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Professor Catedrático da Faculdade de Ciências da Universidade de Lisboa

Doutor Jorge Orestas Cerdeira
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palavras-chave Transporte maŕıtimo; Programação inteira mista; Formulações estendidas,
Desigualdades válidas; Heuŕısticas; Otimização estocástica

Resumo O transporte maŕıtimo é o principal meio de transporte de mercadorias em
todo o mundo. Combust́ıveis e produtos petroĺıferos representam grande
parte das mercadorias transportadas por via maŕıtima. Sendo Cabo Verde
um arquipélago o transporte por mar desempenha um papel de grande
relevância na economia do páıs.

Consideramos o problema da distribuição de combust́ıveis em Cabo
Verde, onde uma companhia é responsável por coordenar a distribuição
de produtos petroĺıferos com a gestão dos respetivos ńıveis armazenados
em cada porto, de modo a satisfazer a procura dos vários produtos. O
objetivo consiste em determinar poĺıticas de distribuição de combust́ıveis
que minimizam o custo total de distribuição (transporte e operações)
enquanto os ńıveis de armazenamento são mantidos nos ńıveis desejados.

Por conveniência, de acordo com o planeamento temporal, o prob-
lema é divido em dois sub-problemas interligados. Um de curto prazo e
outro de médio prazo. Para o problema de curto prazo são discutidos
modelos matemáticos de programação inteira mista, que consideram
simultaneamente uma medição temporal cont́ınua e uma discreta de modo
a modelar múltiplas janelas temporais e taxas de consumo que variam
diariamente. Os modelos são fortalecidos com a inclusão de desigualdades
válidas. O problema é então resolvido usando um ”software” comercial.
Para o problema de médio prazo são inicialmente discutidos e comparados
vários modelos de programação inteira mista para um horizonte temporal
curto assumindo agora uma taxa de consumo constante, e são introduzidas
novas desigualdades válidas. Com base no modelo escolhido são compara-
das estratégias heuŕısticas que combinam três heuŕısticas bem conhecidas:
”Rolling Horizon”, ”Feasibility Pump” e ”Local Branching”, de modo
a gerar boas soluções admisśıveis para planeamentos com horizontes
temporais de vários meses.

Finalmente, de modo a lidar com situações imprevistas, mas impor-
tantes no transporte maŕıtimo, como as más condições meteorológicas e
congestionamento dos portos, apresentamos um modelo estocástico para
um problema de curto prazo, onde os tempos de viagens e os tempos
de espera nos portos são aleatórios. O problema é formulado como um
modelo em duas etapas, onde na primeira etapa são tomadas as decisões
relativas às rotas do navio e quantidades a carregar e descarregar e na
segunda etapa (designada por sub-problema) são consideradas as decisões
(com recurso) relativas ao escalonamento das operações. O problema é
resolvido por um método de decomposição que usa um algoritmo eficiente
para separar as desigualdades violadas no sub-problema.





keywords Maritime transportation, Mixed integer programming; Extended formula-
tions, Valid inequalities; Heuristics; Stochastic optimization

Abstract Maritime transportation is a major mode of transportation of goods
worldwide. Most of cargo of the maritime transport accounted for liquid
cargo oil and petroleum products. As Cape Verde is an archipelago,
maritime transportation is of great importance for the local economic
activity.

We consider a fuel oil distribution problem where an oil company is
responsible for the coordination of the distribution of oil products with
the inventory management of those products at ports in order to satisfy
the demands for the several oil products. The objective is to determine
distribution policies that minimize the routing and operating costs, while
inventory levels are maintained within given limits.

For convenience, the planning problem is divided into two related
subproblems accordingly to the length of the planning horizon: A short-
term and medium-term planning. For the short-term planning problem we
discuss mathematical mixed integer programming models that combine
continuous and discrete time measures in order to handle with multiple
time windows and a daily varying consumption rate of the various oil
products. These models are strengthened with valid inequalities. Then
the problem is solved using a commercial software. For the second
subproblem several mixed integer formulations are discussed and compared
for a short time horizon, and assuming constant consumption rates and
new valid inequalities are introduced. Then, based on the chosen model,
we compare several heuristic strategies that combine the well-known
Rolling Horizon, Feasibility Pump and Local Branching heuristics, in or-
der to derive good feasible solutions for planning horizons of several months.

Finally, as weather conditions and ports congestion are very impor-
tant in maritime transportation, we present a stochastic model for a short
sea shipping problem, where traveling and waiting time are random. The
problem is formulated as a two stage recourse problem, where in the first
stage the routing and the load/unload quantities are defined, and in the
second stage (subproblem) the scheduling of operations is determined.
The problem is solved by a decomposition method that uses an efficient
separation algorithm to include inequalities from the subproblem.
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Chapter 1

Introduction

Maritime transportation is the major mode of transportation of goods worldwide. In 2011 about
2.8 millions tons of liquid oil and petroleum products were transported by sea (UNCTAD, 2011).
Between 1980 and 2011 the transport of oil products and their derivatives increased around 50%
and represents about 32% of total seaborne trade.

Transportation planning has been studied extensively in the literature [7]. However, until
the last two and half decades, relatively little work has been done on maritime transportation,
when compared with others modes of transport. Nowadays we have witnessed a remarkable
growth in scientific research on maritime transportation. Most of the published contributions
in maritime transportation are based on real-life problems from the industry.

Operations Research is one of the most popular managerial decision science tools used in
many industries. Routing and scheduling problems is an important area of Operations Research
that has been widely studied in the past. For routing problems see [5, 6, 7, 8]. Most of the
research on routing problems has been focused on land transportation. Research on ship routing
and scheduling has been gaining attention. The first survey on ship routing and scheduling was
presented by Ronen [26] in 1983. That work presents the differences between vehicle and ship
routing and scheduling, and explains the reasons for the low attention to ship scheduling in
the past. It also suggests a classification of ship routing and scheduling problems and models.
Ten years later, in 1993, Ronen [28] presents a review on ship scheduling and related works in
the decade 1982-1992, and identifies news challenges for future research. In 2004, Christiansen
et al. [8] present a review on ship routing and scheduling during the last decade. A very
complete survey on maritime transportation is given by Christiansen et al. [7]. For a more
recent review within maritime transportation, combining routing and inventory management
see Christiansen and Fagerholt [6]. Many applications within maritime inventory routing and
extensions are presented as well as some examples of research contributions. A survey on ship
routing and scheduling in the new millennium is present in [9].

This work was motivated by a real logistic problem occurring in the Cape Verde archipelago,
where the distribution of several fuel oil products needs to be coordinated with the management
of the inventory levels of those products. Cape Verde is located in the Atlantic Ocean, 460 Km
from the African Coast across from Senegal, at the crossroads between Africa, Europe and
America (see Figure 1.1). The country intends to take advantage of its privileged geographic
position with regard to international maritime transport. The relatively small size of the land
area contrasts with the extent of Exclusive Economic Zone of Cape Verde which corresponds to
800,000 Km2 [33]. All the inhabited islands have ports that allow maritime access. The country
has no known oil resources and it is entirely reliant on oil imports for its fuel oil supply. Most
of the economic activities depend on fuel oil products. Therefore, fuel oil distribution is a vital
activity for Cape Verde economy. Concerning the fuel oil distribution problem at Cape Verde,
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Figure 1.1: Geographic localization of Cape Verde.

there are several interrelated decisions, belonging to different levels of planning, that need to
be taken on a regular basis, such us, redesign/optimize the inter-islands fuel oil distribution;
expansion and construction of deposits; buy or charter news ships etc..

This thesis considers only the inter-islands fuel oil distribution problem. An oil company has
both the responsibility for the transportation of the oil products and for the management of the
inventories at the ports. Given known demand rates and in order to maintain the stock levels
within desirable limits, a distribution plan shall include the ship routes, the quantity of each
product to be loaded into each cargo tank in each ship visit to a supply port, the quantity of
products to be unloaded from each ship to a destination port, and the schedule of the operations.
In the literature, this problem can be categorized as the Short Sea Inventory Routing Problem.
Since the objective of this thesis is to develop efficient optimization approaches for the oil
distribution problem and these approaches are based on the mathematical models , we decided
to give the title Optimization Models for a Short Sea Fuel Oil Distribution Problem to this
thesis.

In order to define the scope of this thesis, we first make a brief review of modes of ship-
ping operations and length of the planning horizon. The shipping industry is divided into
three different modes of transportation: industrial, tramp and linear shipping (Lawrence, [22]).
Christiansen et al. [8] describe in detail such division. In industrial shipping, the shipper owns
the ships and aims to minimize the total shipping cost. In tramp shipping, a carrier engages in
contracts with shippers to carry cargoes between specified ports within a specific time range.
Linear shipping is a service that operates within a schedule and has a fixed routes with pub-
lished schedule. In other words, industrial shipping may be compared with ”owning a car”,
tramp shipping with ”a taxi service” and linear shipping with ”a bus service”.

According to the length of the planning horizon, maritime transportation problems can be
divided into three different planning levels: strategic, tactical, and operational (Christiansen et
al. [7]). Strategic planning level may deal with a relatively long planning horizon of, say, 2 to
5 years. Tactical planning focuss on decisions that are medium-term, usually, from 2 month up
to 1 year. Operational planning is concerned with the short-term decisions, with a planning
horizon from a few hours to a few weeks. This thesis is focused on developing optimizations
models for solving a short sea inventory routing problem, at the operational and tactical levels,
faced by the industrial shipping oil company. Figure 1.2 shows the scope of the thesis for
different planning levels and modes of transportation.

By convenience, the problem is divided into two related stages accordingly to the planning
level: short-term (operational level) and medium-term (tactical level) plan.
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Figure 1.2: Matrix showing how this thesis may be classified according to planning level and
mode of transportation

The rest of the introduction is organized as follows. Section 1.1 introduces the reader shortly
to maritime transportation and optimization concepts. The main characteristics of the Cape
Verde fuel oil distribution problem, such as, distribution and consumption, ships, ports, weather
conditions and time windows, are described in Section 1.2. Section 1.3 presents the purpose of
this thesis. The contributions of this thesis to the research community and industry are given
in Section 1.4. Finally, Section 1.5 includes some final remarks on future research.

1.1 Background

In this section, we provide some definitions and briefly explain some concepts that are used in
this thesis. We split these definitions and concepts into two subsections: maritime transporta-
tion and optimization concepts.

1.1.1 Maritime Transportation Concepts

Here we introduce the reader to some basic concepts in maritime transportation. For a more
complete introduction to the area, see Ronen ([26, 27, 28]) and Christiansen et al. [7].

Production/consumption can be deterministic, stochastic or a decision variable. In the de-
terministic production/consumption case the rate can be constant during the whole planning
horizon or may vary from period to period. In the stochastic case, the production/consumption
rate follows a given statistical distribution. Finally, the production/consumption rate can be a
decision variable and by this an output from the model.

Routing is the sequencing of port visits to be made by the fleet of ships.
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Inventory management is concerned with the management of the stock level of a set of products
at given physical places, typically large tanks;

Inventory routing is concerned with the coordination of the inventory management of the stock
levels of a set of products with the distribution of those products by a fleet of ships.

Scheduling is concerned with sequencing port visits and specifying time for the different ac-
tivities on a ship’s route.

Berth capacity is the space allocated to vessels at anchor or at a wharf.

Draft limits determine the minimum depth of water a ship can safely navigate. Draft lim-
its in ports can thus prevent large or fully loaded ships to enter these ports.

Time windows are time limits imposed to port visits. We consider two types of time win-
dows: those implied indirectly by inventory levels, capacities of ship tanks and consumption
tanks (inventory time windows); and those imposed by port regulations (operating time win-
dows). In the last case we may have multiple time windows for the same port visit. This is the
case when a port is open for cargo operations every day from time A to time B. Time windows
can either be hard, if they cannot be violated, or soft, when it is allowed to operate outside the
time windows by paying an extra cost. A time window can be simultaneously hard on one side
and soft on the other.

1.1.2 Integer programming concepts

Now we introduce some basic integer programming concepts. For details see [24].

A polyhedron in Rn is a set of the form P := {x ∈ Rn : Ax ≤ b}. A polyhedron P is called a
formulation for X ⊆ Rp × Zn−p , if X = P ∩ (Rp × Zn−p).

A mixed integer program (MIP) is the problem of minimizing or maximizing a linear objective
function in the presence of linear constraints and integrality restrictions on a set of variables.
To be more precise, a MIP can be written as max{cz + fy : Az +By ≤ b, z ∈ Rp, y ∈ Zn−p}.

If we exclude the integer variables y of the MIP we obtain a linear programming (LP) model
max{cz : Az ≤ b, z ∈ Rn}. Also, if we remove the continuous variables x we have a pure integer
programming (IP) model, max{fy : By ≤ b, y ∈ Zn}.

A binary linear program BP is an IP model, where all variables y take binary values.

The linear relaxation (LR) of a MIP is the formulation obtained by relaxing the integrality
constraints on the y variables, and it is given by max{cz+fy : Az+By ≤ b, (z, y) ∈ Rp×Rn−p}.

Given two formulations P1 and P2, defined in the same space for X ⊆ Rn, we say that P1

is tighter or stronger than P2 if P1 ⊂ P2. Finding tight formulations is a key to solve many
MIP problems. We follow two main approaches to tighten formulations. One is to use valid
inequalities and the other is to use extended formulations. Next we explain these concepts.

An inequality αx ≤ β is a valid inequality for X if αx ≤ β for all x ∈ X.
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Given a family of valid inequalities F and a formulation P for X, if P does not include all
the inequalities in F , then P can be strengthen by adding the family of inequalities to P, in
order to obtain P = P ∩ {x ∈ Rn : αx ≤ β,∀(α, β) ∈ F}. The inequalities can either be added
a priori to P or they can be added dynamically by solving the separation problem. Given
x∗ ∈ Rn the separation problem associated to F , is to decide whether x ∈ P or not. If not, find
an inequality αx ≤ β in F that separates x∗ from P , that is, αx∗ > β.

The definition of extended formulation is not consensual. We define an extended formula-
tion in relation to a given formulation P ⊆ Rn for X. Polyhedron PE ⊆ Rn+k is an extended
formulation for X if X = PE ∩ (Zp × Rn−p), where PE is the projection of PE onto Rn. Infor-
mally, an extended formulation is a formulation that uses additional variables in relation to a
given formulation. Thus, the extended formulation is a polyhedron defined in a higher space.

Optimizations Algorithms

Here we describe the basic algorithms to optimize integer programs. The algorithms are stated
for a minimization problem.

Branch-and-Bound Algorithm

Branch-and-bound (BB) is one of the principal exact solution techniques used in practice for
solving mixed integer programming problems. This is a divide and conquer method. The
algorithm divides the set of feasible solutions into smaller subsets. A tree of nodes is constructed
where each node corresponds to a subproblem. There is a value called the incumbent, which
is the value of the best feasible solution found, and therefore, is an upper bound of the value
of the optimal solution. In the beginning, if no feasible solution is known, the incumbent is
set to +∞. At each tree node, the LP relaxation is solved. If the LP solution is integral the
incumbent is updated and the tree node is pruned. If the LP is infeasible the node is also pruned
since the corresponding subproblem is also infeasible. Similarly, if the value of the incumbent
is less than the value of the LP solution, the node can be pruned since the optimal solution
of the subproblem is worse than a known feasible solution. When the node is not pruned, a
variable with fractional value in the LP solution is chosen and new subproblems are created by
bounding the value of the chosen variable. If the set of subproblems is empty, the BB algorithm
stops, and the optimal solution is found, otherwise, we need to branch and solve the resulting
subproblems, recursively.

The branch-and-bound scheme is summarized in (Figure 1.3):

Cutting-Plane

The cutting-plane (CP) is a methodology used to approximate a MIP by a linear model. The
cutting-plane algorithm starts by solving the linear relaxation of the original formulation (see
Figure 1.4). If the solution is integral the process terminates. Otherwise, the separation routines
associated to the LP solution are used to generate valid inequalities that cut off the LP solution.
If some violated valid inequalities are found, they are added to the original formulation and the
process continues iteratively until no violated inequality is obtained or other stopping criteria
is verified. Then go to the branching phase.
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Figure 1.3: Branch and bound algorithm

Branch-and-Cut Algorithm

The idea of this algorithm is similar to the branch-and-bound algorithm (see Figure 1.5). Here
a lower bound is determined by solving a linear relaxation of each subproblem strengthened
with the inclusion valid of valid inequalities. The steps of a branch-and-cut (BC) algorithm
are similar those of the branch and bound algorithm with one additional step in which valid
inequalities are generated. Adding valid inequalities can strengthen the formulation which may
produce better lower bounds resulting from the LP relaxation at each BB node. This will tend
to reduce the number of enumerated nodes. On the other hand, the size of the LP model at
each node increases and the time spent to obtain the LP relaxation tends to increase.
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Figure 1.4: Cutting plane followed by BB algorithm

Heuristics solution methods in Maritime Transportation

Exact methods may not be able to solve complex routing and scheduling problems occurring
in Maritime Transportation. In order to solve larger problem instances, heuristics approaches
are frequently used.

Some heuristics are based on modifications or simplifications of a mathematical model which
is then solved using an exact solution method, such as in [5]. Next we describe the most relevant
heuristics to our work.

Rolling horizon heuristics have been employed in maritime transportation problem (see for
instance Bredström and Rönnqvist [2]). The idea is decompose the planning horizon into sub-
horizons and repetitively solve smaller and tractable mixed integer problems for the smaller
sub-horizons, using an exact algorithm.

Fix-and-relax is another decomposition heuristic used to generate feasible solutions. Fix-
and-relax was originally described by Dillenberger et al. [10]. This heuristic procedure involves
the solution of a series of partially relaxed MIPs, each one with a number of binary variables
that is small enough to be quickly and optimally solved by an exact algorithm. As the series
progresses, each set of binary variables is permanently fixed at their solution values, and the
relaxed variables are reduced in number, eventually disappearing. As an example, Uggen et al.
[31] uses a fix-and-relax heuristic to solve maritime inventory routing problems.

Local branching was originally described by Fischetti and Lodi [14]. This is an approach
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Figure 1.5: Branch and cut algorithm

to improve feasible solutions of hard mixed integer problems. Given a feasible solution, an
additional constraint is added to the model to impose that only a limited number of binary
variables can have a different value from the current solution. Then a local optimal, or near
optimal solution is obtained using a MIP solver. Local branching can be regarded as a neigh-
borhood search heuristic. For more details and application of neighborhood search algorithms

8



see [3, 11, 12, 18, 19, 23, 29].

Feasibility pump is an heuristic scheme used to find feasible solutions for mixed integer
problems. The heuristic starts to solve a LP relaxation and to obtain a linear solution x. If x is
integral, then the algorithm stops. Otherwise, the solution x is rounded in order to obtain an
integer solution x̄. If x̄ is feasible to the problem the algorithm stops. Otherwise, a new linear
solution x that minimizes a distance function to x̄ is found. The procedure is repeated until
a feasible solution is found or other stopping criteria is reached. For more details of feasibility
pump heuristics, see ([13],[15]).

1.2 Cape Verde fuel oil distribution problem

The geography of Cape Verde is a natural barrier to develop a fuel oil pipeline transportation
infrastructure (see Figure 1.6) since the territorial dispersion and the long-depth sea makes
prohibitive the use of pipelines. Fuel oil products can only be transported by ships.

Figure 1.6: Nautical letter of Cape Verde archipelago.

Distribution and consumption

Since there is no production of fuel oil products and there are no refiners at Cape Verde, a
company imports the fuel oil products (Diesel, Fuel, Gasoline and Jet). These products are
transported by large tankers and delivered into large supply storage tanks located in specific
islands. Diesel and Fuel are stored in S.Vicente, while Gasoline and Jet are stored in Sal. Con-
sidering the internal distribution problem, this means that S.Vicente and Sal are the origins of
these products. The remaining islands are just consumers. From these origins fuel oil products
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are distributed to all islands, using a small heterogeneous fleet. Due to low consumption rates,
Maio and Brava islands, are supplied by a different ship, since in this case, the consumption
products are delivered by small containers. Not all islands consume all products. The products
are stored in separate consumption storage tanks. These depots have a maximum and a mini-
mum capacity. S.Vicente is a consumer of Gasoline and Jet, while Sal is a consumer of Diesel
and Fuel. A ships may carry several products simultaneously (in separated compartments). A
loading port can still be visited with some cargo on board.

Ships

The company uses chemical tankers with double hull. Each tank has a piping system which is
independent from other tanks. Therefore, each tank can load a separate cargo without mixing
any products. Tanks which are not properly cleaned of all cargo residue can adversely affect
the purity of the next cargo loaded. Before cleaning the tanks, it is very important that they
are properly ventilated and checked to be free of potentially explosive gases. Because of the
high cost associated to the tanks cleaning, change-over of products carried in the same tank is
allowed only in very restricted circumstances.

Figure 1.7: Principle structure of a double-hull tanker.

Ships have different number of compartments, with different capacities, and differ on speeds
and operations costs. Ship speed is influenced by the hull form, engine, fuel economy, weather
conditions, loading conditions and schedules. Speed can be determined indirectly by means of
distance and time. Usually, we consider the average speed, using past information, in order to
determine the sailing time between ports. During the last years the company operated with two
or, during short time periods, three ships. The fleet has been changing, the two ships operating
at the beginning of the thesis work are different from those operating today.

Ports

Ports impose physical limitations on the dimensions of the ships (ship draft, length and width).
Currently there are no draft limit constraints. Ports also charge fees for their services.

An important aspect to schedule ship operations are time windows. These restrictions are
established due to different reasons. Some ports can receive passenger ships, cargo ships and
tanker ships, but not at the same time, due to safety conditions. That means that it is not
possible to unload/load the product when passenger ships are operating. Hence, different time
windows are established for each type of operation. Also, some ships cannot anchor in certain
ports due to their length, and in that case the ship needs to anchor near the port to discharge
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the products. At those ports, where operations at night are allowed, after 6 p.m. the company
pays an extra cost per hour. In these cases the time windows are hard at the start and soft at
the end. Waiting time is permitted. In some ports different types of cargo ships are allowed
to operate during the same time window. In those cases very often port congestion causes ship
delays.

The company takes control of their tanks’ inventory levels and safety stock at each port,
ensuring that adequate service levels are maintained. Stock-out is completely forbidden under
regular conditions. Time limits for each port visit can also be established implicitly by the
inventory levels of the consumed products. These limits lead to inventory time windows which
are of a different nature from operating time windows.

Weather conditions

Weather conditions are a major aspect in maritime transportation. The oil company looses
many days/weeks per year because of the seiche phenomenon. A seiche is a standing wave in
an enclosed or partially enclosed body of water. This phenomenon occurs in certain periods
in Cape Verde and affects many important ports. During that period, it is very difficult or
impossible to operate in those ports affected with this phenomenon. Additionally, bad weather
conditions extend the traveling times between ports.

1.2.1 Current planning practice

In addition to the strategic planing, not considered in this thesis, concerned with decisions
such as acquisition of ships, expansion of tank capacity, creation of new supply ports, etc., the
company deals with two related planning problems.

A planning for six months is done based on the assumption of constant consumption rates. In
this planning the company simulates the distribution plan for a given fleet and tank capacities,
and ignore many details such as time windows. This planning is conducted to allow the company
to evaluate the necessity of chartering ships or expand tanks, for instance.

For a shorter time horizon of 10-14 days, the company plans the distribution of fuel oil
products as follows. Every Monday, the planner gathers information on the stock level at
each consumption storage depot. This information is put in an excel sheet and, using that
information, the company planner develops, manually, the distribution plan, which includes
the ship routes, the quantity of each product that must be unloaded/loaded at each port in
the corresponding route, and schedule of the operations. Usually, the design of the routes
takes into account the ports urgency in order to avoid stock-outs. This planning task is very
complex because in addition to the many known details that must be taken into account (ship
speeds, estimated travel times between ports, safety rules, time windows, loading and unloading
times, ship and tank capacities, etc.), the manager usually tries to gather additional information
such as port occupancy in order to avoid expensive waiting times. This manual procedure has
produced satisfactory results for many years. However, in recent years Cape Verde has a rapid
economic growth and the fuel oil consumption has increased. This is the main reason for a deep
and detailed study of the redesign of the distribution structure of fuel oil in Cape Verde.

1.3 Purpose and outline of the thesis

The purpose of this thesis is discussed in Section 1.3.1. Then, Sections 1.3.2-1.3.5, present a
brief summary of each paper.
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1.3.1 Purpose of the Thesis

The purpose of this thesis is to develop new optimization tools for inventory routing and schedul-
ing problems found in industrial shipping. The tools are aimed to provide decision support at an
operational and at a tactical planning level. The optimization tolls are based on mathematical
models which were developed in close cooperation with a local company that needs to improve
its decision support system. Although we have developed models for real-world planning, they
are generic and may be used in other contexts as well.

This work is a result of the relationship between the local Shell company and the Cape
Verde University. The company agreed to provide all the information and details. On the other
hand, the research undertakes to maintain confidentiality and to develop and test, solutions
approaches, using real data.

The author started this research work in October, 2008. During this period many meetings
with the manager of the company occurred in order to clarify some details and formulate the
problem as realistic as possible.

Following the company’s approach, according to the length of the planing horizon, we study
two related problems: a short and a medium-term operational planning problem. In both cases,
we assume that the number of ships and capacities are fixed, and are sufficient to satisfy the
total demand during the planning horizon. All ships and consumption depots are owned by the
company. We consider the operation cost (loading/unloading at ports), sailing cost and penalty
cost (when a ship operates after the end of time windows). The main objective of the company
is to maintain the stocks levels within their limits over the planing horizon. In accomplishing
this objective, the plans must (i) minimize the total cost comprised of the operational cost,
sailing cost and penalty cost (ii) determine the ship routes, the schedule of operations and the
quantity of each product to load and discharge while satisfying a set of constraints.

Usually, short-term planning addresses goals that can be obtained within a short period
of time. According to the practice of the company, we consider a planning horizon of 12
days. The production and consumption rates vary during the planing horizon. Often the
production/consumption is zero in many periods (days) and relatively high in the remaining
periods. Another real aspect taken into account is scheduling. Multiple operating time windows
(one for each day) are considered.

For the medium-term plan, a planning horizon of six months is considered. The production
and consumption rates are assumed constant during this planing horizon. Time windows con-
straints are ignored, but inventory levels are taken into account, and minimum and maximum
limits are considered. The output of the second stage (medium-term) can be used to define the
input for the first one.

Uncertainty related to traveling times and times at ports is a major issue in maritime
transportation. This issue is more relevant for the short-term planning since for longer planning
horizons estimated values based on the past information, are considered. We also address a
variant of a short-tem planning problem with stochastic traveling and port times.

The solution approach followed for each problem has essentially been the same. First we
provide and discuss the mathematical formulation (mixed integer program), then we either
optimize to optimality the problem for a set of real instances using a commercial solver, or we
provide hybrid heuristics that use the solver as a black-box.

During this thesis, four scientific papers have been written and submitted to international
journals. The first paper: Mixed integer formulations for a short sea fuel oil distribution problem
considers a short-term fuel oil distributions problem with a planning horizon of two weeks, and
has been published in Transportation Science. The second paper: Discrete-time and continuous-
time formulations for a maritime inventory routing problem is dedicated to compare discrete-
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time versus continuous-time formulations for the constant demand rate. The third paper: Hy-
brid heuristics for a maritime short sea inventory routing problem studies heuristic solution
approaches for a medium-term problem with a time horizon of 6 months. The last paper: A
maritime inventory routing problem with stochastic sailing and port times models a stochas-
tic short-term planning problem with constant demand rates and uncertain time parameters.
Figure 1.8 shows the scope of each paper, according to the planning levels and transportation
modes. Next we explain in more detail each one of these paper.

Paper 1

Paper 2

Paper 4

Paper 3

Industrial Tramp Linear

Operational

Tactical

Strategic

Figure 1.8: Purpose of each paper according to the planning levels and transportation modes

1.3.2 Paper 1: Mixed integer formulations for a short sea fuel oil distribution
problem

In this article we consider the short-term fuel oil distribution problem. Since cleaning tanks is
very expensive and time consuming, the company follows a policy where products have dedicated
compartments, if possible. In this paper we consider both the undedicated and dedicated tank
case.

Three mixed integer formulations are presented and discussed. Following the related lit-
erature (see Chistiansen [5] and Al-Khayyal and Hwang [1]) we first introduce an arc-load
formulation. Then we introduce two new tighter formulations, an arc-load flow formulation
(flow variables are assigned to ship arcs) and a multi-commodity formulation. All the formu-
lations are strengthened by tightened linking constraints and inclusion of valid inequalities.
These formulations were tested using real instances. Using the best formulation, all instances
are solved to optimality. The average running time was less than one minute for undedicated
compartments instances and less than 25 minutes for the dedicated case.

As consumption continues to grow and it is expected to continue to increase in the future,
the company believes that in a near future the fleet size needs to increase. In this context, future
scenarios considering larger consumption rates and new ships were tested. We have shown that
most of those large instances can still be solved to optimality within a time limit of 3 hours.
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1.3.3 Paper 2: Discrete-time and continuous-time formulations for a mar-
itime inventory routing problem

In order to choose a good model for the constant consumption rate case, in the second paper, we
conduct a study to compare several formulations and to test the impact of certain assumptions
on the model and on the solution.

We provide two alternative mixed integer formulations: a discrete-time model adapted from
the case where the consumption rates vary (the model combines a discrete and continuous time
where the discrete time corresponds to an artificial discretization of the continuous time), and
an event based model known as continuous-time formulation. For each alternative formulation
we discuss two different extended formulations and inclusion of valid inequalities that allow us
to reduce the linear gap of the two initial formulations. We also test the impact of limiting
the number of visits to each port, and to impose minimum load/unload quantities, both on the
model size and on the solution. In order to compare the proposed models accordingly to their
size, linear gap and running time, a computational study based on real small-sized instances
using a commercial software is conducted.

1.3.4 Paper 3: Hybrid heuristics for a maritime short sea inventory routing
problem

In this paper, the medium-term fuel oil distribution problem is considered, assuming constant
consumption rates and considering dedicated compartments in the ships. Many important
aspects taken into account in the short-term problem are relaxed here or incorporated indirectly
in the data. For instance, port operating time windows that are essential in the short-term plan
are ignored here. On the other hand, other aspects such as safety stocks are more relevant for
the medium-term planing.

Considering a planning horizon of 6 months, the tested instances become too large to be
solved to optimality by a commercial software. Therefore, we develop several heuristic schemes
that combine three well-known hybrid approaches that use the mixed integer programming
solver as a black-box: Rolling Horizon (RH), Local Branching (LB) and Feasibility Pump (FP).
In RH heuristics the planning horizon is split into smaller sub-horizons. Then, each limited and
tractable mixed integer problem is solved to optimality. LB heuristics are used to search for
local optimal solutions by restricting the number of binary variables that are allowed to change
their value in the current solution. Feasibility Pump is a strategy to find initial feasible solutions
for MIP problems. Based on the information of the second paper, we use the continuous-time
model, tightened with valid inequalities, to solve each subproblem.

Computational testes were conducted to compare the different heuristic schemes. These
tests show that the best strategy provides significant improvements when compared against the
RH heuristic, which is one of the most popular heuristics for long time horizon problems.

1.3.5 Paper 4: A maritime inventory routing problem with stochastic sailing
and port times

In the real problem, much of the input data needed for the planning is uncertain. Weather
conditions have great influence on the traveling times. Port congestion is also a major problem
the company has to deal with. In the past, the company lost many working days (measured in
weeks per year) due to the waiting for ports to became vacant.

In this paper we develop a stochastic model where traveling times and waiting times are
stochastic. We consider a constant consumption rate. The model can be regarded as a two-
stage stochastic programming model with recourse where the first-stage consists of routing,
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loading and unloading decisions, and the second stage consists of scheduling decisions. The
first stage decisions are fixed a priori, that is, before actual values of the uncertain parameters
are revealed, while the second stage decisions can be adjusted to the stochastic parameters
(traveling and waiting times). The model is solved using a decomposition approach similar to
an L-shaped algorithm where optimality cuts are added dynamically. This solution process is
embedded within the sample average approximation method. A computational study based on
ten real-world instances shows the effectiveness of the solution method and the importance of
considering a stochastic approach.

1.4 Contributions

This section presents the contributions of this thesis . The contributions are divided into
three parts. In the first part, we discuss the contributions to the research community. The
corresponding contributions to the industry are presented in the second parte. Finally, in the
last part, an overview of the author contributions to each one of the papers that constitutes
this thesis is given.

1.4.1 Thesis contribution to the research community

In this section we present the main contributions of the thesis to the research community.
Research work in these papers have been presented at many different scientific conferences, in-
cluding 14o bi-annual congress on operation research, Seventh Triennial Symposium on Trans-
portation Analysis, Workshop on Applied Combinatorial Optimization and the 23th, 24th and
25th European Conference on Operational Research. Here we summarize the main contributions
of the thesis.

• We propose solution approaches to solve a real maritime inventory routing problem con-
sidering the short-term planning and the medium term-planning, separately. All the ap-
proaches are based on mixed integer models which are solved (exactly, for the short-term
planning, and heuristically, for the medium-term planning) by a commercial software.

• For the short-term planning problem we also propose a stochastic model where traveling
times and waiting times are random. The solution method combines the use of the sample
average approximation method with a decomposition procedure resembling an L-shaped
method. We provide computational evidence of the importance to use a stochastic model
instead of a deterministic model.

• We introduce and compare different mixed integer models for each problem. These mod-
els are tightened using valid inequalities. To the best of our knowledge, some of the
inequalities introduced in this thesis and some formulations have never been applied be-
fore in maritime transportation problems. Such models and inequalities can be easily
used/adapted for similar maritime inventory routing problems.

• The hybrid approach proposed to provide reasonable solutions for the medium-term plan-
ning problem, that combines three well known heuristics (Rolling Horizon, Local Branch-
ing and Feasibility Pump) and uses a mixed integer programming solver as black-box, can
also be easily applied in many other inventory routing problems.

A more detailed description of these contributions can be found in each one of the following
Chapters.
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1.4.2 Thesis contribution to the industry

Paper 1 solves to optimality the distribution problem of the company at the operational
planning level. The solution approach followed allows for cost savings in relation to current
practice. The model and the solution approach used in this paper can be easily adapted to
other related maritime transportation problems.

Paper 3 presents different combinations of hybrid heuristic approaches to produce good
quality solutions, within reasonable running times, for the distribution problem at a tactical
planning level. This work allows the company do evaluate the capacity to meet the demands over
large time horizons and to identify possible routing and scheduling patterns. These approaches
combining rolling horizon, local branching and feasibility pump heuristics, may be used as a
reference heuristic solution approach to other real problems.

Paper 4 solves the distribution problem at the operational planning level under uncertain
traveling and waiting times. This paper reinforces the importance in the use of stochastic pro-
gramming instead of a deterministic approach to solve these maritime transportation problems.

The study of models and derivation of inequalities conducted in all papers can be easily
applied to other maritime transportation problems.

1.4.3 The author’s contribution to each paper in the thesis

In this section the contributions to the four papers that constitute this thesis are presented.
The contributions can be measured as follows: intellectual input, implementation, and writing.
Intellectual input refers to identification and formulation of the planning problems, development
of the mathematical models, valid inequalities and solution algorithms. Furthermore, imple-
mentation covers the data handling, coding and execution of the models, as well as analyzing
the results. Finally, writing refers to the writing of the scientific papers.

Intellectual input: the problem arose from a meeting between the author, Agostinho Agra
and the manager of the local Shell company. The author gave the main contributions to problem
identification and definition of the important aspects of the problem. The development of the
mathematical models of the four papers was done by Agostinho Agra, Marielle Christiansen
and the author. The fourth paper had also the contribution of Lars Magnus Hvattum. The
development of valid inequalities was done by Agostinho Agra and the author. The discussion
of algorithm strategies was done with all the authors of each paper.

Implementation: the author had the responsibility for the computer implementation of the
models, while cooperating with the manager of the Shell company to gather the real data used
as input of each paper. The computer implementation supervision and data analyzes was done
by Agostinho Agra and Marielle Christiansen in all papers and Luidi Simonetti in the third
paper and Lars Magnus Hvattum in the fourth paper.

The writing of all papers was mainly handled by Agostinho Agra, with very important
contributions from Marielle Christiansen, with feedback and collaboration from the author and
from Lars Magnus Hvattum in the fourth paper.

1.5 Further Research

There are many research directions that may be of interest to be followed in the future. Here
we provide three such directions.

• Much research in the maritime transportation literature uses models based on path for-
mulations. These modes are then solved by column generation based algorithms such
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as Branch-and-Cut-and-Price. Testing such models against our approaches would be an
interesting line of research.

• An important subject of research for the company is the study of the strategic planning
problem, in order to help the decision maker to define a tanks expansion policy, acquisition
or chartering of ships, etc..

• In order to assess the quality of the feasible solutions provided by the hybrid approaches,
described in Chapter 4, for the medium-term planning, is essential to provide good lower
bounds. Because of the large size of the mixed integer model used, the linear relaxation
model can hardly be used to obtain good lower bounds. An alternatively approach could
be to test other relaxations, such as, the lagrangean relaxation.
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Chapter 2

Mixed integer formulations for a
short sea fuel oil distribution
problem

Abstract

We consider a short sea fuel oil distribution problem occurring in the archipelago at Cape Verde.
Here, an oil company is responsible for the routing and scheduling of ships between the islands
such that the demand for various fuel oil products is satisfied during the planning horizon.
Inventory management considerations are taken into account at the demand side, but not at
the supply side. The ports have restricted opening hours each day, so multiple time windows
are considered. In contrast to many other studies within ship routing and scheduling, consid-
erable time is spent in the ports compared to at sea. Hence, the time in port is modeled in
detail by incorporating both a variable (un)loading time and a set up time for loading different
products in the same ports. A mathematical model of the problem is presented and it includes
a combined continuous and discrete time horizon due to the multiple time windows and a daily
varying consumption rate of the various products in the different ports. We discuss several
strategies to improve the proposed model, such as tightening bounds, using extended formula-
tions and including valid inequalities. The computational study shows that the real problem
can be solved to optimality within reasonable time by the use of improved formulations based
on a combination of such strategies.

Keywords: Maritime transportation, Inventory, Routing, Extended formulations, Valid in-
equalities.

2.1 Introduction

The inter-islands distribution of fuel oil is a real problem of Cape Verde, an archipelago
with nine inhabited islands. Fuel oil products are imported and delivered to specific islands
and stored in large supply storage tanks. From these islands, fuel oil products are distributed
among all the inhabited islands using a small heterogeneous fleet of ships. These products are
stored in consumption storage tanks. Some ports have both supply and consumption tanks (see
Figure 2.1). For the inter-islands distribution problem we ignore two islands (with a circle in
Figure 2.1) since they are supplied by another ship using a different technology.

The inter-island distribution plan consists of designing routes and schedules for the fleet
of ships including determining the (un)loading quantity of each product at each port. This
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Figure 2.1: Supply and demand for fuel oil products at several islands in Cape Verde.

plan must satisfy (i) the demand of each product at each island per period, (ii) time window
constraints for the port operations (loading/unloading), and (iii) the capacities of the ships,
ports and depots. The total cost of the distribution plan is to be minimized, and includes
sailing costs, a fixed cost for each operation and a penalty cost for violation of time windows.

We consider a short-term distribution problem with a planning horizon of twelve days. The
input to this problem is the output of a medium-term plan for several weeks (few months).
The demands correspond to the quantities to be delivered at each port per day determined in
the medium-term plan. Hence, usually the demands at each port follow a pattern where the
demands are zero for most periods and relatively large in the rest of the periods. By coordinating
the distribution of all products in all ports during the planning horizon, it might be efficient to
deliver the demand in periods prior to the specified period by the medium-term plan or in other
quantities. This means that we need to keep track of the inventory level at the consumption
storage tanks for all products in all ports. Storage capacities in supply and consumption tanks
are taken into account in the medium-term planning. In the short-term plan considered here
capacities in supply tanks can be ignored, since the global consumption of each product from
all consumption tanks during the time horizon, is much smaller than the capacity of the supply
tanks. However, for the consumption tanks the capacity of the tanks for a particular product
can be less than the total demand over the planning horizon for that product. When solving
our instances, we consider only inventory capacity bounds for the consumption tanks where the
corresponding capacity can be lower than the total demand over the entire planning horizon.
It is assumed that at most one ship can operate in each port at a given time period. During
a port call for a ship, it is possible to load and unload different products. We assume that
there is a fixed (un)loading time per unit product (un)loaded. This (un)loading time may vary
for different products and different ports. In addition, there exists a considerable set up time
between (un)loading different products due to coupling and decoupling of pipes between tanks
in the ship and tanks in the port.

Most of the ports are closed during night and some ports have operational restrictions during
certain periods of the day. This means that in each period (day), there may exist a time window
for (un)loading. These time windows may vary from port to port. A ship cannot start to operate
before the beginning of the time window. However, if the operation has begun inside the time
window, it can be finished outside that time window, see Figure 2.2. In that case, an extra
man-power cost considered as a penalty cost is incurred.

To transport the fuel products between the islands, the planners control two different ships,
but a larger heterogeneous fleet is expected in the future. Each ship has a specified load capacity,
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Figure 2.2: Time windows: operating time inside and outside (with penalty) of the time window,
and waiting times.

fixed speed and cost structure. The setup and (un)loading times are independent of ship. The
cargo hold of each ship is separated into several cargo tanks.

We consider two scenarios: the case where the allocation of the different fuel products into
different cargo tanks is not considered and the case where there are dedicated tanks for families
of products. The later case is the closest to reality (and later denoted as the Real Case) although
in some situations it can be considered too restrictive since changes between families of products
are possible. However, such changeovers are only allowed under exceptional circumstances. On
the other hand, the first case can be regarded as a relaxation of the real situation. We focus on
the first case and explain in a later section how to deal with the dedicated tanks case.

We consider a fixed cost associated with each operation at each port and associate a setup
time to each operation (loading/unloading) as depicted in Figure 2.3.

Operating time

Setup time

For product 1

Time to unload

Product 1

Setup time

For product 4

Time to load

Product 4

Figure 2.3: Schedule of operations: the ship unloads product 1 and then loads product 4. A
setup time is required for each operation.

In this paper we present mixed integer formulations for the two cases of the short sea fuel oil
distribution problem (SSDP) in Cape Verde and provide several strategies to improve the formu-
lation applying techniques such as the use of extended formulations and the inclusion of strong
valid inequalities. Based on an extensive computational study we propose improved formula-
tions which can solve the tested instances based on real data to optimality within reasonable
time.

The models proposed are based on the underlying real planning problem. However, some
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simplifications are made and some issues are omitted. Safety stocks are not explicitly considered,
but could easily be taken into account by considering net stocks (the stock level minus the safety
stock), see [3]. Fluctuating weather conditions are neglected, and very few contributions in the
literature have so far focused on this issue within maritime transportation. In addition, we
chose to make some assumptions; such as a maximum number of ships operating in the same
port per day, no draft limits in the ports and assuming the described tank allocation policy.
However, these simplification and assumptions should not prevent the planners from making
valuable short-term decisions based on the SSDP models.

Although the paper is concerned with a real problem our contributions are also of interest
for other maritime transportation problems. Besides the application, the contributions comprise
(i) new models that include a combined continuous and discrete time horizon. These are fairly
general models that deal with multiple time windows and a daily varying consumption rate of
the various products. They can also be used for the constant consumption rates case as this
is a particular case of the previous one; (ii) discussion of different strategies to strengthen the
proposed models. The computational results also provide some insight into the relevance of
each strategy.

We remark that the models presented here can also be used to solve larger instances. For
instance, heuristic procedures based on the mathematical formulation such as rolling-horizon
heuristics, relax-and-fix heuristics, etc. can be used to derive feasible solutions.

The rest of the paper is organized as follows: In Section 2.2 we give a brief literature review
related to the planning problem and the formulation techniques considered. We have limit
ourselves to the maritime transportation literature. Section 2.3 presents a mixed integer for-
mulation of the SSDP in Cape Verde. Different strategies to improve the initial formulation
are discussed in Section 2.4. These strategies include tightening bounds, including valid in-
equalities and deriving extended formulations. In Section 2.5 we discuss the real problem with
dedicated tanks. We focus on the main differences between the two cases (with and without
dedicated tanks) and explain how to adapt the results from the previous sections to the case
with dedicated tanks. Section 2.6 is devoted to the results of an extensive computational study
to compare different ways of combining the improving strategies, and to test our best strategy
on the real case and on future scenarios. Finally, the main conclusions of this work follow in
Section 2.7.

2.2 Related Literature

We have witnessed an increased interest in studying optimization problems within maritime
transportation, see the reviews on maritime transportation, [9], and maritime inventory routing
problems, [8]. Combined routing and inventory management within maritime transportation
have been present in the literature the last one and a half decades only. [6] considers a sup-
ply chain for ammonia consisting of several facilities that either produce or consume ammonia
and the transportation network between those facilities. Ammonia is produced and stored in
inventories at given loading ports and transported at sea to inventories at unloading ports.
Inventory capacities are defined in all ports. Here, the production and consumption rates are
given and fixed during the planning horizon in all ports. The planning problem is to find routes
and schedules for a fleet of ships that minimize the transportation costs without interrupting
production or consumption at the storages. The overall problem is solved by a branch-and-price
method in [10] and [11] and by a heuristic in [15]. Unlike the problem studied in [6], the short
sea fuel oil distribution problem (SSDP) includes several products. Also [17] studies a mar-
itime inventory routing problem that allowed for multiple products on board the ship and with
dedicated compartments in the ship for various products. [4] give a mathematical formulation
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for such a problem where the products are assumed to require dedicated compartments in the
ship. For this problem there exist inventory limits and production/consumption rates for each
product in each port, just as for our SSDP. We include the product-compartment allocation
case in Section 2.6.3. As for the SSDP, [4] include a fixed setup time for switching between
(un)loading different products in a port. The maritime inventory routing problem described in
[23] also includes multiple products. The underlying model focuses on the inventory manage-
ment and not the routing part of the problem, as the model solution suggests shipment sizes
that are assumed to be input for a cargo routing problem at a later stage.

Both [6] and [4] present continuous time models and introduce an index indicating the visit
number to a particular port. For both models it is assumed that the production/consumption
rate is fixed and constant during the planning horizon. In [16] and [23] discrete time models are
developed to overcome the complicating factors with varying production and consumption rates.
In the SSDP, the production inventory side is not considered, but we have varying consumption
rates during the planning horizon.

In most studies in the literature, the inventory management is considered both at the pro-
duction and consumption sites. However, [25] consider a liquefied natural gas inventory routing
problem with just one large production port and no inventory management aspects considered
at the consumption ports.

Most of the maritime transportation planning problems studied in the literature are within
the deep sea segment, see [9]. However, we are considering a short sea distribution problem
with relatively low-activity ports. Considerable time is spent in port, and some ports are closed
during night. This corresponds to a problem with multiple time windows. Within maritime
transportation, this is considered in [7] for a tramp ship scheduling problem without inventory
management considerations. In contrast to the SSDP, no loading and unloading are possible
after the end of the time window. This means that a ship might stay idle in port during night or
in the weekend if it did not finish its service in the port opening hours. In order to avoid such idle
times due to unexpected delays, the authors have introduced penalties for finishing the service
in port just before the end of time windows. In this way, they expect that more robust schedules
are designed. We can also find a few other contributions within maritime transportation where
penalties are used in connection with time windows. In [14], the hard time windows are extended
to soft ones. There the penalty costs occur outside the hard time windows. The work of [6] is
extended in [12] to reduce the possibility of violating the inventory limits at the storages. Here
another pair of soft inventory limits within the hard ones is introduced. This means that those
soft inventory limits can be violated at a penalty, but it is not possible to exceed the storage
capacity or be under the lower inventory limits. They show that the soft inventory constraints
can be transformed into soft time windows.

Although the study of valid inequalities for mixed-integer sets and the derivation of ex-
tended formulations is currently receiving large attention with several applications to other
mixed-integer problems, little work has been done in applying these techniques to maritime
transportation problems. However, a few contributions already exist. [24] include valid inequal-
ities in order to enhance the proposed formulations of an oil products transportation problem,
and [21] develop valid inequalities within a column generation approach for a maritime inven-
tory routing problem. Also, [16], include valid inequalities to improve the path-flow formulation
presented for the liquefied natural gas inventory routing problem.

2.3 Mathematical Formulation

In this section, we describe a mathematical model for the SSDP without dedicated tanks.

The nature of the production and consumption rates affects the underlying model. If it is

27



assumed that the production and consumption rates are fixed and constant during the planning
horizon, then a mathematical model based on continuous time can be used (e.g. [4] and [6]).
When the production and/or consumption rate is variable or fixed but varying during the
planning horizon a discrete time model is applied (see [16] and [23]). The case of variable
production and consumption rates is, of course, the most general one, but often the rates are
fixed. In practice, the production and consumption rates are most often varying, although, in
some applications, the simplification made by assuming a constant rate is acceptable.

In this paper we consider a combined continuous and discrete time horizon. The discrete
time horizon corresponds to the continuous one divided into periods (corresponding to days).
The discrete time horizon allows us to easily handle the multiple time windows and non-constant
demand requests. The drawback of this approach is the large number of variables involved in
the mathematical model.

In this formulation, the decision variables are written in lower case letters and the parame-
ters and sets are written in upper case letters.

Indices
k products;
i, j ports;
v ships;
iv initial port position of ship v;
m,n time periods.

Sets
V set of ships;
N set of ports;
K set of products;
M set of periods. M = {1, . . . |M |}, where |M | is the number of periods considered.

Parameters
Tijv time required by ship v to sail from port i to port j;
TAim start of time window in period m at port i;
TBim end of time window in period m at port i;
CWik fixed cost of operating (loading/unloading) product k at port i;

TQik time required to (un)load one unit of product k at port i;
Dimk demand of product k at port i in period m;
Cijv total transportation cost for ship v to sail from port i to port j;
V CAP
v total storage capacity of ship v;
Uik storage capacity of the depot for product k at port i;
Wik setup time required for operating product k at port i;
Qvk quantity of product k on board ship v at the beginning of the planning

horizon;
CPim penalty cost, per hour, for operating outside the time window at port i in

period m;
Jik =1 if port i is a producer of product k; =-1 if port i is a consumer of product k;

0 otherwise.
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Continuous Variables
tim start time of operation at port i in time period m, i ∈ N,m ∈M.

We assume tiv1 = 0, v ∈ V ;
tEim ending time of the operation that started during period m in port i, i ∈ N,

m ∈M (these variables are not necessary for the model but they are useful
to ease the reading);

pim operating time outside the time window of period m at port i, i ∈ N,m ∈M ;
qimvk amount of product k loaded onto or unloaded from ship v at port i in time

period m, i ∈ N,m ∈M, v ∈ V, k ∈ K. We assume qimvk = 0 if Jik = 0;
or m = 1, i 6= iv; or m = 1, i = iv, Qvk = 0, Jik = −1;

limvk amount of product k onboard ship v when leaving port i after an operation that
started in time period m, i ∈ N,m ∈M,v ∈ V, k ∈ K. We assume li1vk = 0
if i 6= iv;

simk stock level of product k at port i at the end of time period m, i ∈ N,m ∈M,
k ∈ K. (si0k is the stock level at the beginning of period 1).

Binary variables
ximjnv 1 if ship v starts to operate at port i in period m and then sails from port i

to port j and starts to operate at port j in perid n, 0 otherwise, i, j ∈ N,
m, n ∈M,v ∈ V. We assume ximjnv = 0 if m ≥ n; or i = j; or m = 1, i 6= iv;

zimv 1 if ship v ends its route at port i after an operation that started in time
period m, 0 otherwise, i ∈ N,m ∈M,v ∈ V ;

oimvk 1 if product k is loaded onto or unloaded from ship v at port i in time period
m; 0 otherwise, i ∈ N,m ∈M,v ∈ V, k ∈ K. We assume oimvk = 0 if
Jik = 0; or m = 1, i 6= iv; or m = 1, i = iv, Qvk = 0, Jik = −1.

The MIP model for the SSDP:

min
∑
i,j∈N

∑
n,m∈M

∑
v∈V

Cijvximjnv +
∑
i∈N

∑
m∈M

∑
v∈V

∑
k∈K

CWik oimvk +
∑
i∈N

∑
m∈M

CPimpim, (2.1)

subject to:∑
j∈N

∑
n∈M

xiv1jnv + ziv1v = 1, ∀v ∈ V, (2.2)

∑
j∈N

∑
n∈M

xjnimv −
∑
j∈N

∑
n∈M

ximjnv − zimv = 0, ∀i ∈ N,m ∈M,m > 1, v ∈ V, (2.3)

∑
i∈N

∑
m∈M

zimv = 1, ∀v ∈ V, (2.4)∑
j∈N

∑
n∈M

∑
v∈V

xjnimv ≤ 1, ∀i ∈ N,m ∈M, (2.5)

TAim ≤ tim ≤ TBim, ∀i ∈ N,m ∈M, (2.6)

(tEim + Tijv − tjn)ximjnv ≤ 0, ∀i, j ∈ N,m, n ∈M,v ∈ V, (2.7)

pim ≥ tEim − TBim, ∀i ∈ N,m ∈M, (2.8)
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tEim = tim +
∑
v∈V

∑
k∈K

Wikoimvk +
∑
v∈V

∑
k∈K

TQikqimvk, ∀i ∈ N,m ∈M, (2.9)

tim ≥ tEi,m−1, ∀i ∈ N,m ∈M,m > 1 (2.10)

ximjnv(limvk + Jjkqjnvk − ljnvk) = 0, ∀i, j ∈ N,m, n ∈M,v ∈ V, k ∈ K, (2.11)

Qvk + Jivkqiv1vk − liv1vk = 0, ∀v ∈ V, k ∈ K, (2.12)

qimvk ≤ V CAP
v oimvk, ∀i ∈ N,m ∈M,v ∈ V, k ∈ K : Jik 6= 0, (2.13)∑

k∈K
limvk ≤ V CAP

v

∑
j∈N

∑
n∈M

ximjnv, ∀i ∈ N,m ∈M, v ∈ V, (2.14)

si,m−1,k +
∑
v∈V

qimvk = Dimk + simk, ∀i ∈ N,m ∈M,k ∈ K : Jik = −1, (2.15)

simk ≤ Uik, ∀i ∈ N,m ∈M,k ∈ K : Jik = −1, (2.16)

ximjnv ∈ {0, 1}, ∀i, j ∈ N, i 6= j,m, n ∈M,m < n, v ∈ V, (2.17)

zimv ∈ {0, 1}, ∀i ∈ N,m ∈M,v ∈ V, (2.18)

oimvk ∈ {0, 1}, ∀i ∈ N,m ∈M,v ∈ V, k ∈ K, (2.19)

qimvk, limvk ≥ 0, ∀i ∈ N,m ∈M, v ∈ V, k ∈ K, (2.20)

simk ≥ 0, ∀i ∈ N,m ∈M,k ∈ K, (2.21)

tim, t
E
im, pim ≥ 0, ∀i ∈ N,m ∈M. (2.22)

The objective function (2.1) is to minimize the cost (transportation cost, setup cost of
operations and penalty cost).

The set of routing constraints (2.2)-(2.4) is defined under a network whose set of nodes is
{(i,m) ∈ N×M}. Hence, each node corresponds to a port-period pair. Constraints (2.2) ensure
that ship v either departs from the initial port position i to another port j or it ends its route
in port i (zimv = 1). Constraints (2.3) are the flow conservation constraints for each port and
each time period. That is, if ship v starts an operation in port i at period m, then either it must
travel to another port j, or it finishes its route in port i. Constraints (2.4) ensure that ship v
ends its route at some port. Constraints (2.5) guarantee that at most one ship v can operate
in port i at a given time period. The time window constraints are given by (2.6). Constraints
(2.7) ensure that if ship v sails from port i (after an operation started in period m) to port j
(to initialize an operation in period n), then the operation at port j can only start after the
end time of operation at port i plus the time required to travel from i to j. These constraints
can be linearized as follows:

tEim + Tijv − tjn ≤ B(1− ximjnv), ∀i, j ∈ N,m, n ∈M,v ∈ V, (2.23)

where B = max{0, TQikV
CAP
v + TBim + Tijv − TAjn}.

Constraints (2.8) enforce pim to assume, at least, the value of the duration of operations
outside the time windows. Notice that since the cost of pim is positive, pim assumes exactly the
operation time violating the corresponding time window. Equations (2.9) define the end time of
each operation. Constraints (2.10) ensure that, for each port and for each period, a ship can only
start to operate if the operation of the previous period is already finished. Constraints (2.11)
and (2.12) relate the quantity onboard to the quantity loaded and/or unloaded. Constraints
(2.11) ensure that if ship v sails from port i (after an operation started in period m) to port j
(to initialize an operation in period n), then the quantity of product k onboard at the departure
from port j should be equal to the quantity onboard at departure from port i plus/minus the
quantity loaded/unloaded from port j. Following [13], equations (2.11) can be linearized by
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replacing them with the following two sets of constraints :[
limvk + Jjkqjnvk − ljnvk

+V CAP
v ximjnv

]
≤ V CAP

v , ∀i, j ∈ N,m, n ∈M,v ∈ V, k ∈ K, (2.24)[
limvk + Jjkqjnvk − ljnvk
−V CAP

v ximjnv

]
≥ −V CAP

v , ∀i, j ∈ N,m, n ∈M,v ∈ V, k ∈ K. (2.25)

Equations (2.12) relate the quantity onboard with the quantity loaded/unloaded in the
starting port. Constraints (2.13) ensure that if an operation occurs, that is, qimvk > 0, then
the setup variable oimvk must be one. They also impose an upper bound on the quantity
loaded/unloaded. Constraints (2.14) impose an upper bound on the quantity onboard. They
also ensure that if the quantity onboard is positive, then the ship must travel to some other
port. Constraints (2.15) are the inventory management balance constraints and, together with
non-negativity constraints (2.20) and (2.21), ensure that the demand for each product at each
port in each time period is satisfied. The storage capacity at each port of each product are given
by constraints (2.16). Finally, (2.17)-(2.22) are the non-negativity and integrality constraints.

Modeling a real problem implies to make assumptions and, in some cases, simplifications. In
order to clarify our modeling options, we next present some observations related to the modeling
issues.

(i) Considering the real operation (load/unload) times, a ship can start to operate in one
period and finish the operations in that same period or in the next one. For the definition of
variables we use the starting period.

(ii) We consider a penalty cost by violation of the time window. That penalty is considered
during the operating time outside the time window where the operation started. However, it
is in theory possible that a ship finishes the operations during the next time window. In this
case we also penalize the operating time occurring in the next time window because this is not
a desirable solution.

(iii) We impose that at most one ship can operate in each port per period. Since there
is a large uncertainty with docking operations in maritime transportation and since we are
considering a small fleet consisting of two ships, it is not desirable to schedule two ships at the
same port in the same period.

(iv) The following set of constraints

oimvk ≤
∑
j∈N

∑
n∈M

xjnimv, ∀i ∈ N,m ∈M,m > 1, v ∈ V, k ∈ K, (2.26)

ensure that if there is an operation involving ship v at a port i during a period m, then port
i must belong to a ship route. These inequalities are not necessary in the model since the
fixed cost associated with the xjnimv variables are positive. However, we will include these
inequalities in order to derive strong formulations for the model.

The “basic” MIP model for the SSDP consists of (2.1)-(2.6), (2.8)-(2.10), (2.12)-(2.26) and
will be denoted the B-SSDP.

2.4 Formulation improvements

In this section we explore some directions to derive stronger models, which means models
whose linear relaxations are tighter than the original one. Deriving stronger models may lead to
better bounds which can be useful to reduce the number of nodes in a branch and bound-based
scheme.
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We consider different types of improvements. The first one consists of the tightening of
bounds. The second one is based on reformulations of the model with the inclusion of ad-
ditional variables (extended formulations). We propose an arc-load flow formulation and an
arc-load multi-commodity formulation. The last improvement is related to the inclusion of
valid inequalities. These inequalities are based on inequalities derived for simple mixed-integer
sets arising from relaxations from the set of feasible solutions of B-SSDP.

2.4.1 Tighter bounds

Here we explain how to tighten certain constraints. Basically, for certain constraints, we
replace the upper bound given by the capacity of the ship, V CAP

v , by the total amount of fuel
the ship can carry in order to satisfy the remaining demand.

Constraints (2.13), (2.14), (2.24) and (2.25) can be replaced, respectively, by the following
constraints:

qimvk ≤ Aimvkoimvk, ∀i ∈ N,m ∈M,v ∈ V, k ∈ K : Jik 6= 0, (2.27)∑
k∈K

limvk ≤ Aimv
∑
j∈N

∑
n∈M

ximjnv, ∀i ∈ N,m ∈M,v ∈ V, (2.28)

limvk + Jjkqjnvk − ljnvk +Aimjnvkximjnv ≤ Aimjnvk,
∀i, j ∈ N,m, n ∈M, v ∈ V, k ∈ K, (2.29)

limvk + Jjkqjnvk − ljnvk −Aimjnvkximjnv ≥ −Aimjnvk,
∀i, j ∈ N,m, n ∈M, v ∈ V, k ∈ K, (2.30)

where, for all i ∈ N,m ∈M,v ∈ V, k ∈ K,

Aimvk =


min{V CAP

v ,
∑

n∈M :n>m

∑
u∈N :u6=i

Dunk}, if Jik = 1;

min{V CAP
v ,

∑
n∈M :n≥m

Dink}, if Jik = −1,

for all i, j ∈ N,m, n ∈M,v ∈ V, k ∈ K, Aimjnvk = min{V CAP
v ,

∑
t∈M :t>m

∑
u∈N :u6=j

Dutk},

Aimjnvk =


min{V CAP

v ,
∑

t∈M :t>n

∑
u∈N,u6=j

Dutk}, if Jjk 6= −1;

min{V CAP
v ,

∑
t∈M :t≥n

∑
u∈N

Dutk}, if Jjk = −1,

and for all i ∈ N,m ∈M, v ∈ V, Aimv = min{V CAP
v ,

∑
u∈N :u6=i

∑
n∈M :n>m

∑
k∈K

Dunk}.

2.4.2 Extended formulations

In this section we propose two extended formulations. The new set of variables introduced
in each formulation provides additional information about the solution. That information is
essential to derive tighter inequalities. In the first extended formulation the new variables
indicate the amount of each product carried along each arc, that is, the new variables associate
a flow, for each product, to each arc in the ship path. The second formulation is a classical
multi-commodity reformulation of the first extended formulation where the flow on each arc is
disaggregated accordingly to its destination.
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Arc-load flow reformulation

One of the weaknesses of the B-SSDP model is the set of constraints (2.14) since even if∑
k∈K limvk = V CAP

v there can occur solutions with several fractional values of ximjnv. In order
to strengthen the model we introduce new variables, denoted by arc-load flow variables, and
use these variables to decompose variables limvk. Instead of considering the amount of fuel of
each product onboard the ship when it is leaving a port, the new variables indicate also the
next port for where that fuel is being transported to. With these new variables we will replace
(2.14) by stronger inequalities (inequalities that imply (2.14), and once they are included in
the model the corresponding linear relaxation feasible set becomes tighter). Let us define the
non-negative arc-load flow variables fimjnvk, i, j ∈ N,n,m ∈ M as the amount of product k
that ship v transports from port i, after an operation that started in period m, to port j in
order to start an operation in period n. We assume fimjnvk = 0 whenever ximjnv = 0.

The two sets of variables limvk and fimjnvk can be related using the following equations

limvk =
∑
j 6=i

∑
n>m

fimjnvk, ∀i ∈ N,m ∈M,v ∈ V, k ∈ K, (2.31)

Using the arc-load flow variables we can replace constraints (2.11), (2.12) and (2.14) by∑
i 6=j

∑
m<n

fimjnvk + Jjkqjnvk =
∑
i 6=j

∑
m>n

fjnimvk,

∀j ∈ N,n ∈M : n > 1, v ∈ V, k ∈ K, (2.32)

Qvk + Jivkqiv1vk −
∑
j 6=iv

∑
n>1

fiv1jnvk = 0, ∀v ∈ V, k ∈ K, (2.33)

∑
k∈K

fimjnvk ≤ V CAP
v ximjnv, ∀i, j ∈ N,m, n ∈M, v ∈ V, (2.34)

respectively. Adding constraints (2.34) for j and n we obtain∑
j 6=i

∑
n>m

∑
k∈K

fimjnvk ≤ V CAP
v

∑
j 6=i

∑
n>m

ximjnv.

Replacing
∑
j 6=i

∑
n>m

fimjnvk by limvk we obtain (2.14). Hence constraints (2.14) can be obtained

by aggregating constraints (2.34). Thus, the model using the arc-load flow variables should
provide better bounds based on the linear relaxation. The drawback of this model is the huge
number of continuous variables. For instances with higher dimension than those we tested, this
reformulation can be of no use.

As in the previous subsection, the constant V CAP
v can in some cases be replaced by a tighter

bound.
Notice that with the inclusion of variables fimjnvk, variables qjnvk can be eliminated from

the model using equations (2.32) and (2.33), that is, setting

qjnvk = Jjk

∑
i 6=j

∑
m>n

fjnimvk −
∑
i 6=j

∑
m<n

fimjnvk

 , ∀j ∈ N,n ∈M : n > 1, v ∈ V, k ∈ K,

(2.35)
and

qiv1vk = Jivk

∑
j 6=iv

∑
n>1

fiv1jnvk −Qvk

 , ∀v ∈ V, k ∈ K. (2.36)
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We denote the arc-load flow model by F-SSDP. The F-SSDP includes constraints (2.1)-(2.6),
(2.8)-(2.10), (2.13), (2.15)-(2.22), (2.23)-(2.26), (2.32)-(2.34).

Multi-commodity reformulation

A classical way to derive tighter models for flow formulations, as the arc-load flow formula-
tion presented in the previous section, is to use multi-commodity formulations. The idea is to
disaggregate the flow on each arc into different flows, one for each possible destination. Here, by
destination we mean a port-period pair. With this reformulation it is possible to derive tighter
models. From the practical point of view however the number of variables can be prohibitive
when solving real problems.

Let us introduce the non-negative multi-commodity arc-load flow variables γutimjnvk, i, j, u ∈
N,m, n, t ∈ M,k ∈ K as the amount of product k that ship v transports from port i, after an
operation that started in period m, to port j in an operation starting in period n to be delivered
at port u in period t. We assume γutimjnvk = 0 if ximjnv = 0. These variables can be related with
the arc-load flow variables throughout the following equations

fimjnvk =
∑
u6=i

∑
t≥n

γutimjnvk, ∀i, j, u ∈ N,m, n, t ∈M,v ∈ V, k ∈ K. (2.37)

The tightening of the F-SSDP model can be obtained by replacing constraints (2.34) by

∑
k∈K

γutimjnvk ≤ min{V CAP
v ,

∑
l∈M,l≥t

∑
k∈K

Dulk}ximjnv, ∀i, j, u ∈ N,m, n, t ∈M,v ∈ V. (2.38)

The multi-commodity flow model obtained from F-SSDP by replacing (2.34) with (2.38)
and including (2.37) will be denoted by MF-SSDP. Of course the arc-flow variables fimjnvk can
be eliminated from that model using (2.37).

We note here that different multi-commodity arc-flow formulations could be derived. For
instance, instead of considering the amount of product k delivered at port u in period t, one
could consider the amount of product k to be consumed at port u in period t.

2.4.3 Valid inequalities

One approach to derive a stronger model is to include valid inequalities for the set of feasible
solutions X. In order to derive valid inequalities we consider simpler substructures that result
from relaxations of our formulation. Valid inequalities for the set of feasible solutions of these
relaxations are also valid for X. We focus on deriving only those inequalities with great impact
on the integrality gap reduction. For each family of inequalities we consider the separation
problem and tune the separation algorithms.

In Section 2.4.3 we develop two types of inequalities based on the inventory constraints,
while inequalities based on fixed charge flow sets are developed in Section 2.4.3. Finally, some
strong inequalities for the F-SSDP are defined in Section 2.4.3.

Inequalities based on the inventory constraints

Here we consider valid inequalities for X derived from well-known valid inequalities for in-
ventory lot-sizing sets obtained when considering constraints (2.5), (2.13), (2.15), (2.19), (2.20),
(2.21), (2.26).
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First we introduce valid inequalities for the set of feasible solutions based on the well-known
(`, S) inequalities derived for lot-sizing problems (see [22]). In order to do that we first consider
the following set obtained from constraints (2.5), (2.13), (2.15), (2.19), (2.20), (2.21), (2.26):

si,m−1,k +
∑
v∈V

qimvk = Dimk + simk, ∀i ∈ N,m ∈M,k ∈ K : Jik = −1, (2.39)

qimvk ≤ V CAP
v oimvk, ∀i ∈ N,m ∈M,v ∈ V, k ∈ K, (2.40)∑

v∈V
oimvk ≤ 1, ∀i ∈ N,m ∈M,k ∈ K, (2.41)

simk, qimvk ≥ 0, ∀i ∈ N,m ∈M,v ∈ V, k ∈ K, (2.42)

oimvk ∈ {0, 1}, ∀i ∈ N,m ∈M,v ∈ V, k ∈ K. (2.43)

Constraints (2.41) are implied by (2.5) and (2.26).
The set of solutions satisfying constraints (2.39)-(2.43) can be separated for each port i and

each product k. By fixing a port i and a product k (and removing the corresponding indices,
for simplicity), we obtain:

sm−1 +
∑
v∈V

qmv = Dm + sm, ∀m ∈M, (2.44)

qmv ≤ V CAP
v omv, ∀m ∈M, v ∈ V, (2.45)∑

v∈V
omv ≤ 1, ∀m ∈M, (2.46)

sm, qmv ≥ 0, ∀m ∈M,v ∈ V, (2.47)

omv ∈ {0, 1}, ∀m ∈M,v ∈ V. (2.48)

The set of solutions satisfying (2.44)-(2.48), denoted by XLS , is closely related to the feasible
set of capacitated lot-sizing problems (see [22]). The polyhedral structure of related sets has
been intensively study in the past. In [22] it is given a very complete and insightful survey of
these studies.

Consider ym =
∑

v∈V omv and xm =
∑

v∈V qmv. From (2.46) and (2.48) it follows that
ym ∈ {0, 1}. Let C = max{V CAP

v : v ∈ V }. Hence the following set, denoted by XCLS is a
relaxation of XLS :

sm−1 + xm = Dm + sm, ∀m ∈M, (2.49)

xm ≤ Cym, ∀m ∈M, (2.50)

sm, xm ≥ 0, ∀m ∈M, (2.51)

ym ∈ {0, 1}, ∀m ∈M. (2.52)

SetXCLS is the feasible set of the well-known single-item constant capacitated lot-sizing problem
(see [22]). For the instances based on real data that we consider in this paper, in general, the
demand of each product at each island over the time period does not exceed the capacity of
the smallest ship. Hence, for these instances, constants V CAP

v in (2.45) can be seen as a large
positive constant and therefore XCLS can be regarded as the incapacitated single-item lot-
sizing problem. In this case the set of well-known (`, S) inequalities defined for all ` ∈ M,
S ⊆ {1, . . . , `},

sr−1 +
∑

j∈{r,...,`}\S

xj +
∑
j∈S

(
∑̀
i=j

Di)yj ≥
∑̀
i=r

Di, (2.53)

where r = min{i ∈ S}, suffice to describe the convex hull of XCLS .
By writing these inequalities in the original variables we obtain the following proposition.
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Proposition 2.4.1. For each i ∈ N, ` ∈M, S ⊆ {1, . . . , `}, k ∈ K the inequality (`, S)

si,r−1,k +
∑

n∈{r,...,`}\S

∑
v∈V

qinvk +
∑
m∈S

(
∑̀
n=m

Dink)
∑
v∈V

oimvk ≥
∑̀
n=r

Dink, (2.54)

where r = min{i ∈ S}, is valid for X.

Example 2.4.1. Let N = {1, 2, . . . , 7}, M = {1, 2, . . . , 12}, V = {1, 2}, K = {1, 2, 3, 4}. Fix
port i = 5, product k = 3 (supposing J53 = −1) and consider the demand

(0, 300, 0, 0, 0, 0, 0, 0, 900, 0, 0, 700)

for twelve periods at that island for that product. Letting ` = 12 and S = {8, 10}, then the
following inequality is valid for X :

s573 +
∑

n∈{9,11,12}

2∑
v=1

q5nv3 + 1600(o5813 + o5823) + 700(o5,10,1,3 + o5,10,2,3) ≥ 1600.

This inequality states that the demand during periods 8 to 12 must be satisfied either from
an unloading operation in period 8, 1600(o5813 + o5823), or from a combination of an unloading
operation in period 10, 700(o5,10,1,3 + o5,10,2,3), the stock from period 7, s573, and the unload
quantity in periods {9, 11, 12},

∑
n∈{9,11,12}

∑2
v=1 q5nv3.

For the few cases (a product-port pair) where the total demand of a product in a given port
is greater than the capacity of a ship, inequalities are still valid, however they may no longer
define the convex hull of XCLS .

The family of inequalities (`, S) includes an exponential number of inequalities. As we
describe in Section 2.6 we only use a small number of these inequalities.

Mixed-integer rounding (MIR) is a very powerful technique to derive strong valid inequalities
for mixed integer sets, see [18]. The well-known MIR-inequalities (see [19]) can be stated as
follows.

Proposition 2.4.2. Let Y = {(s, y) ∈ R+ × Z : s + ay ≥ d}. The inequality s ≥ r(dd/ae − y)
is valid for Y , where r = d− (dd/ae − 1)a.

Next we apply this proposition to derive valid inequalities for each model, B-SSDP, F-SSDP
and MF-SSDP. In order to do that we must define mixed-integer sets of the form of Y that
result from relaxation of the set of feasible solutions of each formulation.

First we consider equations (2.15). For each port i and product k such that Jik = −1,
aggregating equations (2.15) for all periods in M, and using nonnegativity of si,|M |,k we obtain:

si0k +
∑
m∈M

∑
v∈V

qimvk ≥
∑
m∈M

Dimk. (2.55)

For each S ⊆M and v′ ∈ V (2.55) can be written as

si0k +
∑

m∈M\S

∑
v∈V

qimvk +
∑
m∈S

∑
v∈V :v 6=v′

qimvk +
∑
m∈S

qimv′k ≥
∑
m∈M

Dimk. (2.56)

Using (2.40), it follows that

si0k +
∑

m∈M\S

∑
v∈V

qimvk +
∑
m∈S

∑
v∈V :v 6=v′

qimvk + V CAP
v′

∑
m∈S

oimv′k ≥
∑
m∈M

Dimk. (2.57)

Let s = si0k +
∑

m∈M\S
∑

v∈V qimvk +
∑

m∈S
∑

v∈V :v 6=v′ qimvk, y =
∑

m∈S oimv′k, a = V CAP
v′ ,

d =
∑

m∈M Dimk. Applying Proposition 2.4.2, we obtain the following result.
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Proposition 2.4.3. For each i ∈ N,S ⊆ M, v′ ∈ V, k ∈ K such that Jik = −1, the following
MIR inequality

si0k +
∑

m∈M\S

∑
v∈V

qimvk +
∑
m∈S

∑
v∈V :v 6=v′

qimvk + r
∑
m∈S

oimv′k ≥ r
⌈∑

m∈M Dimk

V CAP
v′

⌉
, (2.58)

where r =
∑
m∈M

Dimk −
(⌈∑

m∈M Dimk

V CAP
v′

⌉
− 1

)
· V CAP

v′ , is valid for X.

Example 2.4.2. Continuing Example 2.4.1, let V CAP
1 = 1500, V CAP

2 = 2000. Considering
S = {1, 2, 3, 4, 5, 6}, v′ = 1, then the following inequality is valid for X :

s503 +
12∑
m=7

2∑
v=1

q5mv3 +
6∑

m=1

q5m23 + 400
6∑

m=1

o5m13 ≥ 800.

This inequality states that either the number of unload operations of ship 1 (at port 5 for product
3) during the first six periods is at least two (the minimum number of unload operations from
this ship necessary to satisfy all the demand) or else, if there is only one unload operation from
ship 1 during the first six periods, then the unloaded quantity from the other ship (ship 2) and
from ship 1 during period 7 to period 12 must be at least r = 400, that is, the total demand
(1900) minus the capacity of ship 1, 1500.

Inequalities based on fixed charge flow sets

Here we introduce valid inequalities based on the number of ship visits to a set of ports
during a given time horizon. We develop and present the family of inequalities for F-SSDP, but
similar results can be derived for B-SSDP and MF-SSDP.

Let D(S,L,Q) denote the total demand for the subset of products Q ⊆ K, in ports S ⊆ N,
such that Jik 6= 1, for all i ∈ S, k ∈ Q, (S does not contain any supply port of prod-
ucts in Q), during the time horizon L = {1, . . . , `} ⊆ M, with ` ≥ 2. Hence, D(S,L,Q) =∑

i∈S
∑

n∈L
∑

k∈QDink. Let D(S,L,Q) denote the amount of demand in D(S,L,Q) that must

be transported from ports in N \ S, that is, D(S,L,Q) = D(S,L,Q)−
∑

v∈V :iv∈S
∑

k∈QQvk −∑
i∈S
∑

k∈Q si0k.

For each Q ⊆ K, S ⊆ N, L = {1, . . . , `} ⊆M, such that S does not contain any supply port
of products in Q, define the following subset X(S,L,Q):∑

v∈V

∑
i∈N\S

∑
j∈S

∑
m∈L

∑
n∈L,n>m

∑
k∈Q

fimjnvk ≥ D(S,L,Q), (2.59)

∑
k∈Q

fimjnvk ≤ V CAP
v ximjnv,∀i ∈ N \ S, j ∈ S,m, n ∈ L, v ∈ V, (2.60)

fimjnvk ≥ 0, ∀i ∈ N \ S, j ∈ S,m, n ∈ L, v ∈ V, k ∈ Q, (2.61)

ximjnv ∈ {0, 1},∀i ∈ N \ S, j ∈ S,m, n ∈ L, v ∈ V. (2.62)

In order to verify that X(S,L,Q) can be obtained as relaxation of X, we consider the
aggregation of constraints (2.15) over the sets S,L,Q :∑

j∈S

∑
k∈Q:Jjk=−1

sj0k +
∑
v∈V

∑
j∈S

∑
n∈L

∑
k∈Q:Jjk=−1

qjnvk = D(S,L,Q) +
∑
j∈S

∑
k∈Q:Jjk=−1

sj`k.
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Since variables sj`k are nonnegative, it follows that∑
j∈S

∑
k∈Q:Jjk=−1

sj0k +
∑
v∈V

∑
j∈S

∑
n∈L

∑
k∈Q:Jjk=−1

qjnvk ≥ D(S,L,Q). (2.63)

Using (2.35) and (2.36), then we obtain

∑
j∈S

∑
k∈Q:Jjk=−1

sj0k +
∑

v∈V :jv∈S

∑
k∈Q:Jjk=−1

Qvk −∑
i 6=jv

∑
n>1

fjv1invk


+
∑
v∈V

∑
j∈S

∑
n∈L,n>1

∑
k∈Q:Jjk=−1

∑
i 6=j

∑
m<n

fimjnvk −
∑
i 6=j

∑
m>n

fjnimvk

 ≥ D(S,L,Q) (2.64)

⇔
∑
v∈V

∑
j∈S

∑
n∈L

∑
k∈Q:Jjk=−1

∑
m<n

 ∑
i∈N\S

fimjnvk +
∑

i∈S\{j}

fimjnvk


≥ D(S,L,Q) +

∑
v∈V

∑
j∈S

∑
n∈L

∑
k∈Q:Jjk=−1

∑
m>n

 ∑
i∈N\S

fjnimvk +
∑

i∈S\{j}

fjnimvk

 . (2.65)

Constraints (2.59) are implied by (2.65) since∑
v∈V

∑
j∈S

∑
n∈L

∑
k∈Q:Jjk=−1

∑
m∈L:m<n

∑
i∈S\{j}

fimjnvk =
∑
v∈V

∑
j∈S

∑
n∈L

∑
k∈Q:Jjk=−1

∑
m∈L:m>n

∑
i∈S\{j}

fjnimvk,

and using nonnegativity of fkjnimv.
Sets X(S,L,Q) have been intensively studied in the past (e.g. [20]). Although some compu-

tational tests have been conducted using valid inequalities derived from these sets we focus here
only on valid inequalities for a set obtained from aggregation of these X(S,L,Q) sets. There
are two main reasons for this choice: (i) the commercial software used is able to include flow
cover inequalities, which are known to be important to strengthening the gap for sets of type
X(S,L,Q); (ii) preliminary computational results showed that the inequalities we introduce
below provided larger reduction of the integrality gap.

We aggregate the arc-load flow variables corresponding to each ship, that is

Yv =
∑
i∈N\S

∑
j∈S

∑
m∈L

∑
n∈L

∑
k∈Q

fimjnvk,∀v ∈ V,

and aggregate the corresponding arc variables:

Xv =
∑
i∈N\S

∑
j∈S

∑
m∈L

∑
n∈L

∑
k∈Q

ximjnv, ∀v ∈ V.

Variables Yv indicate the load transported from ports in N \ S to ports in S during the time
horizon L by ship v, while Xv denotes the number of times ship v visits a port in S coming
from a port not in S during the time horizon L (see Figure 2.4).

Let D denote the total demand for the subset of products Q, in ports S, during the time
horizon L, that must be transported from ports in N \ S, that is, D = D(S,L,Q). Hence, the
following mixed integer set is a relaxation of the set of the feasible solutions:{

(Y,X) ∈ R|V |+ × Z|V |+ :
∑
v∈V

Yv ≥ D,Yv ≤ V CAP
v Xv, v ∈ V

}
.
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Y1 ≤ V CAP
1 X1

· · ·
Y2 ≤ V CAP

2 X2

Y|V | ≤ V CAP
|V | X|V |

N\S S
D

Figure 2.4: A fixed charge flow set.

In our case there are only two ships, that is | V |= 2. Then we obtain the following aggregated
model, denoted by XY 2, with two continuous and two integer variables:{

(Y1, Y2, X1, X2) ∈ R2
+ × Z2

+ : Y1 + Y2 ≥ D,Y1 ≤ V CAP
1 X1, Y2 ≤ V CAP

2 X2

}
.

For each valid inequality for XY 2,

α1X1 + α2X2 + β1Y1 + β2Y2 ≥ α,

we obtain a valid inequality,

α1

∑
i∈N\S

∑
m∈L

∑
j∈S

∑
n∈L

ximjn1 + α2

∑
i∈N\S

∑
m∈L

∑
j∈S

∑
n∈L

ximjn1

+β1

∑
i∈N\S

∑
m∈L

∑
j∈S

∑
n∈L

∑
k∈Q

fimjn2k + β2

∑
i∈N\S

∑
m∈L

∑
j∈S

∑
n∈L

∑
k∈Q

fimjn2k ≥ α, (2.66)

for X. This model XY 2 is closely related to the models studies in [1]. The purpose of this
paper is not to provide full polyhedral description for XY 2, but only to identify those valid
inequalities with large impact on the gap.

It is easy to verify that facet-defining inequalities for the convex hull of

X2 = {(X1, X2) ∈ Z2
+ : V CAP

1 X1 + V CAP
2 X2 ≥ D}

are also facet-defining inequalities for the convex hull of XY 2.

In general the convex hull of X2, (conv(X2)) contains non-trivial facet-defining inequalities,
that is, facets that are not defined by X1 ≥ 0, X2 ≥ 0, V CAP

1 X1+V CAP
2 X2 ≥ D. For a polyhedral

description of conv(X2) see [1]. Such facet-defining inequalities were already used in [26] for
a locomotive assignment problem. Since V CAP

1 and V CAP
2 are large and D is at most 3 or 4

times the smallest coefficient, it is easy to see that V CAP
1 X1 + V CAP

2 X2 ≥ D does not define a
facet of conv(X2) and that conv(X2) has one or two facet-defining inequalities (this is not the
general case of integer sets with two variables).

Example 2.4.3. Consider the following set with V CAP
1 = 1500, V CAP

2 = 2000, and a demand
of D = 6098. From figure 2.5 we can see that conv(X2) has two non-trivial facet defining
inequalities: X1 +X2 ≥ 4 and X1 + 2X2 ≥ 5.

This family of inequalities on the xjnimv variables proved to be very important on solving
our instances. We call these inequalities Nvisits-inequalities since they are written on the
aggregation of xjnimv variables, thus, on the number of visits to a subset of ports.

Families of inequalities similar to the Nvisits-inequalities have been used in other maritime
transportation problems, see for example [21].
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1, 500X1 + 2, 000X2 = 6, 098

Figure 2.5: Facet defining inequalities for conv({(X1, X2) ∈ Z2
+ : 1, 500X1 +2, 000X2 ≥ 6, 098}).

Another important family of inequalities that define facets for XY 2 is the MIR inequalities

Yv ≥ r
(⌈

D

V CAP
v

⌉
−Xv

)
,∀v ∈ V,

where r = D −
(⌈

D

V CAP
v

⌉
− 1

)
V CAP
v . Some preliminary tests have shown that these MIR

inequalities were ineffective in reducing the integrality gap and, therefore, we ignore them in
the computational results.

Strong inequalities

The fourth family of inequalities, called strong inequalities (see [5] for the use of these
inequalities on a related problem), are considered only for the F-SSDP and MF-SSDP. The
strong inequalities for the F-SSDP are defined as follows:

fimjnvk ≤ min

V CAP
v ,

∑
u∈N

∑
t∈M,t≥n

Dutk

ximjnv, ∀i, j ∈ N,n,m ∈M, v ∈ V, k ∈ K.

(2.67)
For the MF-SSDP, the strong inequalities are defined as follows:

γutimjnvk ≤ min{V CAP
v ,

∑
l∈M,l≥t

Dulk}ximjnv, ∀i, j, u ∈ N,n,m, t ∈M,v ∈ V, k ∈ K. (2.68)

Since min
{
V CAP
v ,

∑
u∈N

∑
t∈M,t≥nDutk

}
≥ min

{
V CAP
v ,

∑
l∈M,l≥tDulk

}
, the strong inequali-

ties are tighter for the MF-SSDP.

The huge number of inequalities in these families makes the use of a separation algorithm
necessary in order to choose only a small number of cuts to be included.
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2.5 Dedicated tanks case

In this section we consider the tank allocation policy followed by the company. Changing
from a dirty product to a cleaner one imposes a major cleaning operation that is time consuming
and expensive. In order to avoid such major changeovers the company dedicates tanks to families
of products in such a way that the changeover time and cost between products of the same family
can be neglected. The families of products do not depend on the ship. Unpredictable situations,
such as bad weather conditions, may force the company to change this policy in order to satisfy
the demands.

The three models discussed for the non dedicated tanks problem B-SSDP, F-SSDP and MF-
SSDP can be adapted to handle the real case with dedicated tanks. Next we give the changes
in F-SSDP, since this was the model that provided best result for the case without dedicated
tanks. The new model will be denoted by F-SSDP-DC.

We denote by SCv the set of compartments of ship v. For each compartment c ∈ SCv , we define
its capacity as V CAP c

v and define the set of products that c can transport as Kc
v. Parameter Qcvk

denotes the quantity of product k in compartment c of ship v at the beginning of the planning
horizon.

When a family has more than one product, we need to specify the compartment where
the product is transported for each continuous variable fimjnvk and qimvk. In order to do
that we define the new continuous nonnegative variables f cimjnvk as the amount of flow fimjnvk
transported from compartment c, and qcimvk as the amount of product k loaded onto or unloaded
in compartment c of ship v at port i in time period m.

In order to prevent the transportation of more than one product of the same family in the
same tank, we define the new binary variables χcimjnvk indicating whether ship v transports
product k in compartment c when sailing from port i, after an operation that started in period
m, to port j and starts to operate at port j in period n.

The F-SSDP-DC model is obtained from the model F-SSDP by replacing the constraints
(2.13), (2.32), (2.33) and (2.15) with

qcimvk ≤ V CAP c

v oimvk, ∀i ∈ N,m ∈M,v ∈ V, c ∈ SCv , k ∈ Kc
v : Jik 6= 0, (2.69)∑

i 6=j

∑
m<n

f cimjnvk + Jjkq
c
jnvk =

∑
i 6=j

∑
m>n

f cjnimvk,

∀j ∈ N,n ∈M : n > 1, v ∈ V, c ∈ SCv , k ∈ Kc
v, (2.70)

Qcvk =
∑
j 6=iv

∑
n>1

f civ1jnvk − Jivkqciv1vk, ∀v ∈ V, c ∈ SCv , k ∈ Kc
v, (2.71)

si,m−1,k +
∑
v∈V

∑
c∈SCv

qcimvk = Dimk + simk, ∀i ∈ N,m ∈M,k ∈ K : Jik = −1, (2.72)

and replacing (2.34) with

f cimjnvk ≤ V CAP c

v χcimjnvk, ∀i, j ∈ N,m, n ∈M,v ∈ V, c ∈ SCv , k ∈ Kc
v, (2.73)∑

k∈Kc
v

χcimjnvk ≤ ximjnv, ∀i, j ∈ N,n,m ∈M, v ∈ V, c ∈ SCv . (2.74)

By aggregation of variables f cimjnvk and qcimvk, a feasible solution of F-SSDP from every
feasible solution of F-SSDP-DC can be constructed. The converse is not true, since F-SSDP-
DC can be feasible when F-SSDP is infeasible. From the computational point of view, this
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might lead to larger branch and bound trees when using F-SSDP-DC for those instances where
finding a feasible solution is difficult. Also, F-SSDP-DC is larger than F-SSDP.

On the other side, the lower bounds based on the linear relaxation of F-SSDP-DC are in
general better than those obtained with F-SSDP. This comes from the fact that the coefficients
on the linking constraints are smaller since the capacity of the ships is replaced by the capacity
of the tanks.

2.6 Computational results

In this section we present some computational results using 20 instances based on real data
from Cape Verde. We tested different models resulting from different ways of combining the
improving strategies. All computations were performed using the optimization software Xpress
Optimizer Version 20.00.05 with Xpress Mosel Version 3.0.0, on a computer with processor
Intel Core 2 Duo, CPU 2.2GHz, with 4GB of RAM. We consider the present real sized problem
consisting of 4 products, 7 islands and 2 ships and a planning horizon of 12 periods (days).

In Section 2.6.1 we provide a computational comparison of the different models tightened
with valid inequalities. Then, in Section 2.6.2, we test the best model with larger size instances
in order to evaluate its performance on hypothetical future scenarios with increase of demand
requirements and number of ships. Finally, in Section 2.6.3, the model F-SSDP-DC is tested on
the real case where tanks are dedicated to families of products, and the results are compared
with results obtained from the real plans established by the company.

2.6.1 Model comparison

For the B-SSDP model we tested the inclusion of three families of inequalities: (`, S), MIR
and Nvisits inequalities. We tested separately the inclusion of cuts from each of the families.
Table 2.1 reports the results of these tests. For each case, identified in the first line of the table,
we present the integrality gap (Gap), the number of cuts (Cuts) added, and the time (Time) in
seconds to solve the problem. Here, the gap is defined as GAP = Opt.V alue−LowerBound

Opt.V alue × 100.
We also tested the inclusion of all cuts (last three columns in Table 2.1). In each case the cuts
were introduced only at the root node. First we solve the linear relaxation, then we add cuts
and finally we execute the branch and bound using the default options. The value LowerBound
used to compute the GAP is the lower bound at the root node after the inclusion of these
cuts. All the models with exception of the original one, without cuts, include the tightening
of bounds. For each instance we consider a time limit of 3 hours. The asterisk in Instance 5
In Table 2.1 means that this instance was not solved within the time limit using the B-SSDP,
the B-SSDP with (`, S) and the B-SSDP with MIR inequalities. In the last line of the table we
include the corresponding average value of all the 20 instances.

For the (`, S) inequalities we use the separation procedure described in [22]. For the MIR
inequalities we include all cuts (inequalities violated by the linear relaxation solution) from this
family while the improvement in the bound is greater than 1%. For the Nvisits, the separation
algorithm includes all cuts from those inequalities where either S or N \ S is a singleton.

Since the transportation cost is the most relevant cost for the optimal value, the Nvisit-
inequalities are the ones that provide highest reduction of the gap as these cuts consider explic-
itly the routing variables. The number of cuts introduced from this family is usually very small.
Hence as we can see from Table 2.1 this family alone is the one that provides best results. The
gap is half of the original gap. Only the approach that includes cuts from all families provides
better results in terms of gap but not on the time. In this last approach the set of Nvisit cuts
are introduced first, then the (`, S) are introduced and, finally, the MIR cuts are introduced.
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Table 2.1: Computational tests for the B-SSDP.
B-SSDP B-SSDP+(l,S) B-SSDP +MIR B-SSDP+NVISITS B-SSDP+All

Int. Gap Time Gap Cuts Time Gap Cuts Time Gap Cuts Time Gap Cuts Time
1 72,9 903 63,2 26 121 57,2 77 49 36,2 11 78 28,6 114 35
2 86,9 1701 77,9 37 2393 68,1 135 2356 53,2 10 337 42,9 182 526
3 88,1 382 64,1 15 389 78,1 200 237 56,9 11 169 40,5 226 214
4 77,5 33 67,7 3 8 59,1 33 15 15,1 8 7 13,8 44 6
5* 85,5 10800 71,9 4 10801 71,9 30 10801 34,8 10 568 34,1 44 752
6 79,2 184 49,1 9 64 57,9 238 64 36,4 6 33 30,3 253 22
7 75,7 9 35,1 18 6 32,5 107 3 25,2 6 3 11,5 131 4
8 84,8 134 77,3 30 58 73,6 43 55 46,4 11 48 45,1 84 74
9 90,9 19 63,0 6 15 72,3 79 9 61,2 9 11 58,5 94 12
10 84,4 35 66,6 53 34 67,6 160 34 31,1 10 8 27,3 223 8
11 77,2 10 41,1 5 5 32,4 97 5 23,4 3 4 18,4 105 7
12 86,4 64 69,1 13 39 81,7 176 29 52,1 13 22 48,7 202 25
13 88,6 6841 75,5 28 4403 74,5 184 5326 56,4 5 1717 55,7 217 2494
14 83,1 6 62,6 4 3 60,7 34 2 31,3 8 1 29,0 46 1
15 91,2 71 62,9 27 43 79,6 219 44 69,0 10 73 53,1 256 42
16 90,1 52 70,3 22 29 77,4 184 23 54,6 4 25 52,5 210 20
17 84,1 71 72,9 20 40 75,1 80 51 40,0 6 28 37,0 106 31
18 89,3 13 53,6 3 4 64,2 54 3 19,2 5 2 18,3 62 2
19 89,3 28 76,1 19 21 78,2 124 15 63,7 11 13 62,1 154 27
20 84,0 35 66,0 28 30 67,8 238 30 31,4 11 15 28,4 277 12
Av. 84,5 1069,55 64,3 18,5 925,3 66,5 124,6 957,6 41,9 8,4 158,1 36,8 151,5 215,7

With this approach the average gap is reduced from 84.5% to 36.8%. These gaps do not include
the cuts from Xpress.

For the F-SSDP the results are presented in Table 2.2. For this model we also present
the results for the family of strong inequalities (denoted by SI). In this case only the cuts
corresponding to the greatest violation are introduced. The approach including all types of cuts
follow the sequence of cuts: Nvisits, (`, S), Strong inequalities and MIR. This approach proved
to be the best one by reducing the average gap to 16.2% and by reducing the computational
time to less than one minute on average, and always below 10 minutes. When the B-SSDP was
used, one instance was not solved within 3 hours. Again, notice that the gaps reported do not
include the cuts introduced by Xpress using the default options.

For the MF-SSDP the results are presented in Table 2.3. As expected, the best bounds were
obtained with MF-SSDP, the tightest formulation. However, the size of the model leads to poor
running times.

In Table 2.4 we provide an overview of the average results obtained with the three models.
The line Nodes gives the average number of nodes of the branch and bound algorithm.

2.6.2 Future scenarios: larger size instances

To test the model that performed better, F-SSDP, on larger instances we created two ar-
tificial future scenarios where the demands as well as the number of ships are increased. One
scenario with three ships and where demands are 1.5 times the current demands, and another
scenario with four ships and where the demands are doubled. The results are given in Table 2.5.
For each scenario, identified by the number of ships (| V |= 3 and | V |= 4), we provide the
integrality gap (Gap-I), the gap given by Xpress at the end of the running time, limited to three
hours (Gap-E), and the running time (Time). In the four ships case some instances become
infeasible because of the port activity restrictions that impose a maximum of one ship operating
at each port per time period.

In order to derive Nvisits inequalities for the three and four ships cases we first generate a
Nvisits inequality for each subset of X2 of two variables obtained considering two ships. Then
the Nvisits inequality is lifted using the subadditive lifting function ω3 given in [2].

To improve the running times we also adapted the branching strategy presented in [26] (see
also [3]). We establish high priority for branching on the variables representing the number of
ship visits to each port. This strategy proved to be very effective.

We can see from Table 2.5 that 17 instances were solved to optimality for the three ships
case, and only 4 were solved for the four ships case, within the limit of three hours.
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Table 2.4: Summary of general information from the three models.
B-SSDP B-SSDP+ALL F-SSDP F-SSDP+ALL MF-SSDP MF-SSDP+ALL

Gap (%) 84.5 36.6 48.3 16.2 23.7 15.5
Nodes 50562.4 16622.6 4301.7 853.9 2307.7 665.9

Time (sec.) 1069.6 215.7 238.9 59.7 472 195

Table 2.5: Computational results for the F-SSDP with 3 and 4 ships
|V | = 3 |V | = 4

Inst. Gap-I Gap-E Time Gap-I Gap-E Time
1 22.9 0.0 309 24.6 1.1 10800
2 36.4 17.0 10800 34.9 21.4 10800
3 36.7 7.4 10800 30.2 12.9 10800
4 17.0 0.0 72 17.1 0.0 2724
5 23.1 0.0 1411 19.0 6.1 10800
6 19.8 0.0 11 35.5 0.0 686
7 35.8 0.0 119 - - -
8 37.1 0.0 195 25.5 0.0 863
9 40.3 0.0 103 32.3 0.9 1037
10 14.7 0.0 454 - - -
11 31.0 0.0 651 44.2 7.7 10800
12 14.9 0.0 89 - - -
13 22.9 0.0 1697 18.3 1.0 5027
14 20.0 0.0 7 22.7 0.0 21
15 36.4 0.0 5351 32.8 9.5 10800
16 30.1 0.0 2408 25.8 6.5 10800
17 33.7 6.1 10800 29.5 18.3 10800
18 21.3 0.0 11 20.5 1.0 208
19 33.1 0.0 893 31.4 8.6 10800
20 26.2 0.0 2790 - - -
Av. 27.7 1.5 2449.6 27.0 4.9 5552.15

2.6.3 Real case: tanks are dedicated to families of products

The F-SSDP-DC is tested on instances based on the real case of dedicated tanks. Three
families of products were considered. Two of them with one product only: the fuel (the dirtiest
product) and jet (the cleanest product), and one family with two products, gasoline and diesel.

Since the linear relaxation of F-SSDP-DC provides better lower bounds for this case than
those provided by F-SSDP for the non dedicated tanks case, the impact of the inclusion of
valid inequalities in F-SSDP-DC is lower than the impact of the inclusion of valid inequalities
in F-SSDP. Hence we give the results only for the most relevant valid inequalities, the Nvisits
inequalities. The computational results are reported in Table 2.6.

Table 2.6: Computational results for the dedicated tanks case.
F-SSDP-DC F-SSDP-DC+ NVISITS

Instance Gap Nodes Time Gap Nodes Cuts Time
1 26.0 82273 3840 25.7 26653 7 1444
2 29.4 1585 42 8.8 418 7 24
3 26.5 27957 1881 22.4 25680 5 1651
4 25.4 5752 2534 12.7 1746 11 979
5 31.2 35918 1602 10.2 27283 9 1334
6 32.3 23530 2257 4.7 21436 12 1775
7 32.2 59081 6272 20.7 28580 8 2716
8 24.6 22775 2387 23.0 21106 4 2282
9 26.8 1969 97 3.7 1775 6 74
10 22.3 20800 2651 13.4 8077 8 1856
11 30.0 21345 2687 25.9 19257 6 1873
12 35.2 13057 584 21.6 8634 5 351
Av. 28.5 26336.8 2236.2 16.1 16993.9 7.3 1454.0

In this case we tested 12 instances, compared them with the real plans followed by the
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company and verified an average gain in the cost (not reported in the table) of approximately
15%.

We can observe from Table 2.6 that, as expected, the average integrality gap is slightly lower
in this case of dedicated tanks. Conversely, the running times are larger. In average the running
time is less than 25 minutes.

Finally, Table 2.7 provides a general overview of the average size of the models tested.

Table 2.7: Average size of the tested models.

Model |V | Binary var. Continuous var. Total var. Constraints
B-SSDP 2 6344 1920 8264 53163
F-SSDP 2 6344 23712 30056 22503

MF-SSDP 2 6344 577824 584168 43003
F-SSDP 3 9516 30076 39592 33397
F-SSDP 4 12688 39896 52584 44291

F-SSDP-DC 2 28184 37704 65888 123268

2.7 Conclusions

We developed a mixed integer model, B-SSDP, for the short sea fuel oil distribution problem
occurring in Cape Verde. The model applies a combined discrete and continuous time horizon
in order to take the varying demands and multiple time windows into account.

Both cases with and without dedicated ship tanks for families of products were considered.
In order to efficiently solve the instances considered, we tested different approaches to improve
the B-SSDP. In particular, we compared the B-SSDP with two extended formulations, an arc-
load flow formulation F-SSDP, using additional variables indicating the amount of each type
of fuel oil products each ship transports between each pair of ports and a multi-commodity
formulation MF-SSDP. We also tightened the constraints and tested the inclusion of cuts from
different families of inequalities. Separation algorithms were used such that we could include
few inequalities from those inequality families with high impact on the integrality gap reduction.

The extended formulation, F-SSDP, with tighter bounds, combined with the approach of
using a small subset of inequalities from each family proved to be the best option. It allowed
us to solve all tested instances within reasonable time.

The models introduced are new and can also be used in other maritime transportation
problems. Several of the types of cuts presented here have not been developed for maritime
transportation problems previously in the literature, and they can easily be used when solving
other real maritime inventory routing problems. We have shown how we can transform exiting
valid inequalities in the literature to maritime inventory routing problems.
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Chapter 3

Discrete time and continuous time
formulations for a short sea
inventory routing problem

Abstract

We consider a fuel oil distribution problem where an oil company is responsible for the routing
and scheduling of ships between ports such that the demand for various fuel oil products is
satisfied during the planning horizon. The consumption rates are given and assumed to be con-
stant. We provide two alternative mixed integer formulations: a discrete time model adapted
from the case where the production/consumption rates are varying and a classical continuous
time formulation. We discuss different extended formulations and valid inequalities that allow
us to reduce the linear gap of the two initial formulations. A computational study comparing
the various models accordingly to their size, linear gap and running time, was conducted based
on real small-size instances, using a commercial software.

Keywords: Maritime transportation, Discrete time and continuous time formulations, Ex-
tended formulations, Valid inequalities.

3.1 Introduction

Maritime transportation is a major mode of transportation of goods worldwide. The impor-
tance of this mode of transportation is obvious for the long distance transportation of cargoes
but it is also crucial in local economies where the sea is the natural link between the local devel-
oped regions, such as countries formed by archipelagoes. When a company has the responsibility
of coordinating the transportation of goods with the inventories at the ports, the underlying
planning problem is a maritime inventory routing problem. Such problems are very complex.
Usually modest improvements in the supply chain planning can translate into significant cost
savings.

In this chapter we consider a real maritime inventory routing problem occurring in the
archipelago of Cape Verde. An oil company is responsible for the inventory management of
different oil products, such as, diesel, gasoline, fuel and jet, in several tanks located in the
main islands. Fuel oil products are imported and delivered to specific islands and stored in
large supply storage tanks. From these islands, fuel oil products are distributed among all
the inhabited islands using a small heterogeneous fleet of ships. These products are stored
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in consumption storage tanks. Some ports have both supply tanks for some products and
consumption tanks of other products. Not all islands consume all products.

Consumption rates are assumed to be given and constant. Typically the consumption rates
are forecasted. Hence, safety stocks must be considered. Additionally, the storage tanks have
limited capacity. Therefore, the level of each product in each tank must always be kept between
a given lower level, determined by the safety stock, and an upper level, determined by the tank
capacity. As the capacity of the supply tanks is very large when compared to the total demand
over the horizon, we omit the inventory aspects for these tanks.

To transport fuel oil products between the islands, the planners control a small heterogeneous
fleet. Each ship has a specified load capacity, fixed speed and cost structure. The cargo hold
of each ship is separated into several cargo tanks. The products cannot be mixed, and cleaning
operations to change between products on the same tank should be avoided. Therefore we
assume that the ships have dedicated tanks for each product. Each port can receive at most
one ship at a time, and in some ports there exists a minimum time interval between the departure
of one ship and the arrival of the next ship.

Given the initial stock levels at the consumption tanks, the initial ship position (which can
be a point at sea) and the quantities on board each ship, the inter-island distribution plan con-
sists of designing routes and schedules for the fleet of ships including determining the number
of visits to each port and the (un)loading quantity of each product at each visit to each port.
This plan must satisfy the safety stocks of each product at each island, and the capacities of
the ships and tanks. The transportation and operation costs of the distribution plan are to be
minimized. This problem is called a Short Sea Inventory Routing Problem (SSIRP). Short sea
stands for sea transportation between ports located in the same geographical area, in contrast
to deep sea which is typically transportation between continents.

We have witnessed an increased interest in studying optimization problems within maritime
transportation. See the reviews on maritime transportation; [13, 14, 15]. Combined routing
and inventory management within maritime transportation have been present in the literature
the last one and a half decades only; see [7] and [11]. These problems are often called Maritime
Inventory Routing Problems (MIRPs). Most of the published MIRP contributions are based
on real cases from the industry, see for the single product case [10, 17, 18, 19, 21] and for the
multiple product case [6, 12, 25, 26, 28, 29, 30].

In [6, 10, 28], the production and/or consumption rates are considered given and fixed
during the planning horizon. For those problems event based models are used where an index
indicating the visit number to a particular port is added to most of the variables. These event
based models are known as time continuous models [15]. In [1, 18, 19, 20, 21, 25, 26, 29] time
discrete models are developed to capture the complicating factors with varying production and
consumption rates.

The most related problems to the SSIRP given here are presented in [2] and [6]. In [2] it is
considered a variant of this SSIRP for short-term planning with demand orders, that is, amounts
of oil products that must be delivered within a given time period. These orders are determined
from the initial stock levels and the consumption rates. Typically, demand orders lead to a
problem with varying demands where demands are zero for most time periods and a large
amount for a few periods. Several key issues taken into account in the short-term problem,
such as port operating time windows for each time period, are relaxed here or incorporated
indirectly in the data. Otherwise, the problems considered originate from the same company in
the same region. In [6], a problem similar to the SSIRP is considered with constant consumption
rates. However, in [6] only a continuous model is considered. In both papers the products have
dedicated compartments in the ships.
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Just recently the study of valid inequalities has been incorporated in MIRPs. In [27] valid
inequalities are included in order to enhance the proposed formulations to an oil product trans-
portation problem, and in [24] valid inequalities are developed within a column generation
approach for a maritime inventory routing problem. Also, in [19] valid inequalities are derived
for a single-product maritime inventory routing, which are used within a branch-price-and-cut
algorithm. In [21], valid inequalities are included to improve the formulation presented for
the liquefied natural gas inventory routing problem. Finally, [29] presents valid inequalities for
MIRPs including several practical constraints for solving problems in different shipping seg-
ments. Comparison of different formulations in conjunction with valid inequalities have been
used in [1] and [2].

As discussed in both [7] and [29], most combined maritime routing and inventory man-
agement problems described in the literature have particular features and characteristics, and
tailor-made methods are developed to solve the problems. These methods are often based on
heuristics or decomposition techniques. The choice of these solution approaches might be ex-
plained by the high complexity of real MIRPs and the possibility to utilize the special structure
of the problem. However, the constant hardware development combined with the theoretical
advances in optimization techniques have produced optimization solvers capable of handling in-
creasingly larger instances. Currently, it is possible to obtain optimal or near optimal solutions
to small real instances occurring in maritime transportation problems using commercial solvers.
See [2] for the case of Cape Verde, and [1, 22, 27, 29].

Mathematical formulations, and related discussion, for MIRPs have received some attention
during the last decades, see for instance, [1, 2, 4, 6, 9, 19, 29]. However, comparison of different
formulations for a given MIRP has just been considered in a few studies so far; see e.g. [1, 2, 20].
Such studies are of crucial relevance when planning to solve a problem or subproblems (embed-
ded in a more general solution approach) using commercial solvers. The SSIRP considered here
offers an interesting test bed for a computational study of different formulations. In this chap-
ter we discuss and compare different mathematical formulations for the SSIRP, some of them
sharing the characteristics of well-known and widely used formulations. Therefore, although the
problem presented here is a particular maritime inventory routing problem, the formulations
discussed and compared are of interest to other related maritime inventory routing problems as
well.

In addition to the common approach (see [6] and [10]) that consists of using event based
models (known as continuous time models), we introduce a model that combines a discrete
and continuous time where the discrete time corresponds to an artificial discretization of the
continuous time. This model is similar to the one given in [2] for SSIRP with time varying
consumption rates. For each approach, following [2] (see also [1] for a completely discrete model),
we develop an arc-load formulation and two extended formulations. Arc-load formulations are
the most used formulations in MIRPs, see [6, 10, 29]. The extended formulations use new
sets of variables that provide additional information about the solution. That information is
essential to derive a tighter model, that is, to derive a model whose linear relaxation is closer
to the optimal solution than the linear relaxation of the arc-load model. Similar extended
formulations have been extensively used for other problems, such as lotsizing and network flow
problems. In MIRPs they have been used in [1, 2] for problems with time varying consumption
rates. To the best of our knowledge, the two extended formulations introduced for the event
time model, and the formulations resulting from adaptation to the constant rate problem of
models including time discretization, are new for MIRPs.

We provide a comparison of the two approaches and the three different formulations for
each approach using as criteria the size of the models, the integrality gaps, the number of
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branch and bound nodes, and the running time to solve the instances. All formulations are
strengthened with valid inequalities and tightening of constraints. As in [1, 2], computational
experiments indicate that the best performances are obtained using extended formulations based
on sets of variables that associate flows to the ship arcs (called arc-load flow models). This
conclusion is highly relevant since, as mentioned above, most MIRPs have been modeled using
arc-load formulations which are dominated (both theoretically, considering the integrality gap,
and computationally, considering the running times) by the arc-load flow models.

The real test instances are of small size which allow us to use a commercial software to solve
them to optimality. However, it should be remarked that the tested models have a structure
that is well suited for solving instances with longer planning horizons than those considered
here. For instance, the underlying models can be used as subproblem of heuristic procedures
when solving larger problems. In [4], instances are heuristically solved for time horizons of
several months using a rolling horizon heuristic where the planning horizon is split into smaller
sub-horizons. Then, repeatedly, a limited and tractable problem (which is much related to the
one considered in this paper) is solved for the shorter sub-horizons using a commercial software.

The remaining of this chapter is organized as follows. Section 3.2 presents arc-load dis-
crete time and arc-load continuous time formulations. Extended formulations are discussed in
Section 3.3. In Section 3.4 we discuss how the formulations can be tightened with valid inequal-
ities. The computational study is reported in Section 3.5. Conclusions and final remarks are
presented in Section 3.6. A glossary of problem and model acronyms is given in Appendix A.

3.2 Mathematical Formulations

In this section we introduce two distinct arc-load formulations. It is mainly the network struc-
ture that differs in the two formulations. Since a ship can visit the same port several times
during the planning horizon, one needs to define the ship visits to each port unambiguously.
One approach consists of adapting a discrete time model of the SSIRP by performing a dis-
cretization of the time to overcome the complicating factor of handling the multiple visits to
each port. The other approach is to consider an ordering of the visits, and introduce an index
indicating the visit number to a particular port. Hence, each network node corresponds to an
event. This approach corresponds to the continuous time formulation. The first network is in
general larger than the second one. However while the first network can have only cycles within
each time period, the second one includes many cycles.

First we introduce a discrete time formulation. This type of formulations is usually used in
problems with time varying consumption rates. These problems differ from the constant con-
sumption rate on the consumption type (constant or varying) and on the inventory constraints.
While for the constant case inventory bounds (safety stocks and upper bound capacity) must be
satisfied during all time horizon, for the varying case inventory bounds need to be guaranteed
at the end of time periods only.

First, we introduce the SSIRP formulation for the time varying consumption rates problem
and call it the Basic Arc-Load Discrete Time formulation with time varying consumption (BD-
SSIRP-V). Then we explain the changes of the formulation for the problem with constant
consumption rates, and call it BD-SSIRP. In both models, the time is discretized into time
periods. A node in the underlying network is described by the port and time period. The
time discretization needs to be appropriately chosen. The time unit should be simultaneously
large enough to accommodate the duration of a full ship operation, and fine enough as certain
constraints can only be ensured over the entire period or at the end of each time period. For
example, restricting the number of operating vessels in a port can only be enforced over the
entire time period, and constraints such as inventory capacity, are only enforced at the end of
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Supply port for
products 1 and 2
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products 3 and 4
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Figure 3.1: Example of two routes with a discrete time network. Each column corresponds to
a period and each horizontal layer corresponds to a port.

D1

D2

O1

O2

1,1

4,1
4,2

2,1
2,2

3,2

3,1

Figure 3.2: Example of ship routes where each node represents a visit. The first label indicates
the port and the second label indicates the visit. Each arc type represents the path of a different
ship.

each time period. In addition, the consumption rate needs to be constant within a time period
in the case of time varying consumption. Demand rates and consumption rates could be used
interchangeably, but we use consumption rates throughout the chapter. An example of the ship
routes in a feasible solution is depicted in Figure 3.1. Ship 1 sails from its origin to port 2. Then
it starts to operate in period 2 at port 2. Further on, it sails to port 4 and starts to operate in
period 3 at port 4. Then it sails to port 3 and starts to operate at port 3 in period 7. Finally
the ship sails to the destination. Observe that the period that defines a visit is the period at
which the ship starts to operate.

The second formulation is called the Basic Arc-Load Continuous Time formulation (BC-SSIRP)
and has been used by several authors when the consumption rates are constant during the
planning horizon, see for instance [6] and [10]. For each port, we define a sequence of events
associated with the vessel arrivals. Each event is represented by a pair: (port, order of the
arrival). Ship paths are illustrated in Figure 3.2. For instance, ship 2 leaves origin O2 and sails
to port 4 (for the first visit to this port), then sails to port 2 (for the second visit to this port,
since the first visit was made by ship 1), and sails to port 1 for its first visit. Finally, the ship
sails to port 3 (for the second visit to port 3 since the first visit was made by ship 1) before it
ends at its destination.
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3.2.1 Arc-Load Discrete Time Formulations

In this section we present the basic arc-load models BD-SSIRP-V and BD-SSIRP for the time
varying consumption and constant consumption, respectively. The finite time horizon is divided
into a discrete number of periods. A ship path is defined as a sequence of pairs (port, period)
representing the nodes of the network. The period that defines a visit is the period in which the
ship starts to operate. Waiting, operating and traveling times are considered in a continuous
time measure. First we introduce the model BD-SSIRP-V. Then we adapt this formulation for
the constant consumption rate case.

SSIRP with time varying consumption rates

The BD-SSIRP-V is similar to the formulation introduced in [2], but some of the problem
specific details are skipped. To the best of our knowledge, the model has never been used for
constant consumption rates. In this model, all variables will have a superscript D to indicate
the discrete time model.

The presentation of the formulation is split into the following parts: routing constraints,
loading and unloading constraints, time constraints and inventory constraints. The objective
function is presented at the end.

Routing constraints:

Let V denote the set of ships. Each ship v ∈ V must depart from its initial position (in the
beginning of the planning horizon) that can be in a port or a point at sea. The set of ports is
denoted by N and the set of periods is denoted by T.

For the routing we define the following binary variables: xDitjuv is equal to 1 if ship v starts
to operate at port i in period t and then sails from port i to port j and starts to operate at
port j in period u; and 0 otherwise, while xDoitv indicates whether ship v sails directly from its
initial position to port i to start an operation in period t or not. xDoitv could have been included
in xDitjuv, but is introduced to ease the reading. Variable zDitv is 1 if ship v ends its route at port

i after an operation that started in time period t; and 0 otherwise, and zDov is 1 if ship v ends
its route at the origin (it is not used) and 0 otherwise. Variable wDitv is 1 if ship v visits port i
in period t; and 0 otherwise. Finally, yDit is 1 if some ship visits port i in period t; 0 otherwise.
Variables xDitjuv are not defined for t > u. For ease of notation we include them in the model
assuming they are zero. We allow them to be positive if t = u, that means a ship can visit two
ports in succession in the same time period. We also assume xDitjuv = 0 if i = j.

The routing constraints are as follows:∑
i∈N

∑
t∈T

xDoitv + zDov = 1, ∀v ∈ V, (3.1)

wDitv −
∑
j∈N

∑
u∈T

xDjuitv − xDoitv = 0, ∀v ∈ V, i ∈ N, t ∈ T, (3.2)

wDitv −
∑
j∈N

∑
u∈T

xDitjuv − zDitv = 0, ∀v ∈ V, i ∈ N, t ∈ T, (3.3)

∑
v∈V

wDitv = yDit , ∀i ∈ N, t ∈ T, (3.4)

xDitjuv ∈ {0, 1}, ∀v ∈ V, i, j ∈ N, t, u ∈ T, (3.5)
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2

xDoitv, w
D
itv, z

D
itv ∈ {0, 1}, ∀v ∈ V, i ∈ N, t ∈ T, (3.6)

yDit ∈ {0, 1}, ∀i ∈ N, t ∈ T, (3.7)

zDov ∈ {0, 1}, ∀v ∈ V. (3.8)

Constraints (3.1) ensure that ship v either departs from its initial position to port i in period
t or it is not used. Constraints (3.2) and (3.3) are the flow conservation constraints ensuring
that a ship arriving at a port also leaves that port by either visiting another port or ending its
route. Equations (3.4) guarantee that at most one ship can operate at port i in a given time
period.
Constraints (3.5)-(3.8) define the variables as binary.

Loading and unloading:

Let K represent the set of products and Kv represent the set of products that ship v can
transport. Not all ports consume all products. Parameter Jik assumes value 1 if port i is a
supplier of product k; -1 if port i is a consumer of product k, and 0 if i is neither a consumer
nor a supplier of product k. The quantity of product k on board ship v at the beginning of the
planning horizon is given by Qvk. Cvk is the capacity of the compartment of ship v dedicated
for product k. The minimum and maximum discharge quantities of product k are given by Q

ik

and Qik, respectively.
In order to model the loading and unloading constraints we define the following binary

variables: oDitvk is equal to 1 if product k is loaded onto or unloaded from ship v at port i in
time period t, and 0 otherwise; and the following continuous variables: qDitvk is the amount of
product k loaded onto or unloaded from ship v at port i in time period t, lDitvk is the amount
of product k on board ship v when leaving from port i after an operation that started in time
period t. For ease of notation, variables oDitvk, such that Jik = 0, are included in the model and
assumed to be zero.

The loading and unloading constraints are given by:

xDitjuv(l
D
itvk + Jjkq

D
juvk − lDjuvk) = 0, ∀v ∈ V, i, j ∈ N, t, u ∈ T, k ∈ Kv, (3.9)

xDoitv(Qvk + Jikq
D
itvk − lDitvk) = 0, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv, (3.10)

lDitvk ≤ Cvk
∑
j∈N

∑
u∈T

xDitjuv, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv, (3.11)

qDitvk ≤ CvkoDitvk, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv : Jik = 1, (3.12)

Q
ik
oDitvk ≤ qDitvk ≤ min{Cvk, Qik}oDitvk, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv : Jik = −1, (3.13)∑

k∈Kv

oDitvk ≥ wDitv, ∀v ∈ V, i ∈ N, t ∈ T, (3.14)

oDitvk ≤ wDitv, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv, (3.15)

lDitvk, q
D
itvk ≥ 0, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv, (3.16)

oDitvk ∈ {0, 1}, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv. (3.17)

Constraints (3.9) and (3.10) relate the quantity on board to the quantity loaded and/or
unloaded. Constraints (3.9) ensure that if ship v sails from port i (after an operation started
in period t) to port j (to initialize an operation in period u), then the quantity of product k
on board at the departure from island j should be equal to the quantity on board at departure
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from port i plus (resp. minus) the quantity loaded (resp. unloaded) from j. Equations (3.10)
relate the quantity on board with the quantity loaded and/or unloaded in the starting position.
Constraints (3.11) impose an upper bound on the quantity on board. They also ensure that if the
quantity on board is positive than the ship must travel to some other port. Constraints (3.12)
ensure that if an operation occurs at a loading port, that is, qDitvk > 0, than the setup variable
oDitvk must be one. They also impose an upper bound on the quantity loaded. Constraints (3.13)
impose lower and upper limits on the unload quantities, respectively. Constraints (3.14) ensure
that if ship v starts an operation at port i in time period t, then at least one product must be
(un)loaded. Constraints (3.15) ensure that if ship v (un)loads one product at port i in period
t, then wDitv must be one. The nonnegativity requirements (3.16) are given for the variables
representing the load on board and the (un)loading quantity. Finally, the formulation involves
binary requirements (3.17) on the operating variables.

Constraints (3.9) and (3.10) are non-linear. Following [16], equations (3.9) can be linearized
by replacing them with the following two sets of constraints:

lDitvk + Jjkq
D
juvk − lDjuvk + Cvkx

D
itjuv ≤ Cvk, ∀v ∈ V, i, j ∈ N, t, u ∈ T, k ∈ Kv, (3.18)

lDitvk + Jjkq
D
juvk − lDjuvk − CvkxDitjuv ≥ −Cvk, ∀v ∈ V, i, j ∈ N, t, u ∈ T, k ∈ Kv, (3.19)

and equations (3.10) can be replaced by:

Qvk + Jikq
D
itvk − lDitvk + Cvkx

D
oitv ≤ Cvk, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv, (3.20)

Qvk + Jikq
D
itvk − lDitvk − CvkxDoitv ≥ −Cvk, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv. (3.21)

Time constraints:

We have chosen a discrete time formulation consisting of few time periods compared to most
existing discrete time formulations in the literature, see e.g. [1] and [19]. In order to account
for the time aspects correctly we consider a continuous time measure in addition to the discrete
time. In comparison to other discrete time MIRP formulations [1], we do not need to explicitly
define binary waiting variables and by this avoid the symmetry problem that many such models
have.

We define the following parameters: TQik is the time required to load/unload one unit of
product k at port i; TSik is the set up time required to operate product k at port i. Parameter
Tijv is the traveling time between port i and j by ship v; TOiv indicates the traveling time required
by ship v to sail from its initial port position to port i; TBi is the minimum interval between
the departure of one ship and the next arrival at port i. Finally, T is the length of the time
horizon.

We define the nonnegative continuous variables tDit as the start time of the operation at port
i in time period t, and tEDit as the end time of the operation that started during period t in port
i. The time constraints are as follows,

tEDit ≥ tDit +
∑
v∈V

∑
k∈Kv

TSiko
D
itvk +

∑
v∈V

∑
k∈Kv

TQikq
D
itvk, ∀i ∈ N, t ∈ T, (3.22)

tDit − tEDi(t−1) ≥ T
B
i y

D
it , ∀i ∈ N, t ∈ T : t > 1, (3.23)

tEDit + Tijv − tDju ≤ T (1− xDitjuv), ∀v ∈ V, i, j ∈ N, t, u ∈ T, (3.24)∑
v∈V

TOivx
D
oitv ≤ tDit , ∀i ∈ N, t ∈ T, (3.25)

t− 1 ≤ tDit ≤ t, ∀i ∈ N, t ∈ T, (3.26)

tDit , t
ED
it ≥ 0, ∀i ∈ N, t ∈ T. (3.27)
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Equations (3.22) define the end time of each operation. Notice the end time can be greater than
the starting time plus the set up times and the time for the (un)load operations. This accounts
the possibility of a ship to wait between (un)loadings. Constraints (3.23) impose a minimum
interval between two consecutive visits at port i. Constraints (3.24) ensure that if ship v sails
from port i (after an operation started in period t) to port j (to initialize an operation in period
u), then the operation at port j can only start after the end time of operation at port i plus
the time required to travel from i to j. Constraints (3.25) ensure that if ship v travels from its
initial position to port i to start an operation in period t, then the starting time at port i can
only occur after the traveling time. Constraints (3.26) link the continuous with the discrete
time measures and constraints (3.27) define the sign of the continuous time variables.

When time windows are considered they can be easily included in the model. For instance,
if the start of an operation at port i in period t is restricted to a time window [Ait, Bit] then it
suffices to replace constraints (3.26) by Ait ≤ tDit ≤ Bit.

Inventory constraints:

Inventory constraints are considered for each unloading port i (Jik = −1). Ditk indicates the
demand or consumption of product k at port i in period t. For each product k at a consumption
port i, the minimum stock level is given by Sik and the maximum stock level (tank capacity)
is given by Sik. S

O
ik denotes the initial stock level of product k in port i.

The nonnegative continuous variables sDitk indicate the stock level of product k in port i at
the end of period t. The inventory constraints are as follows:

sDi(t−1)k +
∑
v∈V

qDitvk − sDitk = Ditk, ∀i ∈ N, t ∈ T, k ∈ K : Jik = −1, (3.28)

sDi0k = SOik, ∀i ∈ N, k ∈ K : Jik = −1, (3.29)

Sik ≤ sDitk ≤ Sik, ∀i ∈ N, t ∈ T, k ∈ K : Jik = −1. (3.30)

Constraints (3.28) are the inventory balance constraints. These constraints together with the
bounds ensure that the demand for each product at each port in each time period is satisfied.
Constraints (3.29) define the initial stock levels. The upper and lower bounds on the stock
levels are ensured by constraints (3.30).

Objective Function:

The objective function is to minimize the costs (transportation and setup costs):

Min
∑
v∈V

∑
i,j∈N

∑
t,u∈T

Cijvx
D
itjuv +

∑
v∈V

∑
i∈N

∑
t∈T

Coivx
D
oitv +

∑
v∈V

∑
i∈N

∑
t∈T

∑
k∈Kv

COiko
D
itvk (3.31)

where Cijv is the total transportation cost for ship v to sail from port i to port j, Coiv is the cost
for ship v to sail from its origin to port i, and COik is the fixed cost of operating (load/unload)
product k at port i.

The basic arc-load discrete time formulation with time varying consumption rates, BD-
SSIRP-V, is given by (3.1)-(3.8), (3.11)-(3.31). Even though the model includes discrete time
and continuous time variables we call it a discrete time formulation.
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Ditk

Stock level

Timet∗t− 1 t+ 1t
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Figure 3.3: Delivery must occur no later than t∗ in SSIRP, and it must occur no later than t in
the SSIRP-V.

SSIRP with constant consumption rates

In this section we consider the variant of the SSIRP where constant consumption rates are
assumed. The two related problems occur in two different planning problems. The time vary-
ing consumption problem occurs when a set of orders are given. Each order corresponds to a
quantity of an oil product that must be delivered into a specific port and has a deadline to
be satisfied. The constant consumption rate is normally assumed when the planners are con-
sidering longer time horizons. In this case the consumption rates correspond to the estimated
consumption rates from real data. In order to model the constant rate case we can adapt the
discrete time formulation.

In the BD-SSIRP-V the safety stock is guaranteed at the end of each period only. These ends
of periods are artificially established. Hence, by choosing a different discretization the model
will guarantee the stock level at different times. As depicted in Figure 3.3 it may happen that
the stock level goes below the minimum stock level in the middle of a period. This situation
should not be allowed in the constant rate case, SSIRP, where the safety stock must be satisfied
at any time in the interval [0, T ].

In order to prevent such a situation to occur, while keeping a chosen discretization, we add
the following constraints

sDi(t−1)k −Ditk(t
D
it − t+ 1) ≥ Sik, ∀i ∈ N, t ∈ T, k ∈ K : Jik = −1. (3.32)

The left hand side of (3.32) measures the stock level at the start time of the operation which
is the stock level at the beginning of the period minus the consumption until the start of the
operation. These levels should be above the safety stock levels.

Similarly, in order to prevent stock to go above the tank capacity at the end of a discharge
operation, we add the following constraints

sDi(t−1)k −Ditk(t
ED
it − t+ 1) +

∑
v∈V

qDitvk ≤ Sik, ∀i ∈ N, t ∈ T, k ∈ K : Jik = −1. (3.33)

Constraints (3.32) and (3.33) could also have been added to BD-SSIRP-V if it is important
to ensure that the inventory levels are within the limits during the time horizon.

The basic arc-load discrete time formulation with constant consumption rates, BD-SSIRP,
is given by (3.1)-(3.8), (3.11)-(3.27), (3.28)-(3.33).
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3.2.2 Arc-Load Continuous Time Formulation

In this section we present the basic arc-load continuous time formulation, BC-SSIRP, for the
case with constant consumption rates.

In the BD-SSIRP we discretized the time such that in each period at most one visit could
occur at each port. Here, we present an alternative formulation where port events, here called
port visits, are distinguished by the order of the visit. This type of formulation was used in [6]
and [10].

Again, we divide the set of constraints of the formulation into the following parts: routing
constraints, loading and unloading constraints, time constraints and inventory constraints.

Contrary to the discrete model that combines both discrete and continuous time, this model
uses continuous time only.

For each port we consider an ordering of the visits according to the time of the visit. The
ship paths are defined on a network where the nodes are represented by a pair (i,m), where i
is the port and m is the visit number at port i.

For this formulation only the new notation is introduced.

Routing constraints:

Each possible port visit is denoted by the pair (i,m) representing the mth visit to port
i. Direct ship movements (arcs) from port visit (i,m) to port visit (j, n) are represented by
(i,m, j, n).

We define SA as the set of possible port visits (i,m), SAv as the set of possible port visits
made by ship v, and set SXv as the set of all possible movements (i,m, j, n) of ship v.

For the routing we define the following binary variables: xCimjnv is equal to 1 if ship v sails

from port visit (i,m) directly to port visit (j, n); and 0 otherwise, xCoimv indicates whether ship
v sails directly from its initial position to port visit (i,m) or not, wCimv is 1 if ship v visits port
i at arrival (i,m); and 0 otherwise, zCimv is equal to 1 if ship v ends its route at port visit (i,m);
and 0 otherwise, and yCim indicates whether a ship is visiting port arrival (i,m) or not.

The routing constraints are as follows:∑
(i,m)∈SAv

xCoimv + zCov = 1, ∀v ∈ V, (3.34)

wCimv −
∑

(j,n)∈SAv

xCjnimv − xCoimv = 0, ∀v ∈ V, (i,m) ∈ SAv , (3.35)

wCimv −
∑

(j,n)∈SAv

xCimjnv − zCimv = 0, ∀v ∈ V, (i,m) ∈ SAv , (3.36)

∑
v∈V

wCimv = yCim, ∀(i,m) ∈ SA, (3.37)

yCi(m−1) − y
C
im ≥ 0, ∀(i,m) ∈ SA : m > 1, (3.38)

xCoimv, w
C
imv, z

C
imv ∈ {0, 1}, ∀v ∈ V, (i,m) ∈ SAv , (3.39)

xCimjnv ∈ {0, 1}, ∀v ∈ V, (i,m, j, n) ∈ SXv , (3.40)

yCim ∈ {0, 1}, ∀(i,m) ∈ SA, (3.41)

zCov ∈ {0, 1}, ∀v ∈ V. (3.42)

Equations (3.34) ensure that each ship departs from its initial position and sails towards
another port or the ship is not used. Equations (3.35) and (3.36) are the flow conservation con-
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straints, ensuring that a ship arriving at a port also leaves that port by either visiting another
port or ending its route. Constraints (3.37) ensure that each port visit (i,m) is made at most
once. Constraints (3.38) state that if port i is visited m times, then it must also have been
visited m− 1 times. Constraints (3.39)-(3.42) define the variables as binary.

Loading and unloading:

In order to model the loading and unloading constraints, we define the following binary
variables: oCimvk is equal to 1 if product k is loaded onto or unloaded from ship v at port visit
(i,m), and 0 otherwise. In addition, we define the following continuous variables: qCimvk is the
amount of product k (un)loaded at port visit (i,m) and lCimvk is the amount of product k on
board ship v when leaving from port visit (i,m).

The loading and unloading constraints are given by:

xCimjnv(l
C
imvk + Jjkq

C
jnvk − lCjnvk) = 0, ∀v ∈ V, (i,m, j, n) ∈ SXv , k ∈ Kv, (3.43)

xCoimv(Qvk + Jikq
C
imvk − lCimvk) = 0, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (3.44)

lCimvk ≤ Cvk
∑

(j,n)∈SAv

xCimjnv, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (3.45)

qCimvk ≤ CvkoCimvk, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv : Jik = 1, (3.46)

Q
ik
oCimvk ≤ qCimvk ≤ min{Cvk, Qik}oCimvk, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv : Jik = −1, (3.47)∑

k∈Kv

oCimvk ≥ wCimv, ∀v ∈ V, (i,m) ∈ SAv , (3.48)

oCimvk ≤ wCimv, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (3.49)

lCimvk, q
C
imvk ≥ 0, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (3.50)

oCimvk ∈ {0, 1}, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv. (3.51)

Equations (3.43) determine the quantity of product k on board ship v when the ship sails from
port visit (i,m) to port visit (j, n). These constraints can be linearized as follows:

lCimvk + Jjkq
C
jnvk − lCjnvk + Cvkx

C
imjnv ≤ Cvk, ∀v ∈ V, (i,m, j, n) ∈ SXv , k ∈ Kv, (3.52)

lCimvk + Jjkq
C
jnvk − lCjnvk − CvkxCimjnv ≥ −Cvk, ∀v ∈ V, (i,m, j, n) ∈ SXv , k ∈ Kv. (3.53)

Constraints (3.44) are similar to (3.43) and determine the load on board the ship for the first
ship visit. These constraints can be replaced by the following linear constraints:

Qvk + Jikq
C
imvk − lCimvk + Cvkx

C
oimv ≤ Cvk, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (3.54)

Qvk + Jikq
C
imvk − lCimvk − CvkxCoimv ≥ −Cvk, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv. (3.55)

The ship capacity constraints are given by (3.45). Constraints (3.46) impose an upper bound
on the quantity loaded at the supply port. Constraints (3.47) impose lower and upper limits
on the unload quantities. Constraints (3.48) ensure that if ship v makes port visit (i,m), then
at least one product must be (un)loaded. Constraints (3.49) ensure that if ship v (un)loads one
product at visit (i,m), then wCimv must be one. Constraints (3.50)-(3.51) are the non-negativity
and integrality constraints.
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Time constraints:

Given the start time and end time variables, tCim and tECim at port visit (i,m), the time
constraints can be written as:

tECim ≥ tCim +
∑
v∈V

∑
k∈Kv

TQikq
C
imvk +

∑
v∈V

∑
k∈Kv

TSiko
C
imvk, ∀(i,m) ∈ SA, (3.56)

tCim − tECi(m−1) − T
B
i y

C
im ≥ 0, ∀(i,m) ∈ SA : m > 1, (3.57)

tECim + Tijv − tCjn ≤ T (1− xCimjnv), ∀v ∈ V, (i,m, j, n) ∈ SXv , (3.58)∑
v∈V

TOivx
C
oimv ≤ tCim, ∀(i,m) ∈ SA, (3.59)

tCim, t
EC
im ≥ 0, ∀(i,m) ∈ SA. (3.60)

Constraints (3.56) define the end time of service of port visit (i,m). Constraints (3.57) impose
a minimum interval between two consecutive visits at port i. Constraints (3.58) relate the end
time of port visit (i,m) to the start time of port visit (j, n) when ship v sails directly from port
(i,m) to (j, n). Constraints (3.59) ensure that if ship v travels from its initial position directly
to port visit (i,m), then the start time is at least the traveling time between the two positions.
Constraints (3.60) define the continuous time variables.

Single time windows for each visit can be introduced in a similar way as for the discrete case.
However in case the time windows are associated with open hours at ports then new variables
are necessary to model multiple time windows.

Inventory constraints:

The inventory constraints are necessary to ensure that the inventory levels are kept within
the corresponding bounds and to link the inventory levels to the (un)loading quantities.

We define parameter Rik as the consumption rate of product k at port i (that is, Ditk =
Rik,∀t ∈ T ), and define the nonnegative continuous variables sCimk and sECimk indicating the
inventory levels at the start and at the end of port visit (i,m), respectively. The inventory
constraints are as follow:

sCi1k = SOik −RiktCi1, ∀i ∈ N, k ∈ K : Jik = −1, (3.61)

sECimk = sCimk +
∑
v∈V

qCimvk −Rik(tECim − tCim), ∀(i,m) ∈ SA, k ∈ K : Jik = −1, (3.62)

sCimk = sECi(m−1)k −Rik(t
C
im − tECi(m−1)), ∀(i,m) ∈ SA : m > 1, k ∈ K : Jik = −1, (3.63)

Sik ≤ sCimk, sECimk ≤ Sik, ∀(i,m) ∈ SA, k ∈ K : Jik = −1. (3.64)

Equations (3.61) calculate the inventory level of each product at the first visit. Equations (3.62)
calculate the invrntory level of each product when the service ends at port visit (i,m). Simi-
larly, equations (3.63) relate the inventory level at the start of port visit (i,m) to the inventory
level at the end of port visit (i,m− 1). The upper and lower bounds on the inventory levels are
ensured by constraints (3.64).
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It remains to ensure that the inventory levels at the end of the planning horizon is within
the inventory limits. We discuss two options. The following set of constraints was used in [22].

Sik ≤ sECimk −Rik(T − tECim )(yCim − yCi(m+1)) ≤ Sik, ∀(i,m+ 1) ∈ SA, k ∈ K : Jik = −1.

We can see that tECim is the end time of the last visit to port i if and only if yCim − yCi(m+1) = 1.

This set of constraints is nonlinear and can be linearized as in [22]. However we omit the
linearization process here, because we will follow the approach used in [10], to handle the stock
level at the end of the planning horizon. Consider the following set of constraints where µi is
an upper bound on the number of visits to port i.

Sik ≤ sECiµik +Rik(T − tECiµi ) ≤ Sik, ∀i ∈ N, k ∈ K : Jik = −1, (3.65)

Here the end time of the last possible visit is given by tECiµi .

Objective function:

The objective is to minimize the total routing and operating cost:∑
v∈V

∑
(i,m,j,n)∈SXv

Cijvx
C
imjnv +

∑
v∈V

∑
(i,m)∈SAv

Coivx
C
oimv +

∑
v∈V

∑
(i,m)∈SAv

∑
k∈Kv

COiko
C
imvk (3.66)

The basic arc-load time continuous formulation with constant consumption rates, BC-SSIRP,
is defined by (3.34)-(3.42), (3.45)-(3.66).

3.2.3 Comparison of the Discrete Time and Continuous Time Models

Here we discuss the two models regarding their integrality gaps, size, and level of information
provided.

Integrality gaps

Although the definition of the variables in the time discrete model is different from the
definition of variables in the time continuous model, we can easily see that the two mathematical
models are very similar. In fact, removing the inventory constraints from both models and
constraints (3.38) from the BC-SSIRP, the mathematical expressions of both models is similar.
The unique difference is that variables xDitjuv are defined for all u ≥ t while xCimjnv are defined
for all m and n. As a consequence the linear relaxation of the discrete model BD-SSIRP without
inventory constraints should provide bounds at least as good as those provided by the linear
relaxation of the continuous model BC-SSIRP without inventory constraints.

To compare theoretically the complete models (with inventory variables) is not a straight-
forward task since one needs to relate the two sets of variables. Here we only provide an
experimental comparison. This study is conducted in Section 3.5 and shows that the bounds
provided by the two models are the same for the tested instances, which reinforces our comment
on the similarity of the models. The computational study also shows that the integrality gaps
of BD-SSIRP and BC-SSIRP are very large. In the two following sections we improve these
formulations by deriving tighter extended formulations (Section 3.3) and by including valid
inequalities (Section 3.4). The ideas used in those improvements are similar for both types of
formulations.
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Size of the models

The size of the models is determined by the number of x (routing) variables since this number
establishes the bound for the number of variables and constraints. Contrary to the discrete
model, where the number of routing variables is well defined for a particular discretization, in
the continuous case this number depends on the maximum number of visits to each port i, µi.
These upper bounds µi can be computed using the minimum (un)loading quantities Qk

i
and

the time constraints. However, usually the quantities Qk
i

are not imposed by any real limit
but to avoid a “large” number of visits. Our experience showed that the maximum number of
visits can be set to a minimum number of visits (computed in Section 3.4) plus a constant: one,
two or three, depending on the port activity. For larger increases of µi, only the running time
increases, see Section 3.5.

We can also eliminate some routing variables xDitjuv from the discrete model. Since the
maximum distance between two ports is short in the underlying real short sea inventory routing
problem, we can eliminate variables where u >> t. In Section 3.5, we present computational
experiments to evaluate the impact of the objective function, the size of the model, and on the
running time of these restrictions on the variables.

Information provided

The solution of each model provides different information. However, the solution from one
model can easily be converted into a solution of the other. In the discrete formulation, the
information of the period in which the visits occur is given by the time variables tDit as well
as the routing variables xDitjuv, while in the continuous model this information is provided only
by the time variables. This difference allows us to relate the routing aspects directly to the
inventory in the discrete models. As we will see in Section 3.4, this property can be used to
tighten the discrete model.

3.3 Linear Relaxations and Extended Formulations

In this section we discuss some of the weaknesses of the arc-load formulations and introduce
two extended formulations for each type of model (discrete time and continuous time). We
consider only the SSIRP with constant consumption rates.

In Figure 3.4 we present a fractional solution of the arc-load continuous time model that
illustrates the weaknesses of the arc-load formulations.

As we can see from the example, the fractional solution does not guarantee the equilibrium
of the flow on board the ship. Both ships unload products that they do not transport. For
instance, ship 2 unloads 50 units at port 1 and these units are never loaded. Next we justify
how such solutions can occur. First notice that the unique link between the load on board the
ship and the path of the ship is established at the nodes. Additionally, the link is established
through constraints (3.18)-(3.21) in BD-SSIRP and through constraints (3.52)-(3.55) in the
BC-SSIRP. These linking constraints are known to be very weak. It is therefore possible to
get, in a linear fractional solution, an unload operation when the ship has nothing on board.
Consider the BC-SSIRP case, and suppose Jjk = −1. If 0 < xCimjnv < 1 and lCimvk = lCjnvk = 0,

then the unload quantity qCjnvk of product k can be positive. More specifically 0 ≤ qCjnvk ≤
Cvk min{xCimjnv, 1− xCimjnv}.

Also, as expected, each ship follows multiple fractional paths.

65



D1

D2

O2

O1

1,1
2,1

4,1

4,2

3,1

3,2

0.2
0.2

0.6

0.2

0.2

0.2

0.
6

0.2

0.7

0.1

0.7

0.1 0.1

0.2

q21 = 50

q23 = 100

q12 = 200

q11 = 100

q12 = 200

q12 = 400

q23 = 100

q12 = 100

q21 = 150

q23 = 300

Figure 3.4: Example of an optimal solution of the linear relaxation of the BC-SSIRP. The
quantities qvk next to node (i,m) represent the quantity of product k unloaded by ship v in the
mth visit to port i. In this solution there are no loadings. The arc labels represent the values of
the corresponding arc-variables. Dark arcs represent ship 1 and dashed arcs represent ship 2.
We assume Qvk = 0, ∀v ∈ V, k ∈ Kv.

In order to avoid some of the drawbacks of the arc-load formulations, we propose two ex-
tended formulations for each approach. The new set of variables introduced in each formulation
provides additional information about the solution. That information will be essential to derive
tighter models. All the formulations presented in the chapter are compact. In general, the linear
relations of the extended formulations lead to better bounds but are harder (considering the
computational effort) to obtain. When using such formulations in a branch and bound scheme,
the number of tree nodes tends to be less than in the case where a smaller formulation is used.
However, the time spent in each node is usually greater.

In the first extended formulation, new variables indicating the amount of each product
carried along an arc are introduced. These new variables can be seen as defining the flow of
individual products along the chosen paths resulting from the routing variables for each ship.
The second extended formulation can be seen as a classical multi-commodity reformulation of
the first extended formulation where the flow variables additionally indicate the destination of
each product along the chosen paths.

3.3.1 Arc-Load Flow Reformulations

In this section we introduce new arc-load flow variables that indicate the amount of each
product carried along each arc. These flow variables allow us to assign a flow of each product to
the ship path. In this way we can prevent fractional solutions as the one depicted in Figure 3.4.

Discrete time reformulation

Next, we present the arc-load flow discrete time formulation with constant consumption
rates (FD-SSIRP). Let us define fDitjuvk, as the amount of product k that ship v transports from
port i, after an operation that started in period t, to port j in order to start an operation in
period u. For ease of notation, when xDitjuv = 0, variables fDitjuvk are included in the model and
set to zero.
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Let fDoitvk denote the amount of product k that ship v transports from its initial port position
to port i in period t.

The two sets of variables lDitvk and fDitjuvk can be related using the following equations

lDitvk =
∑
j 6=i

∑
u≥t

fDitjuvk, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv, (3.67)

Constrains (3.9), (3.10) and (3.11) can be replaced by constraints

fDojuvk +
∑
i 6=j

∑
t≤u

fDitjuvk + Jjkq
D
juvk =

∑
i 6=j

∑
t≥u

fDjuitvk, ∀v ∈ V, j ∈ N, u ∈ T, k ∈ Kv, (3.68)

fDoitvk = Qvkx
D
oitv, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv, (3.69)

fDitjuvk ≤ CvkxDitjuv, ∀v ∈ V, i, j ∈ N, t, u ∈ T, k ∈ Kv, (3.70)

fDitjuvk ≥ 0, ∀v ∈ V, i, j ∈ N, t, u ∈ T, k ∈ Kv. (3.71)

The flow conservation constraints are given by equations (3.68). Equations (3.69) determine the
amount of product k on board ship v at departure from the initial position. Constraints (3.70)
are the variable upper bound constraints. They relate the flow variable fDitjuvk to the routing

variables xDitjuv and, together with the nonnegativity constraints (3.71) impose bounds on the
flow variables.

The FD-SSIRP formulation is defined by (3.1)-(3.8), (3.12)-(3.17), (3.22)-(3.33), (3.68)-
(3.71).

Adding constraints (3.70) for j and u we obtain∑
j∈N

∑
u∈T

fDitjuvk ≤ Cvk
∑
j∈N

∑
u∈T

xDitjuv.

Using (3.67) we obtain (3.11). Hence constraints (3.11) can be obtained by aggregating con-
straints (3.70). Thus, the linear relaxation of FD-SSIRP should provide better bounds than
the linear relaxation of BD-SSIRP. The drawback of this model is that it increases the size by
adding a large number of continuous variables and constraints.

Notice that with the inclusion of variables fDitjuvk, variables qDjuvk can be eliminated from the
model using equations (3.68) and (3.69), that is, setting

qDjuvk = Jjk

(∑
i∈N

∑
t∈T

fDjuitvk −
∑
i∈N

∑
t∈T

fDitjuvk

)
, ∀v ∈ V, j ∈ N, u ∈ T, k ∈ Kv. (3.72)

Continuous time reformulation

Here we define a similar flow model for the continuous time formulation, denoted by FC-
SSIRP. Let fCimjnvk denote the amount of product k that ship v transports from port visit (i,m)

to port visit (j, n) and fCojnvk as the amount of product k that ship v transports from its initial
position to port visit (j, n).
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Using these additional variables, constraints (3.43)-(3.45) can be replaced by the following
set of constraints:

fCojnvk +
∑

(i,m)∈SAv

fCimjnvk + Jjkq
C
jnvk =

∑
(i,m)∈SAv

fCjnimvk, ∀ v ∈ V, (j, n) ∈ SAv , k ∈ Kv,

(3.73)

fCoimvk = Qvkx
C
oimv, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (3.74)

fCimjnvk ≤ CvkxCimjnv, ∀v ∈ V, (i,m, j, n) ∈ SXv , k ∈ Kv, (3.75)

fCimjnvk ≥ 0, ∀v ∈ V, (i,m, j, n) ∈ SXv , k ∈ Kv. (3.76)

Constraints (3.73) ensure the equilibrium of product k on board ship v. Equations (3.74)
determine the quantity on board when ship v sails from its initial port position to port visit
(i,m). Constraints (3.75) link the new flow variables to the arc variables and impose an upper
bound on the capacity of the compartment of ship v dedicated to carry product k.

The arc-load flow continuous time formulation with constant consumption rates, FC-SSIRP,
is defined by (3.34)-(3.42), (3.46)-(3.51), (3.56)-(3.66), (3.73)-(3.76).

Similar to the discrete case, the linear relaxation of FC-SSIRP can be shown to be tighter
than the linear relaxation of BC-SSIRP. In Figure 3.5 we illustrate the optimal solution of the
linear relaxation of FC-SSIRP for the same example as the one depicted in Figure 3.4. We can
see that the fractional solution satisfies the equilibrium of the flow along each fractional ship
path.
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Figure 3.5: Optimal solution of the linear relaxation of FC-SSIRP for the example used in
Figure 3.4. In this solution all unloaded products are previously loaded. The quantities qvk
represent the quantity of product k loaded (if k ∈ {1, 2} and i = 2, or k = 3 and i = 4) or
unload (in the remaining cases) by ship v.

3.3.2 Multi-Commodity Reformulations

A multi-commodity reformulation of a flow formulation can be obtained by disaggregating
the flow on each arc according to its destination. In general, such types of formulations lead to
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better bounds.

Multi-commodity discrete time reformulation

In this section we define the multi-commodity discrete time formulation with constant con-
sumption rates (MD-SSIRP). By adding new indices to the flow variables indicating the des-
tination of the flow, we construct the non-negative multi-commodity arc-load flow variables
vDitjuvkpe, representing the amount of product k that ship v transports from port i, after an
operation that started in period t, to port j for an operation starting in period u to be delivered
at port p in period e.

These variables are nonnegative

vDitjuvkpe ≥ 0, ∀v ∈ V, i, j, p ∈ N, t, u, e ∈ T, k ∈ Kv : Jpk = −1, (3.77)

and can be related to the arc-load flow variables through the following equations,

fDitjuvk =
∑
p6=i

∑
e≥u

vDitjuvkpe, ∀v ∈ V, i, j ∈ N, t, u ∈ T, k ∈ Kv. (3.78)

The tightening of FD-SSIRP can be obtained by replacing constraints (3.70) with

vDitjuvkpe ≤ min{Cvk, Qpk}xDitjuv, ∀v ∈ V, i, j, p ∈ N, t, u, e ∈ T, k ∈ Kv : Jpk = −1. (3.79)

The MD-SSIRP can be obtained from the FD-SSIRP by replacing (3.70) with (3.77)-(3.79).
Of course the arc-load flow variables fDitjuvk can be eliminated from the model using (3.78).

Multi-commodity continuous time flow reformulation

Now we define a similar multi-commodity flow formulation for the continuous time model,
denoted by MC-SSIRP. We define vCimjnvkpl as the amount of product k destined to port visit
(p, l), which is transported from port visit (i,m) to port visit (j, n) using ship v. These variables
are nonnegative,

vCimjnvkpl ≥ 0, ∀v ∈ V, (i,m, j, n) ∈ SXv , (p, l) ∈ SAv , k ∈ Kv : Jpk = −1, (3.80)

and can be related to the arc-load flow variables by the following equations

fCimjnvk =
∑

(p,l)∈SAv :Jpk=−1

vCimjnvkpl, ∀v ∈ V, (i,m, j, n) ∈ SXv , k ∈ Kv. (3.81)

The tightening of the FC-SSIRP can be obtained by replacing constraints (3.75) by

vCimjnvkpl ≤ min{Cvk, Qpk}xCimjnv, ∀v ∈ V, (i,m, j, n) ∈ SXv , (p, l) ∈ SAv , k ∈ Kv : Jpk = −1.
(3.82)

The MC-SSIRP can be obtained from the FC-SSIRP by replacing (3.75) with (3.80)-(3.82).
Of course the arc-load flow variables fCimjnvk can be eliminated from the model using (3.81).

3.4 Tightening the Models

The formulations discussed in Sections 3.2 and 3.3 can be strengthened by including valid
inequalities and by tightening some constraints. The ideas employed in these improvements
are similar for both types of formulations. However, the discrete model embeds time specific
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information in the network structure that makes the model more amenable for tightening and
preprocessing. We discuss only the case with constant consumption rates. The inequalities
used in this paper impose either a minimum number of visits to ports or a minimum number
of (un)loads. Similar valid inequalities have been used in related papers for constant rate case
and for the non constant consumption rates case; see for the last case [1, 2, 19, 21, 29]. When
consumptions are not constant during time, inequalities based on lot-sizing relaxations have
been used, see [1, 2, 19].

3.4.1 Valid Inequalities

Here we discuss valid inequalities for the models derived in the previous sections. These
inequalities allow us to reduce the integrality gap of the proposed models. Hence, although
the linear relaxations tend to become more time consuming to solve with the inclusion of these
cuts, the reduction of the integrality gap tends to reduce the number of nodes in a branch and
bound scheme. The gain in the reduced size of the branch and bound tree compensates the
time increase required to obtain the dual bound at each node.

Here we just discuss a type of valid inequalities that impose visits to ports. These visits
are forced by the inventory levels combined with the consumption rates. First we consider the
discrete time models BD-SSIRP, FD-SSIRP, and MD-SSIRP.

For each unloading (consumption) port i ∈ N and product k, Jik = −1, let

NDik = max{T ×Rik − SOik + Sik, 0}

denote the net consumption or demand over the time horizon. If 0 < NDik < Q
ik
, then the net

demand can be increased to the minimum load quantity: NDik = Q
ik
. The minimum number

of visits at port i for unloading product k is given by

λik =

⌈
NDik

Qik

⌉
.

Hence, the following inequalities are valid∑
v∈V

∑
j∈N

∑
u∈T

∑
t∈T

xDjuitv ≥ λik, ∀i ∈ N, k ∈ K : Jik = −1, (3.83)

∑
v∈V

∑
t∈T

oDitvk ≥ λik, ∀i ∈ N, k ∈ K : Jik = −1. (3.84)

These inequalities can be generalized for each period t ∈ T, as follows. We split the time
horizon into two periods, one from 0 to the end of period t and the other from t to the end of
the time horizon. Let

ND0
itk = t×Rik − SOik + Sik,

be the net consumption until the end of period t and let

NDT
itk = (T − t+ 1)×Rik − Sik + Sik,

be an underestimation of the net consumption from the end of period t until the end of the
time horizon. Define

ε0i0tk =

⌈
ND0

itk

Qik

⌉
,

and

εTitk =

⌈
NDT

itk

Qik

⌉
,
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as a lower bound on the number of visits to port i. Then the following inequalities are valid∑
u∈T |u≤t

∑
j∈N

∑
e∈T

∑
v∈V

xDjeiuv ≥ ε0i0tk, ∀i ∈ N, t ∈ T, k ∈ K : Jik = −1, (3.85)

∑
u∈T |u≤t

∑
v∈V

oDiuvk ≥ ε0itk, ∀i ∈ N, t ∈ T, k ∈ K : Jik = −1, (3.86)

∑
u∈T |u>t

∑
j∈N

∑
e∈T

∑
v∈V

xDjeiuv ≥ εTitk, ∀i ∈ N, t ∈ T, k ∈ K : Jik = −1, (3.87)

∑
u∈T |u>t

∑
v∈V

oDiuvk ≥ εTitk, ∀i ∈ N, t ∈ T, k ∈ K : Jik = −1. (3.88)

In order to ensure that if ship v unloads product k at port i in period t, then there must
exist a route of ship v passing through port i at period t, the following inequalities can be added.

oDitvk ≤
∑
j∈N

∑
u∈T

xDjuitv, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv : Jik = −1. (3.89)

Inequalities (3.89) coupled with constraints (3.84) imply (3.83). This is no longer true if we
consider in (3.83) the aggregated demand (consumption) of a subset of consumption ports in-
stead of the demand of port i only.

In the underlying real planning problem, the inventory bounds are usually not tight for the
loading ports. Hence, the minimum number of departures can be estimated using the total
demand supplied by those ports. In the real problem, each product has a single origin, so the
demand of that product must be satisfied either from that port or from the quantity in the ship
tanks at the beginning of the time horizon.

For each product k ∈ K and loading port i ∈ N (Jik = 1), let

NDik =
∑

j∈N |Jjk=−1

(T ×Rjk − SOik + Sik)−
∑
v∈V

Qvk,

denote the demand (consumption) in excess of what is available on board the ship in the
beginning of the planning horizon. The minimum number of loadings of product k at port i is
given by

λik =

⌈
NDik

max{Cvk : v ∈ V }

⌉
.

Hence, the following inequalities are valid∑
v∈V

∑
j∈N

∑
u∈T

∑
t∈T

xDjuitv ≥ λik, ∀i ∈ N, k ∈ K : Jik = 1, (3.90)

∑
v∈V

∑
t∈T

oDitvk ≥ λik, ∀i ∈ N, k ∈ K : Jik = 1. (3.91)

As done for the consumption ports, we can derive inequalities for each period u for the loading
ports as well; see (3.85) - (3.89). We omit these inequalities here.

Observe that a lower bound on the total number of visits to port i ∈ N can be given by

µ
i

= max{λik : k ∈ K}. (3.92)
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Hence, the following inequalities are valid:∑
t∈T

yDit ≥ µi, ∀i ∈ N. (3.93)

Now we consider the continuous models BC-SSIRP, FC-SSIRP and MC-SSIRP. Here we can
only impose a minimum number of visits during the planning horizon since the order of the
visits does not provide information about the time for start of service at the visit. Inequalities
(3.83) - (3.84) for the consumption ports and (3.90)-(3.91) for the loading/production ports can
be written for the continuous case as follows:∑

v∈V

∑
(j,n)∈SAv

∑
m∈{1,...,µi}

xCjnimv ≥ λik, ∀i ∈ N, k ∈ K, (3.94)

∑
v∈V

∑
m∈{1,...,µi}

oCimvk ≥ λik, ∀i ∈ N, k ∈ K. (3.95)

In the continuous time case, the lower bound on the number of visits can be imposed by the
inequality

yCiµ
i

= 1, i ∈ N. (3.96)

3.4.2 Tightening constraints

Now we consider another approach to strengthen the models by tightening the linking con-
straints. The linking constraints relate the continuous variables to the binary variables. Im-
proving these constraints can lead to reductions in the integrality gap and in running times.
We focus on formulations for the constant consumption rate case only.

First we consider the tightening of constraints (3.24) for the discrete model and (3.58) for the
continuous model, linking time variables with routing variables. The main idea is to aggregate
the routing variables for v since the time variables do not depend on the particular ship v.
Consider the time constraints (3.24) for the discrete model. These inequalities can be replaced
by the following ones

tEDit +
∑
v∈V

Tijvx
D
itjuv − tDju ≤ T (1−

∑
v∈V

xDitjuv), ∀i, j ∈ N, t, u ∈ T.

When time windows are established to time events

Ait ≤ tDit ≤ Bit, ∀i ∈ N, t ∈ T,
AEit ≤ tEDit ≤ BE

it , ∀i ∈ N, t ∈ T,

then, constraints (3.24) can be replaced by inequalities

tDEit − tDju + (BE
it + Tijv −Aju)xitjuv ≤ BE

it −Aju, ∀v ∈ V, i, j ∈ N, t, u ∈ T.

These inequalities can be further strengthened as follows (see Proposition 1 in [5]):

tDEit − tDju +
∑
v∈V

max{0, BE
it + Tijv −Aju}xitjuv ≤ BE

it −Aju,∀i, j ∈ N, t, u ∈ T. (3.97)

Constraints (3.25) establish time windows for tDit . For tEDit we assume AEit = t−1 and BE
it = t+1

since an operation takes at most one time period (day).
For the continuous models, constraints (3.58) can be strengthened in a similar way. We omit

the details here. The major difference is related to the computation of time windows [Aim, Bim]
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for tCim, and [AEim, B
E
im] for tECim . First we set Aim = AEim = 0 and Bim = BE

im = T. By reducing
the widths of these time windows we strengthen the resulting inequality. However, since we are
dealing with multiple ships, multiple products, and all supply ports also act as demand ports of
other products, it is hard to derive tight time windows. Additionally, some preliminary results
showed that small improvements in the widths of time windows do not lead to any practical
gain.

Next we consider another tightening which use information of the demands to tighten the
linking coefficients. For instance, consider inequalities (3.13) in model BD-SSIRP. The unload
quantity at period t can be additionally limited by the remaining consumption at that port.
That is,

qDitvk ≤ min{Cvk, Qik, A}oDitvk, ∀v ∈ V, i ∈ N, t ∈ T, k ∈ Kv : Jik = −1, (3.98)

where A = max{Rki (T − t+ 1), Q
ik
}.

For the BC-SSIRP model, the corresponding variables, qCitvk, do not provide information of
time of the visit. So we can only limit the demand/consumption for the total time horizon.

Similar reasoning can be applied to inequalities (3.11), (3.12), (3.18)-(3.21). For brevity we
give the tightening for the flow and multi-commodity formulations in more detail only.

Consider the arc-load flow models FD-SSIRP and FC-SSIRP. In FD-SSIRP, inequalities
(3.70) can be replaced by

fDitjuvk ≤ min{Cvk, B1}xDitjuv, ∀v ∈ V, i, j ∈ N, t, u ∈ T, k ∈ Kv, (3.99)

where B1 =
∑

j∈N |Jjk=−1

max{Rjk(T − u + 1), Q
jk
}. In FC-SSIRP, inequalities (3.75) can be

replaced by

fCimjnvk ≤ min{Cvk, B2}xCimjnv, ∀v ∈ V, (i,m, j, n) ∈ SXv , k ∈ Kv, (3.100)

where B2 = max{
∑

j∈N |Jjk=−1

RjkT ,Qjk}.

Now consider the multi-commodity flow models MD-SSIRP and MC-SSIRP. In MD-SSIRP,
inequalities (3.79) can be replaced by

vDitjuvkpe ≤ min{Cvk, Qpk, C1}xDitjuv, ∀v ∈ V, i, j, p ∈ N, t, u, e ∈ T, k ∈ Kv : Jpk = −1, (3.101)

where C1 = max{Rpk(T − u+ 1), Q
pk
}. In MC-SSIRP, inequalities (3.82) can be replaced by

vCimjnvkpl ≤ min{Cvk, Qpk, C2}xCimjnv, ∀v ∈ V, (i,m, j, n) ∈ SXv , (p, l) ∈ SAv ,
k ∈ Kv : Jpk = −1, (3.102)

where C2 = max{RpkT ,Qpk}.
We can see that B1 and C1 depend on the time period, while B2 and C2 do not. This is

one of the advantages of the discrete models.

3.5 Computational Experiments

In this section we conduct computational experiments to test and compare the discrete
time and the continuous time models. All computations were performed using the optimization
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software Xpress Optimizer Version 20.00.05 with Xpress Mosel Version 3.0.0, on a computer
with an Intel Core 2 Duo processor, with CPU 2.2GHz, and with 4GB of RAM.

We use two sets of instances for the SSIRP with constant consumption rates. The first set
consists of 12 real instances from a company in Cape Verde including 2 ships, 4 products and 7
ports. The other set consists of 12 instances from an artificial scenario where the consumption
rates of the real instances are doubled as well as the number of ships.

First we describe some characteristics of the instances. The typical planning horizon is two
weeks. Here we consider instances with T = 10 and T = 15. The demand for each product
during the planning horizon is, in average, 2.5 times the largest ship tank capacity. The tank
capacity at the main ports can cover the demand at that port for a week (without regard the
safety stocks). For the small islands typically one or two visits are required. The total number
of visits for the tested instances ranged between 12 and 15. The ships have in average 6 tanks.

Computational experiments are conducted to compare the models according to their size,
running times and integrality gap without any additional tightening. Based on the information
obtained, we select some of the models for further testing. The selected models are used in a
branch and cut scheme to solve the two sets of instances.

We also tested the influence of the minimum unload values Q
ik

on solution quality and
tractability.

3.5.1 Comparison of the Size of the Models

Now we compare the size of the models without any tightening or addition of cuts. Table 3.1
provides the information of the average number of variables and average number of constraints of
the three discrete time and continuous time formulations for a time horizon of 10 and 15 periods
(days). Additionally, column “Solved‘” gives the number of instances solved to optimality using
the default options of Xpress optimizer within a time limit of 3 hours.

For the discrete time models we ignore all variables xDitjuv with u > t + 3, and for the
continuous time model we established the upper bound of the number of visits to port i, µi =
µ
i
+ 3.

Table 3.1: Average size of the tested models.
Model T —V— Binary Var. Cont. Var. Total Var. Constraints Solved

D
is

cr
et

e
M

o
d

el
s

BD-SSIRP 10 2 3636 1185 4821 22854 10
FD-SSIRP 10 2 3636 7975 11611 13334 9
MD-SSIRP 10 2 3636 155955 159591 111668 7
BD-SSIRP 10 4 7392 2533 9925 74772 4
FD-SSIRP 10 4 7392 14209 21601 27928 10
MD-SSIRP 10 4 7392 311975 319367 227748 2
BD-SSIRP 15 2 5706 1775 7481 36044 5
FD-SSIRP 15 2 5706 12590 18296 20924 9
MD-SSIRP 15 2 5706 370570 376276 254543 2
BD-SSIRP 15 4 11592 3783 15375 159917 4
FD-SSIRP 15 4 11592 22004 33596 49933 7
MD-SSIRP 15 4 11592 741240 752832 525598 2

C
o
n
ti

n
u

o
u

s
M

o
d

el
s

BC-SSIRP 10 2 2356 606 2962 15288 12
FC-SSIRP 10 2 2356 5376 7732 8668 12
MC-SSIRP 10 2 2356 36896 39252 46085 12
BC-SSIRP 10 4 3278 960 4238 22411 4
FC-SSIRP 10 4 3278 8000 11278 12511 12
MC-SSIRP 10 4 3278 41908 45186 55006 3
BC-SSIRP 15 2 2484 623 3107 16153 6
FC-SSIRP 15 2 2484 5678 8162 9133 11
MC-SSIRP 15 2 2484 39074 41558 48726 2
BC-SSIRP 15 4 3926 1065 4991 27214 4
FC-SSIRP 15 4 3926 9656 13582 15004 8
MC-SSIRP 15 4 3926 51004 54930 66596 2
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We can see that each continuous time model is smaller than the corresponding discrete time
model. Table 3.1 also shows that multi-commodity models are too large and most of the larger
instances cannot be solved within the time limit of 3 hours.

Next we study the impact of eliminating some arc-load variables in both types of models. For
the discrete time models we eliminate all variables xDitjuv with u > t+α, and for the continuous
time models we established the upper bound of the number of visits to port i, as µi = µ

i
+ α.

If α is small we reduce substantially the set of feasible solutions and it is possible that the
instance becomes infeasible. On the other hand if α is large the size of the model increases and
the running times tend to be very high. In order to illustrate the effects of α on the optimal
solution, we tested the set of 12 real instances with 10 and 15 periods. Each instance was solved
for α from 1 to 3. The results are given in Table 3.2. The table gives the number of instances
that resulted in the true optimal value using models FD-SSIRP and FC-SSIRP.

Table 3.2: Number of instances where the true optimal solution was obtained. All instances
were solved to optimality. We considered |V | = 2.

FD-SSIRP FC-SSIRP

α T=10 T=15 T=10 T=15

1 5 0 2 0
2 11 2 12 11
3 12 12 12 12

For α = 1 the optimal value is worse compared to the true optimal value in most instances.
This situation is opposite for α = 2. For α = 3 we obtain the true optimal value for all the
tested instances. A more detailed test (not reported here) revealed that in order to keep the
quality of the optimal solution while minimizing the number of variables, for continuous time
models, different values of α can be chosen for different ports. Small values of α can be assumed
for low activity ports while larger values should be assumed for high activity ones. Additionally,
Table 3.2 shows that when the length of the planning horizon is increased the value of α should
also increase to obtain the optimal solution.

Figure 3.6 shows the average running times of the arc-load flow models FD-SSIRP and FC-
SSIRP (which proved to be the fastest models among all the tested models) when α varies from
1 to 5. It is clear that the running time increases rapidly with the increase of α, and the running
times of the discrete time model increase faster than the running time of the continuous time
model.

3.5.2 Comparison of the Integrality Gaps

Next we present some computational results in order to compare the integrality gap of the
various formulations. The results of the set of real instances are reported in Table 3.3. For each

formulation we present the average integrality gap, gap =
Optimal value - Lower Bound

Optimal value
× 100

at the root node for several possible settings. Column N means the original formulation without
tightening of constraints and without inclusion of cuts; Column TT means with tightening
only; Column C means with inclusion of cuts; and Column (TT+C) means with tightening and
inclusion of cuts. When cuts are added we indicate the average number of cuts added (Column
Ncuts). Notice that the lower bounds obtained without valid inequalities and tightening are
very poor, especially for the arc-load formulations, BD-SSIRP and BC-SSIRP. We can observe
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Figure 3.6: Average solution times using the arc-load flow formulations (FC-SSIRP on left and
FD-SSIRP on right) on 12 real instances with T = 10, and |V | = 2, when increasing α.

Table 3.3: Average integrality gaps with and without tightening of constraints and inclusion of
valid inequalities. We considered |V | = 2.

N TT C TT+C

Model T = 10 T = 15 T = 10 T = 15 T = 10 Ncuts T = 15 Ncuts T = 10 Ncuts T = 15 Ncuts

BD-SSIRP 57.6 45.3 55.6 43.2 9.2 51 26.1 151.1 7.9 42.3 25.8 108.3

FD-SSIRP 48.9 31.4 47.5 31.1 6.5 60.9 16.1 151.1 3.1 39.1 13.3 94.5

MD-SSIRP 43.3 26 41.3 22.8 6.5 68.3 16.1 151.2 3.1 65.1 13.1 150

BC-SSIRP 57.6 45.3 57.6 45.3 9.2 12.5 26.8 15.3 7.9 12.5 25.8 14.9

FC-SSIRP 48.9 31.4 48.9 31.4 6.5 12.1 16.7 13.8 3.1 10.3 15.1 13.5

MC-SSIRP 43.3 26 41.3 23.6 6.5 15.2 17.4 13.7 3.1 10.3 14.8 13.5

that strengthening the models with the addition of inequalities (3.83), (3.84), (3.90), (3.91) and
with the tightening of constraints reduces the integrality gaps considerably. Finally, we observe
that the arc-load and the arc-load flow formulations for N and C cases provide essentially the
same bounds for both approaches (discrete time and continuous time). With the inclusion of
valid inequalities and tightening of constraints the discrete time models provide slightly better
gaps than the corresponding continuous time models. This is explained by the fact that, in
discrete time models we can provide tighter constraints as explained in Section 3.4.2.

We conduct similar computational experiments for the set of artificial instances with 4 ships,
4 products and 7 ports, where the consumption rate is doubled. Here we report results obtained
with the models FD-SSIRP-C and FC-SSIRP only, since the running time was limited to three
hours and the multi-commodity formulations are very time consuming.

The results for these two models, including tightening constraints and cuts, are presented
in Table 3.4. We give the average initial integrality gap (Gap-I), that is, the average of the
integrality gaps at the root node, the average gap provided by Xpress after the three hours
limit (Gap-E), and the average running time (Time). We can see that the average initial gap
is smaller using FD-SSIRP but the running times are smaller using the continuous model FC-
SSIRP.

3.5.3 Impact of Minimum Delivery Quantities

Restrictions on the minimum delivery quantities of each product at each port are considered
for the SSIRP with constant consumption rates. In fact, delivering small quantities may result
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Table 3.4: Average computational results for FD-SSIRP and FC-SSIRP with | V |= 4.
FD-SSIRP-C FC-SSIRP

Gap-I Gap-E Time (sec.) Gap-I Gap-E Time (sec.)

T = 10 12.9 0 907 13.9 0 476

T = 15 15.4 5.3 6172 17.8 2.4 5602

in too many port visits. In reality one wants to avoid too many visits to a port due to issues
like unpredictable weather conditions and port occupancy. Based on historical data of real
instances we conclude that the minimum allowed delivery quantities, Q

ik
, are around 40% of

the maximum allowed unloading quantities, Qik. In order to analyze the real impact of Q
ik
,

in the objective function value, integrality gap, running time, and the number of branch and
bound nodes, we solve the 12 real instances for different values of Q

ik
, ranging from 0% to 90%

of Qik, using the FC-SSIRP model. The results are presented in Figures 3.7 and 3.8 and show
that when Q

ik
, varies from 0% to 60% the cost increases slowly, but when it is greater than 60%

the cost increases significantly. We also observe that time, integrality gap and number of nodes,
have small oscillation until 60%, increase significantly between 60% and 80%, and decrease after
80%.

Figure 3.7: Impact of minimum delivery quantities on the integrality gap (left) and number of
branch and bound nodes (right).

3.5.4 Comparison of the Running Times and Number of Branch and Bound
Nodes

From Section 3.5.1 we see that the multi-commodity formulations are much larger in num-
ber of variables and constraints than the arc-load and arc-load flow formulations. However,
Section 3.5.2 shows that the reduction in the integrality gap by using the multi-commodity for-
mulations is very small. These two observations lead to the conclusion that the multi-commodity
formulations can hardly be competitive compared to the other two formulations. Preliminary
results, not reported here, confirm this conclusion. Therefore, in this section we report results
for the BD-SSIRP (BC-SSIRP) and FD-SSIRP (FC-SSIRP) models.

A comparison of the running times and number of branch and bound nodes using the
BD-SSIRP (BC-SSIRP) and FD-SSIRP (FC-SSIRP) models, for each approach, is shown in
Table 3.5. The notation is the same as the one for Table 3.5. For T = 15, only results with
tightening and inclusion of cuts are presented because most of the instances were not solved
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Figure 3.8: Impact of minimum delivery quantities on the solution cost (left) and on the running
time (right).

Table 3.5: Average running times and number of branch and bound nodes.

T = 10 T = 15

N TT C TT+C TT+C

Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes

BD-SSIRP 743 38391 1090 26993 590 26493 412 26942 6305 37236

FD-SSIRP 1614 32249 1347 16035 619 8537 86 916 3773 37213

BC-SSIRP 487 85695 360 85395 112 29453 84 14839 3091 36976

FC-SSIRP 245 26823 78 4320 84 8120 39 3544 2740 36926

within 3 hours for the remaining cases. The tests were performed for the 12 real instances. We
observe that tightening constraints and including cuts is essential when solving the instances.
The best results where obtained with the improved (with tightened constraints and cuts) FD-
SSIRP and FC-SSIRP models. In fact, only this combination allowed us to solve all the tested
instances to optimality. We can see that in several cases the number of branch and bound nodes
was smaller using the discrete models. This can be justified by the fact that the discrete time
model has, on average, slightly better integrality gaps. However, the continuous time model
was clearly faster than the discrete one. If we recall that the size of the continuous model is
smaller than the size of the discrete one, and the difference on the average integrality gaps
is small, we may conclude that this is the expected behavior of the two models, that is, the
continuous model should outperform the discrete model, and this difference tends to be larger
when T increases.

3.6 Conclusions

We present a real short sea inventory routing problem for fuel oil distribution. We provide two
types of formulations. A discrete time model for both time varying and constant consumption,
and a continuous time model for constant consumption rates. We discuss different extended
formulations for both types of formulations, and valid inequalities that allow us to derive tighter
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formulations.
All the models proposed were compared according to their size, integrality gap and running

time using a commercial software. From this comparison we conclude that: i) the extended
formulations based on arc-load flow variables with valid inequalities provide the best compromise
between integrality gaps and size of model; ii) the discrete time models tend to provide better
bounds. However, the running times using the discrete time models are in general worse than
the running times using the continuous time model.

From i) and ii) we conclude that, for the constant consumption rate case, the continuous
time arc-load flow model with valid inequalities is the best option among all the tested ones to
solve small real sized instances. With this formulation we solved instances with up to 15 days
to optimality.

Appendix A: glossary of problem and model acronyms

Problem acronyms:

SSIRP: Short Sea Inventory Routing Problem with constant consumption rates.
SSIRP-V: Short Sea Inventory Routing Problem with Varying consumption rates.

Model acronyms:

BD-SSIRP-V: Basic arc-load Discrete time model for the SSIRP-V.
BD-SSIRP: Basic arc-load Discrete time model for the SSIRP.
BC-SSIRP: Basic arc-load Continuous time model for the SSIRP.
FD-SSIRP: Arc-load Flow Discrete time model for the SSIRP.
FC-SSIRP: Arc-load Flow Continuous time model for the SSIRP.
MD-SSIRP: Multi-commodity arc-load Discrete time model for the SSIRP.
MC-SSIRP: Multi-commodity arc-load Continuous time model for the SSIRP.
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Chapter 4

Hybrid heuristics for a short sea
inventory routing problem

Abstract

We consider a fuel oil distribution problem where an oil company is responsible for the routing
and scheduling of ships between ports such that the demand for various fuel oil products is sat-
isfied during the planning horizon. The production/ consumption rates are given and assumed
to be constant. The objective is to determine distribution policies that minimize the total cost
(routing and operating costs), while inventory levels are maintained within their limits. We
propose an arc-load flow formulation for the problem which is tightened with valid inequalities.
In order to obtain good feasible solutions for planning horizons of several months, we com-
pare different hybridization strategies. Computational results are reported for real small-size
instances.

Keywords: Maritime Transportation; Hybrid heuristics; Inventory Routing; Mixed Integer
Programming.

4.1 Introduction

Maritime transportation is the major mode of transportation of goods worldwide. The
importance of this mode of transportation is obvious for the long distance transportation of
cargoes but it is also crucial in local economies where the sea is the natural link between the
local developed regions, such as countries formed by archipelagoes. When a company has the
responsibility of coordinating the transportation of goods with the inventories at the ports,
the underlying planning problem is a maritime inventory routing problem. Such problems are
very complex. Usually modest improvements in the supply chain planning can translate into
significant cost savings.

In this paper we consider a real maritime Short Sea Inventory Routing Problem (SSIRP)
occurring in the archipelago of Cape Verde. An oil company is responsible for the inventory
management of different oil products in several tanks located in the main islands. Fuel oil
products are imported and delivered to specific islands and stored in large supply storage tanks,
so the inventory management does not need to be considered in these tanks. From these islands,
fuel oil products are distributed among all the inhabited islands using a small heterogeneous
fleet of ships with dedicated tanks. These products are stored in consumption storage tanks with
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limited capacity. Consumption rates are assumed to be given and constant over a time horizon
of several months. Some ports have both supply tanks for some products and consumption
tanks of other products.

We have witnessed an increased interest in studying optimization problems within maritime
transportation [14, 15, 16] and, in particular, in the last fifteen years, problems combining
routing and inventory management [8, 12]. These problems are often called Maritime Inventory
Routing Problems (MIRPs). Most of the published MIRP contributions are based on real cases
from the industry, see for the single product case [11, 21, 22, 24] and for the multiple products
case [7, 13, 28, 30, 33, 35].

This SSIRP is addressed in a companion paper [4] where different mathematical formulations
are discussed and compared for the SSIRP considering a shorter time horizon. There, two main
approaches to model the problem are considered. One uses a continuous time model where an
index indicating the visit number to a particular port is added to most of the variables. This
approach was used in [7], [11] and [33] for MIRPs where the production and/or consumption
rates are considered given and fixed during the planning horizon. The other approach consists of
using a model that combines a discrete and continuous time where the discrete time corresponds
to an artificial discretization of the continuous time. Discrete time models have been developed
in [2, 22, 23, 24, 28, 30, 34] to overcome the complicating factors with time varying production
and consumption rates. In addition, for each approach two new extended formulations are
tested in [4].

In [3], the SSIRP for short-term planning is considered. For the short-term plans demand
orders are considered, that is, fixed amounts of oil products that must be delivered at each port
within a fixed period of time. These orders are determined from the initial stock levels and the
consumption rates and lead to a problem with varying demands (corresponding to the demand
orders). Several key issues taken into account in the short-term problem are relaxed here or
incorporated indirectly in the data. For instance, port operating time windows that are essential
in the short-term plan are ignored here. Otherwise, the problems considered originate from the
same company in the same region. These problems are solved using the same commercial solver
we use here, considering a formulation which is improved by the strengthening of defining
inequalities and the inclusion (through separation) of valid inequalities. In [7] a problem similar
to the SSIRP is considered with constant consumption rates and dedicated compartments in
the ships.

In this paper we develop and compare different hybrid heuristics for the SSIRP. As discussed
in [8, 34], most combined maritime routing and inventory management problems described in the
literature have particular features and characteristics, and tailor-made methods are developed
to solve the problems [12]. These methods are often based on heuristics or decomposition tech-
niques. Recent hybrid heuristics that use MIP solvers as a black-box tool have been proposed.
Here we consider and combine three hybrid heuristics: Rolling Horizon (RH), Local Branching
(LB) and Feasibility Pump (FP). In RH heuristics the planning horizon is split into smaller
sub-horizons. Then, each limited and tractable mixed integer problem is solved to optimality.
Within maritime transportation RH heuristics have been used in [25, 28, 32, 33, 34]. Local
Branching (LB) was introduced by Fichetti and Lodi [19] to improve feasible solutions. LB
heuristics search for local optimal solutions by restricting the number of binary variables that
are allowed to change their value in the current solution. Feasibility Pump (FP) was introduced
by Fischetti, Glover and Lodi [18] to find initial feasible solutions for MIP problems.

Computational experiments reported in Section 4.6 show that a combined heuristic using
the three approaches outperformed the other tested heuristics and, in particular, outperformed
the most used approach within MIRPs, the RH heuristic.

To solve each subproblem we consider the arc-load flow (ALF) formulation introduced in
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[4], since this was the model with the best performance among all the tested models for this
problem with short time horizons. The ALF formulation is improved by a pre-computation of
estimates for the number of visits to each port, and with the inclusion of valid inequalities. In
particular, we introduce a new family of clique inequalities for MIRPs when continuous time
models are used.

The main contributions of this paper, the heuristic strategies and the valid inequalities, can
easily be used in other MIRPs.

The remainder of this paper is organized as follows. In Section 4.2, we describe the real
problem. The arc-load flow formulation is presented in Section 4.3 and strategies to tighten the
formulation are discussed in Section 4.4. In Section 4.5 we describe several hybrid heuristics.
The computational experimentations are reported in Section 4.6. Final conclusions are given in
Section 4.7.

4.2 Problem description

In Cape Verde, fuel oil products are imported and delivered to specific islands and stored
in large supply storage tanks. From these islands, fuel oil products are distributed among all
the inhabited islands using a small heterogeneous fleet of ships. The products are stored in
consumption storage tanks. Two ports have both supply tanks for some products and con-
sumption tanks of other products, while the remaining ports have only consumption tanks. Not
all islands consume all products. The consumptions (which are usually forecasted) are assumed
to be constant over the time horizon. It is assumed that each port can receive at most one ship
at a time and a minimum interval between the departure of a ship and the arrival of the next
one must be considered. Waiting times are allowed.

Each ship has a specified load capacity, fixed speed and cost structure. The cargo hold of
each ship is separated into several cargo tanks. The products can not be mixed, so we assume
that the ships have dedicated tanks to particular products.

The traveling times between two consecutive ship visits are an estimation based on practical
experience. Additionally, we consider set-up times for the coupling and decoupling of pipes,
and operating times.

To prevent a ship from delivering small quantities, minimum delivery quantities are consid-
ered. The maximum delivered quantity is imposed by the capacity of the consumption storage
tank. Safety stocks are considered at consumption tanks. As the capacity of the supply tanks is
very large when compared to the total demand over the horizon, we omit the inventory aspects
for these tanks.

In each problem instance we are given the initial stock levels at the consumption tanks,
initial ship positions (which can be a point at sea) and quantities on board each ship. The
inter-island distribution plan consists of designing routes and schedules for the fleet of ships
including determining the number of visits to each port and the (un)loading quantity of each
product at each port visit. The plan must satisfy the safety stocks of each product at each island
and the capacities of the ship tanks. The transportation and operation costs of the distribution
plan must be minimized over a finite planning horizon.

4.3 Mathematical model

In [4] a comparison of six different formulations for the SSIRP for a shorter time horizon is
given. Three of those formulations consider a time discretization and the other three consider
continuous time. For each time option the following formulations are considered: an arc-load
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formulation, where the model keeps only track of the information of the load on board each
ship compartment in each port visit; an arc-load flow formulation, where new variables are used
to keep the information about the quantity of each product in each compartment when a ship
leaves a port en route to the next one; and a multi-commodity formulation, where the flow on
each arc is disaggregated accordingly to its destination. That comparison led to the choice of
the continuous time arc-load flow formulation. In this section we present that arc-load flow
formulation.

Routing constraints

Let V denote the set of ships. Each ship v ∈ V must depart from its initial position in the
beginning of the planning horizon. The set of ports is denoted by N . For each port we consider
an ordering of the visits accordingly to the time of the visit. The ship paths are defined on a
network where the nodes are represented by a pair (i,m), where i is the port and m represents
the mth visit to port i. Direct ship movements (arcs) from port arrival (i,m) to port arrival
(j, n) are represented by (i,m, j, n).

We define SA as the set of possible port arrivals (i,m), SAv as the set of ports that may be
visited by ship v, and set SXv as the set of all possible movements (i,m, j, n) of ship v.

For the routing we define the following binary variables: ximjnv is 1 if ship v sails from port
arrival (i,m) directly to port arrival (j, n), and 0 otherwise; xoimv indicates whether ship v sails
directly from its initial position to port arrival (i,m) or not; wimv is 1 if ship v visits port i at
arrival (i,m), and 0 otherwise; zimv is equal to 1 if ship v ends its route at port arrival (i,m),
and 0 otherwise; zov is equal to 1 if ship v is not used and 0 otherwise; yim indicates whether a
ship is visiting port arrival (i,m) or not.

∑
(i,m)∈SAv

xoimv + zov = 1, ∀v ∈ V, (4.1)

wimv −
∑

(j,n)∈SAv

xjnimv − xoimv = 0, ∀v ∈ V, (i,m) ∈ SAv , (4.2)

wimv −
∑

(j,n)∈SAv

ximjnv − zimv = 0, ∀v ∈ V, (i,m) ∈ SAv , (4.3)

∑
v∈V

wimv = yim, ∀(i,m) ∈ SA, (4.4)

yi(m−1) − yim ≥ 0, ∀(i,m) ∈ SA : m > 1, (4.5)

xoimv, wimv, zimv ∈ {0, 1}, ∀v ∈ V, (i,m) ∈ SAv , (4.6)

ximjnv ∈ {0, 1}, ∀v ∈ V, (i,m, j, n) ∈ SXv , (4.7)

zov ∈ {0, 1}, ∀v ∈ V, (4.8)

yim ∈ {0, 1}, ∀(i,m) ∈ SA. (4.9)

Equations (4.1) ensure that each ship either departs from its initial position and sails towards
another port or the ship is not used. Equations (4.2) and (4.3) are the flow conservation
constraints, ensuring that a ship arriving at a port also leaves that port or ends its route.
Constraints (4.4) ensure that one ship only visits port (i,m) if yim is equal to one. Constraints
(4.5) state that if port i is visited m times, then it must also have been visited m − 1 times.
Constraints (4.6)-(4.9) define the variables as binary.
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Load and unload constraints

Let K represent the set of products and Kv represent the set of products that ship v can
transport. Not all ports consume all products. Parameter Jik is 1 if port i is a supplier of product
k; −1 if port i is a consumer of product k, and 0 if i is neither a consumer nor a supplier of
product k. The quantity of product k on board ship v at the beginning of the planning horizon
is given by Qvk, and Cvk is the capacity of the compartment of ship v dedicated for product k.
The minimum and the maximum discharge quantities of product k at port i are given by Q

ik

and Qik, respectively.

In order to model the loading and unloading constraints, we define the following binary
variables: oimvk is equal to 1 if product k is loaded onto or unloaded from ship v at port visit
(i,m), and 0 otherwise. In addition, we define the following continuous variables: qimvk is the
amount of product k loaded onto or unloaded from ship v at port visit (i,m), fimjnvk denotes
the amount of product k that ship v transports from port visit (i,m) to port visit (j, n), and
foimvk gives the amount of product k that ship v transports from its initial position to port
visit (i,m).

The loading and unloading constraints are given by:

foimvk +
∑

(j,n)∈SAv

fjnimvk + Jikqimvk =
∑

(j,n)∈SAv

fimjnvk, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv (4.10)

foimvk = Qvkxoimv, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (4.11)

fimjnvk ≤ Cvkximjnv, ∀ v ∈ V, (i,m, j, n) ∈ SXv , k ∈ Kv, (4.12)

0 ≤ qimvk ≤ Cvkoimvk, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv : Jik = 1, (4.13)

Q
ik
oimvk ≤ qimvk ≤ Qikoimvk, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv : Jik = −1, (4.14)∑

k∈Kv

oimvk ≥ wimv, ∀v ∈ V, (i,m) ∈ SAv , (4.15)

oimvk ≤ wimv, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (4.16)

fimjnvk ≥ 0, ∀v ∈ V, (i,m, j, n) ∈ SAv , k ∈ Kv, (4.17)

foimvk, qimvk ≥ 0, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (4.18)

oimvk ∈ {0, 1}, ∀v ∈ V, (i,m) ∈ SAv , k ∈ Kv. (4.19)

Equations (4.10) are the flow conservation constraints. Equations (4.11) determine the quantity
on board when ship v sails from its initial port position to port arrival (i,m). Constraints (4.12)
require that the vehicle capacity is obeyed. Constraints (4.13) impose an upper bound on the
quantity loaded at a supply port. Constraints (4.14) impose lower and upper limits on the
unloaded quantities. Constraints (4.15) ensure that if ship v visits port arrival (i,m), then at
least one product must be (un)loaded. Constraints (4.16) ensure that if ship v (un)loads one
product at visit (i,m), then wimv must be one. Constraints (4.17)-(4.19) are the non-negativity
and integrality constraints.

Time constraints

In order to keep track of the inventory level it is necessary to determine the start and the
end times at each port arrival. We define the following parameters: TQik is the time required to
load/unload one unit of product k at port i; TSik is the set-up time required to operate product
k at port i. Tijv is the traveling time between port i and j by ship v; TOiv indicates the traveling
time required by ship v to sail from its initial position to port i; TBi is the minimum interval
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between the departure of one ship and the next arrival at port i. T is the length of the time
horizon. Given the start time tim and end time tEim variables for port arrival (i,m), the time
constraints can be written as:

tEim ≥ tim +
∑
v∈V

∑
k∈Kv

TQikqimvk +
∑
v∈V

∑
k∈Kv

TSikoimvk, ∀(i,m) ∈ SA, (4.20)

tim − tEi(m−1) − T
B
i yim ≥ 0, ∀(i,m) ∈ SA : m > 1, (4.21)

tEim + Tijv − tjn ≤ T (1− ximjnv), ∀v ∈ V, (i,m, j, n) ∈ SXv , (4.22)∑
v∈V

TOivxoimv ≤ tim, ∀(i,m) ∈ SA, (4.23)

tim, t
E
im ≥ 0, ∀(i,m) ∈ SA. (4.24)

Constraints (4.20) define the end time of service at port visit (i,m). Constraints (4.21) impose
a minimum interval between two consecutive visits at port i. Constraints (4.22) relate the end
time of port visit (i,m) to the start time of port visit (j, n) when ship v sails directly from port
visit (i,m) to (j, n). Constraints (4.23) ensure that if ship v travels from its initial position
directly to port visit (i,m), then the start time is at least the traveling time between the two
positions. Constraints (4.24) define the continuous time variables.

Inventory constraints

The inventory constraints are considered for each unloading port. They ensure that the
stock levels are within the corresponding bounds and link the stock levels to the (un)loaded
quantities.

For each consumption port i, and for each product k, the consumption rate, Rik, the mini-
mum Sik, the maximum Sik and the initial stock S0

ik levels, are given. The parameter µi denotes
the maximum number of visits at port i.

We define the nonnegative continuous variables simk and sEimk indicating the stock levels at
the start and at the end of port visit (i,m) for product k, respectively. The inventory constraints
are as follows:

si1k = S0
ik −Rikti1, ∀i ∈ N, k ∈ K : Jik = −1, (4.25)

sEimk = simk +
∑
v∈V

qimvk −Rik(tEim − tim), ∀(i,m) ∈ SA, k ∈ K : Jik = −1, (4.26)

simk = sEi(m−1)k −Rik(tim − t
E
i(m−1)), ∀(i,m) ∈ SA : m > 1, k ∈ K : Jik = −1, (4.27)

Sik ≤ simk, sEimk ≤ Sik, ∀(i,m) ∈ SA, k ∈ K : Jik = −1, (4.28)

Sik ≤ sEiµik −Rik(T − t
E
iµi

) ≤ Sik, ∀i ∈ N, k ∈ K : Jik = −1. (4.29)

Equations (4.25) calculate the stock level of each product at the first visit. Equations (4.26)
calculate the stock level of each product when the service ends at port visit (i,m). Equations
(4.27) relate the stock level at the start of port visit (i,m) to the stock level at the end of port
visit (i,m − 1). The upper and lower bounds on the stock levels are ensured by constraints
(4.28)-(4.29).

Objective function

The objective is to minimize the total routing costs including traveling, operating and set-up
costs. The traveling cost of ship v from port i to port j is denoted by CTijv, while CToiv represents
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the traveling cost of ship v from its initial port positions to port i. The set-up cost of product
k at port i is denoted by COik. The objective function is as follow:∑

v∈V

∑
(i,m,j,n)∈SXv

CTijvximjnv +
∑
v∈V

∑
(i,m)∈SAv

CToivxoimv +
∑
v∈V

∑
(i,m)∈SAv

∑
k∈Kv

COikoimvk. (4.30)

The formulation defined by (4.1)-(4.30) is denoted by F-SSIRP, and the feasible set will be
denoted by X.

4.4 Tightening the formulation

Tightening the formulation provided in the previous section is essential to speed up the
solution approaches (Branch and Bound and hybrid heuristics), and to provide tighter bounds
that will be used in Section 4.6 to evaluate the quality of the tested heuristics. The tightening is
done by including new inequalities. Many families of inequalities were tested. Here we present
only the ones that provided best results from a preliminary study.

4.4.1 Tightening time constraints

Time constraints (4.22) linking the time variables with the routing variables are very weak,
see Desrosiers, Dumas, Solomon, and Soumis (1995). Parameter T works as a big M constant.
An approach to tighten such constraints is to establish time windows to the time events.

Aim ≤ tim ≤ Bim, ∀(i,m) ∈ SA, (4.31)

AEim ≤ tEim ≤ BE
im, ∀(i,m) ∈ SA. (4.32)

Then, constraints (4.22) can be replaced by the stronger inequalities

tEim − tjn + (BE
im + Tijv −Ajn)ximjnv ≤ BE

im −Ajn.

These inequalities can be further strengthened as follows (see Proposition 1 in [5]):

tEim − tjn +
∑

v∈V |(i,m,j,n)∈SXv

max{0, BE
im + Tijv −Ajn}ximjnv ≤ BE

im −Ajn,∀(i,m), (j, n) ∈ SA.

(4.33)

One can take Aim = AEim = 0 and Bim = BE
im = T. However, by reducing the widths of the time

windows we strengthen inequalities (4.33). In this SSIRP we are dealing with multiple ships,
multiple products, and all supply ports also act as demand ports of other products. Because of
this characteristics it is hard to derive tight time windows.

For simplicity, we provide only those time windows formulas that proved to be most effective
for our case. Other rules can be derived adapting the ones given in [10] for the single item case.
Since inventory aspects are only relevant for consumption tanks, and since all the loading ports
of certain products are also consumption ports of other products, time windows are established
based on the unloading products only.

The start of time windows are computed as follows:

Aim = minv∈V {TOiv }+ (m− 1) ∗
(
TBi +mink∈K|Jik=−1

{
TQikQik + TSik

})
,

AEim = minv∈V {TOiv }+ (m− 1) ∗ TBi +m ∗mink∈K|Jik=−1

{
TQikQik + TSik

}
,
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and the end of time windows are computed as follows:

Bim = min
{
T,mink∈K|Jik=−1

{(
S0
ik + (m− 1) ∗ Sik − Sik

)
/Rik − TSik

}}
,

BE
im = min

{
T,mink∈K|Jik=−1

{(
S0
ik +m ∗ Sik − Sik

)
/Rik − TSik

}
− TBi

}
.

The end of time windows can be further strengthened. Let µi denote a lower bound on the
number of visits to port i, i ∈ N (see in Section 4.4.2 how to compute these parameters). If
m ≤ µi, then T in the Bim formula given above can be replaced by

T − (µi −m) ∗ TBi − (µi −m+ 1) ∗mink∈K|Jik=−1

{
TQikQik + TSik

}
,

and, if m < µi, then T in the BE
im formula can be replaced by

T − (µi −m) ∗
{
TBi +mink∈K|Jik=−1

{
Q
ik
TQik + TSik

}}
.

4.4.2 Lower bounds on the number of visits

A common approach to tighten formulations for routing problems is to include constraints
imposing a minimum number of visits to each node. The impact on the reduction of the
integrality gap is usually high. Equations

yiµi = 1, ∀i ∈ N (4.34)

can be added to each model. These parameters µi can be computed from the inventory infor-
mation and traveling times. However, since the traveling times between islands are small, the
number of visits is better estimated through the inventory information and storage capacities
(at ships and ports).

For each port i ∈ N where product k is unloaded, Jik = −1, let

DN
ik = max{T ×Rik − S0

ik + Sik, Q
ik
}

denote the net consumption over the time horizon. The minimum number of visits to port i for
unloading product k is given by

λik =

⌈
DN
ik

Qik

⌉
.

In the real problem, each product has a single origin. As inventory management at supply
tanks is disregarded, the minimum number of visits to load a product can be estimated using the
total consumption supplied by that origin. The consumption of that product must be satisfied
either from that port or from the quantity in the ship tanks at the beginning of the planning
horizon.

For each product k ∈ K, loaded at port i ∈ N (Jik = 1) let

DN
ik =

∑
j∈N |Jjk=−1

(T ×Rjk − S0
jk + Sjk),

denote the net consumption of this product over the time horizon. The minimum number of
loadings of product k at port i is given by

λik =

⌈
DN
ik −

∑
v∈V Qvk

max{Cvk : v ∈ V }

⌉
.
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A lower bound on the total number of visits to port i ∈ N can be given by the following
equation:

µ
i

= max{λik : k ∈ K}. (4.35)

Better bounds can be obtained by solving subproblems for each port. A subproblem is solved
for the consumption products at the port and, if the port is also a supplier of other products,
another subproblem is solved for the supply products.

Although the subproblems are NP-hard, they can be solved very quickly using a commercial
software.

First we state the subproblem for consumption products. All the routing constraints are
ignored in the subproblems. For these subproblems associated to each port the inventory and
time constraints are the same as for the original model. The ship capacity for each product is
overestimated by the maximum of the ship capacities for that product.

Let Ck = max{Cvk : v ∈ V, k ∈ Kv}. For each port i letMi = {1, 2, · · · , µi}. The subproblem
is defined as follows:

NV D(i) : min
∑
m∈Mi

yim (4.36)

s.t.

qimk ≤ Ckoimk, ∀m ∈Mi, k ∈ K,Jik = −1 (4.37)

Q
ik
oimk ≤ qimk ≤ Qikoimk, ∀m ∈Mi, k ∈ K : Jik = −1, (4.38)

oimk ≤ yim, ∀m ∈Mi, k ∈ K : Jik = −1, (4.39)

Constraints (4.25)− (4.29) for node i

Constraints (4.20), (4.21), (4.24) for node i

yim ∈ {0, 1}, ∀m ∈Mi, (4.40)

oimk ∈ {0, 1}, ∀m ∈Mi, k ∈ K : Jik = −1, (4.41)

qimk ≥ 0, ∀m ∈Mi, k ∈ K : Jik = −1, (4.42)

where oimk =
∑

v∈V oimkv, qimk =
∑

v∈V qimkv.

The objective function (4.36) minimizes the number of visits at port i. Constraints (4.37) -
(4.39) have a similar meaning as constraints (4.13), (4.14), (4.16), only now the ship is ignored
and an overestimation of the ship capacities is used.

If port i is also a supplier, for we define the following subproblem, NV S(i), where only the
ship tank capacities are considered.

min{
∑
v∈V

uiv :
∑
v∈V

Cvkuiv ≥
∑

j∈N :Jjk=−1

DN
jk −

∑
v∈V

Qvk,∀k ∈ K : Jik = 1, uiv ∈ Z+, v ∈ V },

where uiv indicates the number of visits of ship v to port i.

If port i is simultaneously a consumption and a supply port, the minimum number of visits
is the maximum between NV D(i) and NV S(i). These two subproblems will be called port
subproblems.

4.4.3 Integer knapsack inequalities

Inequalities from knapsack relaxations have previously been used for MIRPs, see for instance
[24, 27, 34].
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Let Dk(S) denote the total demand of product k, from ports in S during the planning
horizon, where S ⊆ N and Jik = −1 for all i ∈ S. Hence, Dk(S) =

∑
i∈S T ×Rik. Let NDk(S)

denote the amount of demand Dk(S) that must be transported from ports in N \ S. That is,
NDk(S) = Dk(S)−

∑
v∈V Qvk−

∑
i∈S(S0

ik−Sik). Then, the following integer set is a relaxation
of X :

RX =

{
χ ∈ Z|V |+ :

∑
v∈V

Cvkχv ≥ NDk(S)

}
.

where

χv =
∑

(i,m)∈SAv |i∈N\S

∑
(j,n)∈SAv |j∈S

ximjnv,

denotes the number of times ship v visits a port in S coming from a port not in S during the
planning horizon T .

Valid inequalities for RX are valid for X. A particular case of these inequalities is the
following Gomory cut

∑
v∈V

∑
(i,m)∈SAv |i∈N\S

∑
(j,n)∈SAv |j∈S

⌈
Cvk
Q

⌉
ximjnv ≥

⌈
NDk(S)

Q

⌉
, (4.43)

where Q can be any positive number. We take Q = Ck.

However, when | V |= 2 the convex hull of RX can be completely described in polynomial
time, see [6]. When | V |> 2 facet defining inequalities for restrictions of RX to two variables
χv can be lifted using the lifting function ω3 presented in [6]. This approach was used in [3].
Here we provide an example.

Example 4.4.1. Let N = {1, 2, · · · , 7}, V = {1, 2, 3, 4}, K = {1, 2, 3, 4}. Fix port i = 6, and
consider the capacities of the compartments dedicated to product k = 1 : C11 = 900, C21 = 600,
C31 = 920, and C41 = 700. Suppose that for i = 6 and k = 1 with J61 = −1, we have
ND61 = 3675. The following relaxation is derived

RX = {χv ∈ Z+ : 900χ1 + 600χ2 + 920χ3 + 700χ4 ≥ 3675} .

Inequality 3χ1 + 2χ2 ≥ 13 is a facet-defining inequality for RX restricted to χ3 = χ4 = 0.
The lifting function associated with this inequality is:

ϕ(z) = max 13− 3χ1 − 2χ2

s. t. 900χ1 + 600χ2 ≥ 3675− z,
χ1, χ2 ∈ Z+.

In order to lift simultaneously the coefficients of χ3 and χ4, the lifting function ϕ(z) can be
overestimated by the subadditive lifting function ω3 described in [6]. Both functions are depicted
in Figure 4.1. Then the lifted inequality 3χ1 +2χ2 +ω3(920)χ3 +ω3(700)χ4 ≥ 13 ⇔ 3χ1 +2χ2 +
3.26667χ3 + 3χ4 ≥ 13 is valid for RX.

Notice that if only three variables are considered then one can use ϕ(z) instead of ω3 which
gives a better coefficient for χ3 since ϕ(920) = 3.
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Figure 4.1: Lifting function ϕ and subadditive function ω3.

Similar knapsack inequalities can be derived for loading ports and for relaxations using
the operating variables oimvk instead of the traveling variables. For brevity we omit those
inequalities.

4.4.4 Clique inequalities

The name clique inequalities has been used for different families of valid inequalities for
vehicle routing problems. Here we introduce a family of clique inequalities which can be regarded
as a generalization of the subtour elimination constraints (SEC):

ximjnv + xjnimv ≤ 1

Although subtour elimination constraints including more than two variables can be useful
to improve the integrality gap, our experience showed that good computational results can be
obtained using SEC including only two variables. These inequalities can be regarded a particular
case of clique inequalities on a given conflict graph. Consider the conflict graph G = (N , E),
where each node in N , denoted by (i,m, j, n, v), corresponds to a variable ximjnv, and there is
an edge in E between two nodes if the corresponding variables cannot be set simultaneously to
one (the two nodes are in conflict).

Definition 4.4.2. Let G = (N , E) be a conflict graph. Then we define the following pairs of
incompatible variables:

(i) ximjnv and xjnimv, ∀v ∈ V, (i,m, j, n) ∈ SXv .

(ii) ximjnv1 and ximlwv2, ∀v1, v2 ∈ V, (i,m, j, n) ∈ SXv1 , (i,m, l, w) ∈ SXv2 .

(iii) xlwjnv1 and ximjnv2, ∀v1, v2 ∈ V, (l, w, j, n) ∈ SXv1 , (i,m, j, n) ∈ SXv2 .

(iv) xlwjnv1 and xjnimv2, ∀v1, v2 ∈ V : v1 6= v2, (l, w, j, n) ∈ SXv1 , (j, n, i,m) ∈ SXv2 .

As consequence of the above discussion we have the following result:

Proposition 4.4.1. If C ⊂ N is a clique in the conflict graph G, then the inequality∑
(i,m,j,n,v)∈C

ximjnv ≤ 1 (4.44)

is valid for X.
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Remark 4.4.3. An inequality based on a pair of incompatible inequalities of type (i) is a SEC.

In order to separate clique inequalities we need to consider weights on the nodes. The weight
of node (i,m, j, n, v) is given by the value of the variable ximjnv in the linear solution. Finding
the most violated clique inequality implies to solve the maximum weight clique problem, which
is known to be strongly NP-hard. Here we use a simple greedy separation heuristic. First, find
the maximum weight clique with two nodes and update C accordingly. Then augment set C
in a greedy fashion. In each iteration add to C the maximum weight node that forms a clique
with the nodes in C, that is, C ← C ∪ {v∗} where

v∗ = argmax{wv : ∀u ∈ C, {u, v} ∈ E}.

and wv is the weight of node v. The process stops when a maximal clique is found. If the resulting
clique inequality (4.44) is violated then it is added as a cut, otherwise no new inequality is added.

Figure 4.2 shows an example of a linear relaxation solution and the respective conflict graph.
Starting with the maximum weight clique with two nodes

C = {(1, 1, 2, 1, 2), (1, 1, 2, 2, 2)}.

C is further expanded. First with (2, 2, 1, 1, 2) and then with (3, 1, 1, 1, 1).
Hence, C = {(1, 1, 2, 1, 2), (1, 1, 2, 2, 2), (2, 2, 1, 1, 2), (3, 1, 1, 1, 1)}. The (violated) maximal clique
inequality is

x11212 + x11222 + x31111 + x22112 ≤ 1

.
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Figure 4.2: Example of a partial linear relaxation on the left. The two types of arcs represent
different ships. The corresponding conflict graph is given on the right.
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Figure 4.3: The rolling horizon heuristic

4.5 Hybrid heuristics

The formulation F-SSIRP tightened with the strategies discussed in the previous section
can hardly be used to solve real instances using a generic MIP solver. However, recent hybrid
heuristics have been proposed that use MIP solvers as a black-box tool. Here we consider and
combine three such heuristic procedures: rolling horizon, local branching and feasibility pump.

4.5.1 Rolling Horizon heuristic

When considering a planning horizon of several months, the tested instances become too
large to be handled by commercial software. To provide feasible solutions we have developed
a Rolling Horizon (RH) heuristic. The main idea of the RH heuristic is to split the planning
horizon into smaller sub-horizons, and then repeatedly solve limited and tractable mixed integer
problem for the shorter sub-horizons. In transportation problems, RH heuristics have been used
in several related works [9, 28, 31, 32].

In each iteration k of the RH heuristic (except the first and last one), the sub-horizon
considered is divided into three parts: (i) a frozen part where binary variables are fixed; (ii) a
central part (CPk) where no restriction or relaxation is considered, and (iii) a forecasting period
(FPk) where binary variables are relaxed. The central period in iteration k becomes a frozen
period in iteration k+1, and the forecasting period from iteration k becomes the central period
in iteration k + 1, see Figure 4.3. The process is repeated until the whole planning horizon
is covered. In each iteration the limited mixed integer problem is solved. When moving from
iteration k to iteration k+ 1 we (a) fix the values of the binary variables, (b) update the initial
stock level of each product at each port, (c) calculate the quantity of each product on board
each ship, and (d) update, for each ship, the initial position and the travel time and cost from
that position to every port, see Algorithm 1. Based on preliminary tests we set CPk = FPk = 5
days.
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Algorithm 1 Rolling Horizon heuristic

1: k ← 1
2: U ← number of iterations to cover the planning horizon [1, · · · , T ]
3: while k ≤ U do
4: Relax binary variables in forecasting period FPk
5: Solve a limited mixed integer problem defined by CPk and FPk
6: Freeze the variables ximjnv, xoimv, oimvk, wimv, zimv and yim in CPk
7: if k < U then
8: Update the initial stock level of product k at port i
9: Calculate the quantity of each product on board each ship v

10: Update, for each ship v, the initial position and the travel time and cost from that
position to every port i

11: end if
12: k ← k + 1
13: end while

4.5.2 Local Branching heuristic

Local Branching (LB) was introduced in [19] to improve a given feasible solution. The LB
heuristic searches for a local optimum by restricting the number of variables that can change
their value in the current feasible solution.

More formally, consider a feasible set of the form {(u, v) ∈ {0, 1}n × Rm ∩ P} where P is a
polyhedron. Given a feasible solution (u, v), let S = {j ∈ {1, · · · , n} : uj = 1} denote the set of
indices of the binary variables that are set to 1. The extra constraint∑

j∈S

(1− uj) ≤ ∆, (4.45)

is considered, where ∆ is a given positive integer parameter, indicating the number of variables
uj , j ∈ S that are allowed to flip from one to zero.

Many strategies were tested to combine the two heuristic approaches RH and LB. Here we
present only three such strategies. In the RH, the problem is decomposed into subproblems. In
each iteration the subproblem is solved to optimality. For the combined heuristics we used the
same decomposition as for the RH. For all three combined strategies, for each subproblem, a
constraint (4.45) with ∆ = 0 is added on the variables of the frozen period. Doing so, we allow
the continuous variables to change their value within the frozen period. The strategies differ in
the solution approach for each subproblem, and on whether they perform a local search in the
neighborhood of the final solution or not.

LB1: For each subproblem, the solver is interrupted when the first feasible solution is
reached.

LB2: Solve each subproblem twice. First the solver is run until either an integrality gap
(gap = 100 × (UB − LR)/LR where UB is the best known upper bound and LR is the best
known lower bound) less than or equal to 10% is achieved or a maximum time limit is reached.
Then a constraint (4.45) with ∆ = 2 is added over the variables in the central period, and the
subproblem is solved again until a gap of 5% is reached or the time limit is attained.

LB3: Obtain a feasible solution with LB2. For a t, 0 < t < T , impose a constraint (4.45)
with ∆ = 0 for the period [0, T − t], and a constraint (4.45) with ∆ = 6 for the period [T − t, T ].
Solve the new problem. Using the new solution impose new constraints on periods [0, T − 2t],
with ∆ = 0, and [T−2t, T ], with ∆ = 6, and solve the problem again. This procedure is repeated
until at least one of the following stopping criterion is reached: (i) time limit; (ii) maximum
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number of iterations without improvement and (iii) a maximum number of iterations. This
algorithm is detailed in Algorithm 2. In our experiments we used t = 5 days, and a maximum
number of 5 iterations.

Algorithm 2 LB3 heuristic

// first part (obtain a feasible solution for a planning horizon T, ximjnv)

1: T ← length of the planning horizon
2: T1 ← length of the sub-horizon
3: Solve the problem for a time horizon of T1 = 2t periods
4: Save the feasible solution, ximjnv, and compute S
5: T1 ← T1 + t
6: ∆1 ← 0
7: ∆2 ← 6
8: Bin ← 0
9: while T1 ≤ T do

10: Using the port subproblem NV D(i), determine the minimum number of visits at each
port i for time horizon [0, T1]

11: Add constraints
∑

j∈S(1− xj) ≤ ∆1 for time horizon [0;T1 − 3t]
12: if Bin = 0 then
13: Solve the problem until gap ≤ 10% or time limit is reached
14: Bin ← 1
15: else
16: Add constraints

∑
j∈S(1− xj) ≤ ∆2 for time horizon [T1 − 3t;T1]

17: Solve the problem until gap ≤ 5% or time limit is reached
18: Bin ← 0
19: T1 ← T1 + t
20: Remove all added constraints and update the model
21: end if
22: Update the solution, ximjnv and S
23: end while

// second part (improve the feasible solution , ximjnv)
24: number of iterations ← 1
25: while number of iterations ≤ max number of iterations and solution improves do
26: Reduce the fixed period of variables with t days: T1 ← T1 − t
27: Add constraints

∑
j∈S(1− xj) ≤ ∆2

28: Update the solution, ximjnv and S
29: number of iterations ← number of iterations+1
30: end while

4.5.3 Feasibility Pump heuristic

Feasibility Pump (FP) was introduced by Fischetti, Glover and Lodi [18] as a heuristic
scheme to find a feasible solution for a given mixed integer program. Such a procedure can be
useful for those problems where finding an initial solution can be an hard task. FP is a rounding
scheme that generates a sequence of fractional solutions from the linear relaxation which are
rounded. The heuristic stops when a feasible solution is found or other stopping criteria is
reached.

Here we use FP to speed-up the finding of an initial feasible solution. Although we followed
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the underlying ideas of FP, it was necessary to adjust this heuristic scheme to our MIRP. We
focus on the problem at hand and not on the general FP scheme.

In this section, and for simplicity, we denote the points in the space of variables of F-SSIRP
by x. First the linear relaxation of F-SSIRP is solved and a linear solution x∗ is obtained. Then
the binary variables with fractional values are rounded, and a solution x is obtained. If x is
feasible (x ∈ X) we stop. Otherwise, a new fractional solution is derived by finding the linear
solution in the linear relaxation of X that minimizes a distance function to x. The process
is repeated until a feasible solution is found or a predefined maximal number of iterations is
reached. If the rounding procedure stops without a feasible solution, then we run the solver.

Next we address the main steps of the FP algorithm in more detail.

Rounding scheme

For the rounding scheme we first consider the routing variables, ximjnv. We set ximjnv = 1
whenever ximjnv > 0.5 and ximjnv = 0 whenever ximjnv < ε, for small ε. Using the routing flow
conservation constraints we fix the value of the remaining routing variables. Then the remaining
binary variables xoimv, wimv, zimv, yim oim are trivially fixed. This guided rounding scheme
provided better results than rounding all binary variables simultaneously or rounding all the
routing variables simultaneously first. Sophisticated rounding schemes are discussed in [20]. In
our experiments we use ε = 0.1.

The distance function

Given a 0-1 MIP solution obtained by rounding x we define the following distance function

φ(ximjnv, ximjnv) =
∑
v∈V

∑
(i,m,j,n)∈SXv

|ximjnv − ximjnv|

=
∑
v∈V

∑
(i,m,j,n)∈SXv |ximjnv=1

(1− ximjnv)

+
∑
v∈V

∑
(i,m,j,n)∈SXv |ximjnv=0

ximjnv (4.46)

If φ(ximjnv, ximjnv) = 0, then a feasible solution can be derived. Otherwise a new linear
solution x∗ is obtained by solving the problem:

min{φ(ximjnv, ximjnv) : x ∈ XL}

where XL denotes the linear relaxation of the feasible set X of F − SSIRP.

Random perturbation

During the execution of the procedure two problems may arise: (i) the algorithm can be
caught in a cycle, i.e., the same sequence is visited after consecutively and (ii) the convergence
to a feasible solution is very slow.

Both problems (i) and (ii) are solved by performing a restart, that is, a new 0-1 MIP
solution is derived by performing a random perturbation step. This step is similar to the
one given in [1] and it is applied to the routing variables on the rounding scheme, that is,
ximjnv = bx∗imjnv + ρ(z)c where z ∈ [0, 1] is a uniform random variable and ρ(z) = 2z(1− z) if
z ≤ 0.5 and ρ(z) = 1− 2z(1− z) if z > 0.5.
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To measure the convergence speed we compute the difference between the value of the
distance function in two consecutive solutions. When this difference is very small (smaller than
a given δ) we perform the random perturbation.

Algorithm 3 describes the FP heuristic. In the computational results we set δ = 0.1 and a
maximum number of 50 iterations.

Algorithm 3 Feasibility Pump heuristic

1: Relax binary variables
2: Solve LP-relaxation of F-SSIRP. Let x∗ denote its optimal solution
3: Obtain x by rounding x∗

4: number of iterations ← 1
5: while number of iterations ≤ max number of iterations and φ(ximjnv, ximjnv) > 0 do
6: Solve the LP: x∗ ← argmin{φ(ximjnv, ximjnv) : x ∈ XL}
7: Obtain x by rounding x∗

8: if φ(ximjnv, x
∗
imjnv) < δ then

9: Apply the random perturbation step
10: end if
11: number of iterations ← number of iterations+1
12: end while

4.6 Computational experimentation

In this section we report the computational results when testing different hybrid heuristic
approaches.

All computations were performed using the optimization software Xpress Optimizer Version
20.00.05 with Xpress Mosel Version 3.0.0, on a computer with processor Intel Core 2 Duo 2.2GHz
and with 4GB of RAM.

We tested 12 real instances from a company in Cape Verde with 2 different ships, 7 ports
and 4 products.

First we report a summary of results that testify the model choices. These tests were run
for periods of 15 days. Then we report the results from the tests conducted to compare several
hybrid strategies for periods of 2 and 6 months.

4.6.1 Model tuning

First we consider the use of port subproblems to estimate the minimum number of port
visits. Figure 4.4, on the left, shows the minimum number of visits calculated using the formula
(4.35), calculated using the subproblems, and the number of visits in the optimal solution for
the 12 instances tested. On the right, the figure depicts the integrality gap (GAP), given by
GAP = 100× (OPT − LR)/OPT where OPT is the optimal value, obtained using the Xpress
optimizer, and LR is the value of the linear relaxation. We consider the cases: “initial” when no
minimum number of visits is imposed, “formula” when the minimum is obtained using (4.35),
“subproblem” when the minimum is obtained using port subproblems and “exact” when we
consider the minimum equal to the number of visits in the optimal solution.

In average, the initial integrality gap is 26.7%, drops to 24.1% using equations (4.35), and
drops to 17.7% using subproblems. If the exact value in the optimal solution is used, the average
gap is 13.2%.

Table 4.1 summarizes the integrality gaps when model F-SSIRP is used. TT means that the
time constraints were tightened, SP means that the minimum number of visits was estimated
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Figure 4.4: Estimation of the minimum number of visits (on the left) and its impact on the
integrality gap (on the right) .

using the port subproblem. IK indicates that the Integer Knapsack inequalities are added, and
C means that the clique inequalities are added.

Table 4.1: Evolution of the average integrality gap with model tightening.

F-SSIRP + TT F-SSIRP + TT + SP F-SSIRP + TT + SP + IK F-SSIRP+TT+SP+IK+C

26.7 17.7 10.9 10.9

In Table 4.2 we present the average solutions times, the number of B&B nodes, and the
number of cuts added in each case. We can see that although the clique inequalities do not
improve the integrality gap significantly, they are important with regard to the reduction in
number of B&B nodes and running time.

4.6.2 Hybrid heuristics

In this section we report experiments carried out for comparing the hybrid heuristics in
terms of running time, integrality gap and number of B&B nodes over two planning horizons:
2 and 6 months. Since the optimal solutions could not be obtained for these time horizons,
the integrality gap (GAP) is computed as GAP = 100 × (UB − LR)/LR where UB is the
value obtained by the heuristic and LR is the value of the linear relaxation. The value LR is
obtained using the port subproblems to estimate the number of visits, and including IK and C
inequalities. These model strengthening techniques are used whenever the optimization of the
model F-SSIRP occurs as a subproblem embedded in a hybrid heuristic. The valid inequalities
are added only at the root node.

For a time horizon of 2 months, Table 4.3 shows the performance of the RH heuristic,
LB1 and LB1 combined with FP. It reports the time in seconds, the number of B&B and the
integrality gap for each heuristic. The performance of LB2 and LB2 combined with FP is given
in Table 4.4, and the performance of LB3 and LB3 combined with FP is given in Table 4.5.
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Table 4.2: Comparison of time (in seconds), and B&B nodes using valid inequalities.

F-SSIRP+TT F-SSIRP+TT+SP+IK F-SSIRP+TT+SP+IK+C

Inst. Time Nodes Time Nodes Cuts Time Node Cuts

1 288 23788 38 1017 12 36 1015 16
2 11 19 25 1491 5 9 7 6
3 31 1377 51 3451 9 55 5678 16
4 63 3970 26 919 9 17 575 10
5 19 2777 15 2307 7 16 533 11
6 69 6188 23 2433 9 23 2433 9
7 15 754 8 379 5 6 327 6
8 20 8785 18 2917 10 10 622 11
9 40 8071 23 1423 7 24 603 9
10 40 1551 23 3535 9 9 3 13
11 58 16729 111 5383 9 73 2509 11
12 71 9299 41 8003 8 41 8003 8

Average 60.4 6942.3 33.5 2771.5 8.3 26.6 1859.0 10.5

Table 4.3: Computational results using RH, LB1 and LB1+FP for T = 2 months.

RH LB1 LB1+FP
Inst. Time Nodes Gap Time Nodes Gap Time Nodes Gap

1 1409 141380 37,1 45 1631 24,8 62 1753 27,7
2 951 148330 26,0 31 692 18,1 88 3229 31,2
3 1421 119833 12,4 365 30027 30,2 401 12420 16,8
4 4908 349909 41,1 51 2118 22,0 110 1700 28,2
5 649 105135 33,5 81 2829 30,8 126 2744 36,2
6 711 106265 33,0 598 53813 38,3 405 29366 30,9
7 362 47432 29,5 384 24356 28,2 321 22785 18,7
8 1285 160392 28,0 225 17487 29,1 256 16439 23,4
9 1107 122907 31,5 684 60289 33,6 322 13265 22,1
10 865 105245 25,8 97 3706 27,0 108 11027 27,1
11 985 143251 28,5 97 3706 28,1 64 2023 26,9
12 1106 167755 30,2 3 13 24,3 74 2838 32,9

Av. 1313,3 143152,8 29,7 221,8 16722,3 27,9 194,8 9965,8 26,8
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Table 4.4: Computational results for LB2 and LB2+FP for T = 2 months.
LB2 LB2+FP

Instance Time (sec.) Nodes Gap Time (sec.) Nodes Gap
1 277 19887 23,2 106 4014 16,1
2 104 7982 11,8 72 3859 12,4
3 817 54236 21,8 780 48717 20,7
4 155 10214 22,6 192 12692 18,6
5 552 31737 15,2 252 10013 17,8
6 1755 122197 20,4 940 78983 20,4
7 1066 79101 21,3 481 26912 16,2
8 734 63262 20,0 672 28244 25,4
9 846 54919 16,7 1083 41811 21,7
10 1047 52706 17,5 397 7660 14,1
11 285 10004 20,6 423 11650 18,4
12 744 27989 11,2 456 12493 14,7

Average 698,5 44519,5 18,5 487,8 23920,7 18,1

Table 4.5: Computational results for LB3 and LB3 + FP for T = 2 months.
LB3 LB3+FP

Instance Time (sec.) Nodes Gap Time (sec.) Nodes Gap
1 301 20561 20,5 107 4014 12,9
2 105 7982 8,6 144 7718 12,4
3 951 64918 18,8 781 48717 18,1
4 185 15624 18,2 384 25384 18,6
5 573 33366 11,9 504 20026 17,8
6 2018 131345 20,4 1211 86043 20,4
7 1079 79303 18,5 485 26943 12,9
8 760 64206 17,0 686 28353 17,0
9 850 54919 13,7 1088 41811 18,7
10 1050 52706 14,5 399 7660 11,0
11 312 10770 17,9 425 11650 15,7
12 753 28264 7,8 461 12494 11,5

Average 744,8 46997,0 15,7 556,3 26734,4 15,6

We can see that LB heuristics combined with FP are, in average, faster than the LB heuristics
which are in turn faster than the RH heuristic. The use of FP is more relevant on those harder
instances, where the solver is not able to find good initial feasible solutions quickly. As expected,
LB1 is faster than LB2, and LB2 is faster than LB3. However, the quality of the solutions
obtained varies in the opposite direction. The most sophisticated heuristic, LB3 combined with
FP, provides solutions with an integrality gap which is, in average, half of the integrality gap
of the usual RH heuristic. The running time is almost a third of the running time of the RH
heuristic.

Tables 4.6 and 4.7 give the computational results for 6 months for heuristics RH, LB1, and
LB2 and LB3 combined FP. The behavior of these algorithms is similar to the case of 2 months.
Only the gaps are higher. However, as this gap is computed by use of the linear relaxation
value we do not know whether this increase results from a deterioration of the upper bound,
the lower bound, or both.
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Table 4.6: Computational results for RH and LB1 for T = 6 months.
RH LB1+FP

Instance Time (sec.) Nodes Gap Time (sec.) Nodes Gap
1 3324 107998 42,6 2816 25114 24,3
2 10258 207125 44,8 1937 23517 28,7
3 3451 62775 45,6 2872 57014 26,1
4 4631 115802 41,6 1040 14311 26,5
5 6149 103324 47,7 3689 48353 32,8
6 10288 139427 42,5 3977 77989 31,5
7 7219 105059 42,4 1468 35739 27,8
8 3776 166414 46,2 1213 34326 32,5
9 4196 209323 47,2 7792 102636 29,7
10 2658 113510 45,1 4854 39172 30,5
11 13244 208361 44,8 569 12772 27,9
12 2079 93102 45,1 3042 35513 29,4

Average 5939,4 136018,3 44,6 2939,1 42204,7 29,0

Table 4.7: Computational results for LB2 and LB3 for T = 6 months
LB2+FP LB3+FP

Instance Time (sec.) Nodes Gap Time (sec.) Nodes Gap
1 4404 166993 23,1 4551 167148 21,1
2 1260 78999 20,7 1300 79060 18,6
3 2469 83566 23,8 2507 83647 22,0
4 1736 83330 20,3 1819 83457 18,2
5 2917 99785 28,2 3142 100031 26,6
6 3109 114450 28,7 3125 114455 27,1
7 2899 102661 31,9 3004 102776 30,4
8 2349 113899 28,7 2480 114137 27,1
9 3894 142451 21,1 4109 142606 19,2
10 1392 53626 20,7 1598 53742 18,7
11 2308 110136 24,4 2454 110286 22,6
12 1607 67245 24,5 1881 67355 22,8

Average 2528,7 101428,4 24,7 2664,1 101558,5 22,9

To test the heuristic approaches that performed best on the larger instances, we created two
artificial future scenarios where the demands as well as the number of ships are increased. One
scenario with three ships and demands that are 1.5 times the current demands, and another
scenario with four ships and double demands. Each scenario is identified by the number of ships
(| V |= 3 and | V |= 4). We opted not to reduce the length of each sub horizon. All the tested
heuristics run within a reasonable computational time effort for 2 months. For 6 months, RH,
LB2 and LB3 heuristics were too time consuming.

In Table 4.8 we give the computational results. For | V |= 3 we used a variant of LB2, where
only the first run (until a gap of 10%) is performed, combined with FP. For | V |= 4 we used
LB1 combined with FP. We could not solve most of the linear relaxations within 1 day time
limit. To compute the lower bound we computed the linear relaxation of the model obtained
from F-SSIRP by removing all time and inventory constraints, and with the additional cuts
discussed in Section 4.4. Additionally we imposed, for each port i and each product k such that
Jik = −1, the constraint

∑
v∈V

∑µi
m=1 qimvk ≥ T ×Rik + Sik − S0

ik.
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Table 4.8: Computational results for larger instances with 3 and 4 ships
—V—=3 —V—=4

Instance Time (sec.) Nodes Gap Time (sec.) Nodes Gap

1 988 10154 27,0 5218 45921 31,0
2 1096 20695 29,7 5017 44186 35,1
3 924 30403 29,8 4633 51406 24,5
4 2120 34692 30,3 6804 47798 28,2
5 2120 49307 32,7 5706 49415 35,9
6 2199 25836 36,9 10988 55062 40,8
7 1158 32612 33,7 3338 48450 31,2
8 2340 62303 33,3 4173 54671 30,7
9 1486 51884 29,9 6813 52666 35,2
10 1857 51934 35,0 9958 47864 34,3
11 2275 25875 31,1 4581 49583 36,6
12 2628 30691 31,1 5064 47717 31,2

Average 1765,9 35532,2 31,7 6024,4 49561,6 32,9

4.7 Conclusions

We have presented a mathematical model for the short sea inventory routing problem. This
model is tightened with valid inequalities and an estimation of the minimum number of visits to
each port by solving some port subproblems. In particular we introduced new clique inequalities
that can be used to tighten continuous time maritime inventory routing models.

Given the long time horizons, we propose and compare different strategies of combining three
well-known heuristics that use the mathematical model as a black-box. The Rolling Horizon
heuristic is used to decompose the original problem into smaller and more tractable problems,
the Feasibility Pump heuristic is used to find initial solutions for MIP problems, and the Local
Branching heuristic is used to improve feasible solutions.

The best strategy tested combines all the three heuristics, and allowed us to obtain solutions
whose integrality gap is in average half of the integrality gap obtained using the rolling horizon
heuristic alone. We provided computational results for time horizons up to 6 months.

In order to evaluate the quality of the solutions obtained by the hybrid procedures, an
important future direction of research is to investigate approaches to derive tight lower bounds,
specially for long time horizons where the size of the linear relaxation model is quite large.
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Chapter 5

A Maritime Inventory Routing
Problem with Stochastic Sailing and
Port Times

Abstract

We consider a stochastic short sea shipping problem where a company is responsible for
both the distribution of oil products between islands and the inventory management of those
products at unloading ports. Ship routing and scheduling is associated to uncertainty in weather
conditions and unpredictable waiting times in ports, and in this work, both sailing times and
port times are considered to be stochastic parameters.

A two-stage stochastic programming model with recourse is presented where the first-stage
consists of routing, loading and unloading decisions, and the second stage consists of scheduling
decisions. The model is solved using a decomposition approach similar to an L-shaped algorithm
where optimality cuts are added dynamically, and this solution process is embedded within
the sample average approximation method. A computational study based on ten real-world
instances is presented.

Keywords: Stochastic programming; Maritime transportation; Uncertainty; L-shaped method;
Sample average approximation; Travel time; Service time.

5.1 Introduction

Maritime transportation is characterized by high levels of uncertainty. In practice, op-
erational plans are often adjusted due to factors such as changing weather conditions, ports
congestions, or mechanical problems at port. A plan that minimizes the transportation and
port costs based on expected sailing and port times may not necessarily be good, as it does not
account for consequences resulting from delays. Hence, in most practical situations it will be
beneficial to consider the possibility of delays when trying to minimize costs.

In this paper we consider a maritime inventory routing problem occurring at the archipelago
of Cape Verde. A deterministic variant of this problem was solved to optimality in [1] for
short time horizons. Heuristics for the same problem with time horizons up to 6 months were
developed in [2]. The deterministic methods assume known and fixed sailing times, but the
planner needs to face the uncertainty associated with the ships sailing between ports. This
may somehow be circumvented by the inclusion of safety stocks at inventories or by artificially
increasing the sailing times to compensate for delays. However, in this paper we consider
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explicitly uncertainty in both sailing times between ports and waiting times at ports, over a
short time horizon. Bad weather can lead to both longer sailing and port times. The ports are
used by several independent shipping companies, and limited coordination between the various
operators can result in heavy port congestion. This may come from limited capacities in the
inner port area, at berths, and of pipes and other important equipment for performing the
(un-)loading operations. In addition, delays may occur due to mechanical problems at port. By
taking this into account, good distribution plans can be found that explicitly takes into account
the real possibility of violating inventory limits at production or consumption ports.

This paper describes a stochastic programming model with recourse where the routes and
the quantities to load and unload must be fixed a priori, that is, before actual values of the
uncertain parameters are revealed, while the schedule of the loading and unloading operations
can be adjusted according to the observed sailing and port times.

The solution method combines the use of the sample average approximation method with a
decomposition procedure resembling an L-shaped method [5, 11]. For a given set of scenarios,
the corresponding two-stage model is solved to obtain a candidate solution. This is repeated
for several different sets of scenarios to obtain several candidate solutions. To choose the best
solution, these candidate solutions are evaluated for a larger and independent set of scenarios.
To solve the two-stage model for a given set of scenarios, the problem is decomposed into a
master problem and one subproblem for each scenario, where the second-stage decisions are
considered in the subproblems. We show that feasibility is always guaranteed for the solution
obtained in the first stage. Then we show how to derive optimality cuts from the subproblems
that are added dynamically to the master problem.

The remainder of this paper is organized as follows. In Section 5.2 we describe the real
problem and review some relevant literature. Then, in Section 5.3 we present a scenario based
mathematical formulation for the problem. The solution approach based on decomposing the
problem is discussed in Section 5.4. In Section 5.5 we describe how the stochastic sailing and
port times have been modeled, and how scenarios have been generated. Section 5.6 contains
computational results for ten real-world instances, and in Section 5.7 we present the main
conclusions of this work.

5.2 Problem description and literature review

In Cape Verde, fuel oil products are imported and delivered to specific islands and stored
in large supply storage tanks. From these islands, fuel oil products are distributed among all
inhabited islands using a small heterogeneous fleet of ships. Products are stored in separate
consumption storage tanks with limited capacity. Some ports have both supply tanks for some
products and consumption tanks for other products. As the capacities of the supply tanks are
very large compared to the total consumption over the planning horizon, the inventory aspects
for these tanks can be ignored. Not all islands consume all products. Consumption rates are
assumed to be constant over the time horizon. Each port can receive at most one ship at a time,
and in some ports there exists a minimum time interval between the departure of one ship and
the arrival of the next ship.

Each ship has a specified capacity, fixed speed, and cost structure. The cargo hold of each
ship is separated into several cargo tanks. The products cannot be mixed, so we assume that
the ships have dedicated tanks for the particular products. The ships are either sailing, waiting
outside a port or operating. Here, operating is the common term for loading and unloading.

At port, we consider set-up times for the coupling and decoupling of pipes and operation
times which depend on the amount loaded or unloaded. Minimum and maximum unloading
quantities can be derived. The maximum unloading quantity is imposed by the inventory
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capacity at the consumption port and by the ship cargo tank capacity.

The driving force in the problem is the need for fuel oil products in the consumption storage
tanks. If the demand is not satisfied, the backlogged demand will be penalized by a cost.

The traveling times depend upon the weather conditions and are considered stochastic. The
uncertain time parameter at port is manly related to the time from arrival to start of operation.
Hence, a specified waiting time before start of service is defined as stochastic, while the operation
times are deterministic.

The inter-island distribution plan consists of routes and schedules for the fleet of ships, and
describes the number of visits to each port and the quantity of each product to be loaded or
unloaded at each port visit. This plan must satisfy the capacities of the ships and consumption
inventories while minimizing the sailing and port costs as well as the expected penalty costs of
backlogged demand. There is great flexibility in the route pattern of a ship, such that a ship
may visit several loading ports as well as unloading ports in succession and the quantities loaded
or unloaded are variable as well as the number of visits at each port. The problem described
here will be referred to as a stochastic maritime inventory routing problem (SMIRP), and a
scenario based stochastic programming model for the problem is given in Section 5.3.

The amount of literature on maritime transportation optimization has increased steadily
over the last decades, as evidenced through the recent survey in [7]. Despite being a transporta-
tion mode that is heavily influenced by uncertainty, most of the literature on maritime routing
and scheduling involves solving static and deterministic problem variants. However, some con-
tributions exist, and we describe some that are considering problems close to the stochastic
maritime inventory routing problem of this paper.

An inventory routing problem with uncertain demands and sailing times was solved heuris-
tically by Cheng and Duran [6]. Rakke et al. [17] and Sherali and Al-Yakoob [18, 19] introduce
penalty functions for deviating from the customer contracts and the inventory limits, respec-
tively. Christiansen and Nygreen [8] introduce soft inventory levels to handle uncertainties in
sailing and port times, and these levels are transformed into soft time windows.

Agra et al. [3] solved a full-load ship routing and scheduling problem with uncertain travel
times using robust optimization. Weather conditions affect both sailing speeds and the loading
and unloading operations for supply vessels servicing offshore installations, and various heuristic
strategies to achieve robust weekly voyages and schedules were analyzed by Halvorsen-Weare
and Fagerholt [9]. Heuristic strategies for obtaining robust solutions with uncertain sailing times
was also discussed by Halvorsen-Weare et al. [10] for the delivery of liquefied natural gas. None
of the aforementioned research has used stochastic programming to model uncertain sailing and
port times.

A stochastic model for a particular version of the vehicle routing problem (VRP) with
stochastic travel times was presented by Lambert et al. [14], and a heuristic solution method
was proposed. Considering a VRP with stochastic travel times and service times, Laporte et
al. [15] presented a chance constrained formulation as well as two recourse formulations. The
recourse problem was solved to optimality for up to 20 nodes and 5 scenarios using an integer L-
shaped method. The VRP with stochastic travel and service times was also studied by Kenyon
and Morton [13], considering stochastic programming models that minimized the expected com-
pletion time or maximized the probability of completing the routes within a given deadline. An
integer L-shaped algorithm was used by Teng et al. [20] to solve a time-constrained traveling
salesman problem with stochastic travel and service times with up to 35 nodes. Although these
papers present stochastic programming models for routing problems with uncertain travel times
and service times, they do not consider heterogeneous fleets, a variable number of visits, nor
inventory constraints.
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5.3 Mathematical Model

In this section we introduce a two-stage stochastic programming model with recourse for
the SMIRP problem. The routes and the quantities to load and unload are determined in the
first stage. However, the schedule of the loading and unloading operations can be adjusted in
the second stage. Thus, also the inventory level variables are allowed to change according to
the realization of the stochastic parameters. In the following we first describe the variables
and constraints related to the first stage (Section 5.3.1), and then the variables and constraints
related to the second stage (Section 5.3.2).

5.3.1 First stage

First we model the routing and the loading and unloading constraints.

Routing constraints:

Let V denote the set of ships. Each ship v ∈ V must depart from its initial position in
the beginning of the planning horizon. For each port we consider an ordering of the visits
accordingly to the time of visit. The ship paths are defined on a network where the nodes are
represented by a pair (i,m), where i is the port and m is the mth visit to port i. A direct ship
movement (arc) from port arrival (i,m) to port arrival (j, n) is represented by (i,m, j, n).

We define SA as the set of possible port arrivals (i,m), SAv as the set of port arrivals that
may be visited by ship v, SX as the set of all possible ship movements (i,m, j, n), and set SXv
as the set of all possible movements of ship v. The set of ships that can visit port i is denoted
Vi.

For the routing we define the following binary variables: ximjnv that is 1 if ship v sails from
port arrival (i,m) directly to port arrival (j, n), and 0 otherwise; xOimv that indicates whether
ship v sails directly from its initial position to port arrival (i,m) or not; wimv is 1 if ship v visits
port i at arrival (i,m), and 0 otherwise; zimv is equal to 1 if ship v ends its route at port arrival
(i,m), and 0 otherwise; zOv is equal to 1 if ship v is not used and 0 otherwise; yim indicates
whether a ship is visiting port arrival (i,m) or not.∑

(i,m)∈SAv

xOimv + zOv = 1, v ∈ V, (5.1)

wimv −
∑

(j,n)∈SAv

xjnimv − xOimv = 0, v ∈ V, (i,m) ∈ SAv , (5.2)

wimv −
∑

(j,n)∈SAv

ximjnv − zimv = 0, v ∈ V, (i,m) ∈ SAv , (5.3)

∑
v∈Vi

wimv = yim, (i,m) ∈ SA, (5.4)

yi(m−1) − yim ≥ 0, (i,m) ∈ SA : m > 1, (5.5)

xOimv, wimv, zimv ∈ {0, 1}, v ∈ V, (i,m) ∈ SAv , (5.6)

ximjnv ∈ {0, 1}, v ∈ V, (i,m, j, n) ∈ SXv , (5.7)

zOv ∈ {0, 1}, v ∈ V, (5.8)

yim ∈ {0, 1}, (i,m) ∈ SA. (5.9)

Equations (5.1) ensure that each ship either departs from its initial position and sails towards
another port or the ship is not used. Equations (5.2) and (5.3) are the arc flow conservation
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constraints, ensuring that a ship arriving at a port also leaves that port or ends its route.
Constraints (5.4) ensure that one ship only visits port (i,m) if yim is equal to one. Constraints
(5.5) state that if port i is visited m times, then it must also have been visited m − 1 times.
Constraints (5.6) - (5.9) define the variables as binary.

Loading and unloading constraints

Let K represent the set of products and Kv represent the set of products that ship v can
transport. Not all ports consume all products. Parameter Jik is 1 if port i is a supplier of
product k; −1 if port i is a consumer of product k, and 0 if i is neither a consumer nor a
supplier of product k. The quantity of product k on board of ship v at the beginning of the
planning horizon is given by QOvk and Cvk is the capacity of the compartment of ship v dedicated
for product k. The minimum and the maximum discharge quantities of product k at port i are
given by Q

ik
and Qik, respectively. Parameter T is the length of the time horizon.

To model the loading and unloading constraints, we define the following binary variables:
oimvk is equal to 1 if product k is loaded onto or unloaded from ship v at port visit (i,m), and
0 otherwise. In addition, we define the following continuous variables: qimvk is the amount of
product k loaded onto or unloaded from ship v at port visit (i,m); fimjnvk denotes the amount
of product k that ship v transports from port visit (i,m) to port visit (j, n), and fOimvk gives
the amount of product k that ship v transports from its initial position to port visit (i,m).

The loading and unloading constraints are given by:

fOjnvk +
∑

(i,m)∈SAv

fimjnvk + Jjkqjnvk =
∑

(i,m)∈SAv

fjnimvk, v ∈ V, (j, n) ∈ SAv , k ∈ Kv, (5.10)

fOimvk = QOvkx
O
imv, v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (5.11)

fimjnvk ≤ Cvkximjnv, v ∈ V, (i,m, j, n) ∈ SXv , k ∈ Kv, (5.12)

0 ≤ qimvk ≤ Cvkoimvk, v ∈ V, (i,m) ∈ SAv , k ∈ Kv : Jik = 1, (5.13)

Q
ik
oimvk ≤ qimvk ≤ Qikoimvk, v ∈ V, (i,m) ∈ SAv , k ∈ Kv : Jik = −1, (5.14)∑

k∈Kv

oimvk ≥ wimv, v ∈ V, (i,m) ∈ SAv , (5.15)

∑
(i,m)∈SAv

∑
v∈V

∑
k∈Kv :Jik=−1

qimvk ≥
∑
i∈N

∑
k∈K:Jik=−1

RikT, (5.16)

oimvk ≤ wimv, v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (5.17)

fimjnvk ≥ 0, v ∈ V, (i,m, j, n) ∈ SAv , k ∈ Kv, (5.18)

fOimvk, qimvk ≥ 0, v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (5.19)

oimvk ∈ {0, 1}, v ∈ V, (i,m) ∈ SAv , k ∈ Kv. (5.20)

Equations (5.10) are the load flow conservation constraints. Equations (5.11) determine the
quantity on board when ship v sails from its initial port position to port arrival (i,m). Con-
straints (5.12) guarantee that the ships’ tank capacities are not exceeded. Constraints (5.13)
impose an upper bound on the quantity loaded at the supply ports. Constraints (5.14) impose
lower and upper limits on the unloaded quantities. Constraints (5.15) ensure that if ship v
visits port arrival (i,m), then at least one product must be (un)loaded. Constraints (5.16)
ensure that the sum of delivered goods should not be less than the sum of the consumption
over the entire horizon T. Constraints (5.17) ensure that if ship v (un)loads one product at visit
(i,m), then wimv must be one. Constraints (5.18)-(5.20) are the non-negativity and integrality
requirements.
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5.3.2 Second stage

Now we present the second stage model where the variables can be adjusted to the scenario.
The set of scenarios Ω will be indexed by c.

Time constraints

To keep track of the inventory level it is necessary to determine the start and the end times
at each port arrival. We define the following parameters: TQik is the time required to load/unload
one unit of product k at port i; TSik is the set up time required to operate product k at port i.
Tijvc is the sailing time between port i and j by ship v for scenario c; TOivc indicates the sailing
time required by ship v to travel from its initial port position to port i for scenario c; TBi is
the minimum interval between the departure of one ship and the next arrival at port i; TWimc is
the waiting time at port arrival (i,m) for scenario c. The parameter µi denotes the maximum
number of visits at port i. For each scenario c we define the start time timc and the end time
tEimc variables for port arrival (i,m). Variables t+ic give the remaining time from the end of the
last visit at port i until time T for scenario c, when this visit occurs before time T.

Assuming that a ship travels from (i,m) to (j, n) under scenario c and loads product k using
vessel v, Figure 5.1 shows the parameters involved when calculating the time variables for node
(j, n).

TWjnc TSjk TQjkqjnvk

tEimc tjnc tEjnc

Tijvc

Figure 5.1: Illustration of the parameters involved when calculating start and end times for
node (j, n).

The set of time constraints is as follow:

tEimc ≥ timc +
∑
v∈V

∑
k∈Kv

TSikoimvk +
∑
v∈V

∑
k∈Kv

TQikqimvk, (i,m) ∈ SA, c ∈ Ω, (5.21)

timc − tEi(m−1)c − T
B
i yim ≥ 0, (i,m) ∈ SA : m > 1, c ∈ Ω, (5.22)

tEimc +
∑

v∈Vi∩Vj

Tijvcximjnv + TWjnc − tjnc ≤M(1−
∑

v∈Vi∩Vj

ximjnv), (i,m, j, n) ∈ SX , c ∈ Ω,

(5.23)∑
v∈V

TOivcx
O
imv + TWimc ≤ timc, (i,m) ∈ SA, c ∈ Ω, (5.24)

t+ic ≥ T − t
E
iµic, i ∈ N, c ∈ Ω, (5.25)

timc, t
E
imc ≥ 0, (i,m) ∈ SA, c ∈ Ω, (5.26)

t+ic ≥ 0, i ∈ N, c ∈ Ω. (5.27)

Constraints (5.21) define the end time of service at port visit (i,m). Constraints (5.22) impose
a minimum interval between two consecutive visits at port i. Constraints (5.23) relate the end
time of port visit (i,m) to the start time of port visit (j, n) when ship v sails directly from
port (i,m) to (j, n). The big-M constant, denoted by M was set to 2T, since the start time of
a visit can occur after time T. These constraints are a stronger version of the usual family of
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constraints tEimc +Tijvc +TWjnc− tjnc ≤M(1−ximjnv) defined for each v ∈ V. Constraints (5.24)
ensure that if ship v travels from its initial position directly to port visit (i,m), then the start
time is at least the sailing time between the two positions plus the waiting time at port visit
(i,m). Constraints (5.25) together with (5.27) determine the time gap between the last visit
to port i and time T. The continuous time variables are declared as non-negative in (5.26) and
(5.27).

Inventory constraints

The inventory constraints are considered for each unloading port i (Jik = −1). They ensure
that the inventory levels are kept within the corresponding bounds, and link the inventory levels
to the unloaded quantities.

For each consumption port i, and for each product k, the demand rate, Rik, the minimum
Sik, the maximum Sik, and the initial SOik inventory levels are given.

We define the nonnegative continuous variables simkc and sEimkc indicating the inventory
levels at the start and at the end of port visit (i,m) for scenario c, respectively; rimkc and rEimkc
indicate the backlog of product k at the start and at the end of port visit (i,m) for scenario c,
respectively. The inventory constraints are as follow:

si1kc = SOik −Rikti1c + ri1kc, i ∈ N, k ∈ K : Jik = −1, c ∈ Ω, (5.28)

sEimkc + rimkc = simkc + rEimkc +
∑
v∈V

qimvk −Rik(tEimc − timc), (i,m) ∈ SA,

k ∈ K : Jik = −1, c ∈ Ω, (5.29)

simkc + rEi(m−1)kc = sEi(m−1)kc + rimkc −Rik(timc − tEi(m−1)c), (i,m) ∈ SA : m > 1,

k ∈ K : Jik = −1, c ∈ Ω, (5.30)

simkc, s
E
imkc ≤ Sik, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω, (5.31)

sEiµikc −Rikt
+
ic ≥ Sik, i ∈ N, k ∈ K : Jik = −1, c ∈ Ω, (5.32)

simkc, s
E
imkc, rimkc, r

E
imkc ≥ 0, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω. (5.33)

Equations (5.28) calculate the inventory level of each product at the first visit. Equations (5.29)
calculate the inventory level of each product when the service ends at port visit (i,m). Equations
(5.30) relate the inventory level at the start of port visit (i,m) to the inventory level at the
end of port visit (i,m− 1). Constraints (5.31) ensure that the capacities of the depots are not
exceeded. Constraints (5.32) impose a lower bound on the inventory level at time T, or at the
end of the last visit, for each product. When the last visit occurs before T, the inventory level
at the last visit needs to be reduced by the consumption until time T . The quantity below this
lower bound is penalized as backlogged demand. Finally, non-negativity requirements (5.33)
are imposed on the inventory and backlog variables.

5.3.3 Objective function

The objective is to minimize the sailing, setup and operating costs plus the penalty for
backlogged demand. The sailing cost of ship v from port i to port j is denoted by CTijv, while

CTOoiv represents the sailing cost of ship v from its initial port position to port i. The operating
cost of product k at port i is denoted by COik. The penalty cost for backlogging of product k at
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port i is denoted CPik. The objective function is as follow:

z = min
∑
v∈V

∑
(i,m,j,n)∈SXv

CTijvximjnv +
∑
v∈V

∑
(i,m)∈SAv

CTOoiv x
O
imv+

∑
v∈V

∑
(i,m)∈SAv

∑
k∈Kv

COikoimvk +
∑
c∈Ω

1

|Ω|

 ∑
(i,m)∈SA

∑
k∈Kv

CPik(rimkc + rEimkc)

 . (5.34)

We penalize backlogged demand for each port visit. For the last visit, or time T if the last
visit is earlier, we penalize the difference between the lower bound of the inventory and the
actual inventory level in addition to any backlog.

5.4 Solution approach

Since the complete model is too large to be solved efficiently, it is decomposed into a master
problem and one subproblem for each scenario, following the idea of the L-shaped algorithm
[5]. Let the problem (5.1) - (5.34) be re-written as:

z = min C(X) +
∑
c∈Ω

1

|Ω|
H(X, c)

s.t. (5.1)− (5.20)

where
C(X) =

∑
v∈V

∑
(i,m,j,n)∈SXv

CTijvximjnv +
∑
v∈V

∑
(i,m)∈SAv

CTOoiv x
O
imv

+
∑
v∈V

∑
(i,m)∈SAv

∑
k∈Kv

COikoimvk

and

H(X, c) = min
∑

(i,m)∈SA

∑
k∈K:Jik=−1

CPik(rimkc + rEimkc)

s.t. (5.21)− (5.33),with Ω = {c}.

The master problem consists of the first stage, but with iteratively added variables and
constraints to reflect the recourse costs. The subproblems consider fixed first stage decisions,
and are solved for each scenario to supply optimality cuts to the master problem.

The problem (5.1) - (5.34) has relatively complete recourse, since feasibility in the second
stage is guaranteed if the inventory levels do not exceed the capacities of the inventories. Hence,
for each feasible solution to the first stage, the second stage has always a feasible solution (it
suffices to delay the unloading when necessary). The details for solving the problem are given
in Section 5.4.2. To solve problems with a large number of scenarios, the sample average
approximation method is used as described in Section 5.4.1.

5.4.1 Sample average approximation method

To solve the SMIRP with many scenarios, we apply the sample average approximation
method [21]. First we consider M separate sets of scenarios. Each set of scenarios, i ∈ {1, . . .M}
contains a small number of m scenarios, {ci1, . . . , cim}. The model (5.1) - (5.34) is solved for
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each set of scenarios i using a decomposition approach. Let Xi denote the obtained first stage
solution. The M candidate solutions X1, . . . , XM , are then compared using a different, and
much larger, set of n scenarios {ĉ1, . . . , ĉn}. The best solution is given by X∗ = argmin{zn(Xi) :
i ∈ {1, . . . ,M}} where zn(X) = C(X) + 1

n

∑n
j=1H(X, ĉj).

With the first stage solutions X1, . . . , XM being obtained, the optimal values are denoted
zim = zm(Xi) = C(Xi) + 1

m

∑m
j=1H(Xi, cij). The average value over all sets of scenarios,

z̄m = 1
M

∑M
i=1 z

i
m is a statistical estimate for a lower bound on the optimal value of the true

problem.

For the larger set of n scenarios, which can be regarded as a benchmark scenario set rep-
resenting the true distribution (see [12]), the cost zn(Xi) of each solution Xi, i ∈ {1, . . . ,M}
is computed as well as X∗ = argmin{zn(Xi) : i ∈ {1, . . . ,M}}. The best value, zn(X∗), is a
statistical estimate for an upper bound on the optimal value. The estimated optimality gap
(GAP) is given by GAP = zn(X∗)− z̄m.

When employing a scenario generation method it is desirable that no matter which set of
scenarios is used, by solving the two-stage model, one obtains approximately the same value
for the optimal solution. This is named as stability requirement conditions in [12]. Here we
evaluate stability (following [21]) through the computations of the variances:

σ̂2
zn(X∗) =

1

(n− 1)n

n∑
j=1

(
C(X∗) +H(X∗, ĉj)− zn(X∗)

)2
, (5.35)

σ̂2
zm =

1

(M − 1)M

M∑
i=1

(zim − z̄m)2, (5.36)

where σ̂2
zm

is the variance between samples and σ̂2
zn(X∗) is the variance within the larger sample.

The estimated variance of the estimated optimality gap is

σ̂2
G = σ̂2

zn(X∗) + σ̂2
zm .

5.4.2 Optimization process

To solve the model (5.1) - (5.34) for a set of scenarios Ω, we first solve to optimality a
master problem including only one scenario. Since a feasible solution to the first stage can be
completed with a feasible solution to the second stage for each scenario, the resulting values
for the first stage decision variables are feasible for the complete problem with all scenarios.
However, we need to check whether the solution is optimal for the complete model. To do
that we check, for each scenario, whether there is backlogged demand when the deliveries are
made as early as possible. If such a scenario with backlogged demand is found, we add to the
master problem additional variables and constraints (which are implied by the time constraints
and inventory constraints) enforcing the backlogged demand to be counted in the objective
function. Then the revised master problem is solved again, and the process is repeated until all
the optimality constraints are satisfied. Hence, as in the L-shaped method, the master problem
initially disregards the recourse cost, and an improved estimation of the recourse cost is gradually
added to the master problem by solving optimality subproblems and adding corresponding cuts.
The algorithm may also be terminated if the additional recourse cost added in an iteration is
less than a given small amount ε. A formal description of this process is given below.
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Algorithm 4 Optimization procedure for an input set of scenarios Ω.

1: Choose a scenario c ∈ Ω
2: Solve the master problem with one scenario, c
3: while There are new violated optimality cuts and a change in the objective function greater

than ε do
4: Add all the violated optimality cuts
5: Solve again the master problem with the new cuts
6: end while

Next we explain how separation of constraints imposing backlog for each scenario (optimality
cuts) is done in each iteration.

The backlog variables are bounded as follows:

rimkc ≥ Riktimc − SOik −
∑

n≤m−1

∑
v∈V

qinvk, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω, (5.37)

rEimkc ≥ Rikt
E
imc − SOik −

∑
n≤m

∑
v∈V

qinvk, (i,m) ∈ SA,m < µi, k ∈ K : Jik = −1, c ∈ Ω,

(5.38)

rEiµikc ≥ Rikt
E
iµic +Rikt

+
ic + Sik − SOik −

∑
n≤µi

∑
v∈V

qinvk, i ∈ N, k ∈ K : Jik = −1, c ∈ Ω.

(5.39)

Constraints (5.37) - (5.38) are implied by (5.28) - (5.30) (adding alternately (5.29) and (5.30)
from (i,m) to (i, 1) and then (5.28)), and from the non-negativity requirements on the inventory
variables (5.33). Constraints (5.39) are implied by (5.28) - (5.30) and by (5.32).

The minimum backlog occurs when the time variables timc and tEimc are set to the earliest
feasible times. Once these variables are defined, separation over (5.37) - (5.38) is trivial since
the right hand side is fixed. So we focus now on finding tight bounds for the time variables.
First observe that the starting and ending times of each operation are established either from
the (maximum) inventory levels (inventory constraints) or from the duration of the several
operations the ships perform (time constraints). In the first case we need to ensure that the
inventory capacity is not exceeded. Hence we have:

timc ≥
SOik +

∑
n≤m−1

∑
v∈V qinvk − Sik

Rik
, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω,(5.40)

tEimc ≥
SOik +

∑
n≤m

∑
v∈V qinvk − Sik

Rik
, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω. (5.41)

Constraints (5.40) and (5.41) follow from (5.28) - (5.32). For a given feasible solution for
the first stage, the right hand sides of (5.40) and (5.41) are constant.

For the second case, the time variables are determined from the time constraints (5.21) -
(5.27). For a feasible solution of the first stage, and for each scenario, most of the constraints
(5.21) - (5.27) are not tight and many variables do not need to be considered. We can see that
the tEimc-variables are bounded by (5.21) while the timc-variables are bounded by (5.22) (from
the end time of the visit to the same port) and by (5.23) (from the last ship operation). These
cases can be represented in a network N = (P,A,W ), where P is the set of nodes, A is the
set of arcs and W is the set of weights. The set of nodes P is given by the origin of each ship,
represented by Ov, a node (i,m) representing the starting time of each port visit and a node
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(i,m) representing the end time of the visit. Each arc in A corresponds to a routing variable
set to one. That is, there is an arc from node Ov to node (i,m) if xOimv = 1, and there is an
arc from node (i,m) to node (j, n) if ximjnv = 1 for some v. The arcs have weights TOivc + TWimc
and Tijvc + TWjnc, respectively. There is an arc from node (i,m) to node (i,m) with weight∑

v∈V
∑

k∈Kv T
S
ikoimvk +

∑
v∈V

∑
k∈Kv T

Q
ikqimvk, and there is an arc from node (i,m) to node

(i,m+ 1) with weight TBi . Finally, we consider an arc from Ov to each node visited by ship v.
The weight from Ov to (i,m) is given by the right hand side of (5.40) and the weight from Ov
to (i,m) is given by the right hand side of (5.41).

The weight of each path from one origin to a node gives a lower bound for the time variable
corresponding to that node. Hence the earliest time associated to a node corresponds to the
weight of the longest path from one origin to that node (one can always establish an artificial
origin which is linked to all ship origins Ov and with null weight). Since the graph is acyclic,
finding the longest path to each node can be done in polynomial time. However, for this
particular graph, it is easy to derive a linear labeling correcting algorithm.

The time variables can then be restricted using these paths or sub-paths. For each (sub)path

Π
(i,m)
(j,n) , from visit (j, n) to visit (i,m) of a ship v, we define the set of nodes (port visits) as

N (Π
(i,m)
(j,n) ) and the set of arcs as A

(
Π

(i,m)
(j,n)

)
. Let (iv,mv) denote the first visit of ship v after

leaving the origin.

If the earliest time for a visit (i,m) ∈ SA is determined only by the schedule of operations
for a given ship v ∈ V , then timc and tEimc are restricted as follows:

timc ≥
∑

(`,u)∈N (Π
(i,m)
(iv,mv)

)

TW`uc +
∑

(`,u)∈N (Π
(i,m)
(iv,mv)

)\{(i,m)}

∑
k∈K

(
TS`ko`uvk + TQ`kq`uvk

)
+TOivvc +

∑
(`,u,t,w)∈A(Π

(i,m)
(iv,mv)

)

T`tvc

−T

1+ | A(Π
(i,m)
(iv ,mv)) | −x

O
ivmvv −

∑
(`,u,t,w)∈A(Π

(i,m)
(iv,mv)

)

x`utwv

 , (5.42)

tEimc ≥
∑

(`,u)∈N (Π
(i,m)
(iv,mv)

)

TW`uc +
∑

(`,u)∈N (Π
(i,m)
(iv,mv)

)

∑
k∈K

(
TS`ko`uvk + TQ`kq`uvk

)
+TOivvc +

∑
(`,u,t,w)∈A(Π

(i,m)
(iv,mv)

)

T`tvc

−T

1+ | A(Π
(i,m)
(iv ,mv)) | −x

O
ivmvv −

∑
(`,u,t,w)∈A(Π

(i,m)
(iv,mv)

)

x`utwv

 . (5.43)

Validity of (5.42) and (5.43) is implied by (5.21) - (5.23). In Appendix we provide a list of the
remaining inequalities defined for each possible subpath.

The overall separation procedure for each iteration works as follow:
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Algorithm 5 Separation procedure

1: Construct the network N = (P,A,W )
2: Determine the longest path from the origin to each node
3: Associate the corresponding time variables to each node
4: Set the backlog variables to the minimum value using (5.37)-(5.39)
5: for each node do
6: if the corresponding backlog variable has value strictly greater than its value in the

current solution then
7: add the inequality (5.37)-(5.39) determining its value
8: add the time constraints (5.40)-(5.43) corresponding to the weight of the longest path
9: (Use subpaths of each ship that are not contained in other subpaths of the same ship

in the critical path)
10: end if
11: end for

Example 5.4.1. Consider an instance with 2 ships, v1 and v2, and 3 ports and assume that
there is only one scenario. Hence we omit the corresponding scenario index from all variables
and parameters. Let the paths resulting from the first stage solution be xO11v1

= x1132v1 = 1 and
xO21v2

= x2131v2 = x3112v2 = 1. Assume the weights of the arcs are those given in Figure 5.2. For

instance, TB1 = TB3 = 0.5,
∑

k∈K

(
TS1ko11v1k + TQ1kq11v1k

)
= 1 and T13v1 = 6.

For simplicity we omit arcs with weights resulting from (5.40) and (5.41).

O1

O2

1,1 1, 1 1,2 1, 2

2,1 2, 1

3,1 3, 1 3,2 3, 2

1 0.5 1

1

1

1

5

1 0.5 1

66

Figure 5.2: Example of a graph G for a set of three ports and two ships.

We can see that t11 = 1, tE11 = 2, t21 = 1, tE21 = 2, t31 = 7, tE31 = 8, t12 = 14, tE12 = 15, t32 =
8.5, tE32 = 9.5.

Suppose there is backlog at nodes (1, 2) and (3, 2). In addition to the inequalities (5.37) for
(1, 2) and (3, 2) defining the lower bound on the backlog, the following inequalities, corresponding

124



to the critical paths to nodes (1, 2) and (3, 2) are added to limit the time variables:

tE31 ≥
∑
k∈K

(
TS2ko21v2k + TQ2kq21v2k

)
+
∑
k∈K

(
TS3ko31v2k + TQ3kq31v2k

)
+TO2v2 + T23v2 − T (2− x021v2 − x2131v2),

t12 ≥
∑
k∈K

(
TS2ko21v2k + TQ2kq21v2k

)
+
∑
k∈K

(
TS3ko31v2k + TQ3kq31v2k

)
+TO2v2 + T23v2 + T31v2 − T (3− x021v2 − x2131v2 − x3112v2),

t32 ≥ tE31 + TB3 .

5.5 Stochastic times and sample scenarios generation

In the SMIRP problem, the sailing and waiting times at ports are assumed to be random,
following known probability distributions. We now describe the distributions used and how
scenarios are generated for the stochastic programming model.

For the sailing times we assume that there are three potential events that affect all the sailing
times simultaneously. These correspond to “good weather”, “moderate weather” and “bad
weather”. For good weather, the sailing times are obtained directly from the sailing distance
and the ship speed. For moderate weather, the sailing times are 1.5 times the corresponding
sailing times in good weather, and for bad weather the sailing times are 2.0 times those in good
weather. From the historical data for the season we are considering, a probability is associated
to each event.

Contrary to the sailing times, where the weather usually affects all the islands simultaneously,
waiting times due to port occupancy depend only on the port. For each visit to each port,
we assume that the random variable indicating whether the port is occupied or not follows a
Bernoulli distribution with parameter p ∈ [0, 1] (p is the probability of the port being occupied).
If the port is occupied then the random variable W indicating the waiting time is given by a
truncated exponential distribution

F (w) =


0, w < 0,
(1− e−λw)/A, 0 ≤ w ≤M,
1, w > M,

where A = 1−e−Mλ, and λ is such that the expected value of waiting time is 1/λ− Me−Mλ

A , and
M represents the maximum waiting time. Parameters p, λ, and M are obtained from historical
data.

The weather events are trivially generated using the given probabilities. For each visit to
each port the waiting times are randomly generated as follows: let p ∈ [0, 1] be the probability
of the port being occupied. Generate an uniform random variable U1 ∈ [0, 1]. If U1 > p we
assume that the port is not occupied. Otherwise we randomly generate a waiting time from the
truncated exponential distribution using the inverse transformation method. The waiting time
is given by

W =

{
ln(1−AU2)
−λ , if U1 ≤ p;

0, if U1 > p.

where U2 is an uniform random variable, U2 ∈ [0, 1].
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To generate the set of scenarios, Ω, we first fix the number of scenarios n =| Ω | a priori.
Then each scenario is generated separately, first by generating the sailing times at random and
then by generating a random waiting time for each port visit.

5.6 Computational results

In this section we report the results from the computational experimentation conducted to
test the stochastic model. All computations were performed using the optimization software
Xpress Optimizer Version 20.00.05 with Xpress Mosel Version 3.0.0, on a computer with pro-
cessor Intel Core 2 Duo 2.2GHz and with 4GB of RAM. In Algorithm 4 we use ε = 0.01. Ten
real-world instances are used in the testing, considering two different ships, seven ports, four
products, and a time horizon of eight days. The instances differ on the initial inventory levels.

First we test the effectiveness of the decomposition method, through a comparison by solv-
ing the full stochastic programming model directly using commercial software. Then, we test
the sample average approximation method using the decomposition method. Finally we com-
pute estimations of the Value of the Stochastic Solution and the Expected Value of Perfect
Information.

5.6.1 Effectiveness of decomposed model

To test the effectiveness of the decomposed model we compared its performance with the
use of Xpress Optimizer to directly solve the stochastic programming model with 10 scenarios.
The results are reported in Table 5.1. The column “Opt” gives the optimal values, the columns
“Nodes” indicate the number of branch and bound nodes, the columns “Seconds” report the
running time in seconds to solve the instance. For the decomposed model we report additionally
the number of cuts added in the column “Ncuts” and the number of iterations in the column
“Iterations”, that is, the number of times we solve the separation problem to add backlog and
time constraints.

Table 5.1: Effectiveness of the L-shaped method
full model decomposed model

Instance Opt Nodes Seconds Nodes Seconds Ncuts Iterations
1 16210 5888 1498 3503 390 20 3
2 17610 20292 5397 16436 1061 24 4
3 18500 8495 2111 3863 434 65 3
4 17248.6 9253 1644 5377 526 78 4
5 15410 8177 2284 5356 384 18 3
6 18576.8 42774 7799 7247 854 32 4
7 15362.3 20720 4546 6658 603 45 4
8 17008 27740 5564 7558 740 28 4
9 13330 1911 362 1462 146 16 3
10 14550 46407 9200 3821 351 25 4

Average 16380.57 19165.7 4040.5 6128.1 548.9 35.1 3.6

As expected, the running times of the decomposition method are much lower than the
running times obtained by solving the complete model. Additionally, we can see that the
number of times the separation problem is called is at most 4 and few cuts are added.
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5.6.2 Testing different sizes of sets of scenarios

Next we follow the solution approach described in Section 5.4, see [21]. Each instance is
solved for M independent sets of scenarios, each set i containing m scenarios.

We conducted tests for m = 10 and m = 50. In all cases we consider M = 10 and the
solutions are evaluated using a bigger set of n = 1000 scenarios. For each value of m we give
two tables (Tables 5.2 and 5.3 for m = 10 and Tables 5.4 and 5.5 for m = 50). In the first
table we present, for each instance, zn(X∗), z̄m, GAP, σ̂zn(X∗), σ̂zm , σ̂G. In the second table we
give, for each instance, the running time to solve the M problems (one problem for each set of
scenarios of size m) using the decomposition method, “Seconds M”, and the time to compute
zn(Xk), k ∈ {1, . . . ,M} “Seconds n”, the average number of iterations, “Iterations”, to solve
the M problems, that is, the average number of times we solve the separation problem, and the
average number of cuts (5.37)-(5.39) added, “Cuts”.

Table 5.2: Bounds and variances for m = 10.
Instance zn(X∗) z̄m GAP σ̂zn(X∗) σ̂zm

σ̂G
1 16956.8 16358 598.8 24.1 76.7 80.4
2 19080.3 18516.9 563.4 47.2 173.8 180.1
3 21150.9 19660.2 1490.7 95.6 265.1 281.8
4 19613.9 18750.8 863.1 198.4 293.1 353.9
5 18813.2 16658.5 2154.7 72.3 194.2 207.3
6 21182.1 19743.3 1438.8 104.7 210.7 235.3
7 16694.8 16509.5 185.3 76.6 196.8 211.1
8 19325.2 18664.2 661 71.0 227.8 238.6
9 14335.6 14139 196.6 115.2 238.1 264.5
10 17636.8 16721.6 915.2 127.0 324.5 348.5

Average 18479.0 17572.2 906.8 93.2 220.1 240.1

Table 5.3: Times, average number of iterations and average number of cuts for m = 10.
Instance Seconds M Seconds n Iterations Cuts

1 77 35 3 16.4
2 180.5 38.5 4 16.4
3 95.57 45.7 3 16.4
4 104.9 42.5 3.4 18.4
5 118.3 41.2 3 15.2
6 181.7 50.9 3 14.4
7 133.5 29.3 3 13.9
8 117.7 54.3 3.2 19.6
9 37.1 42.9 3 20.2
10 123.1 40.7 3 16.3

Average 116.9 42.1 3.2 16.7

We can see that increasing m, the cost of the selected solution decreases in average by 2.8%.
Also, the standard deviation σ̂zm and the GAP have a little reduction. The price to pay for the
improvement of the solution and reduction of variability is an increase in the average running
times. The running time is, on average, approximately 2 minutes for m = 10, and increases to
10 minutes for m = 50.

5.6.3 Importance of a stochastic approach

To evaluate the importance of the stochastic approach we compute estimations of the Value
of the Stochastic Solution (VSS) and the Expected Value of Perfect Information (EVPI). The
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Table 5.4: Bounds and variances for m = 50.
Instance zn(X∗) z̄m GAP σ̂zn(X∗) σ̂zm

σ̂G
1 16498.1 16352.4 145.7 11.5 44.2 45.7
2 19080.3 18375.8 704.5 47.2 219.3 224.3
3 20839.2 19542.5 1296.7 97.6 142.0 172.3
4 19401.7 18027.2 1374.5 198.4 241.2 312.3
5 18490.2 16160 2330.2 66.2 119.3 136.4
6 20177.1 19651.1 526 104.5 96.4 142.2
7 16358.8 16204.4 154.4 76.6 98.5 124.8
8 18148.3 18015.3 133 71.0 198.2 210.6
9 13877.7 13876.4 1.3 115.2 116.5 163.8
10 16875 16336.1 538.9 127.0 286.4 313.3

Average 17974.6 17254.1 720.5 91.5 156.2 184.5

Table 5.5: Times, average number of iterations and average number of cuts for m = 50.
Instance Seconds M Seconds n Iterations Cuts

1 426.5 51 3.3 18.8
2 838.2 64.8 3 16.5
3 658.3 59.4 3.1 18.9
4 682.8 57.8 3 20.1
5 627.2 63.9 3 16.8
6 751.9 50.2 4.2 16.8
7 573.3 76.1 3 16.3
8 791 49.5 3 19.8
9 174.5 51.5 4 18.8
10 524.3 56 3 17.8

Average 604.8 58.0 3.3 18.1

results are given in Table 5.6. To compute the VSS we solve the model with one scenario,
where the stochastic parameters are set to their expected values. We used the sample average
values (considering the larger sample), which are very similar to the theoretical expected values.
Solving this deterministic model we obtain the well known expected value solution. The cost
of this solution is given in column “EVS”. In column zn(X∗) we give the corresponding value
for m = 50, and in column “VSS” we give an estimation of the Value of the Stochastic Solution
which is the difference between EVS and zn(X∗). In column “PI” we give the average value of
the n = 1000 deterministic models, one for each scenario, and in column “EVPI” we give an
estimation of the Expected Value of Perfect Information which is the difference zn(X∗)− PI.

We can see, from Table 5.6, the gains for using stochastic programming instead of the
deterministic model based on expected values are in general very high. In average, the expected
value of the best solution is only 9% above the Expected Value of Perfect Information.

5.7 Conclusions

We presented a two-stage stochastic programming model with recourse for a maritime in-
ventory routing problem where sailing times and port times are random. The model has the
property that, for each scenario, a feasible solution to the first stage can always be completed
with a feasible solution to the second stage. We proposed a decomposition method where, for
a given first stage solution, optimality is checked for the complete model through an efficient
separation method.

Ten instances based on real data are solved using the sample approximation method. Com-
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Table 5.6: Estimating the VSS and EVPI
Instance EVS zn(X∗) VSS PI EVPI

1 42049.2 16498.1 25551.1 16210.1 288.0
2 33020.1 19080.3 13939.8 17620.2 1460.1
3 39871.2 20839.2 19032 18572.6 2266.6
4 49582.5 19401.7 30180.8 17285.9 2115.8
5 58053.6 18490.2 39563.4 15461.7 3028.5
6 41503.3 20177.1 21326.2 18942.0 1235.1
7 32256.6 16204.4 16052.2 15497.8 706.6
8 64144 18148.3 45995.7 17023.8 1124.5
9 41125.7 13877.7 27248 13354.0 523.7
10 25623.9 16875 8748.9 15066.9 1808.1

Average 42723.01 17959.2 24763.8 16503.5 1455.7

putational tests have shown the effectiveness of the decomposition method, and the importance
in the use of stochastic programming instead of a deterministic approach.
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Appendix

The following inequalities, for each (i,m) ∈ SA and v ∈ V, are implied by (5.21) - (5.23):

timc ≥ tjnc +
∑

(`,u)∈N (Π
(i,m)
(j,n)

)\{(j,n)}

TW`uc +
∑

(`,u)∈N (Π
(i,m)
(j,n)

)\{(i,m)}

∑
k∈K

(
TS`ko`uvk + TQ`kq`uvk

)

+
∑

(`,u,t,w)∈A(Π
(i,m)
(j,n)

)

T`tvc − T

| A(Π
(i,m)
(j,n) ) | −

∑
(`,u,t,w)∈A(Π

(i,m)
(j,n)

)

x`utwv

 , (5.44)

timc ≥ tEjnc +
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(i,m)
(j,n)

)\{(j,n)}

TW`uc +
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∑
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 , (5.45)
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tEimc ≥ tjnc +
∑

(`,u)∈N (Π
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