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1. Introduction

Resistance happens when an individual has an incorrect response to the effectiveness of a drug
as stated in the National Library of Medicine. It is difficult to give an accurate definition of
statin resistance. Patients who fail to reach LDL-C target levels despite undergoing the best
available therapy of the most highly tolerated dose of a more potent statin, are considered to
be statin-resistant. Many individuals do not reach LDL-C target levels, even when compliance
is taken into consideration. The reduction of LDL-C in response to statin therapy can vary from
5-70 %. This can be influenced by many factors. For instance,racial andestry, with attenuated
responses in blacks compared to whites. A study comparing statin resistance patients to
patients who show no resistance to statin has yet to appear.

The resistance to statins can be related to differences in drug absorption, drug transport,
intrahepatic drug metabolism, drug metabolism within other organs, and drug excretion
mechanisms. The same can occur due to differences in the level of the various target pathways
that are unrelated to pharmacokinetics, including HMG-CoA reductase, as well as various
points along the cholesterol biosynthesis and lipoprotein metabolic pathways.

2. Possible causes of statin resistance

According to Herman and Moncada the process of atherogenesis includes 28 stages. [48] Key
points in this process are two - oxygenated LDL-cholesterol and endogenous nitric oxide
synthase. Statin reistance may exist in both directions:
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2.1. Failed targeting LDL cholesterol

It seems that not only genetic but environmental factors can influence the LDL-C response to
statins. Studies have found that patients with hypertension have a smaller decrease than those
without hypertension. Furthermore, smokers have smaller statin-induced LDL-C decrease
compared with nonsmokers[47]. It also seems that inflammation might cause statin resistance.
Namely, it has been shown that inflammatory cytokines, in particular IL-1b which affects sterol
regulatory element binding protein cleavage-activating protein, cause statin resistance due to
the disruption of LDL-R feedback regulation. Therefore, it has been suggested that in inflam‐
matory states, higher concentrations of statin may be required to achieve the appropriate LDL-
C lowering [107]. Particularly interesting are observations concerning certain subpopulations
of patients who might be resistant to statin treatment. Some studies have shown statins to be
less effective in individuals with HIV infection. [22]. Other studies have a contraversal
perspective. [55]. The role of concomitant amiodarone treatment in statin resistance was also
suspected. Both amiodarone and amiodarone induced hypothyroidism influence the synthesis
of LDLR, which may explain the lack of statin effect. Thyroid hormone is one of several
hormones that control gene expression of the LDLR and hypothyroidism is a wellknown cause
of secondary dyslipidemia characterized by elevated LDL-C levels. Similar to hypothyroidism,
administration of amiodarone also increases LDL-C levels, which is the result of a decreased
expression of the LDLR gene [1].

More recently, an approach was published which used metabolomics to identify markers
indicative of mechanisms that contribute to differences in LDL-C response to statin. Metabolic
changes were shown to be more comprehensive in responders to statin treatment than those
seen in nonresponders. The baseline cholesterol ester and phospholipid metabolites correlated
with LDL-C response to treatment [56]. It has also been suggested that clusters of metabolites
involved in multiple pathways not directly connected with cholesterol metabolism might as
well play a role in modulating the response to statin therapy - influence statin resistance [90].

Insufficient LDL-C response to statin treatment is probably the result of pseudo-resistance,
which could be caused by nonadherence or nonpersistence in real life circumstances. [68].

3. Lack of effect on the endothelium-dependent vasodilation after targeting
LDL-C

There is a lot of evidence that the endothelium plays a crucial role in the maintenance of
vascular tone and structure. [39; 40, 41; 38; 5; 51; 9]. One of the major endothelium-derived
vasoactive mediators was shown to be nitric oxide (NO). [38; 74; 51; 67]. Multifactional are the
mechanism by which NO activity is reduced: reduced NO release, NO inactivation by
superoxide anion, or reduced NO production by NO synthase (NOS). [91] Decrease in NOS
expression by oxidized low-density lipoprotein (LDL) can cause impaired NO production [77;
91], or by the presence of asymmetric dimethylarginine (ADMA). [72; 16 ;29]

According to Herman and Moncada the basis of atherogenesis remain oxygenated LDL and
eNOS. Lipid-regulating effects of statins in terms of LDL-cholesterol are undeniable, but the
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pleiotropic discussioncy is a particularly relevant issue of resistance of statin therapy in
patients with high levels of ADMA - endogenous inhibitor of eNOS. Research of statin
influence on flow-mediated vasodilation (FMD) reveals controversial results. Some studies
indicate that there is an effect, whereas others document the opposite tendency [18]. There is
a number of studies on simvastatin and likewise they demonstrate controversial findings.
These controversies can be dismissed by studing ADMA levels.(18 ;16;6). It has been suggested
that ADMA could modify the effect of statins on myocardial blood flow and on FMD% (53).

In our subsequent studies found in a logical sequence following facts. This facts determinate
ADMA as a basic factor for statin`s resistans.

International recommendations underline the importance of diagnosis and treatment of
asymptomatic individuals with high absolute cardiovascular risk [10; 37; 8], as individuals
with severe hypercholesterolemia. [47; 45; 58] the levels of ADMA in patients with severe
hypercholesterolemia in our study are higher than those cited in the literature in the same
population patients. [13].

1. A good marker of endothelial dysfunction is considered to be ADMA, as indicated by recent
publications. [16]. Subjects with cardiovascular risk – hypercholesterolemia, hyperhomocys‐
teinemia, diabetes mellitus, hypertension, smoking, erectile dysfunction having increased
ADMA levels. [67; 11; 16,17]. Plasma levels of ADMA have been shown to be elevated in
hypercholesterolemic rabbits [108]. The elevation of ADMA is associated with reduced activity
of NOS in animal models, as well as in young asymptomatic hypercholesterolemic adults [13].
The mechanism of increased ADMA in hypercholesterolemia is not very clear - LDL cholesterol
increases the expression of ADMA precursor protein and reduces the activity of the enzyme
dimethyl arginine dimethyl amino hydrolase. [52; 15] Increased ADMA are associated with
reduced NO synthesis and this assessed by impaired endothelium-dependent vasodilatation.
Flow-mediated dilatation (FMD) - shear stress during hyperemia activates receptors on the
endothelial cell surface and causes influx of intracellular calcium, which activates eNOS and
NO release [54; 24; 80; 60]. The main effect that dilatation has in respons to shear stress during
FMD is influenced by NO and to a smaller extent on prostaglandins and endothelial-dependent
hyperpolarizing factors [78; 54; 31; 30; 73]. Ultrasound determination of flow-mediated
dilatation of the brachial artery as a method has many advantages – it is non-invasive, with
good reproducibility and reliable. [3; 28; 31; 36; 61]. There is convincing evidence that reduced
percentage of FMD (FMD%) is a marker of coronary endothelial dysfunction [3].

Several studies have associated hypercholesterolemia with reduced FMD% and this effect can
be reversed by L-arginine [34; 26; 32; 33]. However, L-arginine does not lead to the improve‐
ment of endothelial dependent vasodilatation in normocholesterolemic individuals. In this
condition indicate the main role of endogenous ADMA. [11; 44] Furthermore, a recent
publication demonstrated that improvement of FMD% under statin treatment depends on the
ADMA levels [53; 12]. Little is know about the relationship between ADMA, and FMD%. In a
small number of hypercholesterolemic patients ADMA was shown to be positively correlated
with FMD% in mild hypercholesterolemia [13]. A recent paper demonstrated that low
cardiovascular risk subjects have increased ADMA level. [6]. No data exist about the relation‐
ship between ADMA and FMD% in severe hypercholesterolemia patients. In our study
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"Relationship of asymmetric dimethylarginine with flow-mediated dilatation in subjects with
newly detected severe hypercholesterolemia" was the evaluation of the relationship between
ADMA and FMD, also that of ADMA and lipid parameters as well as other endothelial
dysfunction in newly detected subjects with severe hypercholesterolemia. The major findings
of the present study are that: (1) plasma levels of ADMA, are increased in severe hypercho‐
lesterolemia; (2) there is a significant link between ADMA and age, Apo-B, Apo-B ⁄ Apo-A1

and tHcy; (3) newly detected severe hypercholesterolemia has reduced flow-mediated
endothelial dependent vasodilatation, there is a correlation between plasma levels of FMD%
and age, Apo-B, Apo-B ⁄ Apo-A1 and tHcy; and (4) homocystein levels has no contribution to
the atherogenic risk in the patients.

Newly detected severe hypercholesterolemia is associated with elevated ADMA, and to the
proportional increase in total cholesterol. The ADMA correlates with age, Apolipoprotein-B,
Apo-B ⁄ Apo-A1 and tHcy. Apo-B was found to indicate elevated ADMA in these patients. FMD
% correlates most strongly with age, Apolipoprotein-B, index Apo-B ⁄ Apo-A1 and tHcy. In
multiple regression analysis, ADMA is the strongest predictor for FMD%. ADMA is the main
modulator of FMD% - among the investigated biomarkers in newly detected severe hyper‐
cholesterolemia. Serious functional changes in the vascular wall are cause by increased level
of ADMA. At the same time, ADMA is found to be a predictor of flow-modulated vasodilation
of the brachial artery which also makes a probable marker for endothelial dysfunction.
Therefore, measuring ADMA levels in newly detected severe hypercholesterolemia is of great
importance when FMD% changes need to be clarified.

2. In the next study we investigated intima-media complex of carotid artery. The intima-media
thickness (IMT) of the CCA is one of the validated measurements of subclinical atherosclerosis,
as early as structural vascular abnormalities [85]. Intima-media thickening of the CCA
correlates with the coronary risk factors [80] and with associated with the degree of coronary
atherosclerosis. It serves as a predictor of coronary and vascular events in different patients'
populations. Intima-media thickening reflects both intimal atherosclerosis and medial
hypertrophy. It is used to evaluate the luminal and wall characteristics of the carotid artery.
In the literature, hypercholesterolemia has an important role in early-onset IMT changes in the
CCA However, there is not a lot of data about asymptomatic subjects with newly detected
severe hypercholesterolemia.[72]. In the literature, data on the IMT of CCA predictors is
controversial. There are a few studies of the endothelium-related biomarkers (ADMA, tHcy,
soluble cell adhesion molecules), especially in asymptomatic subjects with newly detected
severe hypercholesterolemia [72].

The research "Predictors of the intima-media thickness of carotid artery in asymptomatic newly
detected severe hypercholesterolemic patients" age and Apo-B were established as the most
important statistically significant factors related to IMT mean of CCA. This fact illustrates that
they determine the slow progressive structural changes in the vascular wall. The Apo-B is a
better biomarker of the total number of atherogenic particles. It might be concluded that Apo-
B is a better factor for assessment of risk, as LDL cholesterol underestimates the risk in
asymptomatic subjects with newly detected severe hypercholesterolemia.
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In the study "Intima-Media Thickness and Flow-Mediated Vasodilation in Asymptomatic
Subjects with Newly Detected Severe Hypercholesterolemia", our results show a significant
correlation between IMT mean and FMD%. The correlation is still present when separating
IMT on the basis of the level of thickening. This supports the idea that the two noninvasive
methods complete each other. It is important with regard to building a diagnostic algorithm.
These methods show early subclinical atherosclerosis but by different trigger mechanisms.

3. After establishing who is a predictor of FMV - ADMA, the next study proved that ADMA
is the main determinant of the effect of simvastatin on FMV in severe hypercholesterolemia -
"Asymmetric dimewthylarginine determines the effect of simvastatin on endothelium-
dependent vasodilation in severe hypercholesterolemia" Future Medicine Clinical Lipidology
2010. With respect to their total cholesterol, LDL-cholesterol and FMD% the two groups of
hypercholesterolemic patients (according to the plasma ADMA levels) differ significantly.
ADMA, cell adhesion molecules or total homocysteine levels are not affected by Simvastatin
in moderate dose [40 mg). Higher baseline levels of ADMA affect the ability of statins to
improve endothelium-dependent vasodilation by diminishing it. Subjects from the same
population, but with lower baseline levels of ADMA experience the same effect of simvastatin.
Therefore, ADMA seems to be a pathophysiologycal modulator of the statin therapeutic
response. The present study has been confirm by studies that there is a connection between
ADMA and FMD% response to statins found by Böger et al. The different is that in our study
is in the larger group of the patients.

In terms of non-randmized study "Effect of Moderate and High-Dose Simvastatin on Asym‐
metric-Homocysteine Metabolic Pathways in Patients with Newly Detected Severe Hyper‐
cholesterolemia" was demonstrated dose-dependent effect of simvastatin on the levels of
ADMA.The 40 mg simvastatin has no effect on ADMA and homocysteine level in contrast to
80 mg, after target LDL-levels are reached ≤2.6 mmol/L. It is likely that statin-pleiotropic effects
on ADMA-homocysteine metabolic pathways are independent of their lipid-regulating
properties.

In another of our observation "Asymmetric dimethylarginine-a determinant of the effect of the
high dose Simvastatin confirmed this dose-dependent effect". The two groups of patients
(according to the plasma ADMA levels) differ significantly with respect to their total choles‐
terol, LDL-cholesterol and FMD%. Simvastatin in moderate dose (40 mg) does no affect
ADMA, cell adhesion molecules and total homocysteine levels. The higher levels of ADMA
change the ability of statins to improve the endothelium-dependent vasodilatation, by
diminishing it. This shows that ADMA is a pathophysiological modulator of the statin
therapeutic response. This study confirms that, for the first time, there is a correlation between
ADMA levels and FMD% response to statins, found by Böger et al., but in the larger group of
patients with severe hypercholesterolemia and with higher dose simvastatin. Obviously, these
mechanisms require further investigation

To give a more precise answer to the question of dose-dependent manner for avoidable statin
resistance subsequently conducted a randomized, placebo-controlled study "The effect of
simvastatin on asymmetric dimethylarginine and flow-mediated vasodilation after optimizing
the LDL level — A randomized, placebo-controlled study" The major findings of the present
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study are 1. Significantly higher ADMA and tHcy were seen in patients with severe hyper‐
cholesterolemia compared to the control group. 2. Administration of 40 mg simvastatin for
one month results in no variation in ADMA, tHcy plasma levels and FMD%, following
optimizing of the LDL. 3. Administration of 80 mg simvastatin for a month leads to a variation
of ADMA and tHcy plasma levels and FMD% after optimizing the LDL. FMD%-changes can
be predicted with ADMA levels and ApoB%-changes is a predictor of LDL-changes% in
patients on 80 mg simvastatin (for one month) following the optimization of the LDL-C.

This study gives evidence that in experimental models and in humans (59), higher ADMA
levels have a harmful effect on the coronary endothelium. On the other hand, the experimental
model shows that statins have no protective effect against that harmful effect of ADMA on the
endothelium. This provokes a discussion as to whether ADMA is the pathophysiological
modulator of the therapeutic response of statins in hypercholesterolemia.

The ADMA in severe hypercholesterolemia are higher compared to those in patients in similar
research protocols (13), and are similar to those in our previous research studies. Applying
various laboratory methods(ELISA in the present study, high-pressure liquid chromatography
in other studies) does not allow for the mean levels of ADMA to be compared directly. Using
ELISA to differentiate the sample groups is less reliable than LC-MS.This is caused by the fac
that the higher coefficient of variation and to the fact that the matrix dependence is likely to
cloud or mimic the differences The ADMA ELISA method can be used for clinical investiga‐
tions in which groups of samples are compared and the result is the shift of the ADMA
concentration in response to an intervention. The application of ELISA analysis in our study
is the likely ex- planation of the higher levels of ADMA, in comparison with other studies (13).
On the other hand, this is likely due to the higher levels of total cholesterol > 7.5 mmol/l and
LDL-C > 4.9 mmol/l. The difference in L-arginine substitution in hypercholesterolic patients
and normo-cholesterolic patients is explained by the higher levels of ADMA in hypercholes‐
terolic petients in comparison with controls with controls (11; 44).

The mechanism of an increased ADMA level in hypercholesterolemia is not clear enough. An
association between ADMA and hypercholesterolemia has been previously observed [13].
Laufs et al. (1998) demonstrated that simvastatin reverse, in a dose-dependent manner, the
inhibitory effect of oxidized LDL on NO production. It has been suggested that LDL- choles‐
terol increases the expression of ADMA precursor protein. This reduces the activity of the
enzyme dimethylarginine dimethylaminohydrolase, which breaks down ADMA [52]. This is
why, by decreasing cholesterol levels with statin therapy, ADMA plasma levels will decrease
as well. The therapeutic hypothesis that the decrease of circulating ADMA levels can be
achieved by lowering plasma cholesterol levels is the main idea in this publication.

In randomized, placebo-controlled research, a statistically significant reduction of ADMA
plasma levels has been established following a one-month therapy with 80 mg simvastatin,
yet the 40 mg simvastatin dose does not result in achieving the LDL target levels. The study
showed that a 40 mg simvastatin therapy for 3 months does not produce the desired effect.
Therefore, it is likely that the pleiotropic effect of the statins (respectively ADMA and tHcy) is
independent from the lipid-regulation in a short-term and long-term plan. The lack of effect
on 40 mg simvastatin coincides with the results presented in other studies but there is no
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optimizing of LDL-C level. The research in similar articles regarding the effect of 80 mg
simvastatin on ADMA levels is scant. Most research works have documented a negative effect
in hypercholesterolemia. However, these studies have tested a considerably smaller number
of patients (64). The present study comprises 85 patients and LDL target levels have been
optimized regarding the risk category. The established statistically significant therapeutic
effect of 80 mg simvastatin on ADMA is comparable to the results from a recently published
study — an experimental model of the effect of simvastatin on ADMA tissue levels (64). This
recent experimental data shows that simvastatin regulates dimethylarginine dimethylamino‐
hydrolase transcription via the transcription factor Sterol Regulatory Element Binding Protein.
The latter is activated by statins due to a reduction of plasma membrane cholesterol. These
experimental models suggest that the level of asymmetric dimethylarginine will be decreased
by stаtin therapy. Almost all other clinical studies (of smaller sample size and shorter duration)
showed no effect of statins on ADMA (positive effect only 10 mg rosuvastatin and 80 mg
fluvastatin). It is unclear whether the higher plasma levels of ADMA in human disease states
correlate with a higher intracellular level. Studies testing the statin effect in vivo have reported
endothelial protection without overly affecting plasma ADMA levels, however in these studies
the tissue levels of ADMA have not been taken into consideration. It is likely that in the present
study achieving the LDL-C target level substitutes for the LDL-cholesterol tissue levels. Similar
titrations have not been carried out in any other related articles so far. The results of the present
study provide further clinical evidence to the experimental model of the Ivashchenko et al.,
that simvastatin regulates dimethylarginine dimethylaminohydrolase transcription via the
transcription factor Sterol Regulatory Element Binding Protein.

The present study shows a statistically significant increase in FMD% in patients on 80 mg
simvastatin therapy for one month in the presence of controversial results in related materials
on this issue. The mechanism of this improvement is proved to be related to the enhancement
of gene expression of eNOS (64). On the other hand, the FMD%-changes correlate (correlations
with all biomarkers at a baseline level and the %-changes have been tested) significantly only
with the baseline level of ApoB, ADMA, and tHcy. Interestingly enough,patients with ADMA
levels greater than 1 μmol/l, following statin therapy, appear to have only small or no FMD%
changes. A likely explanation of this finding is that in patients with ADMA greater than 1
μmol/l, competes with L-arginine as a substrate for eNOS and thus decreases the production
and availability of endothelium-derived NO. For this reason, in such patients, there are no
FMD% changes following statin therapy. In patients with documented small FMD% changes,
the most likely explanation is the action of other mediators (endothelium-derived hyperpola‐
rizing factor or prostaglandins) that lead to vasodilation through calcium-activated potassium
channels simvastatin (80 mg daily).

The high simvastatin doses should be done with caution. According to the Food and Drug
Administration monitoring are also important every 3 and 6 months during the course of
therapy.

In the multifactor regressive analysis only the initial ADMA levels remain predictors of an
FMD%-change. For the first time, in 2007 Böger GI et al. established that ADMA determines
FMD%- changes in a small hypercholesterolemic patients group (treated with a smaller
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simvastatin dose — 40 mg (12). Further clinical studies can be based off of this study, in order
to achieve LDL-target levels and to optimize the effect of different doses statins on ADMA.
Other statins are better tolerated at a high dose (atorvastatin, pravastatin, fluvastatin, lova‐
statin). There is only one study testing the effect of 80 mg fluvastatin treatment in hypercho‐
lesteromic patients with metabolic syndrome, which demonstrated decrease in plasma ADMA
level at 6 weeks.

What is interesting is that the established fact that the Apo-B%-change (not the LDL%-change)
is a predictor of the changes in the plasma levels of ADMA (ADMA%-change) in the linear
regression model. It’s very likely that this is due to the level of the smallest atherogenic and
dense particles are reflected my ApoB. The fact that ApoB is a predictor of the ADMA%-change
presumably is due to the higher proportion of patients with family Apo B defect (previously
reported in patients with hypercholesterolemia in our previous studies.

Statins vary in their pharmacokinetics and pharmacodynamics. There is a difference in their
lipid regulating and pleiotropic effect. Therefore, the data on simvastatin could not be referred
to other statins. There is no other therapeutic option in cases with high ADMA levels in
hypersholesterolic ptients,apart from 80 mg simvastatin. The clinical significance of our study
is that high-risk patients with severe hypercholesterolemia, a family history of premature
atherosclerosis and a high level of plasma ADMA, the high dose of Simvastatin is a possible
therapeutic option. Substituting with L-arginine is another possible approach (11; 44; 92). These
two hypotheses complete one another.

A number of factors are the cause of controversial results on the effects of statins on the
endothelial-dependent vasolidation. 1. The clinical studies, testing the effect of statins on
ADMA and FMD% involve only a small number of patients for a short period of time. 2. LDL
levels are not optimized in accordance with the risk category of hypercholesterolemic patients
(the pleiotropic effects of statins are partly connected to lipid regulating ones). 3. The im‐
provement of FMD% via increasing the activity of NO with the statin therapy is connected
additionally to the effect on other inhibitors of eNOS apart from ADMA. 4. In most studies
there is no testing of ADMA tissue levels.

The present study established patients with severe hypercholesterolemia have high ADMA
levels in comparison with the control group. One-month treatment with 80 mg simvastatin,
aimed at achieving LDL target levels of ≤ 2.6 mmol/l in high-risk contingents with severe
hypercholesterolemia leads to a statistically significant reduction of ADMA and an increase
of FMD% in contrast with 40 mg simvastatin therapy. The FMD%-changes correlate in a
statistically significant way with the initial ApoB, ADMA and tHcy levels. The baseline ADMA
levels are a predictor of FMD% changes and Apo-B%-changes is a predictor of ADMA%-
changes at baseline and post one-month therapy with 80 mg simvastatin. In case of optimized
LDL target levels it appears that ADMA is a major modulator of FMD%-change.

4. The impact of genetic factors on statin resistance

The same dose of the same statin in different individuals produces different LDLC decreases.
The time to reach maximum LDL-C decrease differs significantly between individuals. [81;
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82] Such a wide interindividual variation as the response to statins is more and more attributed,
at least partly, to the polymorphisms in genes affecting statin pharmacodynamics and
pharmacokinetics. The resistance to statins has been associated with polymorphisms in the
HMG-CoA-R, ABCB1, ABCG2, ABCC1, ABCC2, OATP1B1, OATP2B1, RHOA, NPC1L1, FXR,
CYP7A1, ApoE, PCSK9, LDLR, LPA, CETP, and TNF-a genes. However, currently, there is
still not enough evidence to advocate pharmacogenetic testing before initiating therapy with
statins.

Pharmacogenetics seeks to determine the role of genetic factors in variation of statin response.
However, today the origins of the notable interindividual variation in response to statins are
still poorly understood. In a number of studies, genetic variability has been shown to affect
statin responsiveness thus influencing statin resistance. These studies have identified numer‐
ous candidate genes (>50) and dozens of single-nucleotide polymorphisms (SNPs). It have
been reported to be associated with differing aspects of statin response - pharmacokinetics and
pharmacodynamics of statins being potential determinants of drug responsiveness in terms
of LDL-C lowering. Although genes are supposed to be associated with statin cholesterol-
lowering efficacy, the magnitude of variation in statin response that could be explained by
these associations is still questionable. [62; 89; 35; 79; 71]

The association between SNPs in genes involved in lipid metabolism and total cholesterol and
LDL-C response to statin therapy is of particular interest. The 3-hydroxyl-3- methylglutaryl
coenzyme A reductase (HMG-CoA-R) gene encoding the enzyme HMG-CoA-R, which is the
principal target of statins, because the foremost pharmacological action of these drugs is
exactly the competitive inhibition of HMG-CoA-R. The last one might be one of the candidate
genes when analyzing the SNPs as a possible cause of diminished statin responsiveness. When
SNPs and the common haplotypes inferred from them were tested for association with plasma
LDL-C levels and LDL-C response to statin treatment, it has been shown that HMG-CoA-R
gene polymorphisms are associated with reduced plasma LDL-C levels and LDL-C response
to simvastatin. [104; 42; 75; 84; 88; 49; 50]

Therefore, although it was considered that genome-wide association studies may yield a more
comprehensive set of markers for predicting statin efficacy and/or resistance, this has not been
proven so far and the results of these studies cannot be translated into clinical practice yet. We
need future pharmacogenetic research [93].

5. Conclusion

It is difficult to give an accurate definition of statin resistance. The patients who fail to reach
LDL-C target values despite the best available therapy, mostly a highest tolerable dose of a
more potent statin, are considered to be statin-resistant. Resistance to statins can be related to
differences in drug absorption, transport, intrahepatic drug metabolism, drug metabolism
within other organs, and drug excretion mechanisms. Possible causes of statin resistance:
1.Failed targeting LDL cholesterol - smokers have smaller statin-induced LDL-C decrease
compared with nonsmokers and the patients with hypertension have smaller decrease than
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those without hypertension, inflammation might cause statin resistance. The role of concom‐
itant amiodarone treatment in statin resistance was also suspected. It has also been suggested
that clusters of metabolites involved in multiple pathways not directly connected with
cholesterol metabolism might as well play a role in modulating the response to statin therapy
and therefore influence statin resistance. 2.Lack of effect on the endothelium-dependent
vasodilation after targeting LDL-C. There is much evidence that improvement of endotheli‐
um-dependent vasodilation under statin treatment depends on the ADMA levels. At this stage
of knowledge, there are two options for the management of this type of statin resistance - the
use of a high dose of a statin, or the addition of L-Arginine to the statin. These two strategies
are not contradictory, but complementary. 3. The impact of genetic factors on statin resist‐
ance. The resistance to statins has been associated with polymorphisms in the HMG-CoA-R,
ABCB1, ABCG2, ABCC1, ABCC2, OATP1B1, OATP2B1, RHOA, NPC1L1, FXR, CYP7A1,
ApoE, PCSK9, LDLR, LPA, CETP, and TNF-a genes. However, currently, there is still not
enough evidence to advocate pharmacogenetic testing before initiating therapy with statins.
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