unnecessary synchronization signalling during bottleneck interfaces 

congestion periods of time.  

We believe that this approach is of high importance to enhance performance in the networks. 

Therefore, the survivability control of ACOR, which also applies to E-ACOR, will be studied in 

Chapter 6 with the objective of finding ways to provide support for stable operations and service 

continuity in the presence of unpredictable links and nodes failures. 
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Chapter 6 Survivable ACOR Mechanism 

 

 

 

 

 

The communication systems have become integral part of our society while unpredictable 

failures, usually caused by natural disasters (e.g., fire, earthquake, etc.), malicious attacks, 

hardware faults, and human mistakes, threaten their normal operations. The term survivability 

refers to the ability of a network to assure service continuity to a certain degree in the presence of 

these challenges. The survivability approaches are generally classified into protection-based and 

restoration-based [56], [55] with a main objective to achieve service stability through minimum 

recovery time, while assuring differentiated control and maintaining maximum resource utilization 

[57]. The protection-based techniques provide pre-defined backup paths, meaning that, at least a 

protection path is provided as soon as a working path is setup. A backup path may be dedicated or 

shared (e.g., 1+1 or 1:1 architectures) [194], such that traffic can be quickly switched over in case 

of failure on protected paths. In 1+1 architecture, identical traffic is transmitted simultaneously on 

both the working and protection entities, while in 1:1 architecture, the protection entity may be 

shared by low-priority traffic to increase resource utilization, since this traffic can be preempted in 

case of failure of the protected entity. The protection may be local to a link/node or global by 

bypassing an entire working path, and guarantees fast recovery within time frames amounting to 

tens of milliseconds. However, it is expensive since spare resources must be provisioned without a 

priori knowledge of failures’ patterns. The restoration mechanisms are more cost-effective by 

establishing alternative paths only after a failure has occurred. Nonetheless, restoration actions may 

be completed within periods ranging from hundreds of milliseconds to a maximum of a few 

seconds due to the delay in finding appropriate resources after failures. Therefore, the protection 

and the restoration techniques can be combined in practice to improve performance [186]. 
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This chapter proposes the SACOR that pushes survivability control load and complexity to 

CDPs for fast recovery and scalability purposes. It provides VOPR-based Re-routing (VR) and 

Preemptive-based Re-routing (PR) techniques, which allow for fast traffic switchover upon failures 

without requiring ACOR synchronization or resource reservation signalling. The VR re-routes 

flows based on available VOPRs, and the PR preempts lower priority flows to accommodate higher 

priority ones. Further, the Available Reservation-based Re-routing (ARR) and Reservation 

Readjustment-based Re-routing (RRR) schemes are introduced for re-routing remained flows after 

the VR’s and PR’s operations. The ARR re-routes traffic after the CDPs’ synchronization to overall 

changes occurred in network resource utilization statistics, and the RRR enables for readjusting 

reservations parameters on paths upon need to avoid dropping traffic unnecessarily or wasting 

resources upon failures. Our simulation results show that SACOR effectively provides 

differentiated survivability under fast convergence operations, while efficiently using the network 

resources.  

This chapter is organized as follows. Section 6.1 describes the SACOR control approach. 

Section 6.2 provides the performance evaluation. Finally, the section 6.3 concludes the chapter. 

6.1 Survivable ACOR Control Approach 

The main objective of this section is to describe the SACOR approach. It describes the several 

phases: (A) link failure is automatically detected and announced; (B) CDPs perform the Automatic 

Traffic Re-routing using the VR and the PR techniques; (C) CDPs cooperate for synchronization 

with the changes imposed in network topology and the related resource utilization statistics; (D) 

CDPs with extra traffic proceed with the re-routing process through the use of ARR and RRR re-

routing schemes. 

6.1.1 Failure or Recovery Detection and Notification 

The failure and recovery events can be detected by means of periodic hello or keep alive 

messages between neighboring or peering nodes, or by any technique implemented by the network 

administrator as in legacy systems [193], [237]. For simplicity in this work, link events 

“Down”/“Up” are detected based on signal power. Note that a node “Down”/“Up” event implies 

simultaneous failures/recoveries of multiple directly connected links. Hence, a node “Down” or 

“Up” event is represented as a set of links “Down” or “Up” events, with functions being processed 

in bundle for scalability reasons. To facilitate the understanding, the description is illustrated using 

Figure 6.1 with a link failure occurrence in step (a) between the core node C2 and CDP2. 
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Figure 6.1. Link failure event notification message routing. 

Every node which detects a link “Down” or “Up” event inside a network is responsible for 

announcing the occurred event to the CDPs and let the latter react and adapt to the changes 

required. For the sake of control stability in presence of flapping interfaces with very close “Down” 

and “Up” events in time, a detected “Down” event is not announced immediately as it occurs. It is 

announced a specified amount of time after it is detected, the Correlation Timer as in [237], so that 

unnecessary notification about a link which goes down and up within that time can be avoided. 

Besides, a detected “Up” event is announced after 50ms. This means that a “Down” event 

processing has higher priority than that of an “Up” event, since traffic must be timely re-routed in 

case of failures. Further details of events notification functions are provided in the following. 

  After each of the nodes C2 or CDP2 (in Figure 6.1) has detected the failure of the link {C2, 

CDP2}, it creates a notification message and sends it out through all its outgoing interfaces as 

in step (b). The information encapsulated in a notification message mainly includes the IDs of 

the affected interfaces (e.g., (I11, I22)), the message timestamp (time at which the message was 

created), and a flag indicating the type of the event being announced (e.g., Down). Before 

sending a notification message, each of the nodes maintains a record of the event by storing 

the IDs of the affected interfaces, the event type and the message timestamp, and the 

information that is used to avoid unnecessary notification messages (as will be detailed 

below). A record is maintained until a configurable timer expires.  

When a notification message is traveling across a network, any visited node intercepts the 

message and processes it as in the following: 

  First, the node checks if the message is being received for the first time by looking up in its 

local database whether there already exists a record of the event. In case a node receives a 

notification message for the first time, it records the event as explained in the previous 

paragraph. After that, it forwards a copy of the message on each of its interfaces except the 
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one on which the message was received. When there exists a record for the event (the timer 

has not expiered), the node simply discards the message. This ensures that each node floods a 

notification message about a failure or recovery event only once to avoid unnecessary 

flooding overhead. This procedure is repeated on every node until the messages reach the 

CDPs. It is also important to mention that a flooding-based solution is adopted in order to 

assure that a notification message is delivered to every CDP in a timely and reliable manner 

with less complexity, provided that there exists at least a route to the CDP. Moreover, the 

notification messages (control packets) are mapped to the QoS-aware control CoS maintained 

in ACOR for improved notification messages transport to the CDPs. 

  When a CDP receives a notification message, it also forwards the message as we explained 

earlier. In addition, a CDP triggers the SACOR survivability processing functions so that the 

CDPs can quickly react and adapt to the changes occurred. In order to achieve this, 

survivability functions are divided into: (1) Automatic Traffic Re-routing Functions (ATRF) 

to quickly switch traffic from affected working trees to available trees, taking traffic priorities 

and resource availability into account; (2) “Down” Events Synchronization Functions 

(DESF) to enable CDPs to quickly synchronize with overall changes occurred in network 

topology and the related links resource statuses after links/nodes failures; (3) Extra Traffic 

Re-routing Functions (ETRF) to attempt to re-route the traffic flows that may not be re-

routed using the ATRF functions; and (4) “Up” Events Synchronization Functions (UESF) to 

enable CDPs to quickly synchronize with changes occurred in network topology, and the 

related links resource statuses when previously failed links/nodes are recovered. 

Notice that the timer of event record should be reasonably defined by the network 

administrator based on the network size to prevent unnecessary memory consumption. 

6.1.2 Automatic Traffic Re-routing Functions 

The ATRF functions enable each CDP inside a network to assure fast re-routing of traffic upon 

failures without requiring synchronization or resource reservation signalling. To facilitate the 

understanding of our description, a tree which contains failed outgoing interface(s) is called 

“Failed Tree”, and a Failed Tree which originates from a given CDPA is called CDPA’s “Own 

Failed Tree”. Hence, when a CDP receives a new link failure notification message, it starts a 

Failure Detection timer so that failures that may occur within that interval can be processed in 

bundle for scalability reasons. When the Failure Detection timer expires, the CDP collects the IDs 

of the failed links detected, and updates the related interfaces status to “Down” in its TOPOLOGY 

table (see Table 6.1). Then, it obtains all the related Failed Trees from the correlations pattern in 

the TOPOLOGY table. Among these Failed Trees, it retrieves the “Own Failed Trees” and sets 



 

147 

 

their status to “Failed” in its TREES table (see Table 6.2). This way, every CDP is able to quickly 

distinguish its Own Failed Trees from the own available trees using its local database information 

without signalling the network. Then, the CDP attempts to re-route traffics from the Own Failed 

Trees into the own available candidate trees taking traffic priority, QoS requirements, and the 

available network resource into account as in the following.  

First, a priority Prio {high, medium, low, best effort} is assigned to each traffic flow. 

Moreover, traffic flows re-routing is performed aggregately for scalability reasons. This means that 

a set of traffic flows f (each with required bandwidth f

ir in CoSi) of which the aggregated used 

bandwidth ( f

ir ) is smaller or equal to the available resources in CoSi on a candidate tree are re-

routed simultaneously into the tree. Further, the ATRF functions are divided into two parts as being 

the VR scheme and the PR techniques as follow.  

  VOPR-based Re-routing: by using the VR, a CDP switches affected traffic flows of each CoSi 

from each Own Failed Tree Ty into relevant candidate trees, which show the same egress 

nodes, based on the traffic priorities and available VOPRs in corresponding CoSi on each 

candidate tree Tx (  ,f

i vopr xr A i T ). In particular, traffic flows removal from an Own 

Failed Tree Ty is processed using ACOR flow release functions, and the amount of used 

bandwidth on the tree Ty is updated in PATHS table without synchronization or QoS release 

signalling message into the tree Ty as we explained in subsections 4.1.2. The same way, a flow 

switching into a candidate tree Tx is carried out as a new flow admission into the Tx based on 

available VOPRs using equation (4.4). Thus, the amount of used bandwidth on the tree Tx is 

updated in TREES table without synchronization or QoS reservation signalling message into 

the tree Tx as we stated in subsection 4.1.2. Hence, the VR functions assure fast traffic re-

routing, and therefore appear suitable for high priority and delay-sensitive flows. 

  Preemptive-based Re-routing: The PR functions enable a CDP to remove lower priority flows 

from certain candidate trees in attempt to accommodate as many higher priority flows as 

possible without requiring signalling events, which is possible since a flow release may 

provide more available VOPRs in candidate trees. Therefore, the PR-based re-routing 

functions also provide fast traffic flows switchover, as neither synchronization nor reservation 

control signalling is involved. Note that the preempted traffic flows may be mapped to other 

trees or CoSs with lower QoS requirements depending on local control policies and service 

contract between customer and provider. However, the policy-driven preemption is not the 

focus of this work.  
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Table 6.1. TOPOLOGY table updating upon interface “Down” event. 

 

Table 6.2. TREES Table updating upon interface “Down” event.  

 

The available VOPR in formula (4.4) in candidate trees is used by VR or preempted by PR 

algorithms, respectively, since the VOPR enables every CDP to process as many flows as possible 

without requiring signalling events. When a CDP completes the ATRF process, it triggers the 

DESF, so that each correlated CDP can adapt its local database to the overall changes required in 

terms of topology and related links resource statistics, to maintain accurate control information 

under failures. After the CDPs are synchronized with the network overall resource conditions, the 

traffic flows which may still be waiting for re-routing decisions are processed. This way, SACOR 

aims to achieve differentiated survivability with maximum resource utilization, without dropping 

traffic flows unnecessarily when there are sufficient unused resources inside the network. 

6.1.3 “Down” Events Synchronization Functions 

This subsection describes how CDPs synchronize to changes occurred in network topology and 

the related resources status after failure to assure fast system convergence. To ease the 

understanding, an outgoing interface that belongs to a CDPA’s own tree and a Failed Tree is called 

CDPA’s “Own Affected Interface”, regardless of the CDP from which the failed tree originates. 

Hence, a CDP which experiences Own Failed Tree(s) upon a failure, uses the IDs of the Own 

Failed Trees to obtain all the related Own Affected Interfaces from its TOPOLOGY table where the 

correlations patterns provide the common interfaces between a CDP’s own trees and the Failed 

Trees inside the network. Then, the CDP computes its Aggregate Used Bandwidth for each CoSi on 

each of its Own Affected Interfaces, as being the total amount of bandwidth granted to the currently 

running traffic flows on the own trees that use the interfaces, using equation (4.3) with m being the 

number of CDPA’s own trees. After that, the CDP obtains the correlated CDPs and the related Own 

Failed Trees per each of the “Own Affected Interfaces” using the following algorithm. Let h be the 

number of “Own Affected Interfaces” and e being an integer, then, the process is: 
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Then, the CDP advertises the Aggregate Used Bandwidth computed together with the IDs of 

the related Own Failed Trees to the correlated CDPs obtained using the algorithm (6.1). This way, 

the correlated CDPs inside a network selectively cooperate and dynamically exchange their 

aggregate used bandwidth statistics in each CoS on each of the “Affected Interfaces” and the IDs of 

their Failed Trees. Whenever a CDP receives such information and happen to realize that it has not 

advertised its own Aggregate Used Bandwidth on certain affected interfaces received from an 

advertisement (the CDP may not have any tree using the failed link being processed), it computes 

the Aggregate Used Bandwidth and advertises the information to the correlated CDPs. This enables 

each CDP to update its local database as in the following. First, each CDP computes the total 

amount of used bandwidth in each CoS on each of the “Affected Interfaces”, based on the collected 

aggregate used bandwidths, and updates the information in its TOPOLOGY table accordingly. 

Moreover, it updates the correlations patterns of each “Own Affected Interface” by removing the 

Failed Trees’ IDs from the Correlations Patterns into the Failed Correlations Patterns, and thus, 

the related Interface Sharing Factors are also updated. Besides, it updates the list of correlated 

CDPs in its TREES table (see Table 6.2) for each own tree which happens to use an “Own Affected 

Interface”, while the VOPRs are also updated for the interfaces using equation (4.1).  

To assure that each affected CDP receives advertisements of Aggregate Used Bandwidth and 

related Failed Trees’s IDs from all expected remote CDPs and properly updates its local database, 

every CDP maintains a list of expected correlated CDPs obtained in algorithm (6.1). Hence, a CDP 

is enabled to send explicit requests to any remote CDP which fails to advertise its information and 

expects a response within a specified time. Then, a CDP that does not advertise or reply to explicit 

requests until there is a timeout is considered inactive. Then, the process resumes and a warning is 

issued to the network administrator. As we referred earlier, the timer should be adapted by network 

administrator according to the size of the network, taking into account the maximum edge-to-edge 

round trip time inside the network. Moreover, all control messages are acknowledged for reliability 

reasons. As a CDP updates its local database after a failure, it attempts to re-route the eventually 

remained flows, the Extra Traffics, which were not re-routed by the ATRF.  

6.1.4 Extra Traffic Re-routing Functions 

The traffic flows that were not re-routed with the ATRF functions may be re-routed after the 
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CDPs have synchronized to the overall network resource status in subsection 6.1.3. To achieve this, 

a CDPA which has extra flows to re-route collects the candidate trees of the flows and invokes the 

ACOR resource and admission control functions defined upon VOPRs’ exhaustion as in Chapter 4. 

Thus, the CDPA attempts to re-route the extra flows by using ARR techniques and RRR scheme as 

follows: 

  Available Reservation-based Re-routing: As the local database is synchronized, the flows 

are re-routed aggregately based on traffics priorities and the available reservations in each 

relevant CoSi on each candidate tree Tx (  ,f

i RservBW xr A i T ) using equation (4.6). Then, 

the used bandwidth on Tx in TREES table and the total used bandwidth on the related 

outgoing interfaces are also updated in the TOPOLOGY table accordingly. In case all the 

extra traffic is re-routed based on these functions, CDPA advertises the correlated CDPs 

and the network operations resume without any QoS reservation signalling. 

  Reservation Readjustment-based Re-routing: This function re-routes the extra traffic 

flows by readjusting reservation parameters of CoSs on candidate trees upon need. The 

RRR carries out re-routing after synchronization and reservation readjustment signalling 

messages to increase resource utilization efficiency upon failures. Considering that the 

original ACOR resource control functions process flows individually, SACOR treats the 

reservation readjustment for flows aggregately as in algorithm (6.2) where the ECOR 

resource control algorithm is described in subsection 3.2. Let k be the number of CoSs on 

each interface and i be an integer, the process to readjust reservation parameters on an 

interface Ie on a tree Tx is:  

 

As new reservation parameters are computed, they are enforced on relevant candidate trees by 

means of ACOR reservation signalling protocol, and the extra traffic is admitted accordingly. In 

case a flow cannot be re-routed after resource reservation readjustment, it is dropped since it cannot 

be admitted without QoS violation.  
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6.1.5 “Up” Events Synchronization Functions  

When a CDP receives a new Notification message about a recovered link, it processes the 

message as in the following. First, it sets a timer to process in bundle all new recoveries that may 

occur within the timer. When the timer expires, it resets the recovered interfaces’ status to “Up” in 

its TOPOLOGY table (see Table 6.3). Then, it uses the IDs of the recovered interfaces and the 

failed correlations patterns from the TOPOLOGY table to obtain the IDs of the previously Own 

Failed Trees to which the recovered interfaces belong. Among these trees, it retrieves its own trees 

which can be recovered, the Own Recoverable Trees, and sets their status to “OK” in its TREES 

table (see Table 6.4). In this Thesis, a “Recoverable Tree” is a previously Failed Tree of which all 

outgoing interfaces show “Up” status in the TOPOLOGY table. Moreover, an outgoing interface 

shared by a CDPA’s tree and a Recoverable Tree is called CDPA’s “Own Recovery Interface”. 

Then, the CDP computes its Aggregate Used Bandwidth in every CoSi on each of its Own 

Recovery Interfaces using equation (4.3), and advertises the information together with the IDs of 

the related Own Recoverable Trees to the correlated CDPs. The correlated CDPs of a given Own 

Recovery Interface are obtained using the algorithm (6.1) in subsection 6.1.3. When a CDP’s 

“Interface on Own Recoverable Tree” is used by the CDP’s other active tree(s) (different from the 

recoverable trees), the reservation parameters of each CoS on the interface are also advertised to 

the correlated CDPs, since these reservation parameters may have been modified in the meantime 

through the active trees. A CDP that does not have any tree using the recovered interfaces may be 

triggered by receiving such information, since it would not have advertised its aggregate used 

related to the recovery interfaces received. In this case, it advertises immediately its aggregate used 

bandwidth, and the reservations parameters in each CoS on those interfaces to the correlated CDPs, 

if its active trees use the interface(s).  

Thus, every concerned CDP computes the total amount of used bandwidth in each CoS on each 

of its “Affected Interfaces” by using the aggregate used bandwidths collected and equation (4.3). 

Then, the CDP updates used bandwidth and the reservations parameters in its TOPOLOGY table 

accordingly. Moreover, it updates the correlations patterns of each of the interfaces by removing all 

the recoverable trees’ IDs from the Failed Correlations Patterns to the Correlations Patterns, and 

thus, the Interface Sharing Factors are also updated accordingly. A CDP updates also the list of 

correlated CDPs for each own affected tree (correlated trees with the own recovery interfaces), and 

the VOPRs parameters on the interfaces in its TREES table using equation (4.1). In case an 

interface on a recovered tree is not shared by any active tree (e.g., a recovered interface), a CDP 

defines new reservations parameters on the interface using the initial reservation function of 

ACOR. Then, the CDP signals the nodes on the recoverable trees with the IDs of the concerned 
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outgoing interfaces, so that the new reservations are enforced on the interfaces along the trees. As 

in subsection 6.1.3, it is also assured that each CDP receives the Aggregate Used Bandwidth, the 

reservation parameters and IDs of recoverable trees from all expected remote CDPs to properly 

update its local database.  

Table 6.3. TOPOLOGY table updating upon interface “Up” event. 

 

 Table 6.4. TREES table updating upon interface “Up” event. 

 

6.2 Performance Evaluation  

We assessed SACOR through simulation using ns-2 [233]. We focus on observing network 

convergence time by using the control timers, tracking the re-routing statistics and taking as basis 

the simulation methodology in [115] through system throughput variations and packet dropping 

statistics. We evaluate the statistics of successfully re-routed traffic with each of the re-routing 

methods for flows’ differentiation: VR, PR, ARR, and RRR. We have also analyzed the system 

overall packets delay. In terms of network resource utilization efficiency, SACOR does not drop 

any flow when there is sufficient unused bandwidth on the bottleneck links of candidate trees 

inside the networks. As we referred in section 6.1.4, it achieves this based on the resource control 

functions of ACOR demonstrated in Chapter 4.  

6.2.1 Simulation Scenario 

Each of our simulation scenarios is carried out by using 4 randomly generated topologies 

(number of ingress routers ranging from 3 to 6; core routers from 5 to 15 and egress routers from 3 

to 6) with different degrees of correlations on the links. One of the simulated network topology is 

presented in Figure 4.14. For simplicity, 4 CoSs configurations are implemented in each network 

interface, as in subsection 3.5.3. Then, traffic requests belonging to various CoSs and to three 

different traffic types, such as Constant Bit Rate, Pareto and Exponential, are uniformly generated 

between 128Kbps and 256Kbps, and are mapped to the ingress-egress pairs at Poisson arrival rate. 
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To show more accurate results, the simulation is run for each of the topologies with different seeds 

of random generation and mapping of requests to CoSs and ingress-egress pairs. Then, the obtained 

results per scenario are the mean values for all seeds and topologies with a confidence interval of 

95%. 

Moreover, each simulation is subject to various rates of failures at randomly selected links, and 

we study the behaviors of the networks in 4 scenarios under different levels of network congestion 

or overall resource utilization (45.74%, 65.23%, 85.47%, and 99.59%). We obtain these scenarios 

by setting links capacity to 35Mbps, 25Mbps, 16Mbps and 10Mbps respectively with a fixed 

number of 320 service requests in each scenario. Note therefore that the 320 traffic requests were 

sufficient to reach full (nearly 100%) resource utilization when each link capacity is set to 10Mbps 

in any of the 4 topologies. Also, the mean resource utilization or congestion level in a network is 

obtained as a mean ratio of the total used bandwidth to the link capacity on bottleneck outgoing 

interfaces of all trees inside the network.  

Further, a link failure is automatically detected and announced by the directly connected nodes 

to the link, using the mechanism described in section 6.1. When a CDP receives a first failure 

notification message about a link, it starts the Failure Detection timer, which in our simulations is 

set to 10ms. Within this timer, each CDP collects all failure events that may occur. When this timer 

expires, the CDP performs the Automatic Traffic Re-routing using the VR and the PR techniques. 

Afterwards, the CDPs cooperate for synchronization with the changes imposed in network 

topology and the related resource utilization statistics. Hence, the survivability process is over after 

the synchronization is completed if there are no extra traffic flows to re-route. Otherwise, each 

CDP which has extra traffic proceeds with the process through the use of ARR and RRR re-routing 

schemes. We plot the network overall convergence time in each scenario under the various rates of 

failures on one hand. On the other hand, we plot the convergence time and the number of flows re-

routed for each type of the proposed re-routing schemes (VR, PR, ARR, and RRR). Finally, we 

show the system overall packet delay in each scenario.  

6.2.2 Simulation Results 

Figure 6.2 shows the time it takes for networks to convergence upon failures under four 

congestion situations (45.74%, 65.23%, 85.47%, and 99.59%). A convergence time in these 

simulations is the period of time from failure detection to the time the network can resume its 

normal operation. Hence, this time is about 85ms and 90ms, respectively under 45.74% and 

65.23% of congestion, while it turns to around 103ms and 118ms, respectively under the 

congestion levels of 85.47% and 99.60%. One can also observe that the system converges faster 

under low failure rate (e.g., 4 failures/minute) than under high rate. However, there is an upper 
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bound of about 118ms of convergence time as we observe on the fully congested network scenario 

(99.60% of congestion) based on its steady convergence time under failure rates beyond 6. 

 
Figure 6.2. Network resilience convergence times under different levels of congestion. 

In Figure 6.3, we show, for each flow re-routing scheme, the time it takes from failure 

detection to the time flows are re-routed. As we have seen in Figure 6.2, system convergence time 

increases with the increase of network congestion level. Hence, Figure 6.3 contains results for low 

(45.74%) and fully congested (99.60%) scenarios only for simplicity. Hence, the convergence time 

of about 10ms for both the VR and PR re-routing schemes show that VR and PR re-route flows 

automatically after the failure detection timer. Besides, flows are re-routed within about 92ms and 

118ms by using ARR and RRR techniques respectively under congestion levels of 45.74% and 

99.60%. In general, we observe that the ARR technique is faster than that of RRR, since the later 

involves resource reservation readjustment.  
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Figure 6.3. Convergence time for each type of flows re-routing. 

Figure 6.4 shows the statistics of the mean number of flows re-routed per type of the proposed 

re-routing schemes, along with the mean number of dropped flows over the simulation time in each 

of the 4 scenarios. Table 6.5 summarizes the statistics to ease the observation. 

                                  Table 6.5. Summary of the statistics on Figure 6.4. 

Scenarios VR PR ARR RRR Dropped Total 

45.74 % 317 1 52 2 86 458 

65.23% 278 6 60 5 88 437 

85.47% 148 18 115 8 112 401 

99.6% 26 27 123 14 143 333 
 

In the first scenario (under 45.74% of congestion), 69.21% and 0.22% of affected flows were 

re-routed using VR and PR techniques, respectively. In other words, 69.43% of affected flows were 

re-routed automatically after the Failure Detection timer of 10ms using the VR and PR techniques 

as illustrated in Figure 6.3. In the second scenario (under 65.23% of congestion), 63.62% and 

1.37% of flows were re-routed using VR and PR, respectively, while 36.91% and 4.49% were re-

routed using VR and PR in the third scenario. In the last scenario under full congestion, 7.81% and 

8.11% of flows were re-routed using VR and PR respectively. The percentage of flows re-routed 

using VR decreases, and that of the flows re-routed using PR increases with the increase of 

congestion level. This confirms that VOPRs’ availability is inversely proportional to system 

congestion level. As one can notice, it was possible to re-route certain flows using VR scheme 

under fully congested scenario. This is due to the fact that, in shared-mesh networks, 

communication trees correlate dynamically by sharing resources, and affected flows may happen to 

release VOPRs in candidate trees upon failures. By operating based on VOPRs, and therefore 

without requiring synchronization or reservation signalling, the VR and PR are important to 

increase revenue in shared-mesh network without any dedicated protection.  
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Besides, we observe that 11.35% of flows are re-routed using ARR in the first scenario, and 

thus within about 85ms as depicted in Figure 6.3, and 0.44% of flows are re-routed using RRR 

within about 110ms, due to reservation readjustment signalling, and 18.78% of flows were 

dropped. In the second scenario, 13.73% and 1.14% of flows were re-routed using ARR and RRR 

respectively, and 20.14% were dropped. In the third scenario, 28.68% and 2% of flows were re-

routed using ARR and RRR respectively and 27.93% were dropped. Under the fully congested 

scenario, 36.94% and 4.20% of flows were re-routed using ARR and RRR respectively, and 

42.94% were dropped. These results show flexibility of SACOR in providing differentiated 

survivability control based on traffic flows’ priorities, and resource availability inside a network 

upon failures. Recall that SACOR drops flows only when unused bandwidth is not sufficient to 

accommodate them without QoS violation. 

 
Figure 6.4. Statistics of differentiated re-routing of flows upon failures. 

Figure 6.5 illustrates system overall ingress-egress packet delay per CoS in each of the four 

scenarios (45.74%, 65.23%, 85.47%, and 99.31%) under a scenario of 12 failures/minute. As one 

can expect, the packet delay is higher in more congested scenarios, but still at very low values for 

end-to-end. 
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Figure 6.5. Traffic packet overall delay. 

6.3 Conclusion 

This work provided a survivability approach, the SACOR, to support stable operations in 

networks which implement the control approach of ACOR. SACOR pushes survivability control 

complexity to network CDPs, which cooperate selectively to achieve fast convergence at network 

borders, and interior nodes are left simpler. Moreover, it introduces automatic traffic re-routing 

functions using Available VOPR (VR) and Preemptive techniques (PR) to switch traffic in timely 

manner based on priorities without requiring signalling inside a network. Finally, SACOR provides 

the switching of remained flows based on ARR techniques, after synchronization of the CDPs, or 

based on RRR scheme to readjust reservation parameters upon need. This way, an affected flow, 

upon failure, is dropped only when there is no sufficient available resource on candidate paths 

inside the network. The obtained simulation results showed that SACOR assures fast convergence 

with differentiated survivability control without wasting network resources. 
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Chapter 7 Conclusions and Future Directions 

 

 

 

 

 

This Thesis addressed the issues of networking control, aiming to allow for optimizing the 

control overall performance by taking into account key features such as Quality of Service, 

Scalability, Efficiency, Survivability and Cost-effectiveness. In order to achieve this, we tackled 

the trade-off between scalability (e.g., signalling overhead reduction) and waste of resources 

generally confronted in aggregate resource overprovisioning centric solutions due to dynamic 

characteristics of network environments. Our designs focused on a single networking control 

domain (e.g., area or AS), with well-defined boundaries (e.g., DiffServ or MPLS domains) where 

edge nodes reside (e.g., ingress/egress nodes), through which traffic may enter or exit the domain, 

and core nodes are placed inside the domain. This way, each network domain can deploy its own 

technology and inter-connect with others using any appropriate technique such as SLAs/SLSs 

mechanisms. In order to push control complexity to network borders and to leave core nodes 

simpler, we based on the generic master-client architectural elements principles, which are 

generally applied in the context of the NGN for policy-based control framework.  

Hence, we proposed new QoS and networking control mechanisms in class-based networks 

with support for survivability, using aggregate resource overprovisioning concept. In our 

centralized design, a central entity is implemented as a CDP which takes overall control over the 

network, while in the decentralized solution, every edge node embeds a CDP, and all available 

CDPs cooperate as a means to dynamically exchange appropriate control information for 

synchronization to changes in network topology and related resource states. A CDP is therefore the 

responsible for maintaining a good knowledge of the underlying network topology and related 

resource conditions in real-time manner, to make policies and control decisions based on accurate 

information inside the network. The decisions taken by a CDP are translated into commands and 
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conveyed in signalling messages to the core nodes which host appropriate functions for the 

enforcements while being kept simpler. Further, a CDP builds multiple QoS-aware edge-to-edge 

multicast trees and dynamically manages aggregate bandwidth over-reservation among the CoSs 

configured on the trees, in a way that allows for establishing sessions without per-flow signalling 

for QoS or synchronization among distributed CDPs, thus achieving scalability. The use of 

multicast trees is a means to ensure that the packets that belonged to a flow mapped to a tree are 

pinned to the tree so they enjoy the QoS destined to them. We also proposed a survivability 

approach to support stable operations of the centralization and decentralization mechanisms 

introduced in this research work. 

This chapter concludes the dissertation and summarizes the work done with focus on the main 

results achieved. It also provides open issues for further research in this area. The main 

contributions of this Thesis are summarized in the following. 

7.1 Summary of the Thesis 

The work carried out in this Thesis included three parts. The first part provided a general study 

of scalability in networking control with focus on resource overprovisioning and centralization 

approaches. The second part addressed the decentralization of networking control integrating 

overprovisioning, along with the control signalling protocol proposed for both centralized and 

decentralized designs. Further, the third part addressed network survivability. 

In the first part, we proposed two aggregate resource over-reservation control algorithms, the 

COR and the ECOR. COR and ECOR provide resource computation functions which allow for 

dynamically defining over-reservation (surplus of reservation) parameters for CoSs configured on 

each outgoing interface inside a network, based on the resource conditions of the interface so that 

per-flow QoS signalling can be avoided. Both COR and ECOR distribute resources among CoSs on 

an interface using weights assigned to the CoSs in a way that prevents CoS starvation and waste of 

resources. However, COR relies on existing architectural control mechanism of MARA which 

acquires bandwidth utilization statistics using periodic and on-demand probing techniques. As a 

consequence, COR algorithm prevents from over-reserving too much resources per CoS by using 

MARA’s functions, and steers focus on efficient allocation of bandwidth to avoid waste of 

resources when compared with MARA. In contrast, ECOR assumes a good view on network 

overall resource utilization statistics on real-time basis, and provides functions that allow for over-

reserving to each CoS as much resources as possible, and efficiently redistribute the residual 

reservation in a way that also avoids wasting resources. As such, ECOR is able to allow for 

enhancing the overall performance. 
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We also proposed the ACA centralization control architecture in which a single CDP is 

responsible for controlling the global network. In particular, the CDP maintains in its local NetCIB 

database the lists of outgoing interfaces of the trees inside the network, while every session 

requests are sent to the CDP for AAA and admission purposes. Hence, whenever the CDP admits, 

terminates or readjusts a session in a CoS on a tree, it updates automatically, in its NetCIB, the 

resource statistics parameters of the CoS on each of the outgoing interfaces that belong to the tree. 

This way, the CDP maintains a good knowledge of the whole network topology, the existing trees 

and the related link resource usage statistics in real-time manner. The ACA implements ECOR, 

COR and MARA over-reservation algorithms and demonstrates that, it is possible to significantly 

reduce QoS control signalling, and therefore, the related processing overhead in a network without 

incurring QoS violations or waste of resources. We also provided a generic-purpose analytical 

model which allows for evaluating the impact of various control parameters (e.g., link capacity, 

session dynamics, etc) which generally affect the performance of over-reservation-centric 

approaches in terms of signalling overhead reduction and waste of resources. 

In the second part of this dissertation, we proposed a generic mechanism for decentralization of 

network control called ACOR. The main goal of ACOR is to enable multiple CDPs distributed at 

network border to cooperate to exchange communication trees and related resource usage 

information, such that each CDP is able to maintain a good knowledge of the network topology 

(e.g., nodes and links) and the related links resources statistics in real-time manner. This way, 

ACOR provides essential support for network control sub-systems (e.g., aggregate QoS and 

resource over-reservations, traffic engineering, routing, and mobility), in distributed network 

environments. From scalability perspective, ACOR cooperation is selective, meaning that, 

information is exchanged between only the CDPs which are concerned and unnecessary 

broadcasting is avoided dynamically. Moreover, we proposed a VOPR concept which allocates a 

share of aggregate over-reservation of each interface to each of the trees that use the interface. 

Thus, the VOPR enables each CDP to process several session requests on a tree without requiring 

synchronization as long as the VOPR of the tree is not exhausted, such that synchronization 

signalling rate is also kept low. In other words, ACOR provides scalable resource and admission 

control functions with low QoS reservation and synchronization signalling and the related overhead 

without incurring QoS violation or wasting resources.  

While ACOR allows for optimizing QoS reservation signalling overhead, its synchronization 

signalling rate increases rapidly with the increase of the number of trees that use bottleneck 

interfaces inside a network. Moreover, the exhaustion of VOPR upon every session request during 

network congestion period of time forces ACOR to place synchronization on per-request basis at 

congestion time, thus raised scalability concerns. Therefore, we proposed the E-ACOR. On one 
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hand, E-ACOR extends the ACOR VOPR concept by aggregately allocating the over-reservation 

of an interface to all the trees that originate at the same CDP. Hence, each CDP may process more 

session requests on a tree without requiring synchronization when compared with ACOR, since 

session demands are mostly unpredictable. On the other hand, E-ACOR enables each CDP to 

efficiently track network congestion information without undue control signalling overhead in a 

way to prevent unnecessary synchronization signalling when VOPR would exhaust under network 

situations. E-ACOR allows for the synchronization overhead reduction which is crucial to achieve 

scalability, and it is also able to keep the optimization capabilities of ACOR in terms of QoS 

reservation signalling overhead reduction without QoS violation or waste of resources. We also 

proposed the ACOR-P, an NSIS compliant signalling protocol, which defines appropriate message 

structures, types, fields and objects in support for all the centralization and decentralization control 

mechanisms designed in this Thesis. The performance evaluation through analytical and simulation 

results proves that E-ACOR effectively allows for optimizing network overall performance with 

increased resource utilization in distributed manner.  

In the last part of this Thesis, we proposed the SACOR in support for stable operations and 

service continuity in ACOR-enabled networks in the presence of failures (e.g., links/nodes 

failures), or when previously failed link or new link comes up. As core nodes remain simpler, they 

mainly detect and announce failures or recovery events to all CDPs using a flooding-based 

approach. When CDPs receive notifications of failures or recoveries, they cooperate selectively to 

quickly adapt to the changes imposed in terms of topology, link resource conditions, and timely re-

route affected traffic flows taking traffic QoS requirements and network current conditions into 

account. Notice that SACOR pushes survivability control load and complexity to CDPs, and core 

nodes are left simpler which assists to achieve fast convergence and scalability. Regarding 

differentiation of flows re-routing upon failures, we proposed VR and PR techniques, which allow 

for fast traffic switchover upon failures without requiring ACOR synchronization or resource 

reservation signalling. To this end, the VR re-routes flows based on available VOPRs, while the PR 

preempts lower priority flows to accommodate higher priority ones. Besides, we introduced the 

ARR and RRR schemes for re-routing remained flows after the VR’s and PR’s operations. The 

ARR re-routes traffic after the CDPs’ synchronization to overall changes occurred in network 

resource utilization statistics, and the RRR enables for readjusting reservations parameters on trees 

upon need to avoid dropping traffic unnecessarily or wasting resources upon failures. Our 

simulation results showed that SACOR effectively supports fast convergence operations, while it 

allows for efficiently utilization of network resources to perform differentiated survivability. 
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7.2 Future Work 

This subsection provides directions for further research and development of the work carried 

out in this Thesis.  

In the scope of aggregate resource over-reservation algorithms, further studies in terms of 

context-aware assignment of weights to CoSs would allow for achieving improved results. 

With respect to the centralization control framework, a prototype setup for a real testbed would 

also allow for a better study of the network behaviors with real data. It would allow for a more 

precise measurement of the performance metrics such as the signalling load, delay, loss, network 

resource utilization efficiency as well as QoS violation issues. 

Regarding the decentralization control mechanisms of ACOR and E-ACOR, it is necessary to 

setup a real testbed to better evaluate the network performance in terms of signalling, state and 

processing overhead. This will also allow for assessing the effect of simultaneous VOPR 

exhaustion for further studies and analyses. The storage requirement of the NetCIB could also be 

evaluated. It is also of good interest to further study the approach without storing trees correlation 

information in local databases to assess the trade-off between bandwidth and processing 

consumption against storage resources utilization. 

The network survivability control also needs a real testbed setup to appreciate the real 

measurement of network convergence time, delay, packet loss, and the performance of the flow re-

routing differentiation mechanism in terms of QoE. 

It is important to study inter-domain protocols including ACA, ACOR and E-ACOR 

architectures with efficient QoS provisioning in real scenario to evaluate the benefits and 

disadvantages of the proposed approaches when compared with existing Internet protocols. It 

would also be interesting to evaluate the performance of both centralization and decentralization in 

real scenarios. 

Multicast trees’ filtering is also an important aspect that can be further studied by taking 

broader performance metrics into account to improve performance.  

The ACA, ACOR and E-ACOR together with the SACOR control concepts can also be applied in 

many different network scenarios such as network virtualization, mobility, QoS routing, Traffic 

engineering, and attractive service provisioning to assess the flexibility features of the approaches.



 

 

 

 



 

165 

 

APPENDIX: ACOR-P Signalling Protocol  

This annex provides details on the ACOR-P signalling protocol introduced in section 4.2 in 

Chapter 4. 

Message Common Header 

All ACOR-P messages contain the common header as the first 32 bits. It is used to specify the 

message type and the message relevant control flags as in Figure 1 while Table 1 provides detailed 

description on each field in the common header. 

 
Figure 1. Common Header functional specification. 

Table 1. Common header fields description. 

<AttributeName>  Type Description  

Message Type 8-bit integer 
- When set to 00 indicates REQUEST message. 

- When set to 01 indicates RESPONSE message. 

VERSION (V) 1-bit (flag) 

When set to TRUE=1, indicates that Internet Protocol version 6 

(IPv6) is currently in use, otherwise, Internet Protocol version 4 

(IPv4). 

INIT (I) 1-bit (flag) 
When set to TRUE=1, indicates a REQUEST message at the 

system initialization phase. 

REFRESH (R) 1-bit (flag) 
When set to TRUE=1, indicates that the amount of resources 

state should be refreshed in nodes as indicated in the objects. 

ALTERATE (A) 1-bit (flag) 

When set to TRUE=1, indicates that currently installed QSPEC 

states in the nodes, must be modified as indicated in the objects 

conveyed. 

COLLECT (C) 1-bit (flag) 
When set to TRUE=1, indicates that the QSPEC or MSPEC 

parameters must be collected on the nodes. 

SYNCHRONIZE (S) 1-bit (flag) When set to TRUE=1, indicates a synchronization message. 

MULTICAST (M) 1-bit (flag) When set to TRUE=1, indicates a request for multicast flow. 

Request Identification Information 

The Response Identification Information (RII) is an identifier set by a sender of a message 

which requires a response message. Hence, the receiver of the message must include the same RII 

in the corresponding response message to allow the sender to properly associate each response 

message to its original message. An original message may be a QoS reservation or a 

synchronization message. As shown in Figure 2, the RII object has a fixed length of one 32-bit 

integer. In ACOR, the type of RII object is set to 0x01. 
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Figure 2. Response identification information functional specification. 

 Multicast Specification 

The MSPEC object [125] is used to carry the SSM channel as a tuple (Source_ID, Group_ID) 

or a list of channels, depending on the required operation. Recall that an SSM multicast channel is 

characterized by two identifiers: (1) a Source_ID which indicates the ID of the media source (e.g., 

ingress CDP); (2) a Group_ID, which indicates the ID of the media receivers’ group (e.g., egress 

CDP). IP address is usually used to represent the Source_ID or the Group_ID of a channel, and 

therefore is a 32-bit word in IPv4 or four 32-bit words in IPv6. The Figure 3 shows the format of a 

MSPEC object. 

 
Figure 3. Multicast specification functional specification. 

Record Route Object 

The RRO is used to carry the list of the IDs (e.g., IP or MAC addresses) of the outgoing 

interfaces on a path. Hence, the size of a RRO object varies according not only to the number of the 

outgoing interfaces on a path, but also according to whether the IDs are IPv4, IPv6 or MAC 

addresses. Note that a physical (MAC) address is 48 bits for IEEE Extended Unique Identifier 

(EUI-48) and 64 bits for IEEE Extended Unique Identifier (EUI-64). Illustrated herein below in 

Figure 4, the fields of a RRO object are described in Table 2. 

 
Figure 4. The RRO functional specification. 
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Table 2. The RRO field description. 

<Attribute Name>  Type Description  

Version 
4-bit (unsigned 

integer) 

Set to 0: indicates IP address. 

Set to 1: indicates IEEE Extended Unique Identifier (EUI-

48) MAC address. 

Set to 2: indicates IEEE Extended Unique Identifier (EUI-

64) MAC address. 

M 1-bit (flag) 
Set to 1: indicates that subsequent parameter must be 

interpreted. 

Length 
12-bit (unsigned 

integer) 

Total number of IDs in the list (variable); after adding an 

address, this field must increment +1. 

INFO_SPEC 

ACOR-P uses the INFO_SPEC object to provide feedback on a deployed operation (e.g., 

successful or unsuccessful notifications). As shown in Figure 5, this object contains two 16-bit 

integer fields, one for error code and the other for error class respectively, where the fields are 

described in Table 3. 

0 15 31

Error_Code Error_Class
 

Figure 5. Info_Spec and error codes functional specification. 

Table 3. INFOSPEC field description. 

<AttributeName> Description  

Error_Class Error_Code The type is 16-bit integer for each attribute. 

01 01 Possible route change occurred on downstream path. 

02 01 Reservation successful. 

02 02 Refreshing successful. 

02 03 Modification successful. 

02 04 Synchronization successful. 

02 05 Notification successful. 

03 01 Reservation failure: not available CoS. 

03 02 Reservation failure: not available bandwidth. 

03 03 Robustness failure: not enough resources. 

03 04 Synchronization failure. 

03 05 Modification failure. 

Message ID (MSG_ID) 

Every ACOR message has a unique ID. As shown in Figure 6, a message ID is a five 32-bit 

words field. In particular, it contains a 1-bit Message_Binding_Type (D) to indicate the dependency 
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relation of a message binding while the rest specifies a 128 bit randomly generated value that 

“uniquely” identifies each particular message.  

When the message binding code D is set to 0: indicates unidirectional binding dependency. 

When the message binding code D is set to 1: indicates Bi-directional binding dependency. 

 
Figure 6. Message ID functional specification. 

QSPEC Specification Headers 

This subsection describes the format of each header used in the ACOR QSPEC containers. 

These headers include the QSPEC common header, the QSPEC object header and the header of 

each object’s parameter. 

QSPEC Common Header 

The common header of a QSPEC object is a fixed 4-bytes long object as shown in Figure 7. It 

contains the version, an Initiator/Local QSPEC flag and the QSPEC Type. The version identifies 

the QSPEC version number assignable by IANA, while the QSPEC Type identifies the QSPEC 

Model deployed. Besides, an Initiator/Local QSPEC bit (I) is used to indicate whether the QSPEC 

is an original QSPEC initiated by the traffic source or a local QSPEC. Hence, in a domain where 

the control model is different from the model in the domain where the QSPEC was initiated, the 

initial QSPEC must be converted into the Local QSPEC to allow for a proper processing of the 

QSPEC across the network. Details on the format of the common header are available in Table 4. 

 
Figure 7. QSPEC Common header functional specification. 
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Table 4. QSPEC Common header field description. 

<Attribute Name>  Type Description  

Version 4-bit (integer) QSPEC version number assignable by IANA. 

Initiator/local (I) 1-bit (flag) 
Set to 0: Initiator QSPEC. 

Set to 1: Local QSPEC. 

QSPECType 8-bit (integer) 
Identification code of QoS Model in use (e.g., ACOR, E-

ACOR or ACA). 

Reserved  6-bit Reserved bits. 

Length 12-bit (integer) Total length of QSPEC excluding the common header. 

QSPEC Object Header  

Every QSPEC object is encoded in TLV format as in Figure 8 extrated from [123] and further 

detailed in Table 5.  

r Object Type Length

310 3 15 19

E r r rr rr

 
Figure 8. QSPEC object header functional specification. 

Table 5. QSPEC Object header field description. 

<AttributeName>  Type Description  

E 1-bit (flag) When set to True=1, indicates error at object level. 

Object Type 12-bit (integer) 

Set to 0: QoS Desired (parameters cannot be overwritten). 

Set to 1: QoS Available (parameters may be overwritten). 

Set to 2: QoS Reserved (parameters cannot be overwritten). 

Set to 3: Minimum QoS (parameters cannot be overwritten). 

Set to 68: Initialization Reserve Object. 

Set to 69: Initialization Response to Reserve. 

Set to 75: Reservations Readjustment Object. 

Length 12-bit (integer) 
Total length of parameters excluding the object common 

header. 

QSPEC Object Parameter Header 

Each QSPEC parameter within an object is similarly encoded in TLV format using a similar 

parameter header as shown in Figure 9 and further detailed in Table 6.  

N Parameter ID Length

310 3 15 19

M E r rr rr

 
Figure 9. QSPEC object parameter header functional specification. 

 

 

 



 

170 

 

Table 6. QSPEC object parameter header field description. 

<AttributeName>  Type Description  

M 1-bit (flag) 
When set to True=1, indicates that subsequent parameter 

must be interpreted. 

E 1-bit (flag) 

When set to True=1, indicates: 

a) reservation failure where parameter is not met. 

b) error when this parameter was being interpreted. 

N 1-bit (flag) 
When set to True=1, indicates non-supported QSPEC 

parameter. 

Parameter ID 
12-bit (unsigned 

integer) 

Set to 1: <TMOD-1> 

Set to 2: <TMOD-2> 

Set to 3: <Path Latency> 

Set to 4: <Path Jitter> 

Set to 5: <Path PLR> 

Set to 6: <Path PER> 

Set to 9: <Admission Priority> 

Set to 12: <PHB Class> 

Set to 14: <Y.1541 QoS Class> 

260-4095—reserved IDs…. (for ACOR parameters) 

Set to 260: Available Bandwidth. 

Set to 261: Reserved Bandwidth. 

Set to 262: Used Bandwidth per Path. 

Set to 263: Aggregate Used Bandwidth. 

Set to 264: Aggregate VOPRs of Paths. 

Set to 265: Interface Capacity. 

Set to 266: Interface ID. 

Set to 267: Path ID. 

Set to 268: Weights of CoSs. 

Set to 269: Total Used Bandwidth. 

Set to 270: Bandwidth Threshold. 

Length 
12-bit (unsigned 

integer) 

Total length of parameters excluding the object common 

header. 

QSPEC Specification Objects 

This subsection aims to provide details on the QSPEC objects used in the ACOR messages. In 

other words, the description introduces the format and the contents of the main QSPEC objects. 

QoS Desired Object 

As illustrated in Figure 10 extrated from [174], a QoS desired object contains appropriate 

information on the CoS and the traffic characteristics (e.g., the required bit rate, buffer size, etc). A 

service request message exploits this object to provide details on the QoS being requested to allow 

network control decision points to properly perform Admission Control and the QoS mapping. 
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Hence, this object may also include the QoS metrics such as the end-to-end delay, jitter and the 

packet loss constraints of the traffic.  

 
Figure 10. QoS Desired specification structure. 

QoS Available Object 

The QoS Available object illustrated in Figure 11 extrated from [174] is provided for the 

purpose of probing a communication path to collect the available resources on the bottleneck 

outgoing interfaces of the path. The metrics collected mainly include the available bandwidth, the 

end-to-end delay, jitter and packets loss on paths. 



 

172 

 

 
Figure 11. QoS Available Structure [Ash2010]. 

CXT_SPEC Common Header 

As we referred earlier, the CXT_SPEC uses similar structure as that of the QSPEC. Hence, 

every CXT_SPEC is encoded with a common head illustrated in Figure 12 and described in Table 

7. 

Version (Reserved)I CXTM ID Length

310 3 4 5 13 19

M

 
Figure 12. CXT_SPEC Common header functional specification. 

Table 7. CXT_SPEC Common header field description. 

<AttributeName>  Type Description  

Version 4-bit (integer) QSPEC version number assignable by IANA 

Initiator/local (I) 1-bit (flag) 
Set to 0: CXT_SPEC from external CDP 

Set to 1: CXT_SPEC from local CDP 

M 1-bit (flag) When set to True=1, subsequent objet must be examined 

CXTM ID 8-bit (integer) Identification code of control Model: (e.g., ACOR)  

Reserved  6-bit Reserved bits  

Length 12-bit (integer) 
Total length of CXT_SPEC object excluding the common 

header. 
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CXT_SPEC Object Header 

Figure 13 is used to illustrate the header used by each synchronization context information 

object and Table 8 provides details on the relevant fields’ information. 

 
Figure 13. CXT_SPEC object header functional specification. 

 

Table 8. CXT_SPEC Object header field description. 

<AttributeName>  Type Description  

E 1-bit (flag) When set to True=1, indicates error at object level. 

L 1-bit (flag) 
When set to 0, indicates Link-Down resilience event. 

When set to 1, indicates Link-Up resilience event. 

O 1-bit (flag) 
When set to 0, indicates control Option I. 

When set to 1, indicates control Option II. 

Object Type 12-bit (integer) 

Set to 70: Initial synchronization (sync.) object. 

Set to 71: List of paths IDs object. 

Set to 73: List of aggregate used bandwidth object. 

Set to 74: List of reservations and total used bandwidth object. 

Set to 75: List of reservations object. 

Set to 79: List of reservations, total used and thresholds object. 

Set to 80: List of reservations and thresholds object. 

Length 12-bit (integer) Total length of parameters excluding the object common header. 

CXT_SPEC Object parameter header 

Each CXT_SPEC parameter within an object as in Figure 14 is similarly encoded in TLV 

format using a similar parameter header as detailed in Table 9.  

 
Figure 14. CXT_SPEC object parameter header functional specification. 
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Table 9. CXT_SPEC object parameter header field description. 

<AttributeName>  Type Description  

M 1-bit (flag) 
When set to True=1, indicates that subsequent parameter must 

be interpreted. 

E 1-bit (flag) 
When set to True=1, indicates error when this parameter was 

being interpreted. 

N 1-bit (flag) 
When set to True=1, indicates non-supported CXT_SPEC 

parameter. 

Parameter ID 
12-bit (unsigned 

integer) 

Set to 260: indicates a list of bandwidth (e.g., desired, 

reserved, available, etc.). 

Set to 261: indicates a list of weights assigned to CoSs. 

Set to 262: indicates a list of outgoing interfaces IDs. 

Set to 263: indicates a list of paths IDs. 

Length 
12-bit (unsigned 

integer) 

Total length of parameters excluding the object common 

header. 

<List of bandwidths> Parameter  

The <List of Bandwidths> parameter in Figure 15 is used to carry a list of bit rates information. 

This information can be the list of the bandwidths required to be reserved, already reserved or 

available bandwidth in the CoSs on a path. It is used not only for the purposes of synchronization, 

but also for QoS reservation and survivability control as well. 

 
Figure 15. List of bandwidth parameter functional specification. 

<List of Weights> Parameter  

The <List of Weights> parameter in Figure 16 is used to carry the weights assigned to each 

service CoS by the administrator in the network. 

 
Figure 16. List of weights parameter functional specification. 
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<List of Outgoing Interfaces> Parameter  

The <List of Outgoing Interfaces> parameter in Figure 17 is used to carry a list of outgoing 

interfaces such as the RRO object. It is used for synchronization as well as for survivability control. 

 
Figure 17. List of interfaces parameter functional specification. 

<List of Paths> Parameter  

The <List of Paths> parameter in Figure 18 is used to carry a list of communication paths IDs 

for the purpose of synchronization and survivability control upon need. 

 
Figure 18. List of paths parameter functional specification. 

CXT_SPEC Objects Type 71 

The CXT_SPEC Object Type 71 as shown in Figure 19, is the object used to encapsulate paths 

IDs (e.g., for synchronization or survivability control). Hence, it may carry a list of selected 

candidate paths, lists of failed paths, list of new created paths, and so on. 

 
Figure 19. CXT_SPEC object type 71’s functional specification. 
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CXT_SPEC Objects Type 73 

The CXT_SPEC Object 73 as illustrated in Figure 20, is the object use to carry aggregate used 

bandwidth for CoSs per interface. Hence, it is used for both the synchronization and survivability 

control. 

 
Figure 20. VOPR object (param_05) functional specification. 

CXT_SPEC Objects Type 74 Specific to ACOR 

The CXT_SPEC Object Type 74 illustrated in Figure 21, is the object use to encapsulate 

bandwidth reservation parameters and total used bandwidth parameters for CoSs on interfaces and 

therefore it is used for synchronization and survivability control. 
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Figure 21. The CXT_SPEC Object Type 74 for ACOR. 

CXT_SPEC Objects Type 74 Specific to COR or MARA 

The CXT_SPEC Object Type 79 illustrated in Figure 22, is the object use to encapsulate 

bandwidth reservation parameters, reservation thresholds, and total used bandwidth parameters for 

CoSs on interfaces and for synchronization and survivability control using COR or MARA. Hence, 

when compared with Figure 22, one can notice that ACOR generate smaller message size than 

COR and MARA which is important to improve scalability. 
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Figure 22. MARA and COR: VOPR object functional specification. 
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Resource Reservations Object  

The resource reservation object is the QSPEC encapsulated in QoS reservation message to 

convey resource reservation parameters to be enforced on interfaces on a path. Figure 23 illustrates 

the object used in ACOR and Figure 24 illustrates the one used in COR or MARA. It becomes 

clear that ACOR encapsulates less information that COR or MARA and would further reduce 

control load.  

 
Figure 23. ACOR Resource Reservation object functional specification. 

 
Figure 24. COR and MARA Resource Reservation object functional specification. 
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