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1. Introduction

Three fully automatic methods for X-ray digital mammogram enhancement based on a
fast analytical textural model are presented. These efficient single and double view
enhancement methods are based on the underlying two-dimensional adaptive causal
autoregressive texture model. The methods locally predict breast tissue texture from single
or double view mammograms and enhance breast tissue abnormalities, such as the sign
of a developing cancer, using the estimated model prediction statistics. The double-view
mammogram enhancement is based on the cross-prediction of two mutually registered left
and right breasts’ mammograms or alternatively a temporal sequence of mammograms. The
single-view mammogram enhancement is based on modeling prediction error in case of not
the both breasts’ mammograms being available.

Breast cancer is the most common type of cancer among middle-aged women in most
developed countries [1, 2]. Almost one woman in ten grows a breast cancer in her life.
According to the American Cancer Society [3] about 232 670 new cases of invasive breast
cancer will be diagnosed in women and about 40 000 women will die from breast cancer in
US alone. US mortality rate is 30% and European mortality rate is 45% [4].

To lower the mortality rate, women in the developed countries usually regularly attend a
preventive mammography screening. However, around 25% of radiologically visible cancers
are missed by the radiologists at screening [5]. This means that millions of cancer cases are
missed and therefore even a slightest improvement in the detection methods could have a
huge impact and save many lives.

The biggest problem with current Computer-Aided Diagnosis (CAD) systems is their large
false negative rate and an even larger false positive rate. Most CAD systems (e.g., [1, 6]) point
out 2-3 regions of interest (ROIs) per mammogram on average. Taking into account that there
are about 8 malignant mammograms in 1000 [5], the radiologists consider the current CAD
systems as misleading.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



An alternative way is to automatically enhance mammograms to support radiologists with
their visual mammogram evaluation. Several mammogram enhancement methods have been
published [7–14]. Salvado and Roque [10] use wavelet analysis to detect microcalcifications,
Dippel et al. [8] compare the merits of using either Laplacian pyramids or wavelet analysis for
whole mammogram enhancement, Sakellaropoulos et al. [9] designed an adaptive wavelet
based method for enhancing the contrast of the whole mammograms. Mencattini et al. [13]
selectively enhance segmented mammograms regions using wavelet transformation.

An approach to diagnostic evaluation of screening mammograms based on local statistical
Gaussian mixture textural models was proposed in [14]. The local evaluation tool has the
form of a multivariate probability density of gray levels in a suitably chosen search window.
First, the density function in the form of a Gaussian mixture is estimated from data obtained
by scanning the mammogram with the search window. The estimated mixture is evaluated
at each position and displays the corresponding log-likelihood value as a gray level at the
window center. The resulting log-likelihood image closely correlates with the structural
details of the original mammogram and emphasizes unusual places, but the method is very
computationally demanding.

Radiologists regularly compare the bilateral mammogram pairs during mammogram
screening in search for breast abnormalities. The mutual mammograms enhancement
requires accurate registration of both breast X-ray images, which is difficult due to their
elasticity. Marias et al. [15, 16] use thin-plate spline transformation [17] to align the breasts
and then use wavelet based feature detection to find internal landmarks. Thin-plate spline
based approach is also used by Wirth et al. in [18]. Hachama [19] deals only with the
comparison of temporal mammograms based on a general method for registering images
with the presence of abnormalities. However, it needs the prior abnormalities distribution
knowledge. The registration and transformation are based on the Bayesian maximum a
posteriori probability approach and minimization of the registration and deformation energy.

The novelty of our presented method is that whereas other alternative methods usually use
simple pixel difference or trivial statistics like cross-correlation to compare the left and right
images, we use the mammograms of one breast as a learning sample for the 2DCAR breast
texture model [20, 21] and then try to analyze the other mammogram based on this acquired
information. Using the 2DCAR model for bilateral comparison, we achieve a result which is
robust to inaccurate registration, very fast, and which gives improved enhancement results
compare to just a single-view analysis even using similar local texture modeling.

2. Public mammogram databases

There are not many publicly available mammogram databases [22–26], older databases like
DDSM, MIAS are digitized from the X-ray films, while newer databases like INbreast are
already digitaly acquired.

The Digital Database for Screening Mammography (DDSM) [24] http://marathon.csee.usf.
edu/Mammography/Database.html is a database of digitized from original X-ray filmscreen
in different resolutions and with associated ground truth and other information. This
database was completed in 1999 and contains mammograms from four different sources
using four different digitizers (DBA M2100 ImageClear, Howtek 960, Lumisys 200 Laser,
Howtek MultiRad850) and 12 or 16 bits quantization. The database contains normal, benign,
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and histologically proven cancerous mammograms in four different views (left and right
cranio-caudal (CC) and medio-lateral oblique (MLO)). It contains breast imaging reporting
and data system (BI-RADS) keywords and the American College of Radiology (ACR) tissue
codes (Table 1).

ACR Tissue density description BI-RADS Tumor description

- unspecified BI-RADS 0 unspecified
ACR-1 fat transparent system BI-RADS 1 normal
ACR-2 fibroid glands system BI-RADS 2 benign
ACR-3 heterogeneously dense BI-RADS 3 probably benign

ACR-3/4 dense BI-RADS 4 suspiciously abnormal
ACR-4 extremely dense BI-RADS 5 malignant

Table 1. ACR and BI-RADS codes.

The Mammographic Image Analysis Society Digital Mammogram Database (miniMIAS) [22]
is also digitized to 50 microns per pixel from the original X-ray filmscreen mammograms
by the scanning microdensitometer SCANDIG3. MIAS mammographic images are available
via the Pilot European Image Processing Archive (PEIPA) at the University of Essex http:
//peipa.essex.ac.uk/ipa/info/mias.html.

The LLNL/UCSF database ftp://gdo-biomed.ucllnl.org/pub/mammo-db/ [23] contains 198
digitized films from 50 patients with 4 views per patient (but only 2 views from one
mastectomy case).

The INbreast database [26] is a mammographic database, with images acquired at a Breast
Centre, located in a University Hospital (Hospital de São João, Breast Centre, Porto,
Portugal). INbreast has a total of 115 cases (410 images) of which 90 cases are from women
with both breasts (4 images per case) and 25 cases are from mastectomy patients (2 images
per case). Several types of lesions (masses, calcifications, asymmetries, and distortions) are
included. Accurate contours made by specialists are also provided in the XML format.

The recent BancoWeb LAPIMO Database http://lapimo.sel.eesc.usp.br/bancoweb/ [27] was
acquired in two hospitals using Senographe 500t and Senographe 600t mammographs and
digitized by using two laser scanners Lumiscan 50 and Lumiscan 75.

The overview of major features of the public mammographic databases are listed in the
following Table 2.

3. Mammogram enhancement methods

The mammogram enhancement methods can be roughly categorized into frequency based
and spatial based methods. The frequency based methods [7, 9, 28, 29] use mostly
some wavelet multiscale decomposition with modified wavelet coefficients to enhance
mammogram contrast. The spatial methods [14, 30] use some nonlinear or adaptive linear
filters.

We have implemented four representative mammogram enhancement methods from several
published alternatives [7–10, 10–14] to compare with our novel adaptive probabilistic
mammogram enhancement method.
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DDSM
([24])

INbreast
([26])

miniMIAS
([22])

LLNL
([23])

LAPIMO
([27] )

nmam 10480 410 322 198 1473

nviews 4 4 2 4 4

ngl 16/12 14 8 12 12

x resolution 1411 − 5641 2560 − 3328 1024

y resolution 3256 − 7111 3328 − 4084 1024

normal 695 70 204 38 294

↓ benign 141 116 128 994

benign 870 44 66

malignant 914 180 52 32 112

density ACR ACR own scale no no

BI-RADS yes yes no no yes

Table 2. Public Mammogram Databases: where (nmam) is the number of mammograms, (nviews) number of views,
(ngl) number of gray levels in bits, and ↓is benign without callback.

3.1. Histogram equalization

The well known gray scale image enhancement technique is histogram equalization [31],
which is based on the idea of forcing the enhanced image histogram to be uniform. This is a
popular technique for contrast enhancement because because of its simplicity and effectivity.
However, it may overenhance the noises and sharp regions in the original images.

3.2. Matting-based enhancement

The enhancement method based on the idea of image matting was published in [32]. It works
based on the idea that mammographic images (Y) are a superposition of some background
adipose tissue (B) and the interesting part, which would be the mammary glands and other
breast structures (G).

Y = Gc + B(1 − c) (1)

The enhancement method then selectively subtracts the background tissues from the
superposition, thus creating the enhanced image.

To enable this, the authors had to estimate the background (B) and the opacity alpha value
for each pixel by which it is blended with the rest of the image (c). In this method the
background is set as a constant value for the whole image represented by the 85% percentile
of grey values of the breast part of the image.

3.3. Nonlinear unsharp masking

A nonlinear unsharp masking (NLUM) combined with nonlinear filtering for mammogram
enhancement was introduced in [33]. The method embeds different types of filters into the
nonlinear filtering operator within the 3 × 3 window which fuses the enhanced and original
mammogram data. The unsharp masking emphasizes high-frequencies of the signal either
by subtracting a low-pass filtered signal from its original or adding a scaled high-frequency
factor to the measured original. NLUM eight parameters are optimized using the proposed
second-derivative-like measure of enhancement (SDME) [33].
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3.4. Direct contrast enhancement

An enhancement method based on wavelet transformation was described in [29]. The
method performs a multi-level 2D wavelet transfomation and at each level the 3 highpass
components are divided by the lowpass-lowpass component, getting a directional contrast
estimate, which is further multiplied by a constant contrast enhancement factor λ. Starting
at the deepest level of the transform, the inverse transform is performed one scale at a
time. For each scale level, before the inverse transform step, the 3 modified components
are multiplied by the newly computed lowpass component. This way the authors achieve a
contrast enhancement without the introduction of too much of additional noise.

4. Probabilistic mammogram enhancement

These our methods use Markovian texture models for the analysis of local texture
characteristics and enhancing breast tissue abnormalities such as microcalcifications and
masses which could be the sign of a developing cancer. We make the presumption that
left and right breasts are architecturally symmetrical. This presumption is indeed reasonable,
since radiologists frequently compare double-view mammograms to find asymmetrical parts,
which could indicate a developing cancer. The texture based symmetry detection neither
needs to assume the pixel-wise correspondence of the both breast images, nor their ideal
sub-pixel registration inside the breast area.

The double-view methods consist of three major steps: registration, model parameters
adaptive estimation, and the cross-prediction based analysis.

4.1. Mammogram registration

The registration process is described for mammographic MLO views, but it can be easily
adapted also for CC views. Since we compare the images based on textural features rather
than pixel-wise, we do not require as precise registration as other methods, and can use a
simple registration based on the affine transformation.

Three reference points are needed for the affine transformation (Figure 1). We chose the
nipple and one point above and one below that are closest to the pectoral muscle.

Figure 1. Registered mammograms with visible reference points.
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The nipple is located using the heuristic method described in [34]. It works on the idea of
the nipple being a point on the skin-line of the breast which is the most distant from the line
of the pectoral muscle. After the candidates for the nipple reference points have been found
in both the mammograms, the position of the reference point can still slightly differ in both
images. Therefore, we adjust their position by searching the neighborhood on the skin line
of the breast for the most correlated window.

The remaining reference point candidates have to be further adjusted as well. Since the
bilateral mammograms usually do not cover the same area of the breast, some anatomical
parts of the breast can be seen only in one of the images and therefore the reference points
wouldn’t match. To make up for this problem, we measure the distance of the points to the
nipple, weighted by the nipples distance to the pectoral muscle. The weighting compensates
for the differences of positioning of the breast in the mammogram which could result in
one image displaying the breast bigger than the other. We then adjust the corresponding
reference points, so that they are on the skin line with the most similar weighted distance to
the nipple possible.

Having found the reference points, the affine transformation is performed. Figure 1 in
the leftmost images shows the images of right and left breast with marked line of the
pectoral muscle (colored in red) and the distance from the pectoral muscle to the nipple.
The rightmost images show the registered breasts with the reference points painted as white
squares with the right breast (shown on the left side) transformed to match the left breast.

4.2. Adaptive textural model

The X-ray mammographic tissue is locally modeled by its dedicated independent Gaussian
noise-driven autoregressive random field two-dimensional texture model (2DCAR), which
is a rare exception among Markovian random field model family that can be completely
analytically solved [35, 36]. Apart from that, this descriptive model has good modeling
performance, all statistics can be evaluated recursively, and the model is very fast to evaluate.

The 2DCAR random field is a Markovian family of random variables with a joint probability
density on the set of all possible realizations Y of the M× N lattice I, subject to the following
condition:

p(Y | γ, σ
−2) = (2πσ

2)−
(MN−1)

2

exp

{

−1

2
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where α is a unit vector, tr() is a trace of the corresponding matrix, and the following notation
is used
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Here, r = [r1, r2, φ] is spatial multiindex denoting history of movements on the rectangular
lattice I, where r1, r2 are row and column indices, and the direction of the model
development is φ ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦} . The 2DCAR model can be
expressed as a stationary causal uncorrelated noise-driven 2D autoregressive process:

Yr = γφXr + er , (3)

where γφ = [a1, . . . , aη ] is the parameter vector, η = cardinality(Ic
r ), Ic

r denotes a causal
(or alternatively unilateral) contextual neighborhood (i.e., all support pixels were previously
visited and thus they are known). Elements in Ic

r do not need to be topological neighbours
of each other, i.e., if s is a neighbour of r then ∃t, t ∈ I located between r and s at a
distance δ(r, t) < δ(r, s) such as t /∈ Ic

r . This type of a neighbourhood system is also
called a functional neighbourhood system and its application is illustrated in Figure 2. Its
optimal configuration can be found analytically using the Bayesian statistics see [36] for
details. Furthermore, er denotes white Gaussian noise with zero mean and a constant but
unknown variance σ2, and Xr is a support vector of Yr−s where s ∈ Ic

r . The method
uses a locally adaptive version of this 2DCAR model [36], where its recursive statistics are
modified by an exponential forgetting factor, i.e., a constant smaller than 1 which is used to
weight the older data.

4.2.1. Parameter estimation

Parameter estimation of the 2DCAR model using either the maximum likelihood, the least
square or Bayesian methods can be found analytically. The Bayesian parameter estimates of
the 2DCAR model using the normal-gamma parameter prior are:

γ̂T
r−1 = V−1

x(r−1)
Vxy(r−1) , (4)

σ̂2
r−1 =

λ(r−1)

β(r)
, (5)

where

λ(r−1) = Vy(r−1) − VT
xy(r−1)V

−1
x(r−1)

Vxy(r−1) ,

V(r−1) = Ṽ(r−1) + V(0) ,

β(r) = β(0) + r − 1 ,

and β(0) is an initialization constant and submatrices in V(0) are from the parameter prior.
The parameter estimates (4),(5) can also be evaluated recursively [36] using the proces history

(Y(r−1)). The posterior probability density [36] of the model is:
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Figure 2. Single-view MLO mammogram enhancement using different functional neighbourhoods consecutively
rightwards - 9, 5, and 3 pixel neighbourhood distance from the enhanced pixel (blue pixels - bottom row).

p(Yr |Y(r−1), γ̂r−1) =
Γ(

β(r)−η+3
2 )

Γ(
β(r)−η+2

2 ) π
1
2 (1 + XT

r V−1
x(r−1)

Xr)
1
2 |λ(r−1)|

1
2



1 +
(Yr − γ̂r−1Xr)Tλ−1

(r−1)
(Yr − γ̂r−1Xr)

1 + XT
r V−1

x(r−1)
Xr





− β(r)−η+3
2

(6)

And the conditional mean value predictor of the one-step-ahead predictive posterior density
(6) for the normal-gamma parameter prior is

E
{

Yr |Y(r−1)
}

= γ̂r−1Xr . (7)
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Figure 3. INbreast MLO mammogram enhancement comparison rightwards: the original mammogram, histogram
equalization, [32], [33], [29], and the presented enhancement methods, respectively.

4.2.2. Prediction

The conditional mean value of the one-step-ahead predictive posterior density for the
normal-gamma parameter prior is

E

{

Yr |Y
(r−1)

}

= γ̂r−1Xr . (8)

The predictor (8) is used only for single-view mammogram enhancement. For double-view
mammograms where there are available both left and right breasts mammograms the method
uses the cross-prediction (10),(11).
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Figure 4. MIAS MLO mammogram enhancement comparison rightwards: the original mammogram, histogram
equalization, [32], [33], [29], and the presented enhancement methods, respectively.

4.3. Enhancement methods

Let us denote two mutually registered (e.g., left and right breasts’) mammograms Y and Ỹ,
the local 2DCAR model parameters estimates (4), (5) computed on the mammogram image
Y γ̂T

r−1, σ̂2
r−1. The same parameter estimates (4), (5) computed on the other mammogram Ỹ

are denoted γ̃T
r−1, σ̃2

r−1, and the corresponding support vector is X̃r. The directional models
are computed in the following angles φ ∈ Φ = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}.

4.3.1. Single-view enhancement

The single-view enhacement method is computed from up to eight directional models, i.e.,
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Figure 5. INbreast multiple-view MLO mammogram enhancement consecutively rightwards - ground truth, pixel
difference between registered LMLO and RMLO, cross-predicted gradient, and cross-prediction probability density.
The upper row contains LMLO, bottom row RMLO.

Y
enh
r = ∑

∀φ∈Φ̄

(Yr+1 − γ̂r−1Xr) , (9)

where Φ̄ ⊆ Φ. All the enhanced values are normalized into the 0 − 255 range.

4.3.2. Double-view enhancement

The double-view enhancement is based on statistics computed on one breast image and
applied to the complementary one. The cross-prediction between images Y, Ỹ is computed
as follows:

E

{

Ỹr |Y
(r−1)

}

= γ̂r−1X̃r (10)
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and the opposite direction cross-prediction is analogously

E
{

Yr | Ỹ(r−1)
}

= γ̃r−1Xr . (11)

The enhanced mammograms are then the corresponding cross-prediction statistics images.

The corresponding cross-prediction probability densities are p(Ỹr | Ỹ(r−1), γ̂r−1) and

p(Yr |Y(r−1), γ̃r−1).

The proposed double-view enhancement methods are

Ycom1
r = ∑

∀φ∈Φ̄

(

Ỹr+1 − γ̂r−1Xr

)

, (12)

Ycom2
r = ∑

∀φ∈Φ̄

p(Ỹr | Ỹ(r−1), γ̂r−1) . (13)

5. Experimental results

The comparative experimental results (Figures 3, 4) were tested on the miniMIAS
database [22] and on the state-of-the-art public digital mammogram INbreast database [26].
Comparing the alternative methods (Section 3) with our proposed adaptive enhancement,
it is clearly visible that whereas these methods enhance prevailingly contrast, our method
enhances textural abnormalities in the breast tissue which is more useful for the radiologists.

Our adaptive enhancement methods were also successfully tested on the Digital Database for
Screening Mammography (DDSM) from the University of South Florida [24]. These results
are reported elsewhere.

The spatial textural model allows seamless and natural generalization into multiple-view
mammogram enhancement (be it bilateral, as presented in Figures 5, 6, or temporal).
Double-view medio-lateral oblique digital mammograms’ enhancements from the INbreast
database (Figure 5) and the miniMIAS database (Figure 6) show the cross-prediction based
enhancement performance. Comparing the cross-prediction enhancements on Figures 5, 6
respectively with the same breast single-view enhancements on Figures 3, 4, the benefits of
the cross-prediction are clearly visible.

Both our double-view enhancement methods are compared with the registered image pixel
difference which is standardly used for comparison ([15, 18, 19])

∆Yr = max{YR
r − YL

r , 0} . (14)

This standard double-view enhancement method (Figures 5, 6 - second columns) is inferior
compared to the both proposed double-view enhancement methods ((12), (13)) which
simultaneously exhibit more contrast and increased details’ visibility.

Finally, all three proposed enhancement methods are very fast - they can be computed on
the presented mammograms with a standard PC in a matter of several seconds.
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Figure 6. Multiple-view medio-lateral mammogram (INbreast) enhancement consecutively rightwards - ground truth,
pixel difference between registered LMLO and RMLO, cross-predicted gradient, and cross-prediction probability
density. The upper row contains LMLO, bottom row RMLO.

6. Conclusions

We proposed three novel fast methods for completely automatic mammogram enhancement
which highlight regions of interest, detected as textural abnormalities. Cancerous areas
typically manifest themselves in X-ray mammography as such textural defects which
is advantageous for our methods in comparison with most alternative mammogram
enhancement methods that primarily enhance only the image contrast. Thus the enhanced
mammograms can help radiologists to decrease their false negative evaluation rate.

These methods are based on the underlying two-dimensional adaptive CAR texture model.
Although the algorithms use random field type model, the model is very fast due to the
efficient recursive model predictor estimation and therefore is much faster than the usual
alternative Markov chain Monte Carlo estimation approach. The enhancement can be either
single or double view depending on the available data. The single-view methods allow
significant mammogram enhancement without the need of paired mammogram registration.
The double-view methods benefit from mutual textural information in the registered
bilateral breast pairs. Contrary to the simple pixel difference values or cross-correlations,
the textural feature comparison brings increased robustness to registration inaccuracies
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inevitably encountered due to the elasticity of the breast. The double-view methods could
alternatively be used for the enhancement of a temporal sequence of mammograms.
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