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Abstract

Aging is defined broadly as the normal progressive process, consequently leading to
growing vulnerability to disease and death. A major challenge lies in dissecting the
underlying mechanisms of aging with conventional experiments due to the complex-
ity of and multicontributions to the aging process, reflecting a need for investigation
into it in various aspects. For this reason, the age process has currently been subjected
to OMICS technologies including genomics, transcriptomics, proteomics, and
metabolomics, allowing the exploration of age-related changes in a multifactorial
manner. In addition, since age-dependent decline in stem cell function is almost
identical to the biological age, stem cells have used to understand “aging” and to
investigate key reverse factors for “antiaging”. This suggests that a range of new
approaches are needed to reveal the unknown biological basis for aging at a variety
of different molecular levels using stem cells as a tool of normal aging process and
can further apply fundamental aspects in biological aging and longevity.
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1. Introduction

Aging is defined broadly as the normal progressive process, consequently leading to growing
vulnerability to disease and death. The fact that the aging process is inevitable yet controllable
has made it attractive for the research focusing on age-associated molecular changes. A major
challenge lies in dissecting the underlying mechanisms of aging with conventional experi-
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ments due to the complexity of and multicontributions to the aging process, reflecting a need
for investigation into it in various aspects. For this reason, the age process has currently been
subjected to OMICS technologies including genomics, transcriptomics, proteomics, and
metabolomics, allowing the exploration of age-related changes in a multifactorial manner. This
suggests that a range of new approaches are needed to reveal the unknown biological basis
for aging at a variety of different molecular levels and can deepen our understanding of
fundamental aspects in biological aging and longevity.

The aging process is characterized by gradual, cumulative damages to structure and function
of stem cells which exist during the life of organisms. We will discuss here the integrative
studies of the stem cell aging and a therapeutic effect of adult stem cells including the umbilical
cord blood and the underlying mechanisms of the complex process at diverse molecular levels,
with the final goal of practically applying stem cell treatment to the aged for maintaining health
over time. In addition, an integrated method, OMICS technology that would help us under-
stand a complex biology of aging will be discussed. Aging can be conceived of as a process
that a pool of endogenous stem cells loses progressively its ability to replenish the damaged
cells over age. In almost all living organisms, the time-dependent decline in regenerative
potential of stem cells is responsible for an increased susceptibility to aging and several age-
related diseases. The reduced regenerative capacity of endogenous stem cells has been
explained partly by DNA damage, changes in stem cell niches, and activation of tumor
suppressor gene. It is unclear; however, to what extent the factors contribute to human ageing,
especially stem cell aging, and determine even life span. Its complexity demands new ap-
proaches for clarifying the multifactorial processes.

2. OMICS technologies and stem cell aging

Recently, to gain a deep insight into the biology of aging, new high-throughput technologies,
also known as “OMICS”, are being utilized in a variety of ways to investigate the molecular
changes observed during ageing ; OMICS refers to studies with suffix “-omics” designed to
collectively characterize and quantify pools of molecules at different levels, including genom-
ics, transcriptomics, proteomics, and metabolomics. A series of experiments using the OMICS
have been attempted to establish any link between molecular changes and aging. However,
the studies so far on aging heavily rely on blood samples which consist of different cell types
and usually focus on one technology of OMICS, thereby placing obstacles in the way of
interpretation on the phenomenon or bringing misinterpretation of the complex aging process.
Another challenge in the study is tissue-specific changes in gene expression with increasing
age, adding more complexity to understanding the process. Accordingly, an alternative
approach can be to focus on stem cell aging among diverse hallmarks of the process using
OMICS technology. Stem cells serve as endogenous replacements for cells lost to homeostasis
and injury through adult life. The regenerative capacity deteriorates in numerous tissues with
advancing age, frequently failing to meet the demands of the developing tissues and then
leading to multiple ageing-related phenotypes or diseases. As a result, accumulation of
damage in the function could be reflected in diverse macromolecules from DNA to metabolite,
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considered as closest to phenotypes, during aging. The damaged macromolecules in turn
disrupt the pathways contributing to stem cell dysfunction during the aging process, resulting
in a vicious cycle. In addition, decreased pools of tissue stem cells are likely to be associated
with function declines in hematopoiesis, neurogenesis, and myogenesis during aging,
suggesting that a key to reverse or delay the aging process resides in deepening our under-
standing of the adult stem cells. As with other factors for aging, the mechanisms that induce
the time-dependent stem cell decline still remain elusive and thereby need to be evaluated in
an integrative manner for which OMICS technologies may be appropriate. Understanding the
molecular processes involved in stem cell dysfunction may shed light on the causes of aging,
eventually employing therapeutic strategies that reverse the decline process. Maintenance of
stem cell pools or stem cell rejuvenation holds great therapeutic promise for age-related
impairments. For example, heterochronic parabiosis, such as the shared circulatory or
physiological system between the young and aged, has been reported to be effective in
reversing age-related phenotypes by improving stem cell function. One representative study
on the parabiosis showed that the supply of young blood to aged mice ameliorates cognitive
impairments by enhancing synaptic plasticity in the brain. Another experiment demonstrated
that when exposed to the niche of young mice’s muscles, aged mice regenerate impaired
satellite cells to restore muscle regenerative potential. Emerging evidence also indicates that
reduced regenerative capacity is reversible and that the aging process can be postponed by
improving stem cell function to replenish the damaged tissues. This raises the possibility that
treatment of stem cells from diverse origins may reengineer the aging-related defects by
replacing aberrant stem cells in the aged tissue. With widening applications, metabolomics
today is surfacing as a new approach to decipher the regulation of metabolism involved in
aging. Metabolites are end products of complex biological events and can be considered as
ultimate responses to internal states or external forces, probably providing unrepresented
insights into how stem cell declines influence human aging. Oxidative metabolism and the
maintenance of mitochondria have been shown to be associated with stem cell aging. Consis-
tently, metabolic states in stem cells play a crucial role in determining whether the cells are
bound for proliferation or differentiation; both cell states are mainly associated with mecha-
nisms controlling the balance between glycolysis and oxidative phosphorylation. In addition,
clinical studies on aging with metabolic profiles showed the age-specific metabolites having
strong correlations, some of which are associated with fatty acid oxidation, underscoring the
role of metabolomics in the interpretation of the aging process.

2.1. Transcriptome analysis of neural stem cells during dopamine differentiation

Accordingly, first of all, our study investigated gene expression changes of neural stem cells
during differentiation into dopaminergic cells and with increasing passages in a proliferation
state, both of which can be seen as aging: differentiation as a part of “chronological aging” and
increasing passage as “replicative aging”. Neural stem cells showed cell stage-specific patterns
of gene expression during differentiation and specific genes participated in neurogenesis by
forming a molecular co-expression network. When sustaining a proliferation state, the stem
cells induced the expression of genes whose products are involved in phosphorylation, cell
proliferation, kinase cascade, response to stress, and signal transduction. As entering into a
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differentiation stage, the up-regulated genes are mostly related to mitotic cell cycle, mitosis
and cell division. At a late differentiation stage, genes for synaptic transmission and regulation
of synaptic plasticity were expressed at higher levels. The results clearly showed that as cells
age from proliferation to differentiation, different biological processes are involved in stem
cell aging, probably generating metabolites unique to cell states.

2.2. Transcriptome analysis of hypoxic effects on placenta-derived cells with increasing
passages

Also, we determined the effects of hypoxia or normoxia on the placenta-derived cells with
increasing passage based on the transcriptome data. In gene ontology analysis, most genes
significantly upregulated under hypoxia were associated with cell proliferation, macromole-
cule synthesis, metabolic pathway, signaling pathways, and cellular homeostasis, as confirmed
by the in vitro result that the hypoxic culture condition enhanced the proliferation capacity.
Downregulated genes were enriched for cell death/apoptosis and protein aggregation,
supporting the notion that protein homeostasis and balance between proliferation and
quiescence are crucial to stem cell aging. These results suggest that under hypoxia the stem
cells experience enhanced proliferation and survival, inhibiting cell death and pro-aging
pathways. At a late stage, genes that are differentially expressed under hypoxia are enriched
for nucleosome assembly and chromatin organization, suggesting the involvement in epige-
netic regulation. Lastly, we carried out metabolite profiles in aged mice transplanted with
placenta-derived cells. Most of increased metabolites by cell treatment were related to lipid
metabolites, which is likely to be associated with unique patterns of gene expression after cell
transplantation, encouraging further studies of integrating OMICS data. These findings add
weight to the notion that the study of stem cell aging with OMICS is an efficient means for
elucidating the biological basis of the aging process. In line with these findings, an effect of
human umbilical cord blood infusion, youngest blood we can obtained, on old mice (more
than 23 months old) has been investigated in our laboratories, and a human clinical trial using
human umbilical cord blood infusion into old subjects is underway. In addition, human
placenta-derived MSCs (hpMSCs) have been used as a candidate for antiaging treatment. Our
animal studies exhibited better cognitive functions measured 12 weeks after hpMSCs injection.
For further translational studies, analyses using OMICS technology is ongoing.

3. Conclusions

Complex physiological changes and individual differences in aging have always challenged
the efforts of scientists to understand the normal process, which demands new strategies
capable of studying molecular changes in an integrative manner rather than traditional
experimental approaches. Through OMICS technologies, it is possible to measure dynamic
molecular changes simultaneously at diverse levels with the generation of high-throughput
data in different types, consequently facilitating the identification of aging/antiaging biomark-
ers and thereby preventing age-related diseases. The studies of OMICS have provided novel
insights into what molecular pathways determine the progressive and complicated process,
although much needs to be clarified. In particular, metabolite profile can propose unprece-
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dented notions of ageing when combined with genomics, transcriptomics, and proteomics.
Taken together, the integration and context-dependent interpretation of multidimensional
OMICS data is helpful in understanding the complex process of aging.
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