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1. Introduction

Breast cancer is the most common cancer in women in the world [1]. According to the most
recent estimates from GLOBOCAN published by the International Agency for Research on
Cancer (IARC) [2], there were nearly 1.7 million new breast cancer cases diagnosed in 2012
(25.2% of all cancers in women) and 6.3 millions have been diagnosed with breast cancer in
2007-2012. Breast cancer incidence has been increasing by more than 20% and mortality
increased by 14% since 2008 and is the most common cause of cancer death in women in less
developed regions (324,000 deaths, 14.3% of total). Breast cancer is less favorable in the under-
developed countries due to less advanced medical diagnosis and treatments. Therefore a good
diagnosis/prognosis would help to prevent as well as provide effective clinical treatments.

Biomarker testing is an essential step in the evaluation of breast cancer and help medical
doctors and patients in deciding the best treatment strategy. There are several commercial
products or services developed towards this purpose. The Oncotype DX (Genomic Health)
measures the expression levels of 21 genes and is most helpful for patients of early stage breast
cancer with estrogen receptor (ER) positivity and no cancer cells in the lymph node. The
HERmark assay (Monogram Biosciences) can quantitatively measure the HER2 total proteins
with greater sensitivity than immunohistochemistry (IHC) which is an important indicator of
predicting response of HER2-positive breast cancer patients to trastuzumab therapy. There are
also tests for BRCA1 and BRCA2 mutations for the hereditary breast cancer patients. The
targeted sequencing-based breast cancer panels such as BreastNext (Ambry Genetics) and
BROCA (University of Washington) can be used to screen for mutations and copy number
variants in genes implicated in breast cancer, including BRCA1 and BRCA2.
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Despite the relative success of these tests, there is a need for more efficient biomarkers in
specific groups of breast cancer, such as lobular carcinoma [3, 4], triple-negative breast cancer
[5] and early-onset breast cancers [6, 7] for diagnostic and/or prognostic application. We believe
the discovery of more useful markers using the wealth of gene expression data available
publicly nowadays would help medical doctors in the decision of the best way to help breast
cancer patients, especially if the markers are correlated with specific therapeutic interventions.
In the past decade, the high throughput microarray technique has been widely used to identify
potential biomarkers for various cancers [8-12]. Recent years, the employment of RNA
sequencing (RNA-seq) allows researchers to obtain transcriptome information and differential
gene expression profiling at a much higher resolution. With the huge amount of data generated
by these technologies, we are able to study the association of genes with cancer survival and
identify novel potentially prognostic biomarkers for cancers with improved estimation.
Traditionally, genetic search identifies genes that correlate with poor or good prognosis of
patients. However, it is important to consider the epistatic gene-gene interactions underlying
gene expression in complex diseases such as cancer. The epistatic (second or higher order)
information would allow more refined prognostic evaluation that may help clinical treatments.
Furthermore, epistatic analysis could be useful for identifying hub genes involved in prognosis
and help to identify the major genetic risk factors and pathways in breast cancer.

In this work, we utilized the breast tumor RNA-seq data from The Cancer Genome Atlas
(TCGA) as well as microarray-based expression datasets from Gene Expression Omnibus
(GEO) to detect differentially expressed genes in various subsets of breast cancer patients, to
identify genes whose expression profile is associated with survival of breast cancer patients
and to examine the influence of co-expression of a second gene in the survival of patients. This
analysis identifies specific gene groups differentially expressed between early-onset vs. late-
onset breast cancer, between ductal vs. lobular carcinoma, between early vs. advanced stage
breast tumors and tumor of various receptor status. Furthermore, epistatic interactions among
these genes demonstrate the gene-gene interactions in patient survival and identify several
hub genes that may be important determinants of breast cancer.

2. Statistical analysis of gene expression data

A global change in gene expression is a common theme in many human cancers. High-
throughput techniques such as microarrays and next generation sequencing allow investiga‐
tors to observe and compare the transcriptional landscapes of tumor cells in different biological
states [13-18]. In this work, we integrated multiple gene expression data from several large-
scale breast cancer studies to improve the assessment of differential gene expression in breast
tumor cells and to effectively increase statistical power.

We collected 3,188 breast cancer related Affymetrix expression microarray data from GEO
(http://www.ncbi.nlm.nih.gov/geo) from the following 16 series: GSE2603, GSE4922, GSE2990,
GSE3494, GSE6532, GSE9195, GSE7390, GSE20194, GSE20271, GSE20685, GSE25066,
GSE16391, GSE19615, GSE42568, GSE45255 and GSE50948. We also obtained 1,172 breast
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invasive carcinoma (BRCA) RNA-seq Level 3 data from TCGA Data Portal (http://tcga-
data.nci.nih.gov/). The demographic and clinicopathological characteristics of the breast
cancer patients from each study were also retrieved.

2.1. Processing of gene expression data and differential gene expression analysis

The CEL files obtained from microarray experiments were pre-processed by subjecting to
quality check using Bioconductor in the R environment to ensure comparability between the
different series and microarray platforms. The following quality measurements from the
simpleaffy and affy packages were performed: average background (avbg), scale factor (sfs),
percent present (percent.present), and possible RNA Degradation (AffyRNAdeg) of the array.
Additionally, the relative log expression (RLE) and normalized unscaled standard error
(NUSE) was also estimated using the affyPLM package. 466 arrays that did not pass the quality
control tests were removed. For the 2,722 arrays that had sufficient quality, the quantile
normalization and background correction were performed using the justRMA (robust multi-
array average) algorithm of the affy package and the gene (probe set)-level log2-transformed
expression values were summarized with Custom CDF file annotations (version 18.0.0. ENSG)
[19]. Lastly, the COMBAT method available in the inSilicoMerging package was used to remove
batch effect when combining the final expression data from the HG-U133A and HG-U133 Plus
2.0 arrays [20]. The RMA-normalized expression values from microarrays and the raw count
data from RNA-seq datasets were then analyzed using the edgeR package [21]. The differen‐
tially expressed genes were selected with a threshold of FDR adjusted P-value < 0.05.

2.2. Chinicopathological characteristics of breast cancer patients

We include 2,722 breast cancer patients from various microarray-based studies (referred as
GEO cohort) and 1,052 breast cancer patients from the TCGA project (referred as TCGA cohort)
following differential gene expression analyses (Table 1). All patients were women in the GEO
cohort with a median age of 53 years. The patients from the TCGA cohort were older with a
median age of 58 years and approximately 96% of patients were women. There was a signifi‐
cant amount of clinicopathological data not available from the GEO cohort as noted in Table
1. In both cohorts, there were more stage I/II breast cancer cases than advanced stage cases,
and invasive ductal carcinoma (IDC) being the major histological subtype diagnosed. The data
also contained status of tumor receptors such as the estrogen receptor (ER), progesterone
receptor (PR) and HER2 which are frequently used prognostic factors to aid therapeutic
decisions. Many patients were positive for the ER and/or PR, and/or negative for the HER2
receptor.

Characteristic
No. of Patients

Microarray (n = 2722), % RNA-seq (n = 1052), %

Sex

Male 0 0.0% 11 1.0%
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Characteristic
No. of Patients

Microarray (n = 2722), % RNA-seq (n = 1052), %

Female 2722 85.4% 1005 95.5%

Missing data 0 0.0% 36 3.4%

Median Age (range) 53 (24-93) 58 (26-90)

Younger than 40 300 11.0% 71 6.7%

40 to 55 1184 43.5% 365 34.7%

Older than 55 1224 45.0% 580 55.1%

Missing data 14 0.5% 36 3.4%

Stage

Early (Stage I and II) 1236 45.4% 751 71.4%

Late (Stage III and IV) 370 13.6% 246 23.4%

Missing data 1116 41.0% 55 5.2%

Histologic Subtype

IDC 500 18.4% 754 71.7%

ILC 32 1.2% 168 16.0%

Mixed 47 1.7% 29 2.8%

Others 6 0.2% 64 6.1%

Missing data 2137 78.5% 37 3.5%

ER Status

ER positive 1710 62.8% 749 71.2%

ER negative 647 23.8% 222 21.1%

Missing data 365 13.4% 81 7.7%

PR Status

PR positive 1017 37.4% 650 61.8%

PR negative 684 25.1% 318 30.2%

Missing data 1021 37.5% 84 8.0%

HER2 Status

HER2 positive 202 7.4% 150 14.3%

HER2 negative 946 34.8% 524 49.8%

Missing data 1574 57.8% 378 35.9%

Female patients with a least one type of survival
data

2294 84.3% 999 36.7%

Table 1. Patient characteristics of the GEO and TCGA cohorts.
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2.3. Differentially expressed genes in patients from different age groups

Differential gene expression analysis was performed to identify over- and under-expressed
genes specific to tumors derived from young, middle-aged and elderly breast cancer patients.
As presented in Figure 1, there were very few middle-aged-specific expression signatures,
indicating that the gene expression pattern of middle-aged patients was not significantly
different from the young adults and/or elderly patients. In contrast, the elderly breast cancer
patients possessed a high number of differentially expressed genes specific to this age group.
IPA analysis of the differentially expressed genes from tumor cells obtained from older patients
have decreased cell proliferation, movement, migration and cell cycle progression (activation
z-score between -2.677 and -1.611) and increased cell death (activation z-score = 1.321). On the
contrary, tumor cells from young patients were predicted to have increased proliferation of
cells and DNA synthesis (activation z-score between 2.000 and 2.117) and decreased cell death
and apoptosis (activation z-score between -0.586 and -0.299).

Figure 1. Number of significantly over- and under-expressed genes in the three age groups presented with the jvenn
Venn diagram viewer [22].

It is interesting to note that 14 genes that were over-expressed in young patients were under-
expressed in elderly patients, and conversely, 15 genes under-expressed in young patients
were over-expressed in elderly patients (Table 2). Several of these genes such as BIRC5
(survivin), KPNA2, PLAC8 (onzin), TFPI2, CITED2, NKX3-1, PIP and ZNF395 have been found
to play a role in cancer cell proliferation and cancer progression [23-28].

Type Symbol Entrez Gene Name Location Type(s)

Young-Up
Elderly-Dn

BIRC5 baculoviral IAP repeat containing 5 Cytoplasm Other

DCX doublecortin Cytoplasm Other

GAL galanin/GMAP prepropeptide
Extracellular

Space
Other
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Type Symbol Entrez Gene Name Location Type(s)

HN1 hematological and neurological expressed 1 Nucleus Other

KPNA2 karyopherin alpha 2 Nucleus Transporter

NOL11 nucleolar protein 11 Nucleus Other

NUP85 nucleoporin 85kDa Cytoplasm Other

PLAC8 placenta-specific 8 Nucleus Other

POLR3G
polymerase (RNA) III (DNA directed)
polypeptide G

Nucleus Enzyme

PSMA4 proteasome alpha 4 subunit isoform 1 Cytoplasm Peptidase

RAPGEFL1 Rap guanine nucleotide exchange factor Other Other

TFPI2 tissue factor pathway inhibitor 2
Extracellular

Space
Other

UCHL1 ubiquitin carboxyl-terminal esterase L1 Cytoplasm Peptidase

XDH xanthine dehydrogenase Cytoplasm Enzyme

Young-Dn
Elderly-Up

ABCC6
ATP-binding cassette, sub-family C, member
6

Plasma
Membrane

Transporter

ACAA1 acetyl-CoA acyltransferase 1 Cytoplasm Enzyme

CCDC28A coiled-coil domain containing 28A Other Other

CITED2 Cbp/p300-interacting transactivator Nucleus
Transcription

regulator

CLMN calmin (calponin-like, transmembrane) Cytoplasm Other

CTDSPL small CTD phosphatase 3 isoform 1 Nucleus Other

CTSF cathepsin F Cytoplasm Peptidase

FMO5 flavin containing monooxygenase 5 Cytoplasm Enzyme

GPC4 glypican 4
Plasma

Membrane
Transmembrane

receptor

KIF13B kinesin family member 13B Cytoplasm Other

NDST1 N-deacetylase/N-sulfotransferase (heparan) Cytoplasm Enzyme

NKX3-1 NK3 homeobox 1 Nucleus
Transcription

regulator

PIP prolactin-induced protein
Extracellular

Space
Peptidase

ZNF385D zinc finger protein 385D Nucleus Other

ZNF395 zinc finger protein 395 Cytoplasm Other

Table 2. Concordant differentially expressed genes identified in the young and elderly breast cancer patients.

2.4. Differentially expressed genes in patients with early stage versus advanced stage breast
cancer

We compared the gene expression profile of patients diagnosed with early stage (stage I and
II) breast cancer with those with advanced stage (stage III and IV) breast cancer. We identified
79 over-expressed and 140 under-expressed genes in early stage breast cancer. IPA analysis
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showed 121 of the total 219 differentially expressed genes were associated with cancer (P-value
= 4.81E-02), and 24 were specifically associated with breast cancer (P-value = 3.25E-03, Table
3). Also, there were 17 under-expressed genes in early stage breast cancer (i.e. over-expressed
in advanced stage tumors) that were found to be cancer recurrence-associated (ADORA3, FLT4,
GSR, HSP90AA1, TEK and TXNRD1) and metastasis-associated (ACP5, FLT4, FTL, GSR,
HSP90AA1, MAPK11, MMP9, NRAS, PGF, SCD and TEK). Interestingly, we detected over-
expression of the DNA methyltransferase DNMT1 in early stage tumors. In cancer cells, the
over-expression of this gene can lead to hypermethylation of CpG islands and epigenetically
silences multiple tumor suppressor genes and hence promotes tumorigenesis in early stage
cancers [29-31].

Symbol Entrez Gene Name Location Type(s) DE Status

ACP5 acid phosphatase 5, tartrate resistant Cytoplasm phosphatase Down

APOE apolipoprotein E Extracellular Space transporter Down

ARRB1 arrestin, beta 1 Cytoplasm other Down

CDKN1A cyclin-dependent kinase inhibitor 1A Nucleus other Down

ETV1 ets variant 1 Nucleus transcription regulator Down

FLT4 fms-related tyrosine kinase 4 Plasma Membrane transmembrane receptor Down

GPC3 glypican 3 Plasma Membrane other Up

GPR126 G protein-coupled receptor 126 Plasma Membrane G-protein coupled receptor Down

HBB hemoglobin, beta Cytoplasm transporter Down

HIC1 hypermethylated in cancer 1 Nucleus transcription regulator Down

HSP90AA1
heat shock protein 90kDa alpha
(cytosolic)

Cytoplasm enzyme Down

HSPB7 cardiovascular heat shock protein Cytoplasm other Down

MMP15
matrix metalloproteinase 15
preproprotein

Extracellular Space peptidase Down

MMP28 matrix metalloproteinase 28 isoform 1 Extracellular Space peptidase Down

MMP9
matrix metalloproteinase 9
preproprotein

Extracellular Space peptidase Down

NOS3 nitric oxide synthase 3 (endothelial cell) Cytoplasm enzyme Down

PPM1D protein phosphatase 1D Cytoplasm phosphatase Down

PSIP1 PC4 and SFRS1 interacting protein 1 Nucleus other Up

PXN paxillin Cytoplasm other Down

S100A2 S100 calcium binding protein A2 Nucleus other Down

SELL selectin L Plasma Membrane transmembrane receptor Down

TAL1 T-cell acute lymphocytic leukemia 1 Nucleus transcription regulator Down

TEK TEK tyrosine kinase, endothelial Plasma Membrane kinase Down

TNC tenascin C Extracellular Space other Up

Table 3. The 25 differentially expressed genes associated with breast cancer in the early versus advanced stage
analysis.
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2.5. Differentially expressed genes in patients with Invasive Ductal Carcinoma (IDC) versus
Invasive Lobular Carcinoma (ILC)

The invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the two major
histological subtypes of breast cancer. They also represented the main types of breast cancer
cases gathered in this study. We compared the gene expression profiles of patients with IDC
and ILC and identified 216 over-expressed and 126 under-expressed genes in IDC as compared
to patients with ILC. IPA analysis showed 66 genes were related to breast cancer (Table 4),
including 12 transcription regulators (ATF3, BTG2, EGR1, EZH2, FOS, FOSB, JUN, JUNB,
MTDH, STAT1, ZFP36 and ZNF423) and a translation regulator (EIF4EBP1). There were also
12 genes annotated as tumor suppressor genes in the TSGene database [32], where CDH1,
DKK1 and S100A2 were over-expressed in IDC and BTG2, CAV1, EGR1, GPC3, MUC1, NR4A1,
SLIT2, TGFBR2 and ZFP36 were under-expressed in IDC. IPA predicted common upstream
regulators KDM5B, STUB1, CDKN1A, HIF1A and TGFB1 to be inhibited whereas FOXM1,
IFNB1, IFNG and PPARG were in activated states. Additionally, the activities of several disease
functions such as cell proliferation, invasion and DNA replication were predicted to be
increased in IDC (activation z-score between 1.342 and 3.092).

Symbol Entrez Gene Name Location Type(s) DE Status

ACACB acetyl-CoA carboxylase beta Cytoplasm enzyme Down

ALDH1A1
aldehyde dehydrogenase 1 family,
member A1

Cytoplasm enzyme Down

APOBEC3B
apolipoprotein B mRNA editing enzyme,
catalytic

Cytoplasm enzyme Up

ATF3 activating transcription factor 3 Nucleus transcription regulator Down

BIRC5 baculoviral IAP repeat containing 5 Cytoplasm other Up

BTG2 BTG family, member 2 Nucleus transcription regulator Down

CAV1 caveolin 1, caveolae protein, 22kDa
Plasma

Membrane
transmembrane receptor Down

CCL21 chemokine (C-C motif) ligand 21
Extracellular

Space
cytokine Down

CD34 CD34 molecule
Plasma

Membrane
other Down

CD69 CD69 molecule
Plasma

Membrane
transmembrane receptor Down

CDC20 cell division cycle 20 Nucleus other Up

CDH1 cadherin 1, type 1, E-cadherin (epithelial)
Plasma

Membrane
other Up

CDH3 cadherin 3, type 1, P-cadherin (placental)
Plasma

Membrane
other Up

CDH5 cadherin 5, type 2 (vascular endothelium)
Plasma

Membrane
other Down

CDK1 cyclin-dependent kinase 1 Nucleus kinase Up
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Symbol Entrez Gene Name Location Type(s) DE Status

CXCL14 chemokine (C-X-C motif) ligand 14
Extracellular

Space
cytokine Down

CXCL2 chemokine (C-X-C motif) ligand 2
Extracellular

Space
cytokine Down

CYR61 cysteine-rich, angiogenic inducer, 61
Extracellular

Space
other Down

DKK1
dickkopf WNT signaling pathway
inhibitor 1

Extracellular
Space

growth factor Up

DSCC1
DNA replication and sister chromatid
cohesion 1

Nucleus other Up

DUSP1 dual specificity phosphatase 1 Nucleus phosphatase Down

EGR1 early growth response 1 Nucleus transcription regulator Down

EIF4EBP1 eukaryotic translation initiation factor 4E Cytoplasm translation regulator Up

EZH2 enhancer of zeste homolog 2 (Drosophila) Nucleus transcription regulator Up

FABP7 fatty acid binding protein 7, brain Cytoplasm transporter Up

FOS
FBJ murine osteosarcoma viral oncogene
homolog

Nucleus transcription regulator Down

FOSB
FBJ murine osteosarcoma viral oncogene
homolog B

Nucleus transcription regulator Down

GPC3 glypican 3
Plasma

Membrane
other Down

GRB7 growth factor receptor-bound protein 7
Plasma

Membrane
other Up

HSPB8 heat shock 22kDa protein 8 Cytoplasm kinase Up

IER2 immediate early response 2 Cytoplasm other Down

IGF1
insulin-like growth factor 1 (somatomedin
C)

Extracellular
Space

growth factor Down

IGFBP6
insulin-like growth factor binding protein
6

Extracellular
Space

other Down

ITIH5 inter-alpha trypsin inhibitor heavy chain Other other Down

JUN jun proto-oncogene Nucleus transcription regulator Down

JUNB jun B proto-oncogene Nucleus transcription regulator Down

KPNA2 karyopherin alpha 2 Nucleus transporter Up

KRT6B keratin 6B Cytoplasm other Up

MMP1 matrix metalloproteinase 1 preproprotein
Extracellular

Space
peptidase Up

MMP9 matrix metalloproteinase 9 preproprotein
Extracellular

Space
peptidase Up

MRPL13 mitochondrial ribosomal protein L13 Cytoplasm other Up

MRPL15 mitochondrial ribosomal protein L15 Cytoplasm other Up

MTDH metadherin Cytoplasm transcription regulator Up
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Symbol Entrez Gene Name Location Type(s) DE Status

MUC1 mucin 1, cell surface associated
Plasma

Membrane
other Down

NR4A1
nuclear receptor subfamily 4, group A,
member 1

Nucleus
ligand-dependent nuclear

receptor
Down

ORM1 orosomucoid 1
Extracellular

Space
other Up

PCNA proliferating cell nuclear antigen Nucleus enzyme Up

PDK4 pyruvate dehydrogenase kinase, isozyme 4 Cytoplasm kinase Down

PGK1 phosphoglycerate kinase 1 Cytoplasm kinase Up

RFC4 replication factor C (activator 1) 4, 37kDa Nucleus other Up

RRM2 ribonucleotide reductase M2 Nucleus enzyme Up

S100A2 S100 calcium binding protein A2 Nucleus other Up

SLIT2 slit homolog 2 (Drosophila)
Extracellular

Space
other Down

SPP1 secreted phosphoprotein 1
Extracellular

Space
cytokine Up

SQLE squalene epoxidase Cytoplasm enzyme Up

STAT1
signal transducer and activator of
transcription

Nucleus transcription regulator Up

TCP1 t-complex 1 Cytoplasm other Up

TGFBR2
transforming growth factor, beta receptor
II

Plasma
Membrane

kinase Down

TIMP4 TIMP metallopeptidase inhibitor 4
Extracellular

Space
other Down

TOP2A topoisomerase (DNA) II alpha 170kDa Nucleus enzyme Up

TPD52 tumor protein D52 Cytoplasm other Up

TYMS thymidylate synthetase Nucleus enzyme Up

UBE2C ubiquitin-conjugating enzyme E2C Cytoplasm enzyme Up

VEGFA vascular endothelial growth factor A
Extracellular

Space
growth factor Up

ZFP36 ZFP36 ring finger protein Nucleus transcription regulator Down

ZNF423 zinc finger protein 423 Nucleus transcription regulator Down

Table 4. The 66 differentially expressed genes associated with breast cancer in the IDC versus ILC analysis.

2.6. Differentially expressed genes in patients with different receptor status

In the last part of the differential gene expression analysis, we sought to examine the differ‐
entially expressed genes of breast cancer patients of different receptor status: (1) estrogen
receptor positive (ER+) versus ER negative (ER–), (2) progesterone receptor positive (PR+)
versus PR negative (PR–), (3) HER2 receptor positive (HER2+) versus HER2 negative (HER2–),
and (4) triple-negative breast cancer (TNBC, also known as basal-like breast cancer) versus
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non-TNBC. The Venn diagram in Figure 2 summarized the intersections between the differ‐
entially expressed genes identified in the four assays. There were 57% and 65% of breast cancer
patients that were both ER+ and PR+ in the GEO and TCGA cohorts respectively; hence the
patient pools divided by the ER positivity for gene expression assays are similar to that divided
by the PR positivity. Because of this fact, it is not surprising to observe genes that were found
over- or under-expressed in the ER assay were also differentially expressed in the same
direction in the PR assay. Likewise, genes that were over-expressed in TNBC were under-
expressed in the ER and PR assays (n = 74) and ER, PR and HER2 assays (n = 35), and vice versa
for the under-expressed genes in TNBC (n = 87 and 2 respectively).

Figure 2. Number of differentially up- and down-regulated genes in the ER, PR, HER2 or TNBC receptor status assays.

The GALNT6 (polypeptide N-acetylgalactosaminyltransferase) and SCGB2A2 (secretoglobin)
are the two genes consistently over-expressed in ER+, PR+, HER2+ breast tumors but under-
expressed in TNBC. There were also 87 genes over-expressed in ER+ and PR+ breast tumors
and under-expressed in TNBC, including seven transcription regulators (EGR3, FOXA1,
GATA3, INSM1, NRIP1, TBX3 and XBP1) and 11 breast cancer associated genes (ABAT, AGR2,
CXCL14, GSTM3, HSPB8, MUC1, NR4A2, PGR, PIP, PLAT and PSD3). On the other hand, there
were more under-expressed genes (n = 35) shared among ER+, PR+ and HER2+ breast tumors
that were over-expressed in TNBC. Among these are four transcription regulators (ELF5, EN1,
FOXC1 and ZIC1) and 12 extracellular proteins (CHI3L1, CHI3L2, COL2A1, COL9A3, CRLF1,
KLK6, KLK7, MMP12, MMP7, PTX3, SERPINB5 and SOSTDC1), and some of these genes are
known TNBC-associated markers [33-37].
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3. Identifying survival-related genes of patients with breast cancer

In cancer survival analysis, survival time is often defined as the period of time from the
beginning of the medical process (treatment, surgery, etc.) until the death (or some other events
such as development of a particular symptom or to relapse after the remission of disease) of
the observed patient or until the end of observation. The goal of such analysis is to link the
time to event (i.e. survival time) to certain explanatory variables. New methodologies were
developed for calculating the survival probabilities using gene expression profiles when
genome-wide expression data becomes increasingly available in the past two decades [38-42].

In this work, we analyzed associations between breast cancer patient survival and gene
expression of breast tumors from published microarray and the RNA-seq datasets, denoted as
the GEO and TCGA cohorts respectively. Survival analysis was performed separately for each
cohort and the median times from diagnosis to death or last follow-up were 99.5 and 21.4
months in the GEO and TCGA cohorts respectively. We transform the expression values into
gene expression status (i.e. 0 for low expression and 1 for high expression) using the modified
auto_cutoff function of the R script available from the Kaplan Meier-plotter website (http://
kmplot.com/). The survival probability is calculated using the “survival” package and
modified kmplot function (http://biostat.mc.vanderbilt.edu/wiki/Main/TatsukiRcode#kmplot)
is used to plot Kaplan-Meier curves. The hazard ratio with 95% confidence intervals and log-
rank P-value are estimated using the Cox proportional hazards model. All analyses were
conducted within the R statistical environment.

3.1. Univariate gene selection and survival analysis

We extract the gene expression profiles of 1,694 genes that were found differentially expressed
(consistently in microarray and RNA-seq datasets) in any one type of the assays discussed in
section 2.3 to 2.6. We calculated the overall survival (OS), relapse-free survival (RFS) and the
distant metastasis-free survival (DMFS) of breast cancer patients with respect to the expression
status. DMFS is not calculated for the TCGA cohort due to unavailability of the time to distant
metastases information from patients in this cohort. The log-rank P-values were adjusted for
multiple comparisons using the Benjamini-Hochberg false discovery rate (FDR) method and
were used to select genes expression profiles significantly associated with survival.

We summarized the survival statistics, including the hazard ratios (an estimate of the ratio of
the hazard rate in the highly versus the lowly expressed patient group) and the estimated 2-
and 10-year survival rates in Table 5. There were about 24% OS-associated, 48% RFS-associated
and 51% DMFS-associated genes that have adjusted log-rank P-value < 0.01 in the GEO cohort.
There were 23% OS-associated genes but only 1.3% RFS-associated genes in the TCGA cohort,
due to much fewer relapse/recurrence information in this cohort (adjusted log-rank P-value <
0.05). The breast cancer patients in the TCGA cohorts have lower overall survival (10-year)
than those from the GEO and both cohorts have similar RFS rates. In the DMFS analysis, 51%
of the differentially expressed genes were significant predictor of DMFS.

A Concise Review of Molecular Pathology of Breast Cancer68



Statistics GEO TCGA

Adjusted log-rank P-value cutoff 0.01 0.05

Overall survival (OS)

No. of genes associated with OS 414 (24.4%) 386 (22.8%)

Hazard Ratio > 1

No. of genes 192 134

2-year survival (low / high expression) 0.969, 0.923 0.968, 0.947

10-year survival (low / high expression) 0.798, 0.658 0.562, 0.369

Hazard Ratio < 1

No. of genes 222 252

2-year survival (low / high expression) 0.918, 0.968 0.945, 0.970

10-year survival (low / high expression) 0.654, 0.787 0.382, 0.558

Relapse-free survival (RFS)

No. of genes associated with RFS 811 (47.8%) 22 (1.3%)

Hazard Ratio > 1

No. of genes 344 7

2-year survival (low / high expression) 0.901, 0.840 0.949, 0.829

10-year survival (low / high expression) 0.685, 0.586 0.754, 0.555

Hazard Ratio < 1

No. of genes 467 15

2-year survival (low / high expression) 0.845, 0.900 0.826, 0.946

10-year survival (low / high expression) 0.588, 0.684 0.538, 0.749

Distant metastasis-free survival (DMFS)

No. of genes associated with DMFS 856 (50.5%) NA

Hazard Ratio > 1

No. of genes 384

NA2-year survival (low / high expression) 0.923, 0.863

10-year survival (low / high expression) 0.755, 0.663

Hazard Ratio < 1

No. of genes 472

NA2-year survival (low / high expression) 0.858, 0.926

10-year survival (low / high expression) 0.667, 0.754

Table 5. Survival statistics according to gene expression profiles of breast cancer patients.

3.2. Cox regression analysis using the expression profiles of two genes

From the three survival data, i.e. OS, RFS and DMFS, we selected the top 500 most significantly
survival associated gene expression profiles consistent in both cohorts to generate 124,750 two-
gene combinations and perform Cox regression analysis with two covariates (i.e. using the
expression status of each gene as a covariate).

There were 81,902 (65.7%) and 78,136 (62.6%) pairs whose expression signatures of both genes
remained predictors of OS in the GEO and TCGA cohorts respectively (P-value of the coeffi‐
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cient estimates < 0.05). Of these, 31,189 pairs were mutual in the two cohorts and 234 gene-
pairs (consisting of 131 genes) had survival probability patterns greatly shifted compared with
the previous single-gene model. The strongest predictor pairs were COL16A1-ARHGEF3,
IGF1R-LTB, IGF1R-PTGDS, NPY1R-ARHGEF3 and SERPINA1-ACADSB, where the lower
expression of both genes in each pair was associated with lowest survival probabilities in all
five cases. The results were presented as Kaplan Meier plots in Figure 3A to E.

Figure 3. The Kaplan Meier plots of five OS-associated gene-pairs that also gained most changes in survival probabili‐
ties compared to the matching univariate approach.
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The same analysis was also performed for RFS in the GOE and TCGA cohorts, and 85,244 (68.3%)
and 64,049 (51.3%) pairs were significant predictors of RFS respectively (P-value of the coefficient
estimates < 0.05). We found 22,165 significant pairs common in the two cohorts and 1,130 gene-
pairs (consisting of 276 genes) whose survival probability patterns had greatly shifted com‐
pared with the single-gene model. The most significant RFS-associated pairs were ADM-
MYBPC1, DIRAS3-TANC2, KIFC1-ADORA3, PDSS1-DIRAS3, STMN1-ADORA3 (Figure 4).

Figure 4. The Kaplan Meier plots of five RFS-associated gene-pairs that also gained most changes in survival probabili‐
ties compared to the matching univariate approach.
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Lastly, we also make use of the DMFS data available from the GEO cohort to demonstrate the
improvement of epistatic gene-pair approach in predicting survival probabilities. Of the
124,750 two-gene combinations, 122,751 (98.4%) were significant predictors of DMFS in breast
cancer patients. The high percentage of strong two-gene predictors derived from the DMFS
analysis was most likely due to the already high numbers of strong single-gene predictors as
shown in Table 5. We further distinguished 228 gene-pairs (consisting of 138 genes) whose
survival probability patterns had greatly shifted compared with the single-gene model. Six
most significantly improved DMFS-associated pairs were MMP15-SPDEF, TRIB3-ETV1,
TRIB3-PLD1, TRIB3-TRIM2, TRIM2-KRT14 and XBP1-TRIB3 (Figure 5).

Figure 5. The Kaplan Meier plots of six DMFS-associated gene-pairs that also gained most changes in survival proba‐
bilities compared to the matching univariate approach.
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3.3. Differentially expressed survival-associated hub genes and gene-pair candidates

As mentioned in the section 3.2, we have identified 234, 1,130 and 228 OS-, RFS- and DMFS-
associated gene-pairs (consisting of 131, 276 and 138 genes respectively) that showed improved
predictive performance. Some of these genes may be paired with many partners while
remaining highly significant. In Table 6, we list five genes that have high number of pairing
possibilities and also common in OS, RFS and DMFS analysis.

Genes
No. of Gene-pairs GEO RFS log-rank P

OS RFS DMFS single covariate multiple covariates

MEOX1 6 18 0 4.94E-08 3.43E-11 (C3orf18) ~ 4.02E-08

PPAP2B 37 14 0 1.27E-04 1.07E-10 (ADM) ~ 7.17E-05

PRPF38B 8 49 0 3.41E-02 1.04E-12 (DIRAS3) ~ 1.17E-02

SERPINA1 7 20 22 3.21E-05 2.30E-12 (CDT1) ~ 2.34E-05

XBP1 0 11 5 1.97E-03 2.47E-13 (DIRAS3) ~ 1.11E-03

Table 6. Five hub genes that associated with more than one type of survival data.

Gene-Pairs
OS RFS DMFS

DE Status of Gene 1 DE Status of Gene 2
HR1 HR2 HR1 HR2 HR1 HR2

C3orf18-PPAP2B 0.51 0.51 0.66 0.64 – – Her2+ Down Elderly Down

IGF1R-KLRB1 0.39 0.60 0.72 0.73 – – ER+ Up / TNBC Down IDC Down

NME5-PPAP2B 0.51 0.56 0.77 0.67 – –
ER+ Up / PR+ Up / Her2+
Down / TNBC Down

Elderly Down

PRPF38B-RAMP3 0.56 0.58 0.80 0.62 – –
Early Stage Up
(i.e. Advanced Stage
Down)

ER+ Up / PR+ Up / Her2+
Down / TNBC Down

GATA3-SERPINA1 0.62 0.41 – – 0.56 0.56
ER+ Up / PR+ Up / TNBC
Down

Young Down / ER+ Up /
PR+ Up / Her2+ Down /
TNBC Down

PSAT1-SERPINA1 1.61 0.44 – – 1.53 0.56
Elderly Down / ER+
Down / PR+ Down /
TNBC Up

Young Down / ER+ Up /
PR+ Up / Her2+ Down /
TNBC Down

MMP15-SLC44A4 – – 1.29 0.75 1.69 0.60
Early Stage Down
(i.e. Advanced Stage Up)

ER+ / TNBC Down

Table 7. The gene-pairs that associated with more than one type of survival data.

There were also seven gene-pairs that were significantly associated with more than one type
of survival data (Table 7). By incorporating the differential expression information we derived
previously, we may observe that the TNBC patients were noticeably having worse survival
outcomes than non-TNBC patients as TNBC is known to be an aggressive breast cancer subtype
[43, 44]. For example, both GATA3 [45, 46] and SERPINA1 were found significantly under-
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expressed in TNBC cases and the low expressions of both genes were correlated with poor OS
and DMFS. Additionally, the over-expression of PSAT1 and the under-expression of SERPI‐
NA1 in TNBC patients also correlated with poor OS and DMFS. Moreover, the over-expression
of MMP15 relating to advanced stage breast cancer and the under-expression of SLC44A4
associated with TNBC are predictors of cancer recurrence as well as distant metastases.

4. Conclusion and perspectives

In section 2 of this chapter, we identified 1,694 genes that were differentially expressed in breast
cancer patients of three age groups, early versus advanced stage breast cancers, invasive ductal
versus invasive lobular breast cancers, and patients of various receptor status. While some of
these genes are known to participate in the biological and genetic pathways that lead to breast
cancer and many are novel findings. In section 3, we showed that more than 20% the differ‐
entially expressed genes were associated with at least one type of survival data. Our data
indicated improved predictive performance when using a multivariate approach of combining
the expression of two genes in the assessment of survival data. Perceivably, the gene pairs
found in the epistatic analysis could provide useful pictures in gene interactions in breast
carcinogenesis.

Breast cancer is a heterogeneous and complex disease where researchers and doctors have
implemented different classifications (be it molecular, pathological, genetic or prognostic) to
aid disease diagnosis and treatment decision. In the future, we hope to use the gene expression
profiles of multiple survival-associated biomarkers to sub-classify patients of different types
of breast cancer, and ultimately allow medical practitioners to derive better disease assessment
and treatment decision.
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