We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

4,800 Open access books available 122,000

135M

Our authors are among the

TOP 1%

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com

Crystal Structures of CH₃NH₃PbI₃ and Related Perovskite Compounds Used for Solar Cells

Takeo Oku

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59284

1. Introduction

Recently, organic-inorganic hybrid solar cells with perovskite-type pigments have been widely fabricated and rapidly studied [12, 8, 11]. Solar cells with a perovskite structure have high conversion efficiencies and stability as the organic solar cells. Since a photoconversion efficiency of 15% was achieved [2], higher efficiencies have been reported for various device structures and processes [13, 23], and the photoconversion efficiency was increased up to 19.3% [27]. The photovoltaic properties of solar cells are strongly dependent on the fabrication process, hole transport layers, electron transport layers, nanoporous layers, interfacial microstructures, and crystal structures of the perovskite compounds. Especially, the crystal structures of the perovskite-type compounds, strongly affect the electronic structures such as energy band gaps and carrier transport, and a detailed analysis of them is mandatory.

In the present article, crystal structures of perovskite-type compounds such as CH₃NH₃PbI₃ CH₃NH₃PbCl₃, CH₃NH₃PbBr₃, CsSnI₃, CH₃NH₃GeCl₃, and CH₃NH₃SnCl₃, are expected for solar cell materials, are reviewed and summarized. Since these perovskite-type materials often have nanostructures in the solar cell devices, summarized information on the crystal structures would be useful for structure analysis on the perovskite-type crystals. The nanostructures of the solar cell devices are often analysed by using X-ray diffraction (XRD) and transmission electron microscopy (TEM), and the diffraction conditions are investigated and summarized. Transmission electron microscopy, electron diffraction, and high-resolution electron microscopy are powerful tools for structure analysis of solar cells [18] and perovskite-type structures in atomic scale [17, 19].

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2. Synthesis of methylammonium trihalogenoplumbates (II)

There are various fabrication processes for the methylammonium trihalogenoplumbates (II) $(CH_3NH_3PbI_3)$ compound with the perovskite structures. Two typical synthesis methods for the $CH_3NH_3PbI_3$ (MAPbI₃) were reported [1]. MAPbI₃ could be synthesised from an equimolar mixture of CH_3NH_3I and PbI_2 using the reported method [8]. CH_3NH_3I was synthesised at first by reacting a concentrated aqueous solution of hydroiodic acid with methylamine, and the cleaned precipitant was mixed with PbI_2 in gamma-butyrolactone to obtain the MAPbI₃ product. Crystalline MAPbI₃ was obtained by drop-casting the solutions on glass substrates, and annealed at 100 °C. Polycrystalline MAPbI₃ could be also prepared by precipitation from a hydroiodic acid solution [22]. Lead(II) acetate was dissolved in a concentrated aqueous HI and heated. An HI solution with CH_3NH_2 was added to the solution, and black precipitates were formed upon cooling from 100 °C.

A typical fabrication process of the TiO₂/CH₃NH₃PbI₃ photovoltaic devices is also described here [28]. The details of the fabrication process is described in the reported paper [2] except for the mesoporous TiO_2 layer [16]. The photovoltaic cells were fabricated by the following process. F-Doped tin oxide (FTO) substrates were cleaned using an ultrasonic bath with acetone and methanol and dried under nitrogen gas. The $0.30M \text{ TiO}_x$ precursor solution was prepared from titanium diisopropoxide bis(acetyl acetonate) (0.11 mL) with 1-butanol (1 mL), and the TiO_x precursor solution was spin-coated on the FTO substrate at 3000 rpm for 30 s and annealed 125 °C for 5 min. This process was performed two times, and the FTO substrate was sintered at 500 °C for 30min to form the compact TiO₂ layer. After that, mesoporous TiO₂ paste was coated on the substrate by a spin-coating method at 5000 rpm for 30 s. For the mesoporous TiO₂ layer, the TiO₂ paste was prepared with TiO₂ powder (Aerosil, P-25) with poly(ethylene glycol) in ultrapure water. The solution was mixed with acetylacetone and triton X-100 for 30min. The cells were annealed at 120 °C for 5min and at 500 °C for 30min. For the preparation of pigment with a perovskite structure, a solution of CH₃NH₃I and PbI₂ with a mole ratio of 1:1 in γ -butyrolactone (0.5 mL) was mixed at 60 °C. The solution of CH₃NH₃I and PbI₂ was then introduced into the TiO₂ mesopores by spin-coating method and annealed at 100 °C for 15min. Then, the hole transport layer (HTL) was prepared by spin coating. As the HTLs, a solution of spiro-OMeTAD (36.1 mg) in chlorobenzene (0.5 mL) was mixed with a solution of lithium bis(trifluoromethylsulfonyl) imide (Li-TFSI) in acetonitrile (0.5 mL) for 12 h. The former solution with 4-tert-butylpyridine (14.4 μ L) was mixed with the Li-TFSI solution (8.8 µL) for 30min at 70 °C. Finally, gold (Au) metal contacts were evaporated as top electrodes. Layered structures of the photovoltaic cells were denoted as FTO/TiO₂/CH₃NH₃PbI₃/HTL/Au.

3. Crystal structures of CH₃NH₃PbX₃ (X=Cl, Br, or I) compounds

The crystals of methylammonium trihalogenoplumbates(II) (CH₃NH₃PbX₃, X=Cl, Br, or I) have perovskite structures and provide structural transitionsupon heating [24], 22]. The crystal

systems and transition temperatures are summarized in Table 1, as reported in the previous works [22, 21]. Atomic sites were indicated from the space group table [6]. Although the $CH_3NH_3PbX_3$ perovskite crystals have a cubic symmetry for the highest temperature phase, the CH_3NH_3 ion is polar and has C_{3v} symmetry, which should result in disordered cubic phase [14]. In addition to the disordering of the CH_3NH_3 ion, the halogen ions were also disordered in the cubic phase, as shown in Figure 1(a) and Table 2 [14]. Site occupancies were set as 1/4 for I and 1/12 for C and N. The CH_3NH_3 ion occupies 12 equivalent orientations of the C_2 axis, and hydrogen atoms have two kinds of configurations on the C_2 axis. Then, the total degree of freedom is 24 [21].

As the temperature decreases, the cubic phase is transformed in the tetragonal phase, as shown in Figure 1(b) and Table 3 [10]. The isotropic displacement parameters B were calculated as $8\pi^2 U_{iso}$. For the tetragonal phase, I ions are ordered, which resulted in the lower symmetry from the cubic phase. Site occupancies were set as 1/4 for C and N for the tetragonal CH₃NH₃PbI₃. As the temperature decreases lower, the tetragonal phase is transformed in the orthorhombic systems, which is due to the ordering of CH₃NH₃ ions in the unit cell, as shown in Figure 1(c) and Table 4 [1].

Energy gaps of the CH₃NH₃PbI₃ were also measured and calculated [1], as summrized in Table 5. The energy gap increases with increasing temperature from the *ab-initio* calculation, and the measured energy gap of ~1.5 eV is suitable for solar cell materials.

Material		NH ₃ PbCl ₃	CH ₃ NH ₃ PbBr ₃	CH ₃ NH ₃ PbI ₃
al system	(Cubic	Cubic	Cubic
emperature (K))	177	236	330
al system	Tet	ragonal	Tetragonal	Tetragonal
emperature (K))	172	149~154	161
al system	Orth	orhombic	Orthorhombic	Orthorhombic
site	x	y	z	B (Å ²)
site 1a	<i>x</i> 0	y 0	<i>z</i> 0	B (Ų) 3.32
1 <i>a</i>	0	0	0	3.32
	al system emperature (K) al system emperature (K) al system	al system (K) emperature (K) al system Tet emperature (K) al system Ortho	al system Cubic emperature (K) 177 al system Tetragonal emperature (K) 172 al system Orthorhombic	al systemCubicCubicemperature (K)177236al systemTetragonalTetragonalemperature (K)172149~154

Table 2. Structural parameters of cubic CH₃NH₃PbI₃. Space group *Pmm* (Z=1), *a*=6.391 Å at 330 K. B is isotropic displacement parameter.

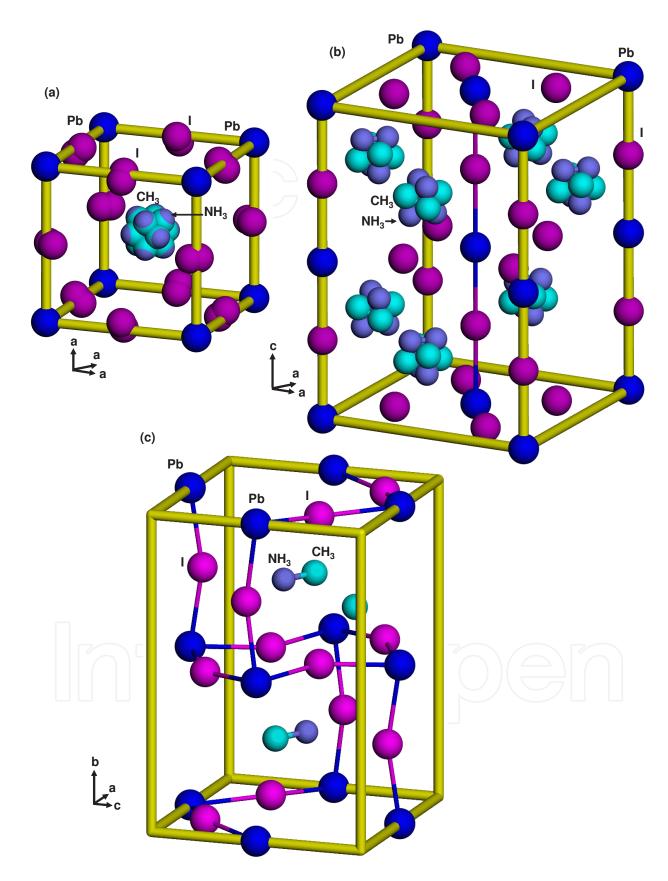


Figure 1. Structure models of CH₃NH₃PbI₃ with (a) cubic, (b) tetragonal and (c) orthorhombic structures.

Crystal Structures of CH₃NH₃PbI₃ and Related Perovskite Compounds Used for Solar Cells 81 http://dx.doi.org/10.5772/59284

Atom	site	x	y	Z	B (Å ²)
Pb	4 <i>c</i>	0	0	0	1.63
I(1)	8h	0.2039	0.2961	0	4.38
I(2)	4 <i>a</i>	0	0	0.25	4.11
Ν	16 <i>l</i>	0.459	0.041	0.202	4.60
С	- 16 <i>l</i>	0.555	-0.055	0.264	3.19

Table 3. Structural parameters of tetragonal CH₃NH₃PbI₃ at 220 K. Space group *I4/mcm* (Z=4), *a*=8.800 Å, *c*=12.685 Å. *B* is isotropic displacement parameter.

Atom	site	x	y	Z	B (Å ²)
Pb	4b	0.5	0	0	4.80
I(1)	4 <i>c</i>	0.48572	0.25	-0.05291	1.03
I(2)	8 <i>d</i>	0.19020	0.01719	0.18615	1.33
Ν	4 <i>c</i>	0.932	0.75	0.029	2.37
С	4 <i>c</i>	0.913	0.25	0.061	1.50

Table 4. Structural parameters of orthorhombic CH₃NH₃PbI₃ at 100 K. Space group *Pnma* (Z=4), *a*=8.8362 Å, *b*=12.5804 Å, *c*=8.5551 Å. All occupancy factors 1.0. B is isotropic displacement parameter.

Material	CH ₃ NH ₃ PbI ₃	CH ₃ NH ₃ PbI ₃	CH ₃ NH ₃ PbI ₃
Crystal system	Cubic	Tetragonal	Orthorhombic
Measured energy gap (eV)		1.51	
Calculated energy gap (eV)	1.3	1.43	1.61

Table 5. Energy band gaps of CH₃NH₃PbI₃.

Atom		y		B (Ų)
Pb	0	0	0	1.13
Cl	0	0.0413	0.5	6.73
N	0.413	0.409	0.5	8.1
С	0.578	0.583	0.5	5.8

Table 6. Structural parameters of cubic CH₃NH₃PbCl₃. Space group *Pm3m* (Z=1), *a*=5.666 Å at 200 K. B is isotropic displacement parameter.

Structural parameters of cubic CH₃NH₃PbCl₃ and CH₃NH₃PbBr₃ are summarized as Table 6 and 7, respectively [14, 15]. They have similar structure parameters compared with the cubic

CH₃NH₃PbI₃, except for the lattice constants. Lattice parameters of these compounds are strongly depedent on the size of halogen ions, as shown in Figure 2. As summarized in Table 8, ion radii of halogen elements increase with increasing atomic numbers, which affect the lattice constants of CH₃NH₃PbX₃, as observed in Figure 2.

Atom	x	y	Z	B (Ų)
Pb	0	0	0	1.61
Br	G 7	0.0413	0.5	5.41
N	0.413	0.417	0.5	6.02
С	0.578	0.582	0.5	6.05

Table 7. Structural parameters of cubic CH₃NH₃PbBr₃. Space group *Pm3m* (Z=1), *a*=5.933 nm at 298 K. B is isotropic displacement parameter.

Hologen element	F-	Cl-	Br-	I-
Ion radius (Å)	1.33	1.81	1.96	2.20
14 group element		Ge ²⁺	Sn ²⁺	Pb ²⁺
Lattice parameters		0.73	0.93	1.18

Table 8. Ion radii of halogen and 14 group elements.

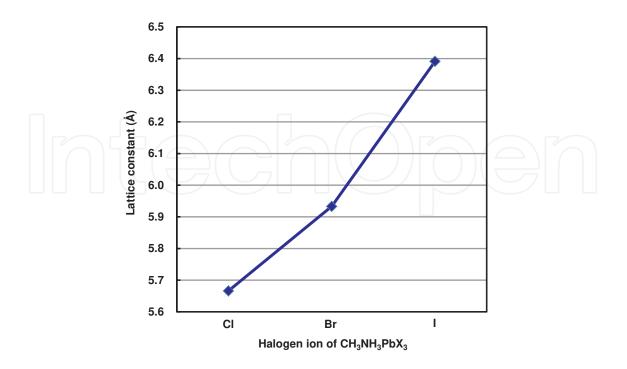
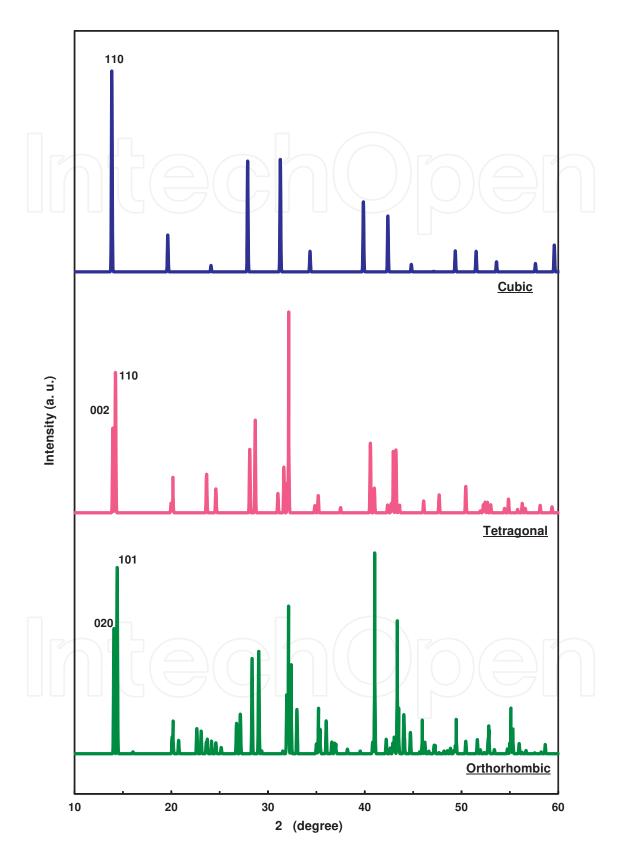
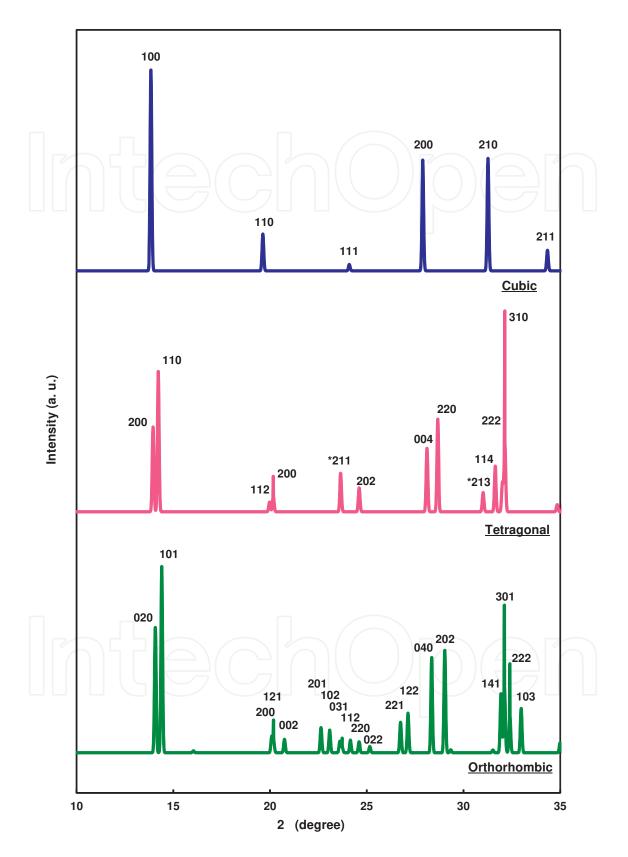


Figure 2. Lattice constants of CH₃NH₃PbX₃ (X=Cl, Br, or I).


4. X-ray diffraction of CH₃NH₃PbI₃

Microstructure of the perovskite phases can be investigated by X-ray diffraction (XRD). The XRD will indicate that the sample is a single phase or mixed phase. If the sample consists of nanoparticles or nanocrystals, the crystallite size can be estimated from the full width at half maximum (FWHM). From the XRD data, analyses of high-resolution TEM image and electron diffraction would become easier. If the sample is a known material, plane distances (*d*) and indices can be clarified from the diffraction peaks of XRD. When the sample has an unknown structure, the values of the plane distances can be obtained by the XRD, which will effectively stimulate the structure analysis.


Calculated X-ray diffraction patterns on the CH₃NH₃PbI₃ with cubic, tetragonal and orthorhombic structures is shown in Figure 3, and calculated X-ray diffraction parameters of cubic, tetragonal and orthorhombic CH₃NH₃PbI₃ are listed in Table 9, 10, and 11, respectively. For the cubic phase, site occupancies were set as 1/4 for I and 1/12 for C and N. Structure factors were averaged for each index. Site occupancies were set as 1/4 for C and N for the tetragonal CH₃NH₃PbI₃. Figure 4 is an enlarged calculated X-ray diffraction patterns of CH₃NH₃PbI₃. Reflection positions of 211 and 213 inconsistent with cubic symmetry for tetragonal structure are indicated by asterisks, which would be helpful for the distinction between the cubic and tetragonal phase [1].

Index	20 (°)	d-spacing (Å)	F	Relative intensity (%)	Multiplicity
100	13.8449	6.3910	107.1	100	6
110	19.6279	4.5191	46.3	18	12
111	24.0990	3.6898	29.4	3	8
200	27.8973	3.1955	164.3	55	6
210	31.2695	2.8581	93.4	56	24
211	34.3423	2.6091	44.4	10	24
220	39.8633	2.2596	136.0	35	12
221	42.3942	2.1303	84.0	23	24
300	42.3942	2.1303	76.0		6
310	44.8082	2.0210	35.9	4	24
311	47.1237	1.9270	8.6	0.2	24
222	49.3555	1.8449	116.1	10	8
320	51.5149	1.7725	69.5	10	24
321	53.6114	1.7081	35.9	5	48
400	57.6458	1.5978	100.9	4	6
410	59.5956	1.5500	66.8	13	48

Table 9. Calculated X-ray diffraction parameters of cubic CH₃NH₃PbI₃. Equivlent indices were combined. Space group *Pm3m* (Z=1), *a*=6.391 Å at 330 K. *F* is structure factor.

 $\label{eq:Figure 3. Calculated X-ray diffraction patterns of CH_3NH_3PbI_3 with cubic, tetragonal and orthorhombic structures.$

Figure 4. Enlarged calculated X-ray diffraction patterns of CH₃NH₃PbI₃ with cubic, tetragonal and orthorhombic structures. *Reflection positions inconsistent with cubic symmetry for tetragonal structure.

Index	20 (°)	d-spacing (Å)	F	Relative intensity (%)	Multiplicity
002	13.9513	6.3425	477.0	60	2
110	14.2216	6.2225	442.5	100	4
112	19.9730	4.4418	116.8	7	8
200	20.1647	4.4000	211.6	11	4
211	23.6509	3.7587	195.7	27	16
202	24.6041	3.6152	227.6	17	8
004	28.1149	3.1713	852.4	45	2
220	28.6684	3.1113	744.0	66	
213	31.0176	2.8808	184.5	14	16
114	31.6405	2.8255	410.3	33	8
222	32.0148	2.7933	331.7	21	8
310	32.1387	2.7828	511.0	49	8
204	34.8441	2.5727	180.5	5	8
312	35.1881	2.5483	199.6	12	16
321	37.4940	2.3967	117.9	4	16
224	40.5874	2.2209	665.6	50	8
400	40.9903	2.2000	566.6	18	4
215	42.3526	2.1323	165.5	6	16
006	42.7343	2.1142	415.0	4	2
323	42.7418	2.1138	109.2	2	16
411	42.9354	2.1047	277.8	15	16
314	43.2169	2.0917	479.9	45	16
402	43.5043	2.0785	222.4	5	8
330	43.5998	2.0742	225.3	2	4
420	46.0901	1.9677	317.2	8	8
206	47.6844	1.9056	155.2	2	8
413	47.6913	1.9053	265.2	11	16
404	50.4445	1.8076	523.0	19	8
325	51.9446	1.7589	106.0	1	16
226	52.2716	1.7487	303.6	6	8
431	52.4442	1.7433	171.5	4	16
334	52.6864	1.7359	218.2	3	8
510	53.0165	1.7258	307.9	6	8
316	54.4599	1.6834	165.0	3	16
424	54.8632	1.6720	294.6	10	16
217	55.8045	1.6460	149.8	2	16

Crystal Structures of CH₃NH₃PbI₃ and Related Perovskite Compounds Used for Solar Cells 87 http://dx.doi.org/10.5772/59284

415	56.2804	1.6332	250.9	7	16
433	56.5963	1.6249	171.4	3	16
008	58.1285	1.5856	657.6	5	2
440	59.3600	1.5556	423.9	4	4
118	60.1739	1.5365	353.3	6	8

Table 10. Calculated X-ray diffraction parameters of tetragonal CH₃NH₃PbI₃. Space group *I4/mcm* (Z=4), *a*=8.800 Å, c=12.685 Å at 220 K.

Index	20 (°)	d-spacing (Å)		Relative intensity (%)	Multiplicity
020	14.0679	6.2902	462.7	67	2
101	14.3989	6.1463	408.5	100	4
111	16.0356	5.5225	32.8	1	8
200	20.0813	4.4181	238.7	9	2
121	20.1828	4.3961	106.9	7	8
002	20.7483	4.2775	225.2	7	2
201	22.6324	3.9255	239.3	14	4
102	23.0816	3.8501	231.4	12	4
031	23.6082	3.7654	168.3	6	4
211	23.7239	3.7473	86.8	3	8
112	24.1539	3.6816	128.7	7	8
220	24.6029	3.6154	172.8	6	4
022	25.1559	3.5372	132.9	3	4
221	26.7471	3.3302	221.7	16	8
122	27.1323	3.2838	256.6	21	8
040	28.3536	3.1451	834.3	-51	2
202	29.0316	3.0732	627.4	55	4
230	29.3402	3.0415	108.2	2	4
132	31.5191	2.8361	80.9	2	8
141	31.9379	2.7998	373.2	32	8
301	32.1130	2.7850	560.5	35	4
013	32.1584	2.7811	155.6	3	4
222	32.3965	2.7612	304.2	20	8
103	32.9780	2.7139	473.6	24	4
240	34.9912	2.5622	239.4	5	4

321	35.2135	2.5465	244.8	11	8
042	35.3949	2.5339	225.2	5	4
123	36.0126	2.4918	317.4	18	8
241	36.5799	2.4545	193.6	6	8
142	36.8717	2.4357	185.8	6	8
302	37.0262	2.4259	145.8	2	4
213	38.2065	2.3536	127.4	3	8
133	39.5204	2.2784	101.4		8
400	40.8148	2.2091	432.0	6	2
242	41.0283	2.1980	555.9	41	8
401	42.2164	2.1389	281.7	5	4
004	42.2189	2.1388	305.7	3	2
251	42.6467	2.1183	161.0	3	8
152	42.9036	2.1062	142.9	2	8
332	43.0398	2.0999	157.9	3	8
060	43.1073	2.0967	330.6	3	2
341	43.3616	2.085	506.1	30	8
420	43.3783	2.0843	145.8	1	4
233	43.4643	2.0803	157.5	3	8
104	43.4991	2.0787	318.3	6	4
143	44.0352	2.0547	429.7	21	8
114	44.1197	2.0509	140.7	2	8
421	44.7146	2.0250	292.5	9	8
024	44.7169	2.0249	202.1	2	4
161	45.6801	1.9844	100.8	1	8
124	45.9414	1.9738	258.0		8
402	46.2136	1.9628	352.1	6	4
323	46.5832	1.9481	73.0	1	8
252	46.6144	1.9468	93.9	1	8
204	47.1728	1.9251	308.8	5	4
342	47.2817	1.9209	124.0	1	8
053	48.1925	1.8867	181.8	2	4
422	48.5489	1.8737	135.7	2	8
134	48.8598	1.8625	183.1	3	8

Crystal Structures of CH₃NH₃PbI₃ and Related Perovskite Compounds Used for Solar Cells 89 http://dx.doi.org/10.5772/59284

261	49.2266	1.8494	148.3	2	8
153	49.3503	1.8451	124.9	1	8
162	49.4567	1.8414	175.3	3	8
224	49.4736	1.8408	218.7	4	8
440	50.442	1.8077	403.4	7	4
441	51.6367	1.7686	236.3	4	8
044	51.6388	1.7686	287.3	3	4
071	51.9470	1.7588	234.2	2	4
403	52.3451	1.7464	135.0	_1	4
253	52.7109	1.7351	82.5	1	8
144	52.7410	1.7342	270.6	5	8
262	52.8123	1.7320	242.3	4	8
501	52.8555	1.7307	280.3	3	4
413	52.8858	1.7298	121.2	1	8
314	53.3946	1.7145	162.9	2	8
361	54.7548	1.6751	197.8	3	8
324	54.9839	1.6686	176.9	2	8
442	55.1098	1.6651	333.9	8	8
270	55.1235	1.6647	160.7	1	4
450	55.2931	1.6600	194.8	1	4
163	55.3226	1.6592	258.8	4	8
244	55.9564	1.6419	290.5	5	8
125	56.6693	1.6229	166.9	2	8
215	58.2395	1.5829	131.8	1	8
080	58.6587	1.5726	586.0	5	2
404	60.1713	1.5366	266.9	2	4

Table 11. Calculated X-ray diffraction parameters of orthorhombic CH₃NH₃PbI₃. Space group *Pnma* (Z=4), *a*=8.8362 Å, *b*=12.5804 Å, *c*=8.5551 Å at 100 K. B is isotropic displacement parameter. All occupancy factors 1.0.

Calculated X-ray diffraction patterns of CH₃NH₃PbI₃ with various FWHM values are shown in Figure 5. When the crystallite sizes decrease, the FWHM values increase, and different peak intensities are observed in Figure 5.

Figure 6 is an enlarged calculated X-ray diffraction patterns of CH₃NH₃PbI₃. With increasing FWHM values, the diffraction peaks of 200 and 110 seem to be combined, which should be very careful for the XRD structure analysis.

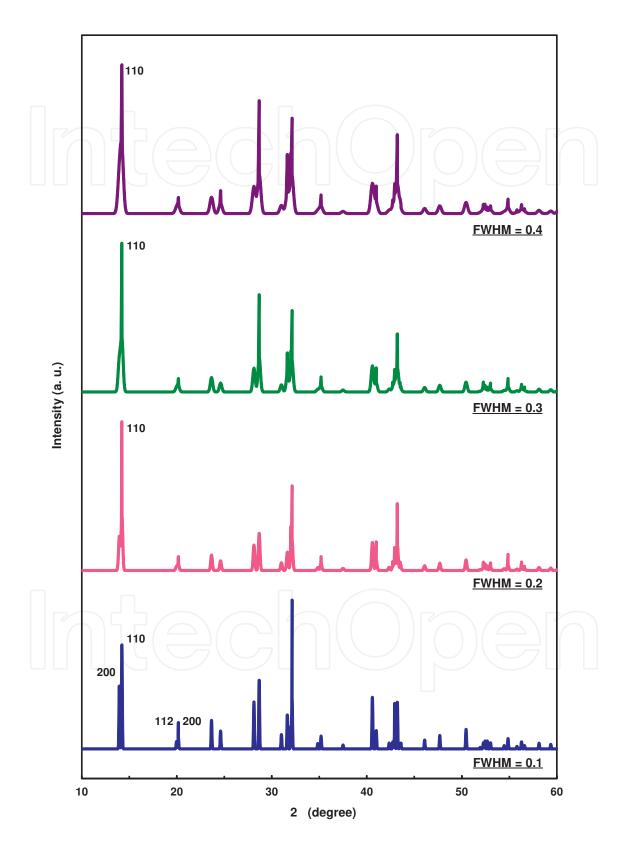


Figure 5. Calculated X-ray diffraction patterns of $CH_3NH_3PbI_3$ with various FWHM values.

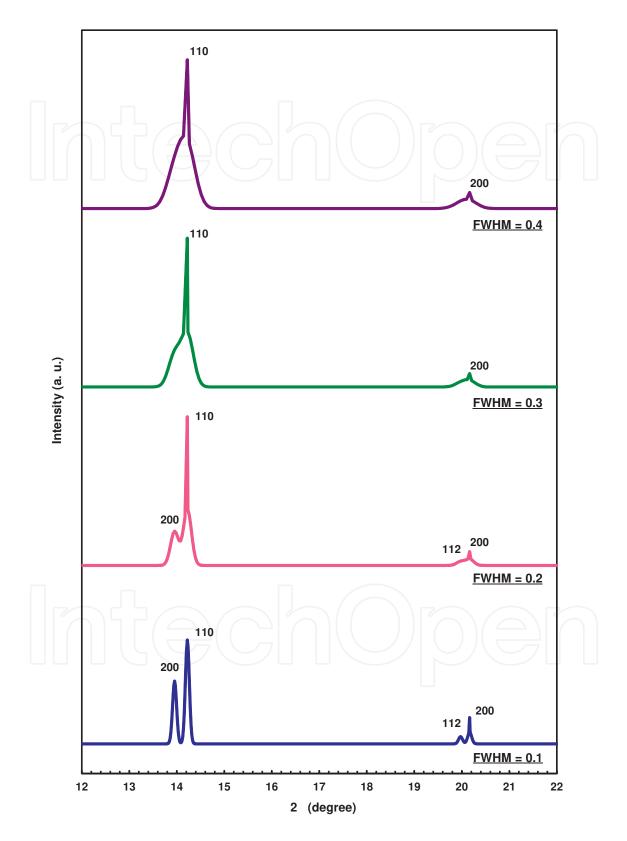
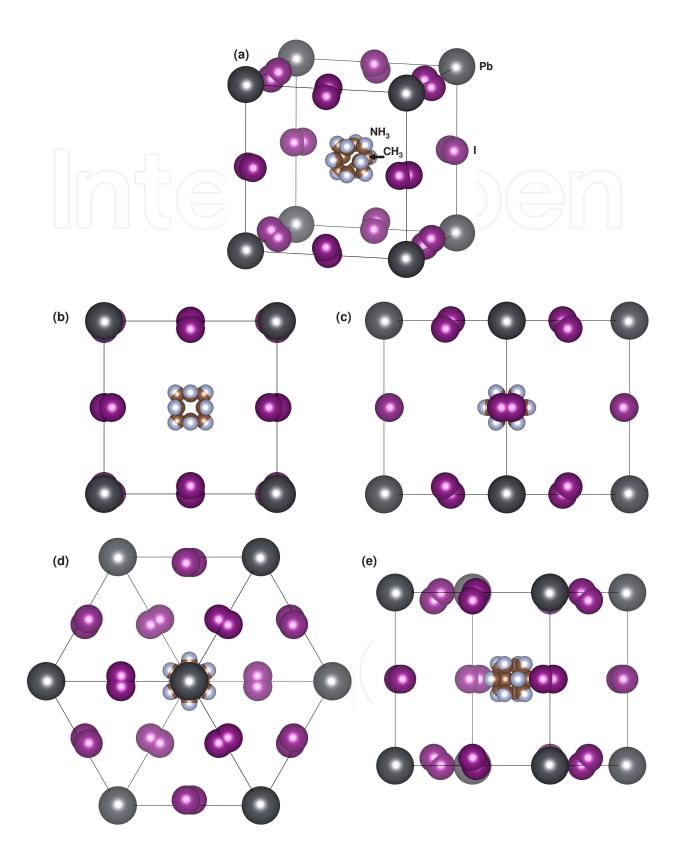


Figure 6. Enlarged calculated X-ray diffraction patterns of CH₃NH₃PbI₃ with various FWHM values.

5. Electron diffraction of CH₃NH₃PbI₃


When the sample amount, sample area or film thickness is smaller, it is difficult to obtain the necessary diffraction amplitude by XRD. Since the amount is enough for the TEM observation, only TEM observation may be applied to obtain the structure data. To obtain the information on the fundamental atomic arrangements, electron diffraction patterns should be taken along the various directions of the crystal, and the fundamental crystal system and lattice constants may be estimated. Then, high-resolution TEM observation and composition analysis by energy dispersive X-ray spectroscopy are performed, and the approximate atomic structure model is constructed. Most of the materials have similar structures to the known materials, and the structures will be estimated if the database on the known structures is available. For example, lots of new structures were found for high-Tc superconducting oxides, which have basic perovskite structures, and the approximate atomic structure models can be constructed from the high-resolution TEM images, electron diffraction patterns, and composition analysis of the elements [17, 19].

If a structure of the TEM specimen is known, observation direction of the crystal should be selected, and electron diffraction pattern along the direction should be estimated. Any regions selected by the selected area aperture can be observed in electron diffraction patterns, and the structure can be easily analyzed by comparing TEM images with electron diffraction patterns. When electron diffraction pattern is observed in the selected area, the diffraction pattern is often inclined from the aimed direction, which is noticed from the asymmetry of the electron diffraction pattern. The sample holder can be usually tilted along two directions, and the specimen should be tilted as the diffraction pattern shows center symmetry. Atomic structure models of cubic CH₃NH₃PbI₃ observed along various directions are shown in Figure 7. Note that the atomic positions of CH₃, NH₃ and I are disordered as observed in the structure models. Corresponding electron diffraction patterns of cubic CH₃NH₃PbI₃ calculated along the [100], [110], [111] and [210] directions are shown in Figure 8.

Atomic structure models of tetragonal $CH_3NH_3PbI_3$ observed along [001], [100], [021], [221] and [110] are shown in Figure 9, which correspond to [001], [110], [111], [210] and [100] of cubic phase in Figure 8, respectively. Atomic positions of I are fixed for the tetragonal phase, and only atomic positions of CH_3 and NH_3 are disordered. For the tetragonal phase, the crystal symmetries are lowered as indicated by arrows in Figure 9(c) and 9(e). Several diffraction spots in Figure 9 have different diffraction intensities compared with Figure 8, which would be due to the different crystal symmetry of the $CH_3NH_3PbI_3$ compound.

High-resolution TEM observations have been performed for the perovskite materials [20], and the nanostructures were discussed. Although TEM is a powerful tool for nanostructured materials, sample damage by electron beam irradiation should be avoided, because the CH₃NH₃PbI₃ are known to be unstable during annealing at elevated temperatures. Several TEM results have been reported for the CH₃NH₃PbI₃ and CH₃CH₂NH₃PbI₃, and the structures were discussed by electron diffraction and high-resolution images in these works [1, 9, 28].

Crystal Structures of CH₃NH₃Pbl₃ and Related Perovskite Compounds Used for Solar Cells 93 http://dx.doi.org/10.5772/59284

Figure 7. Atomic structure models of cubic CH₃NH₃PbI₃ observed along (a) perspective view, (b) [100], (c) [110], (d) [111] and (e) [210].

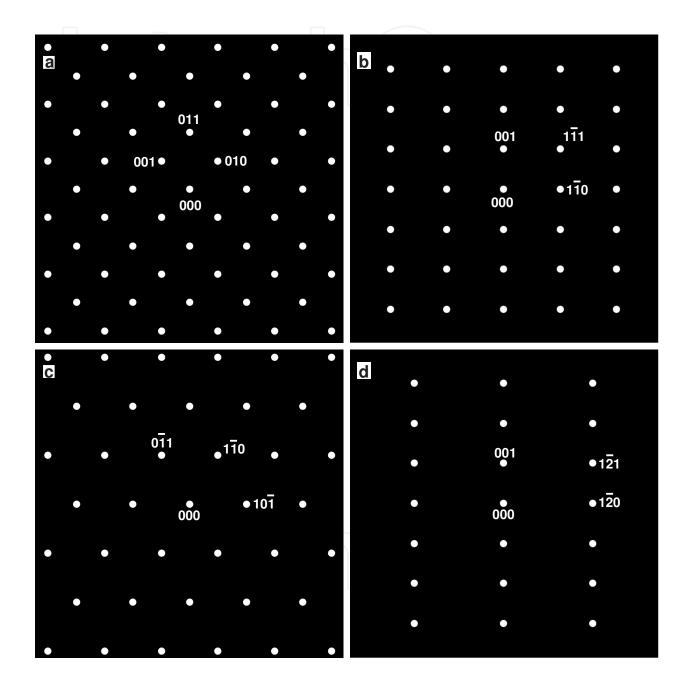
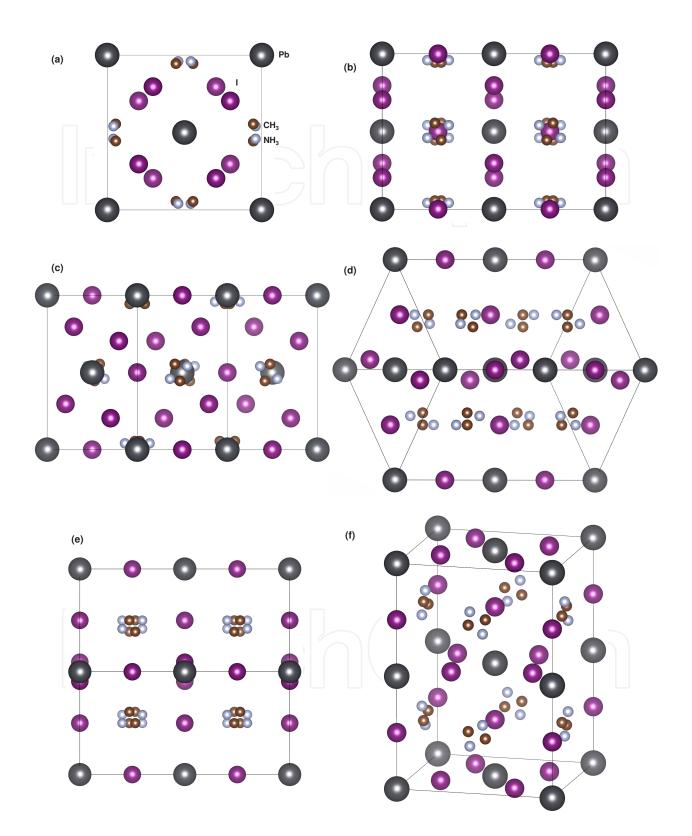



Figure 8. Calculated electron diffraction patterns of cubic CH₃NH₃PbI₃ along (a) [100], (b) [110], (c) [111] and (d) [210].

Crystal Structures of CH₃NH₃PbI₃ and Related Perovskite Compounds Used for Solar Cells 95 http://dx.doi.org/10.5772/59284

Figure 9. Atomic structure models of tetragonal $CH_3NH_3PbI_3$ observed along (a) [001], (b) [100], (c) [021], (d) [221] and (e) [110] and (f) perspective view.

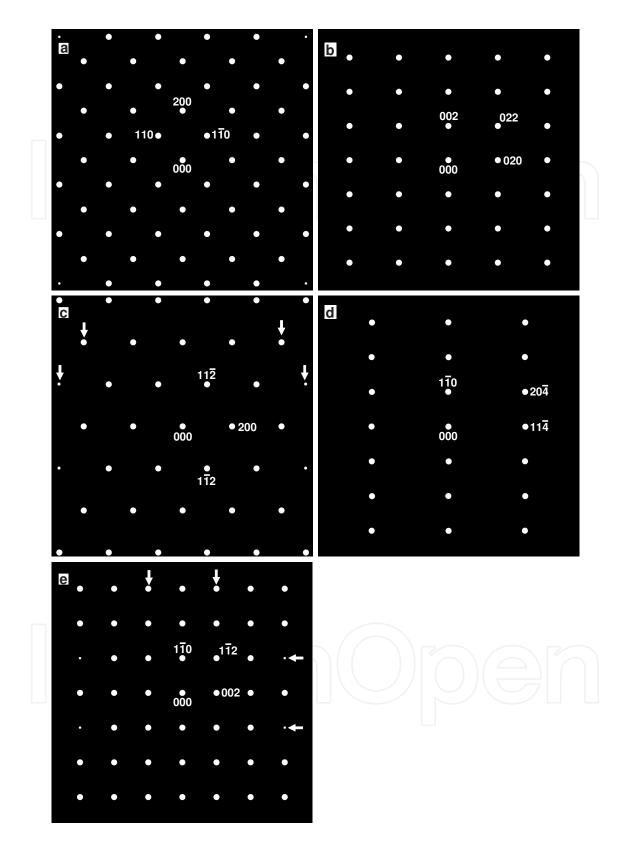


Figure 10. Calculated electron diffraction patterns of tetragonal $CH_3NH_3PbI_3$ along (a) [001], (b) [100], (c) [021], (d) [221] and (e) [110].

6. Other compounds with perovskite structures for solar cells

In addition to $CH_3NH_3PbX_3$ (X=Cl, Br, or I) compounds, various perovskite compounds with perovskite structures for solar cells have benn reported and summarized [1]. Crystal systems and temperatures of $CsSnI_3$ are listed in Table 12, which has very similar structures and phase transitions [3] compared with the $CH_3NH_3PbX_3$. Solar cells with F-doped $CsSnI_{2.95}F_{0.05}$ provided an photo-conversion efficiency of 8.5% [4].

		$\langle \mathcal{I} \mathcal{I} \rangle$	
Temperature (K)	300	350	478
Crystal system	Orthorhombic	Tetragonal	Cubic
Space group	Pnma	P4/mbm	Pmm
Z	4	2	1
Lattice parameters	a = 8.6885 Å b = 12.3775 Å c = 8.3684 Å	a = 8.7182 Å c = 6.1908 Å	<i>a</i> = 6.1057 Å

Table 12. Crystal systems and temperatures of CsSnI₃.

Temperature (K)	2	250	370	475
Crystal system	Monoclinic	Orthorhombic	Trigonal	Cubic
Space group	$P2_{1}/n$	Рпта	R3m	Pmm
Z	4	4	1	1
Lattice parameters	a = 10.9973 Å b = 7.2043 Å c = 8.2911 Å $\alpha = 90.470^{\circ}$	a = 11.1567 Å b = 7.3601 Å c = 8.2936 Å	a = 5.6784 Å $\alpha = 90.945^{\circ}$	<i>a</i> = 5.6917 Å

Table 13. Crystal systems and temperatures of CH₃NH₃GeCl₃.

Similar structures of CH₃NH₃GeCl₃ and CH₃NH₃SnCl₃ are shown in Table 13 and 14, respectively [28, 26]. Ion radii of Ge and Sn ions are listed in Table 8, and they can be substituted for the Pb atoms in CH₃NH₃PbX₃. Lead-free CH₃NH₃SnI₃ solar cells were developed, which provided 5.7% efficiency [7]. (CH₃CH₂NH₃)PbI₃ with a 2H perovskite structure was reported, which privided 2.4% efficiency [9]. Perovskite oxides such as [KNbO₃]_{0.9}[BaNi_{0.5}Nb_{0.5}O_{3-x}]_{0.1} were found to have an energy gap of ~1.4 eV, which would also be expected as solar cell materials [5].

Temperature (K)	297	318	350	478
Crystal system	Triclinic	Monoclinic	Trigonal	Cubic
Space group	P1	Рс	R3m	Pmm
Z	4	4	1	1
	<i>a</i> = 5.726 Å			
	<i>b</i> = 8.227 Å	a = 5.718 Å		
	<i>c</i> = 7.910 Å	<i>b</i> = 8.236 Å	<i>a</i> = 5.734 Å	<i>a</i> = 5.760 Å
Lattice parameters	$\alpha = 90.40^{\circ}$	c = 7.938 Å	$\alpha = 91.90^{\circ}$	
	β = 93.08°	β = 93.08°		
	$\gamma = 90.15^{\circ}$			

Table 14. Crystal systems and temperatures of CH₃NH₃SnCl₃.

7. Conclusion

Crystal structures of perovskite-type CH₃NH₃PbI₃ compounds with cubic, tetragonal and orthorhombic structures were reviewed and summarized, and X-ray diffraction parameters and diffraction patterns were calculated and presented. Electron diffraction patterns were also calculated along various crystal directions and discussed. Other perovskite compounds such as CH₃NH₃PbCl₃, CH₃NH₃PbBr₃, CH₃NH₃GeCl₃, CH₃NH₃SnCl₃, and CsSnI₃ were also reviewed, which are expected as next generation, organic-inorganic hybrid solar cells with high photo-conversion efficiencies.

Acknowledgements

The author would like to acknowledge M. Zushi and A. Suzuki for fruitful discussion on the perovskite materials for solar cells.

Author details

Takeo Oku^{*}

Address all correspondence to: oku@mat.usp.ac.jp

The University of Shiga Prefecture, Japan

References

- Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Grätzel, M. & Whitec, T. J. (2013). Synthesis and crystal chemistry of the hybrid perovskite (CH₃NH₃)PbI3 for solid–state sensitised solar cell applications, *Journal of Materials Chemistry A*, Vol. 1, pp. 5628–5641.
- Burschka, J.; Pellet, N.; Moon, S.–J.; Humphry–Baker, R.; Gao, P.; Nazeeruddin, M. K. & Grätzel, M. (2013). Sequential deposition as a route to high–performance perov-skite–sensitized solar cells. *Nature*, Vol. 499, pp. 316–320.
- [3] Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T. & Kanatzidis, M. G. (2012A). CsSnI3: semiconductor or metal? High electrical conductivity and strong near–infrared photoluminescence from a single material. High hole mobility and phase–transitions. *Journal of the American Chemical Society*, Vol. 134, pp. 8579–8587.
- [4] Chung, I.; Lee, B.; He, J.; Chang, R. P. H. & Kanatzidis, M. G. (2012B). All–solid–state dye–sensitized solar cells with high efficiency. *Nature*, Vol. 485, pp. 486–489.
- [5] Grinberg, I.; West, D. V.; Torres, M.; Gou, G.; Stein, D. M.; Wu, L.; Chen, G.; Gallo, E. M.; Akbashev, A. R.; Davies, P. K.; Spanier J. E. & Rappe A. M. (2013). Perovskite oxides for visible–light–absorbing ferroelectric and photovoltaic materials. *Nature*, Vol. 503, pp. 509–512.
- [6] Hahn, T. (1995). *International tables for crystallography, Volume A*. Kluwer Academic Publishers, The Netherland.
- [7] Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H. & Kanatzidis M. G. (2014). Lead–free solid–state organic–inorganic halide perovskite solar cells. *Nature Photonics*, Vol. 8, pp. 489–494.
- [8] Im, J.–H.; Lee, C.–R.; Lee, J.–W.; Park, S.–W. & Park, N.–G. (2011). 6.5% efficient perovskite quantum–dot–sensitized solar cell. *Nanoscale*, Vol. 3, pp. 4088–4093.
- [9] Im, J.-H.; Chung, J.; Kim S.-J. & Park N.-G. (2012). Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH₃CH₂NH₃)PbI3. *Nanoscale Research Letters*, Vol. 7, 353–1–7.
- [10] Kawamura, Y.; Mashiyama, H. & Hasebe, K. (2002). Structural study on cubic–tetragonal transition of CH3NH3PbI3. *Journal of the Physical Society of Japan*, Vol. 71, pp. 1694–1697.
- [11] Kojima, A.; Teshima, K.; Shirai, Y. & Miyasaka T. (2009). Organometal halide perovskites as visible–light sensitizers for photovoltaic cells. *Journal of the American Chemical Society*, Vol. 131, pp. 6050–6051.

- [12] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N. & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso–superstructured organometal halide perovskites. *Science*, Vol. 338, pp. 643–647.
- [13] Liu, D. & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. *Nature Photonics*, Vol. 8, pp. 133–138.
- [14] Mashiyama, H.; Kurihara, Y. & Azetsu T. (1998). Disordered cubic perovskite structure of CH3NH3PbX3 (X=Cl, Br, I). *Journal of the Korean Physical Society*, Vol. 32, pp. S156–S158.
- [15] Mashiyama, H.; Kawamura, Y.; Magome, E. & Kubota Y. (2003). Displacive character of the cubic–tetragonal transition in CH₃NH₃PbX₃. *Journal of the Korean Physical Society*, Vol. 42, pp. S1026–S1029.
- [16] Oku, T.; Kakuta, N.; Kobayashi, K.; Suzuki, A. & Kikuchi, K. (2011). Fabrication and characterization of TiO2–based dye–sensitized solar cells. *Progress in Natural Science: Materials International*, Vol. 21, pp. 122–126.
- [17] Oku, T. (2012). Direct structure analysis of advanced nanomaterials by high–resolution electron microscopy. *Nanotechnology Reviews*, Vol. 1, pp. 389–425.
- [18] Oku, T.; Takeda, A.; Nagata, A.; Kidowaki, H.; Kumada, K.; Fujimoto, K.; Suzuki, A.; Akiyama, T.; Yamasaki, Y. & Ōsawa, E. (2013). Microstructures and photovoltaic properties of C60 based solar cells with copper oxides, CuInS2, phthalocyanines, porphyrin, PVK, nanodiamond, germanium and exciton diffusion blocking layers. *Materials Technology*, Vol. 28, pp. 21–39.
- [19] Oku, T. (2014). Structure analysis of advanced nanomaterials: nanoworld by high-resolution electron microscopy. Walter De Gruyter Inc. Germany.
- [20] Oku, T. (2014). High–resolution electron microscopy and electron diffraction of perovskite–type superconducting copper oxides. *Nanotechnology Reviews*, Vol. 3, 413– 444.
- [21] Onoda–Yamamuro, N.; Matsuo, T. & Suga, H. (1990). Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). *Journal of Physics and Chemistry of Solids*, Vol. 51, pp. 1383–1395.
- [22] Poglitsch, A. & Weber, D. (1987). Dynamic disorder in methylammonium trihalogenoplumbates (II) observed by millimeter–wave spectroscopy. *The Journal of Chemical Physics*, Vol. 87, pp. 6373–6378.
- [23] Wang, J. T.–W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander–Webber, J. A.; Huang, J.; Saliba, M.; Mora–Sero, I.; Bisquert, J.; Snaith, H. J. & Nicholas, R. J. (2014). Low–temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. *Nano Letters*, Vol. 14, pp. 724–730.

- [24] Weber, D. (1978). CH₃NH₃PbX₃, ein Pb(II)–system mit kubischer perowskitstruktur *Zeitschrift für Naturforschung B*, Vol. 33, pp. 1443–1445.
- [25] Yamada, K.; Kuranaga, Y.; Ueda, K.; Goto, S.; Okuda, T. & Furukawa, Y. (1998). Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3). *Bulletin* of the Chemical Society of Japan, Vol. 71, pp. 127–134.
- [26] Yamada, K.; Mikawa, K.; Okuda, T. & Knight, K. S. (2002) Static and dynamic structures of CD3ND3GeCl3 studied by TOF high resolution neutron powder diffraction and solid state NMR. *Journal of the Chemical Society, Dalton Transactions*, pp. 2112– 2118.
- [27] Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.–B.; Duan, H.–S.; Hong, Z.; You, J.; Liu, Y. & Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. *Science*, Vol. 345, pp. 542–546.
- [28] Zushi, M.; Suzuki, A.; Akiyama, T. & Oku T. (2014). Fabrication and characterization of TiO₂/CH₃NH₃PbI₃-based photovoltaic devices. Chemistry Letters, Vol. 43, pp. 916– 918.

IntechOpen