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1. Introduction

Since the dawn of mankind people explore the cornucopia of the plant kingdom to obtain food,
feed, fiber, and fuel. Worldwide, the total number of higher plants is estimated to be 270,000
species. About 43% of them are crops, cultivated plants, and their wild relatives, nowadays
being classified as plant genetic resources for food and agriculture. Throughout the history
only 7000 species representing almost 2.5% of the total were cultivated by mankind in the one
or other way [1].

Mankind has largely benefited from modern agriculture. Today, agriculture provides food,
feed, fuel, and fiber for more than 7,000 million people whereas a hunter-gatherer lifestyle
supported around 4 million people only. In the past four decades, global cereal production
almost doubled. This strong increase was based on greater use of inputs such as fertilizer,
water, pesticides, new crop varieties, and other technologies provided by the ‘Green Revolu‐
tion’. This helped to diminish hunger, improve nutrition, and spare natural ecosystems from
conversion to cropland. By 2050, the population is expected to have increased by 50%.
Increasing and sustaining food production for a growing world population will, therefore, be
a major challenge in future; however achieving this without compromising environmental
integrity and public health is even more challenging due to changing habits in food consump‐
tion in parts of the world, a rising demand for biofuel, diminishing returns to fertilizer, and
an increasing water demand [2].

Although new crop varieties substantially contributed to increase crop yields, specialized plant
breeding has led to a strong dependence on few crops only along with erosion of plant genetic
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resources. For thousands of years farmers have been domesticating plant species thereby
developing a wide range of crop varieties adapted to specific needs and environmental
conditions [3]. Over the past 100 years the importance of many crop species has decreased
strongly and many adapted crop varieties diminished. The private agricultural sector in‐
creased significantly in both developed and developing countries during the past 20 years;
however, the main focus of its interest has been high-value products, such as maize, wheat,
rice, oil crops, pulse crops and vegetable crops [4]. Today, 30 crops provide 95% of human food
energy needs, 12 crops together with five animal species deliver 75 % of the world’s food today,
and three of which, i.e. rice, wheat, and maize, are responsible for more than 60% of our energy
intake [5]. Almost 90% of global vegetable oil is produced by four crops only; i.e. oil palm,
soybean, oil seed rape and sunflower [6]. Nowadays, our food security depends on a tiny
number of crops only; it is therefore essential to sustain a high genetic crop diversity for both
coping with increasing environmental stresses and facilitating farmers and researchers with
options to breed cultivars adapted to less favourable conditions, such as salinity, poor soils
and extreme weather events and that can resist biotic stresses, such as pests and diseases [4].

Many studies and reports discuss the importance of plant genetic resources for crop production
in view of climate change and their key role in adapting to adverse climatic conditions and,
hence, for food security. Important is that underutilized or minor crops often harbour high
levels of genetic diversity being maintained on-farm in small-scale farming systems; however
they are relatively neglected by formal research and development strategies, including
breeding programs. Results from Peru hosting a wealth of native agro-biodiversity including
many underutilized crops indicated the potential of a breeding approach for indigenous
Andean crops, based on a combination of evolutionary and participatory methods to reach a
balance between yield improvement and maintenance of genetic diversity [7]. These authors
also highlighted the importance for upscaling such activities but mentioned the need to
address methodological, financial and institutional issues for further expansion. Such activities
are particularly important for areas threatened by climate change and to safeguard local food
production. A global analysis of climate risks for crops in 12 food-insecure regions indicated
South Asia and Southern Africa as two regions that, without sufficient adaptation measures,
are likely to suffer from negative impacts on several crops important to large food-insecure
human populations [8]. Therefore, these areas need special attention in crop development and
breeding for food security based on local seed systems.

Minor crops can be important at a local, regional and national level but are often neglected at
an international level. They are staple foods, contributing to food supply in certain periods
and to a nutritionally well-balanced diet but also supply raw materials such as oils, fibres and
dyes, providing options for income generation. Plant genetic resources are sometimes also well
adapted to marginal soil conditions, an important feature in face of climate change and
increasing soil degradation in densely populated regions. Minor crops are neglected as their
advantages are known only locally and due to lack of markets, infrastructure for processing,
and international research activities. Their potential, however, is often only poorly addressed
and the loss of plant genetic resources reduces current and future options for mitigation in the
agricultural sector [3].
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On this background, this chapter intends to reflect the importance of plant genetic resources
for people’s livelihood and the human impact on plant genetic resources in general, looks at
opportunities how the use of genetic resources and introduction of new or minor crops can
contribute to improve people’s livelihood and discusses tools for impact assessment.

2. Plant genetic resources and people’s livelihood

2.1. Global distribution of plant genetic resources

In general, the highest number of species of vascular plants is found in the humid tropics and
subtropics [9]. The species number strongly declines from the tropics and subtropics towards
the temperate and polar zone north and south of the equator, indicating that hotspots of
biodiversity are mainly associated with warm and humid tropical conditions and pointing to
the global importance of these zones. Biodiversity hotspots are also abundant in regions rich
in orographic structure or high in geo-diversity such as mountains and coastal regions (Fig.
1). Biodiversity hotspots are also important in terms of agriculture as they often coincide with
or are, at least, close to Vavilov’s centres of origin and areas of agricultural development.

Figure 1. Biodiversity hotspots, Vavilov’s centres of diversity, and centres of agricultural development. (Source: Image
downloaded from Conservation International, 2013, modified)

In Africa, biodiversity hotspots are located in Madagascar and the Indian Ocean islands,
the Congo basin, the eastern Arc Mountains and coastal forests, Guinean forests of West
Africa,  the  Cape  floristic  province  of  South  Africa,  and  the  succulent  Karoo.  In  Asia,
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hotspots are found in the Caucasus, the fertile half-moon region, Sundaland, Wallacea, the
Philippines,  the Indo-Burma region,  the mountains of  South-Central  China,  the Western
Ghats  of  India,  and Sri  Lanka.  Other  important  areas  of  biodiversity  are  located in  the
Mediterranean basin,  South-western Australia,  New Zealand,  New Caledonia,  and New
Guinea and the Micronesian islands. Neotropical biodiversity hotspots are located in the
tropical  Andes,  the  Caribbean,  Mesoamerica,  the  Atlantic  forests,  western  Ecuador,  the
Chocó and Darién regions of northern South America, the Brazilian cerrados, central Chile,
the upper Amazonia and Guyana shield, and the California floristic province. The estimat‐
ed number of vascular plant species in Neotropical biodiversity hotspots ranges from 2-3000
up to more than 5000 species per 10,000 km² [9].

2.2. Plant genetic resources, minor crops and their potential in food, feed, fibre and fuel
production

Diversity plays an important role as agricultural biodiversity is connected to nutrition and
food security. Therefore, the primary justification for the conservation of plant genetic
resources was given as their importance for breeding of improved varieties of crops for food,
fuels and medicines [10]. In a rapidly changing world as today, conditions enhancing the
adaptability and, hence, the resilience of family farms is crucial to their viability. Here,
biodiversity can help farmers manage risks from new pests and diseases but can also lessen
the effects of sudden natural disasters. Diversity allows natural adaptation to the environment
which is vital in the face of climate change. Diversity also diminishes the risk of crop loss and
contributes to productive, healthy farms [5].

Human infiltration into the tropical lowland rainforests of the Americas was late and slow as
highlands and savannahs were easier to explore. This led to a lesser exploration of its biodi‐
versity by mankind [11]. Nowadays, tropical rainforests of the Americas are esteemed as
important biomes with regard to biodiversity, particularly when looking at industrial uses.
Plant species originating from the Brazilian cerrado and Atlantic forest biomes provide
promising bioactive secondary metabolites. These biologically active compounds are interest‐
ing for the pharmaceutical industry and present another option for a bio-products based
income generation [12]. Palms originating from the Amazon lack key conditions for their
sustainable management such as adoption of palm-climbing devices, not only for reducing
wild palm felling but also for stimulating broader community-level conservation and efforts
for their cultivation [13]. ‘Improved extractivism’ can be an appropriate way of growing wild
plants, such as tucumã (Astrocaryum ssp.), a neotropical palm species rich in oil which can
contribute to an increased farm income while increasing the economic value of disturbed areas
in the central Amazon [14].

More than half the world's plant and animal species live in tropical forests. Hence, these biomes
were often the cradle of food crops. The share of food crops derived from the tropics is high,
estimated to be as much as 80%. They also provide genetic resources we will need if we are to
produce new varieties, resistant to disease, insect pests, and climatic constrains, in the fight
against world food shortages [15]. These biomes are also rich in non-timber forest products
(NTFPs) important for developing new crops which include fruits and nuts, vegetables, fish
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and game, medicinal plants, resins, oils, essences, and a wide range of barks and fibres.
Governments, conservation and development agencies and non-government organizations
have encouraged their marketing and sale as a way of boosting income for poor people in the
tropics and encouraging forest conservation. NTFPs are also of economic importance as basic
raw material for various applications in industry, ranging from the development of new drugs
against widespread diseases to bio-based compound composites [16].

The potential of Amazon’s biodiversity in view of the automotive industry was underlined
during a conference held at Belem, Para, Brazil in 1996 [17]. In particular, oil, fibre and resin
producing plants are interesting in car manufacturing. Research results and experiences using
natural fibres from the Amazon indicated their potential as reinforcement in composites for
vehicles [18]. One of the tested fibres was curauá (Ananas lucidus syn. A. erectifolius), a hard-
fibre producing bromeliad. Its fibre is well suited to substitute glass fibre in various parts of
cars and trucks. Attempts to improve its productivity, harvest and processing, and to identify
best agricultural practice were initiated [19-21]; however bridging the gap between needs of
smallholders and industry improving the understanding of each other’s bottlenecks was not
possible due to a lack of both, use of participatory approaches and long-term commitment of
the donor.

3. Human impact on plant genetic resources and options for their
maintenance

There is rising awareness that habitat loss is associated with loss of genetic diversity; however
the basic cause-effect relationships underlying the ecological roles of biodiversity are still
poorly understood [22]. Major tropical wilderness areas show strong coincidence of biodiver‐
sity, people and concerns over watershed functions and are in a state of decrease or degrada‐
tion as natural forests are converted into other land use classes and little area transforms back
to natural forests or is reforested with plantations [23]. Various drivers are important for that.
There is a high negative correlation of population density on species richness and tree diversity
for tropical rainforests [24] but neither population nor poverty is the sole and major reason for
land use and land cover change. It is driven by people’s reaction to economic opportunities
and constraints, created by local as well as national markets and policies. Additionally, global
forces become main determinants as they intensify or weaken local factors [25].

Sustainability in agriculture suggests a focus on both improved understanding of the benefits
of ecological and agronomic management, manipulation and redesign, and genotype im‐
provements through the full range of modern biological approaches. A sustainable manage‐
ment of agro-ecosystems which includes aspects such as energy flows, nutrient cycling, human
impacts and resilience may enhance reshaping of agriculture in landscapes. Sustainable
cropping systems will influence food production, pesticide use and carbon stocks in a positive
way. But the development of national and international policies supporting a stronger
expansion of such systems in developed as well as developing countries still remains a major
challenge [26]. Key drivers in the decline of biodiversity, its conservation and ecosystem
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services are the increased use of pesticides, herbicides and fertilizers, an increased homoge‐
neity of landscapes associated with regional and farm-level specialization, drainage of water
logged fields, loss of marginal and un-cropped habitat patches, and reduced fallow periods.
Additionally, the intensification of agriculture has been fundamental to the degradation of
ecosystem services and increases both, the production of greenhouse gases and a reduction of
carbon sequestration [27].

Looking at the human impact on the earth system, nine planetary boundaries can be defined
whereby the transgression of one or more of them is considered harmful due to abrupt
environmental changes within continental- to planetary-scale systems. Three of them - climate
change, the global nitrogen cycle and the rate of biodiversity loss - have already surpassed
their threshold levels leading to consequences for global sustainability [28]. Strong negative
impacts upon ecosystems are expected when the increasing annual global mean temperature
rises above the pre-industrial mean by 2°C or more, especially in biodiversity hotspots [29].

The supply of non-timber forest products, timber and other services by forests resume a safety
net function for rural populations providing both, income and jobs. Hence, fostering the role
of forests in the political debate is essential, not only when looking at mitigation and adaption
strategies for climate change but also for achieving sustainable developmental goals [30].
Experiences from Central Africa involving a wide range of stakeholders showed that focused
research on priority sectors for poverty reduction are likely to raise public awareness of the
forests' role and contribution to mitigate and to adapt to climate change at regional and national
levels. A key for improving coherence and effectiveness of forest management policies is
establishing the link between forests and climate change adaptation [30].

Plant genetic resources are essential for farmers to cope with future challenges, a feature
emphasized by the FAO Commission on Genetic Resources for Food and Agriculture. New
within-crop diversity will be needed to adapt to future conditions, and even new crops will
be required under extreme conditions to reduce risks induced by climate change [4].

Despite progress in the past, crop wild relatives and underused species for food and agriculture
need to be secured. The need for adapted germplasm is urgent and requires characterization,
evaluation, and the availability of materials but gaps in ex-situ collections of selected crop gene
pools are huge. The current focus on major crops leads to concerns due to a lack of in-situ and
on-farm conservation. This neglects the importance of genetic, species, and ecosystems
diversity. Currently, six million plant accessions are conserved in gene banks worldwide,
representing a very limited number of species. Half of them are improved cultivars or breeders'
lines. Only one third, however, represents landraces or old cultivars. About 15% refer to wild
relatives of crop species and weeds. Minor crops and underutilized species are largely
underrepresented in these collections, particularly primitive cultivars and wild relatives from
the centres of origin’s diversity and cultivation. Another obstacle is that only a third of all gene
bank accessions have been fully characterized [1].

However, for many other crops, especially neglected or underutilized species and wild
relatives of crops, comprehensive collections still do not exist and considerable gaps remain
to be filled. There is also need for a better communication, collaboration and partnerships
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among institutions dealing with the management of plant genetic resources, from conservation
to plant breeding and seed systems [4].

Since farmers know best which materials meet their needs and are enthusiastic seekers of new
varieties, "participatory plant breeding" represents a promising approach to enhancing agro-
biodiversity [3]. Their participation in the whole process from the selection of plant genetic
material up to development of cropping systems would improve and help to meet their needs,
while also sustaining food security and alleviating poverty. Plant breeding of major crops,
however, often lacks this participation, neglecting marginal site conditions and fostering high
input demanding improved varieties.

Genetic diversity is essential for improving crops already in use but also for developing
potential novel crops. The successful use of plant genetic resources and their sustained
production depend to a large degree on access to genetically diverse germplasm. Free
international exchange of germplasm will contribute significantly to the worldwide develop‐
ment of new industrial crops [31]. This is another challenge which needs to be solved in an
equitable and fair way. Often indigenous knowledge is highly esteemed by people but once it
comes to payment for such services people are reluctant to do so. Contracts for compensating
creativity of farmers and a framework for rewarding grass root creativity and innovation are
possible solutions [32], while consumers’ and traders’ responsibility is fostering fair trade,
supporting local people in their production of food, feed, fibre and fuel [33]. Four types of
collaboration are considered vital for using plant genetic resources in a sustainable way: (i) a
national regulatory framework for biodiversity prospecting, (ii) the development of infra‐
structure and technology; (iii) formal contractual relationships among biodiversity's sources,
intermediaries and final users; and (iv) the moving of research and development into the
source country so as to contribute to its gross national product [16].

There are knowledge gaps with regard to the world's ability to match both a bio-based energy
production and maintaining food security at the same time [34]. The main challenge is the
competition for arable land and limited fresh water resources associated with a fast growing
demand for food, feed, fibre, and fuel worldwide. A solution requires higher crop yields and
improving resource-use efficiencies, especially that of nitrogen, and water productivity in
production systems over the next two or three decades which is only possible with high
external inputs. Cropping systems adapted to climate change and improved stress tolerance
of crops are key issues in this context. This can be achieved by genetic improvement of crops
and establishing sustainable cropping systems in diverse environments. Integrated assess‐
ments of their impact on resources, environments, and people's welfare can help identifying
management options, species and varieties well adopted or most appropriate for specific
environments. This will largely depend on the added value regarding specific ambitions, i.e.
food, feed, fibre or fuel [34].

Energy wealth in Latin America has so far contributed little to overcome poverty and foster
development. The sometimes considerable oil and gas earnings are not used to improve
general welfare but skimmed off by the elite. A major problem is that both, energy reserves
and energy utilization, are unevenly distributed in Latin America [35]. Using bioenergy is an
option for an improved participation of rural communities if political leaders set the right
frame.
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There is lack of proper research, training, and socio-economic information to produce biofuels
in a sustainable way. Hence, research in agriculture has to set a focus on improved crop
selection based on the local situation and on management options including cultivation,
management of pests and diseases, mechanisation, and harvesting. Furthermore, it is neces‐
sary to adapt cropping systems to local soil conditions and use by-products of biofuel crops
to increase the efficiency of nutrient use and decrease negative influences on the environment.
This is essential for the sustainable production of bio-fuel crops [36].

There are two main approaches to conserve plant genetic resources:

• In-situ conservation which is the protection of biological resources in their native environ‐
ments and within naturally established and evolving populations, e.g. networks of protect‐
ed areas which are ecologically representative of the forest types present on the landscape;
sustainable forest management practices, ensuring that harvesting practices are genetically
sustainable and ecologically compatible with the natural regeneration of target species,
maintaining locally adapted gene pools and their genetic diversity in situ, and conforming
with the requirements of other forest-dependent species that affect forest regeneration and
health.

• Ex-situ conservation, particularly where in-situ conservation cannot be practiced or will not
be sufficient to ensure adequate protection for genetic resources including germplasm banks
and common garden archives, seed banks, tissue and cell cultures, cryopreservation, and
DNA banks [37].

Both approaches can also be applied to conserve agro-biodiversity where many land-races
have vanished since the green revolution in the 1960ies. However, effectively conserving wild
biodiversity in agricultural landscapes will require increased research, policy coordination,
and strategic support to agricultural communities and conservationists [38]. Research needs
to address open questions regarding the minimum size and level of area connectivity required
to conserve biodiversity in-situ at landscape level. Ex-situ conservation is biased by human
decisions. But where shall we set priorities for sampling? Who pays for the costs of collecting
and sustaining such kind of environmental services? Can value be added by exploring options
for development of bio-products? Identifying common priorities in shared natural resource
systems, however, is a major step in sharing a common responsibility in addressing climate
change and associated problems.

4. Examples for the potential of introducing underused genetic resources

Globally, we are facing a pressure on vegetable oil markets with an increasing demand for
food, fuel and chemical applications of vegetable oils on the one hand, and a limited potential
for a sustainable extension of vegetable oil production on the other hand. The increasing
demand for vegetable oils has led to the steep increase of oil palm production area in South-
East Asia, nearly all of it on the cost of rainforest area and dramatic losses of biodiversity. In
Europe the production of rapeseed oil increased strongly, too, on the expense of high inputs
of agrochemicals. Rapeseed is one of the most demanding crops, requiring high inputs of
nitrogen fertilizer and up to a dozen of applications of pesticides and insecticides. A further
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extension of rapeseed in Europe is limited by the availability of suitable land and narrow crop
sequences.

All over the world, we find various activities on testing and promoting plant genetic resources
for vegetable oil and biofuel production. For this purpose especially plant species which do
not compete with food crops growing on less fertile land are of particular interest. So far, real
success stories, if at all, are rare. Jatropha curcas, a species endemic to the Brazilian cerrados,
nowadays widely spread in the tropical zone received strong public attention in the past but
never fulfilled people’s partly exaggerated expectations [39]. Many studies on this species are
very enthusiastic on reclaiming wasteland while simultaneously producing high oil yields.
This often contributes to hype these species, although sound fundamental research is lacking
to backup and foster farmers’ adaptation [40].

Jatropha has gained international recognition as feedstock for bio-diesel production in the
early 1980s. Its properties convinced investors, policy makers and clean development mech‐
anism (CDM) project developers to consider it as a promising substitute for fossil fuel. Its toxic
compounds exclude jatropha from human consumption. The same is true for the protein-rich
press cake remaining after oil extraction which, hence, cannot be used as animal feedstuff.
Jatropha grows on poor soil but yields are also poor under such conditions. This species is
open-pollinating which hampers selection of specific lines for developing non-toxic varieties
by breeding. Another advantage, often mentioned when arguing for this species is that
jatropha is drought-resistant and well adopted to erratic rainfall conditions. Propagated by
seeds it develops a deep rooting system. This is not the case when propagated by woody stem
cuttings. Then, for higher yields sufficient water needs to be supplied in semi-arid or sub-
humid regions with erratic rainfall conditions, particularly during early growth [39].

Jatropha, however, is partly still a wild plant of which basic agronomic properties are not fully
understood, while environmental effects have not been investigated yet. Main knowledge gaps
are found in the cultivation of the crop, for both a description of best practice as for describing
the potential environmental risks or benefits. Therefore, fueling the jatropha bio-diesel hype
has to be handled with care, unless the before mentioned knowledge gaps are closed by sound
research [40].

The process of introduction of jatropha was characterized by top-down approaches, often
neglecting the needs and involvement of local farmers. This often led to non-acceptance or
even resistance against jatropha plantations [41]. Another obstacle is the fact that jatropha
products are non-edible. Many farmers that have been establishing jatropha in Africa, partially
on land previously used for food production, and that did not find a market or processing
facility for the jatropha nuts, cannot use the products in case food is needed. This questions
the approach of planting crops that deliver non-edible products because there is no flexibility
in use deciding for either food or fuel use.

Activities in the biofuel sector are also driven by external forces, e.g. environmental concerns
or a growing worldwide demand for biofuel, which generates political action. Brazil’s
government initiated a national bio-diesel policy, promoting feedstock supply from family
farms. Especially in semi-arid regions, farmers have been encouraged to grow castor beans;
however farmers’ uptake of improved varieties was poor as the majority of farmers face great
challenges associated with limited market access, top-down trading conditions, and lack of
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farmers’ association fostering their market position. A stronger policy impact could be
achieved by promoting bio-diesel crops that have alternative markets and fit more easily into
the current farming system, reducing trade-offs with current crop activities and allowing
synergies between fuel and feed production. Better enforcement of resource providing
contracts is critical to avoid default and to alleviate labour and land constraints, thereby
improving farmers’ ability to engage in bio-diesel crop production [42].

In this context, another example endemic to the neotropics - the oil-producing macaw palm
(Acrocomia aculeata) - has to be mentioned. Macaw palm recently gained economic importance
in Paraguay and Brazil. In contrast to the African oil palm (Elaeis guineensis), it is adapted to a
much wider range of environmental conditions which allows its production outside of the
humid tropical zone, reducing negative impact on tropical rain forests. Another advantage of
macaw palm is that it does not contain toxic compounds. The palm is a non-domesticated
species with a high yield potential of an estimated 2.5 to 10.9 tons oil per hectare and year
[43-45] and a life time of 70 years [46]. It grows well under various soil and weather conditions,
naturally occurring in tropical and subtropical environments from southern Mexico to
northern Paraguay and Argentina [46, 47]. It is often found on degraded grasslands as single
trees, providing some extra feed to cattle which eat both, the fruits and leaves. The palms
sustain longer periods without rain, and dry periods may last up to several months. Macaw
palm fruits have a wide range of market opportunities with local and international perspec‐
tives as they are able to provide food, feed, fibre, and fuel (Fig. 2) [45]. The production and use
of macaw palm can, therefore, provide a good example for a bio-economy crop that can fulfil
food and fuel demands at the same time. Macaw palms growing in the Brazilian cerrados show
a huge variability in biomass production and oil yield within and across various sites which
highlights the importance of protecting biodiversity hotspots as source of future crops and in
view of their domestication potential [48].

Figure 2. Processing, dry matter yield fractions and uses of macaw palm products [45]
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5. Tools for the evaluation of impact assessment

The negative experiences of the large scale and partially forced introduction of the new crop
jatropha [43] have shown that the introduction of a novel crop shall be guided by an ex-ante
assessment of its ecological, economic and social impacts, including questions of local
likelihood of acceptance.

Newcomers such as jatropha often lack proper long-term research on feasibility, trade-offs and
environmental consequences, contributing to a better acceptance as well as public and private
sector commitments for understanding needs of rural communities [39]. Macaw palms
adapted to a wide range of environments are naturally occurring from Central America down
to the north of Argentina and Paraguay [45], hence having potential for being cropped in many
areas of South America or even outside of this continent, e.g. in Africa or Asia. Out-scaling of
promising novel plants, however, also bears risks and requires an approach looking at all
aspects of production from selection of genetic material and propagation, testing of cropping
systems and crop management options to harvesting, transport, storage, and processing as
well as considering development of new products. This needs an analysis of the entire value
chain.

An ex-ante look at ecological and socio-economic aspects of macaw palm production or other
novel crops allows identification of potential benefits, constraints and risks. Modelling is one
approach in the portfolio of tools and techniques available to unravel dynamics of land use
and their impact on the ecosystem associated with introduction of novel or alien species. Land
use systems research addresses issues such as agricultural policy making, land use planning
and integrated water management and involves for this purpose multiple stakeholders with
various potential roles. Models are appreciated for both, their characteristic system research
features and their integrative capacity [49]. Land use change models are tools for understand‐
ing and explaining causes and consequences of land use dynamics, The term land cover refers
to the attributes of a part of the earth’s land surface and immediate subsurface, including biota,
soil, topography surface, groundwater and human structures. In that sense, modelling of land
use changes provides insights into the extent and location of land use changes and its effects
[50].

Especially important are arrangements regarding participation of stakeholders, and account‐
ability in governance. Improving the ability of research programs to produce useful knowledge
for sustainable development will require both greater and differentiated support for multiple
forms of boundary work. Key issues are the use of knowledge for enlightenment, decision
support, and negotiation support associated with boundaries between scientists and farmers,
scientists and local policy-makers, and multiple knowledge sources and multiple users.
Important determinants for their success are participation, accountability, and boundary
objects to foster credibility and long-term success. Boundary objects are benchmark sites which
allow studying human use of and impact on forest margins to gain knowledge for viable ways
for a sustainable use of these sites. For decision support, joint creation of tangible products by
scientists and farmers linking research with action, collaborative field trials, on-farm nurseries,
and the production of training materials on effective land use practices are important. In terms
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of policy-makers, essential means are synoptic country reports, particularly when prepared as
“policy briefs” on key issues and models focusing at regional scales. Moreover, it is important
to note that context matters and challenges of boundary work need differentiation leading to
strategies that follows context; however this is not possible without participation of all
stakeholders [51].

Appropriate tools for that are:

• Participatory Landscape Analysis (PaLA),

• Rapid Carbon Stock Appraisal (RaCSA), and

• Integrated Renewable Energy Potential Assessment (IREPA).

PaLA was developed by the World Agroforestry Centre for agro-ecological analysis [52]. It
captures local knowledge at relevant temporal and spatial scales, and provides insights on
farmers' perception on the relationship between land use and landscape functioning: farmer's
management options and the actual choices made, flows of water, sediment, nutrients and
organisms, and internal filter functions that determine landscape functioning based on land
use practices and interactions between landscape units. PaLA consists of the following eight
steps [52]:

Step 1. Identification of ecological and administrative domains with clear boundaries.

Step 2. Sampling of representative stakeholders to be interviewed, using questionnaire
and/or ranking methods. Criteria of representativeness are selected on the basis of specific
project purposes.

Step 3. Formulation of the survey interdisciplinary group, planning and designing checklist
and matching PRA tools.

Step 4. Making of a village sketch/model in order to identify the land use patterns and focus
points in the landscape by using semi-structured interviews with male and female groups. The
village sketch/model provides local names of area, distribution of land use, and main land‐
scape features such as rivers, streams, mountains, roads.

Step 5. Transect walk are necessary to obtain an understanding of the soil-plant-water
interactions along the landscape. Transects need to represent most of the land use types of the
study area. The methods used are simultaneous transect walks and semi-structured inter‐
views; delivered outputs are representative transects and sketches of the areas.

Step 6. A timeline for each land use type along transects or/and the fields located in the
representative areas of the study catchment or village, is made to study land use changes over
time, based on semi-structured interviews and timeline drawing.

Step 7. Feedback meeting in order to report findings to the farmers/stakeholders involved to
get their feedback. The methods used are posters using visualising tools and group meetings.

Step 8. Data analysis: Qualitative data of each PRA tool, i.e. sketch transect, timeline, and
secondary data is analyzed separately by the team. Thereafter, results are evaluated to identify
landscape patterns and issues.
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RaCSA also developed by the World Agroforestry Centre is a negotiation support tool that
aims at providing reliable data on above and below ground carbon stocks in a defined
landscape, its historical changes, the impact of on-going land-use change on projected
emissions, and a framework for data generation on land-use options and their changes over
time [52]. This approach assesses local ecological knowledge, explores its economic potential
and uses carbon stocks as an indicator for the health or fertility status of soils. Furthermore,
drivers of land use change and impact on environmental services such as biodiversity can be
assessed. Simultaneously it provides knowledge on alternative land use options and mitiga‐
tion strategies by means of mid- to long-term scenarios at landscape level using the Forest,
Agroforest, Low value Landscape Or Wasteland (FALLOW) model. Finally, RaCSA was
developed as negotiation support tool providing a basis for stakeholder discussions.

RaCSA consists of the following six steps [52]:

Step 1. Initial appraisal of landscape (see PaLA), focused on dynamics of tree cover.

Step 2. Explore Local Ecological Knowledge (LEK) and economics of local tree/forest man‐
agement combined with a rapid household socio-economic survey.

Step 3. Plot-level C data of representative land cover units using an updated version of the
ASB Cstock protocol provides time-averaged carbon stock data for above-ground vegetation and
soils.

Step 4. Remote sensing and ground-truthing are used to provide spatial analysis of land cover
change, based on a sufficiently sensitive ‘legend’.

Step 5. The Public/Policy Ecological Knowledge (PEK) kit is used to obtain information on
tree/forest management and existing spatial planning rules.

Step 6. Scenario studies of changes in C stocks and welfare through modelling land use and
carbon stock dynamics in the landscape by using FALLOW.

FALLOW was developed by the World Agroforestry Centre for trade-off analysis [53, 54]. It
allows a spatially explicit and dynamic modelling of land-use cover change (LUCC) in data-
poor regions and merges bio-physical and socio-economic information to evaluate impacts of
LUCC on food security, watershed functions, biodiversity, and carbon stocks. FALLOW was
successfully applied in South-East Asia to assess local land use change dynamics without the
need for long-term and data-intensive studies without the need for long-term and data-
intensive studies based on farmers’ knowledge [55], to explore livestock fodder options and
their consequences for carbon stocks [56] and stakeholders’ perceptions [57].

The introduction of new technologies, such as renewable energy technologies (RET) is
comparable to the introduction of new plant species into local agricultural systems: new plant
species as well as new technologies imply a change in the daily routine of local livelihoods.
Traditionally, the planning of rural energy development projects took place in central gov‐
ernment offices far away from rural communities [58]. The applied decision support tools
aimed at the identification of the most efficient technology with the lowest costs [59]. The
technologies selected in such ‘top-down’ approaches, were afterwards (involuntarily) imposed
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into rural communities [58]. Amigun et al. explored the community perspectives on the
introduction of large-scale biodiesel production from canola (Brassica napus) and soybean
(Glycine max) in South Africa [60]. The local population was overwhelmingly against the
proposed biodiesel production. Their reasons for the rejection included a variety of especially
social and environmental factors: land regarded as identity; competition with food security;
distortion of the social community fabrics; doubts about the credibility of the developers and
possible air and water pollution with respect to health risks of local population.

Several studies pointed out that the acceptance of RET depends on the complex interaction of
social, institutional, environmental and techno-economic factors on a very local level [61, 62].
Smallholder agricultural systems are very diverse and therefore an assessment of these factors
on individual basis is required that is based on public participation and pooled learning among
the relevant stakeholders [60].

IREPA provides a people-centred, bottom-up approach for the assessment of the implemen‐
tation potential of renewable energy technologies into smallholder agricultural systems [63].
This participatory approach explores the renewable resource base and the livelihoods of
smallholder farmers to characterize the role of energy in the daily routine (social, institutional,
environmental, technical, and economic factors) to select appropriate RET. The researcher acts
as facilitator to guide the assessment while the local stakeholders become researchers who
contribute knowledge and expertise. For that the IREPA approach comprises the following
steps [63]:

• The assessment of local renewable resources based on a combination of statistical databases
with global coverage and on-ground measurements for biogenic resources;

• The exploration of local social, institutional, environmental, technical and economic factors
at household and community level by employing “participatory learning and action
research methods” [64, 65].

• The combination of locally available resources and relevant factors to pre-select and design
locally appropriate RETs;

• A participatory assessment of the impacts of these RETs on local livelihoods;

• A participatory identification of the most appropriate RET for implementation within a
specific context using the multi-criteria decision analysis method “Analytical Hierarchy
Process” (AHP) [66].

This participatory, bottom-up research structure provides a shift from the traditional top-down
approaches to a holistic consideration of the local diversity. It aims to successfully induce
changes into prevailing structures and behaviour patterns of smallholder agricultural systems
in order to make sustainable use of the local natural resource base.

An important impact to the ecological and economic performance of land use systems is the
productivity of these systems. To address this, the selected land-use systems and their
performance can be modelled by using the Water, Nutrient, Light Capture in Agroforestry
Systems model. This model deals with a wide range of agroforestry systems and annual single
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cropping systems with minimum parameter adjustments [67]. Hence, it is possible to explore
the performance of various land-use systems under a wide range of management options and
changing environmental conditions. In Brazil this model has already been used to assess the
performance of sugar cane in agroforestry systems [68]. The model can be applied and adapted
to various climate, soil, and cropping conditions [69, 70].

Agriculture is a major water consumer [71]. Furthermore, the semi-arid and arid areas of Brazil
will suffer from a decrease of water resources due to climate change [72]. Brazil is a water rich
country, for which the Amazon region is an example. But inappropriate land uses in Atlantic
forest and cerrado ecoregions have led to a degradation of the soils which makes these
resources scarcer in terms of biodiversity [73]. Different land use systems, small family farmers
and industrial agriculture properties require different water quantities for their production
processes. Therefore, water use efficiency will become an increasingly important sustainability
indicator for land use systems. Water use in land use systems can be measured by evapo‐
transpiration of crops. A water balance of the systems is an approach to quantify the water
cycle. The water footprint is an indicator of water use, e.g. during agricultural processes,
differentiating water use into three water categories: green, blue, and grey [74]. Green
represents the volume of rainwater consumed during the production process and blue the
natural run-off through groundwater and rivers minus environmental flow requirements,
while grey is an indicator of freshwater pollution that can be associated with the production
of a product over its full supply chain. The global water footprint in the period 1996-2005 was
9087 Gm³ per year (74% green, 11% blue, and 15% grey) in which agricultural production
contributed 92% [75].

We, therefore, propose linking and integrating the above mentioned methods once promising
novel species or crops are identified to (i) develop and test land use options and model their
agronomic performance; (ii) analyse, quantify and compare the ecological and socio-economic
performance of land-use systems; and (iii) test options for developing new bioproducts. This
procedure will help identifying optimised value chains, addresses trade-offs and consequences
for environmental services, and looks at development of proper production systems for
smallholder farmers. Using participatory approaches will foster farmers’ participation and
help identify options meeting their needs. It will also allow an exchange of ideas and infor‐
mation among all stakeholders.

6. Final consideration

More and more countries on all continents are developing bio-economy strategies striving for
the sustainable use of renewable resources, especially biomass. Beginning with the develop‐
ment of bioenergy programs, bio-economic activities are growing rapidly in several countries
and require an increasing supply of sustainably produced biomass. Here, the use of genetic
resources to develop existing and new crops for a variety of applications in bio-based products
can play an important role because bio-based products with new and improved properties
also require a range of biomass properties. However, the development of bio-economies
should not make the same mistakes that were observed in the development of modern bio-
energies, such as transportation biofuels. The development of the modern bioenergy sector

Seeds of Change — Plant Genetic Resources and People’s Livelihoods
http://dx.doi.org/10.5772/59984

137



neglected the demands of smallholder farmers, who in the end did not benefit from the
activities surrounding bioenergy but rather suffered the effects of land grabbing. Another
much criticized effect of modern bioenergy development was the concentration on a few major
crops only, such as maize or oil palm. Therefore we suggest that bio-economy strategies should
ensure sustainable development of the biomass resource by:

a. Ex-ante assessment of the potential impacts of biomass production and supply systems

In section 5 of this chapter, various instruments were suggested for assessing the ecological
and social impacts of biomass production systems which can be applied to ex-ante analysis and
the planning of sustainable biomass production and supply systems.

b. Involving stakeholders and smallholder farmers

Acceptance of new technologies or crops and varieties is the pre-requisite for their implemen‐
tation. Therefore their development should involve stakeholders, in particular smallholder
farmers. Their involvement would not only improve the chances of implementation but also
incorporate local or indigenous knowledge into developments.

c. Using genetic resources for developing new bio-economy crops or improved varieties

As discussed in this contribution there are many untapped genetic resources, most of them
close to important agricultural centres. Demand for new crops and improved varieties for a
bio-economy requires specific biomass properties on the one side, but also ecological require‐
ments, such as nutrient- and water-use efficiency and stress resistance on the other. Therefore,
in particular multi-purpose crops that integrate different land-use functions and biomass-use
options appear most interesting for a future bio-economy. An example for such a multi-
purpose crop was discussed in this contribution using the example of the macaw palm. This
palm can grow under conditions of abiotic stresses, such as drought, and also contributes
through its perennial character to soil carbon sequestration and erosion prevention. Its
products are manifold allowing the integration of food, feed, fibre, and fuel production.

d. Development of sustainable biomass production concepts

The increasing demand for biomass leads to increasing pressure on land which can result in
land-use changes, such as conversion from grassland to crop land. Recent findings from
marginal grasslands show that increasing pressure on them can negatively influence ecosys‐
tem functioning, potentially compromising long-term production potentials. On the other
hand, grassland communities in Europe suffer from mismanagement or under-management.
In Europe many grasslands are no longer harvested due to the decreasing demand for
roughage fodder. However, the maintenance of different grassland species requires cutting,
but in regimes that are adapted to the ecological needs of grassland species. Therefore, biomass
production concepts need to be developed that integrate production and ecological functions.
Understanding the direct, indirect, and interactive effects of land-use changes on communities
and ecosystems can help to better assess and balance such inherent trade-offs among multiple
ecosystem functions [76].

There is need to prove such findings for other tropical environments such as rainforests on
which a strong pressure lasts due to global interest on crops such as soybean and African oil
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palm. The pressure on ecosystems resulting from the production of traded biomass, however,
is highly variable between regions and products. Biomass consumption and trade are expected
to surge over the next decades, suggesting a need to sustainably manage supply and demand
of products of ecosystems on a global level [77].

There is need to find a way how to share and preserve biomes rich in species. Crops and other
domesticated plants have a higher mobility than wild species and are already adapted to a
wide range of environments due to anthropogenic influence in the past. Potentially new crops
have undergone only little human selection if it all and are, hence, less well adapted to changes.
In terms of gathered wild plants this may even be more severe. Recent studies indicate that
under appropriate conditions, most native taxa may be sustainable within anthromes while at
the same time increasing anthrome productivity in support of human populations [78]. The
gaining economic interest on plant genetic resources for food and agriculture and their
sustainable use will contribute to a better recognition and esteem of biomes hosting them.
Proper rules for data and information exchange, for using plant genetic resources and
indigenous knowledge are required. There is need for improving the south-north dialogue
and creating the ground for south-south cooperation at international level to avoid further
degradation, land grabbing and bio-piracy and foster local initiatives to safeguard locations
rich in biodiversity and preserve land races in-situ on farmers’ fields. As Robert Green
Ingersoll, a British philosopher and ecologist of the 18th century, once said: “In nature there
are neither rewards nor punishments – there are consequences” or in other words: Either we
improve the conservation of plant genetic resources or we lose them forever without having
had any opportunity to explore their potential.
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