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1. Introduction

In many cities around the world, air pollution is among the many environmental problems
that affect their population. Among the many known facts about the impact of pollution
on human health, we have that for ozone concentration levels above 0.11 parts per million
(0.11ppm), the susceptible part of the population (e.g., the elderly, ill, and newborn) staying
in that environment for a long period of time, may experience serious health deterioration
(see, for example, [1–10]). Therefore, to understand the behaviour of ozone and/or pollutants
in general, is a very important issue.

It is possible to find in the literature a vast amount of works that try to answer some of
the many issues arising in the study of pollutants’ behaviour. Depending on the type
of questions that one is trying to answer, different methodologies may be used. Among
the many works concentrating on the study of ozone behaviour are, [11–13] using extreme
value theory to study the behaviour of the maximum ozone measurements; [14] using time
series analysis; [15] using volatility models to study the variability of the weekly average
ozone measurements; [13, 16] using homogeneous Poisson processes and [17, 18] using
non-homogeneous Poisson models to analyse the probability of having a certain number
of ozone exceedances in a time interval of interest; [19] using compound Poisson models to
study the occurrence of clusters of ozone exceedances as well as their mean duration time;
and [20] using queueing model to study the occurrence of cluster of ozone exceedances as
well as their size distribution.

In the environmental area, it is also possible to find works using Markov chains models.
Some of them are, [21, 22] where non-homogeneous Markov models are used to study the
occurrence of precipitation. We also have [23] where those types of models are used to study
tornado activity. In the case of ozone modelling we have, for instance, the works of [24–26]
using time homogeneous Markov chains. In those works the interest was in estimating
the probability that the ozone measurement would be above (below) a given threshold,
conditioned on where it lays in the present and in the past days.
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In [24], the order of the Markov chain was estimated using auto-correlation function. Its
transition matrix was estimated using the maximum likelihood method (see, for instance,
[27, 28], among others). In [25], the order of the chain was also considered an unknown
quantity that needed to be estimated. The Bayesian approach (see, for example, [29]) was
used to estimate the order as well as the transition probabilities of the chain. In particular,
the maximum à posteriori method was used. In [26], the estimation of the order of the chain is
performed using the Bayesian approach using the so-called trans-dimensional Markov chain
Monte Carlo algorithm ([30, 31]). The transition matrix of the chain was obtained through
the maximum à posteriori method. However, the common denominator of those works is that
the Markov chain model used was a time homogeneous one. Since ozone data are not, in
general, time homogeneous, the data had to be split into time homogeneous segments and
the analysis was made for each segment separately.

Here, the interest also resides in estimating, for instance, the probability that the ozone
measurement will be above a given threshold some days into the future, given where it
stands today and in the past few days. Although in the present work we also use Markov
chain models and the Bayesian approach, the novelty here is that the time-homogeneous
assumption is dropped. Here, we consider a non-homogeneous Markov chain model. We
assume that the order of the chain as well as its transition probabilities are unknown and
need to be estimated. The chosen method of estimation is also the maximum à posteriori.

This work is presented as follows. In Section 2 the non-homogeneous Markov chain model
is given. Section 3 presents the Bayesian formulation of the model. An application to ozone
measurements from Mexico City is given in Section 4. In Section 5 some comments about the
methodology and results are made. In an Appendix, before the list of references, we present
the code of the programme used to estimate the order and the transition probabilities of the
Markov chain.

2. A non-homogeneous Markov chain model

The mathematical model considered here may be described as follows. Let N > 0 be a
natural number representing the number of years in which measurements were taken. Let
Ti, i = 1, 2, . . . , N, be natural numbers representing the amount of observations in each year.
Hence, we have that for a given year i, either Ti = 366 or Ti = 365, depending on whether or
not we have a leap year, i = 1, 2, . . . , N.

Let Z
(i)
t be the ozone concentration on the tth day of the ith year, t = 1, 2, . . . , Ti, i =

1, 2, . . . , N. Following [23], we will set Ti = T = 366, i = 1, 2, . . . , N, with the convention

that for non leap year, we assign Z
(i)
T = 0.

Remark. Since, we are taking all years of the same length we will drop the index i from the
notation.

Denote by L > 0 the environmental threshold we are interested in knowing if the ozone
concentration has surpassed or not. Define Y = {Yt : t ≥ 0} by,

Yt =

{

0, if Zt < L
1, if Zt ≥ L.

(1)
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Hence, Yt indicates whether or not in the tth day the threshold L was exceeded.

As in [25], we assume that Y is ruled by a Markov chain of order K ≥ 0. In contrast with
that work, in the present case the Markov chain is a non-homogeneous one. Hence, denote

by X(K) = {X
(K)
t : t = 1, 2, . . . T}, the corresponding non-homogeneous Markov chain of

order K. We assume that K has as state space a set S = {0, 1, . . . , M}, for some fixed integer
M ≥ 0, such that, M ≤ T with probability one.

Note that, X(K) has as state space the set S
(K)
1 = {(x1, x2, . . . , xK) ∈ {0, 1}K}, with S

(0)
1 = S

(1)
1 .

Also, note that (see [25]), if the set of observed value is (y1, y2, . . . , yT), then the transition

probabilities of X(K) are such that

P(X
(K)
t+1 = w | X

(K)
t = xt = (yt+1, yt+2, . . . , yt+K)),

is different of zero if, and only if, w = (yt+2, yt+3, . . . , yt+K+1) ∈ S
(K)
1 , with 0 ≤ t ≤ T − K.

Therefore, w occurs, if and only if, the observation following yt+1, yt+2, . . . , yt+K , is yt+K+1.

This enables us to work with a more treatable state space for X(K), and therefore, to have a
better form for the transition matrix.

Hence, as in [25, 32], we consider the transformed state space S
(K)
2 = {0, 1, . . . , 2K −

1}, which is obtained from S
(K)
1 by using the transformation f : S

(K)
1 → S

(K)
2 , given

by, f (w1, w2, . . . , wK) = ∑
K−1
l=0 wl+1 2l . Let (x1, x2, . . . , xK) ↔ m indicate that the state

(x1, x2, . . . , xK) ∈ S
(K)
1 corresponds to the state m ∈ S

(K)
2 . Hence, the transition probabilities

of X(K) may be written as (see, for instance, [25]),

P
(K)
mj (t) = P(Yt+K+1 = j | X

(K)
t = (yt+1, yt+2, . . . , yt+K) ↔ m), (2)

where m ∈ S
(K)
2 , j ∈ {0, 1}, and 0 ≤ t ≤ T − K.

Now, indicate by Q
(K)
m (t), m ∈ S

(K)
2 , m ∈ S

(K)
2 , the probability P(X

(K)
t = m). Hence, when

t = 1, we have that Q
(K)
m (1), m ∈ S

(K)
2 , is the initial distribution of X(K). When K = 0, we

have that P
(0)
mj (t) = Q

(0)
j (t), t = 1, 2, . . . , T, j = 0, 1, m ∈ S

(0)
2 = {0, 1}.

Remarks. 1. When K = 1, we have that P
(0)
mj (t), j = 0, 1, t = 1, 2, . . . , T − K, are the

usual one-step transition probabilities. When K = 0, the transition probabilities are just

the probabilities Q
(0)
m (t), associated to each state m ∈ S

(0)
2 = {0, 1}, with t = 1, 2, . . . , T.

2. Unless otherwise stated, from now on, we are going to use the state space S
(K)
2 and the

corresponding transition probabilities.

3. Y is going to represent our observed data.

In addition to estimating the order K of the Markov chain, we will also estimate its transition

probabilities P
(K)
mj (t) as well as the probabilities Q

(K)
m (t), j ∈ {0, 1}, m ∈ S

(K)
2 , for each t. We
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indicate by P(K)(t) =
(

P
(K)
mj (t)

)

j∈{0,1},m∈S
(K)
2

, the transition matrix at time t. Note that, if

K = 0, then P
(0)
mj (t) = Q

(0)
j (t), j ∈ {0, 1}, m ∈ S

(0)
2 , t = 1, 2, . . . , T.

3. A Bayesian estimation of the parameters of the model

There are many ways of estimating the order and the transition matrix of a non-homogeneous
Markov chain. One way of estimating the order is via the auto-correlation function associated
to the chain throughout the years. Another way is to use the Bayesian approach. When
it comes to estimating the transition probabilities we have, for instance, the maximum
likelihood method ( [33]) and the empirical estimator ([34]) which are essentially the same.
In the present work, we will use the Bayesian approach (see, for instance, [29, 35]) to
estimate the order and the transition probabilities. In particular, we are going to adopt
the maximum à posteriori approach. Inference will be performed using the information
provided by the so-called posterior distribution of the parameters. The posterior distribution
of a vector of parameters θ given the observed data D, indicated by P(θ |D), is such that
P(θ |D) ∝ L(D | θ) P(θ), where L(D | θ) is the likelihood function of the model, and P(θ) is
the prior distribution of the vector θ.

In the present case, we have that the vector of parameter is θ = (K, Q(K)(1), P(K)(t), t =
1, 2, . . . , T − K). If K = 0, the range of t is {1, 2, . . . , T}. The vector θ belongs to the following
sample space

Θ =
M
⋃

K=0

(

{K} × ∆2K

2 × ∆
(T−K) 2K

2

)

where ∆2 = {(x1, x2) ∈ R
2 : xi ≥ 0, i = 1, 2, x1 + x2 = 1} is the one dimensional simplex.

(Note that if we have K = 0, then the parametric space reduces to Θ = ∆T
2 .) In the present

case we have D = Y

Let (x1, x2, . . . , xK) be such that Yt = x1. Indicate by n
(K)
mi (t) the number of years in which

the vector (x1, x2, . . . , xK) corresponding to a state m ∈ S
(K)
2 is followed by the observation i,

i = 0, 1. Also define n
(0)
m (t), m ∈ S

(0)
2 = {0, 1}, as the number of years in which we have the

observation m at time t, t = 1, 2, . . . , T. Additionally, let n
(K)
m indicate the number of years

in which the state corresponding to the initial K days is equivalent to the value m ∈ S
(K)
2 ,

K ≥ 0. In the case of K = 0, we have n
(0)
m = n

(1)
m , and m ∈ S

(0)
2 = S

(1)
2 = {0, 1}.

Therefore, since a Markovian model is assumed, the likelihood function is given by (see, for
instance, [23, 33])

L(Y | θ) ∝



 ∏
m∈S

(K)
2

[

Q
(K)
m (1)

]n
(K)
m





(

T−K

∏
t=1

[

P
(K)
m0 (t)

]n
(K)
m0 (t)

[

1 − P
(K)
m0 (t)

]n
(K)
m1 (t)

)

. (3)

Note that when K = 0, the expression (3) simplifies to
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L(Y | θ) ∝
T

∏
t=1

1

∏
m=0

[

Q
(0)
m (t)

]n
(0)
m (t)

,

where Q
(0)
m (t) = P(X

(0)
t = m) = P(Yt = m), t = 1, 2, . . . , T, m ∈ S

(0)
2 = {0, 1}.

The prior distribution of the vector of parameters is given as follows. We assume a prior

independence of P(K)(t) as functions of t. Also, since the forms of P(K)(t) and Q(K)(1)

depend on the value of K, we have that for θ = (K, Q(K)(1), P(K)(t), t = 1, 2, . . . , T − K),

P(θ) = P(Q(K)(1) | K)

[

T−K

∏
t=1

P
(

P(K)(t) | K
)

]

P(K),

where P(Q(K)(1) | K) and P
(

P(K)(t) | K
)

are the prior distributions of the initial distribution

Q(K)(1) and of the transition matrix P(K)(t) given the order of the chain, respectively, and
P(K) the prior distribution of the order K.

Remark. When we have K = 0, the vector of parameters is θ
′ = (Q

(0)
m (t); t = 1, 2, . . . , T),

whose prior distribution is

P(θ′) =

[

T

∏
t=1

P(Q(0)(t))

]

,

where P(Q(0)(t)) is the prior distribution of the probability vector Q(0)(t) = (Q
(0)
m (t), m =

0, 1), t = 1, 2, . . . , T.

Given the nature of transition matrices, we are going to assume that rows are independent.
We also assume that, given the order K of the chain, each row of the transition

matrix P(K)(t) will have as prior distribution a Dirichlet distribution with appropriate

hyperparameters. Therefore, given that K = k, row (P
(k)
m0 (t), P

(k)
m1 (t)) has as prior distribution

a Dirichlet(α
(K)
m0 (t), α

(K)
m1 (t)), t = 1, 2, . . . , T; i.e.,

P
(

P(K)(t) | K
)

= ∏
m∈S

(K)
2

(

Γ(α
(K)
m0 (t) + α

(K)
m1 (t))

Γ(α
(K)
m0 (t)) Γ(α

(K)
m1 (t))

{

[

P
(K)
m0 (t)

]

α
(K)
m0 (t)−1 [

P
(K)
m1 (t)

]

α
(K)
m1 (t)−1

})

for t in the appropriate range. In the case of initial distribution Q(K)(1), we also have a

Dirichlet prior distribution, but now with hyperparameters (α
(K)
m ; m ∈ S

(K)
2 ).Therefore,

P
(

Q(K)(1) | K
)

=
Γ(∑

m∈S
(K)
2

α
(K)
m )

∏
m∈S

(K)
2

Γ(α
(K)
m )

∏
m∈S

(K)
2

[

Q
(K)
m (1)

]

α
(K)
m −1

.

A Non-Homogeneous Markov Chain Model to Study Ozone Exceedances in Mexico City 379



If K = 0, then Q(0)(t) has as prior distribution a Dirichlet distribution with hyperparameters

(α
(0)
m (t); t = 1, 2, . . . , T; m ∈ S

(0)
2 = {0, 1}). Therefore, for any given t,

P
(

Q(0)(t) | K = 0
)

=
Γ(∑1

m=0 α
(0)
m (t))

∏
1
m=0 Γ(α

(0)
m (t))

1

∏
m=0

[

Q
(0)
m (t)

]α
(0)
m (t)−1

.

We assume that K has as prior distribution a truncated Poisson distribution defined on the
set S with rate λ > 0; i.e.,

P(K) =
λ

K

K!
IS (K),

where IA(x) = 1, if x ∈ A and is zero otherwise.

Therefore, we have from [25, 32, 36], that the conditional posterior distribution of P(K)(t)
given K, is

P
(

P(K)(t) | K, Y

)

∝ ∏
t







∏
m∈S

(K)
2

(

[

P
(K)
m0 (t)

]n
(K)
m0 (t)+α

(K)
m0 (t)−1 [

P
(K)
m1 (t)

]n
(K)
m1 (t)+α

(K)
m1 (t)−1

)







.

Hence, P
(

P(K)(t) | K, Y

)

is proportional to the product of Dirichlet distributions

with hyperparameters (n
(K)
m0 (t) + α

(K)
m0 (t), n

(K)
m1 (t) + α

(K)
m1 (t)). The mode of each Dirichlet

distribution is known and is given by (see [37]),

P
(K)
mi (t) =

n
(K)
mi (t) + α

(K)
mi (t)− 1

∑
1
j=0

[

n
(K)
mj (t) + α

(K)
mj (t)− 1

] , i = 0, 1; m ∈ S
(K)
2 ; K ∈ S ; t = 1, 2, . . . , T − K. (4)

Additionally, the posterior distribution of the initial distribution Q(K)(1) given K is

P(Q(K)(1) | K, Y) ∝ ∏
m∈S

(K)
2

[

Q
(K)
m (1)

]α
(K)
m +n

(K)
m −1

.

Therefore, P(Q(K)(1) | K, Y) is proportional to a Dirichlet distribution with hyperparameters
(α

(K)
m + n

(K)
m ; m ∈ S

(K)
2 ). Hence, as in the case of the posterior distribution of P(K)(t), the

mode of P(Q(K)(1) | K, Y) is,

Q
(K)
m (1) =

n
(K)
m + α

(K)
m − 1

∑
m′∈S

(K)
2

[

n
(K)
m′ + α

(K)
m′ − 1

] , m ∈ S
(K)
2 ; K ∈ S . (5)
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When K = 0, we have

P(Q(0)(t) | K = 0, Y) ∝

(

1

∏
m=0

[

Q
(0)
m (t)

]n
(0)
m (t)+α

(0)
m (t)−1

)

, t = 1, 2, . . . , T.

Therefore, for each t = 1, 2, . . . , T,

Q
(0)
m (t) =

n
(0)
m (t) + α

(0)
m (t)− 1

∑
1
m′=0

[

n
(0)
m′ (t) + α

(0)
m′ (t)− 1

] , m = 0, 1. (6)

Furthermore, we also have, from [25], that

L(Y | K) ∝

Γ
(

∑
m∈S

(K)
2

α
(K)
m

)

Γ
(

∑
m∈S

(K)
2

[

α
(K)
m + n

(K)
m

])



 ∏
m∈S

(K)
2

Γ
(

n
(K)
m + α

(K)
m

)

Γ
(

α
(K)
m

)





T−K

∏
t=1







∏
m∈S

(K)
2





Γ[α
(K)
m0 (t) + α

(K)
m1 (t)]

Γ(∑1
j=0[n

(K)
mj (t) + α

(K)
mj (t)])

1

∏
j=0

Γ(n
(K)
mj (t) + α

(K)
mj (t))

Γ(α
(K)
mj (t))











,

with the appropriate adaptation for the case of K = 0. Hence, the posterior distribution of
the order K is

P(K|Y) =
1

c
L(Y | K)

λ
K

K!
(7)

where c = ∑k∈S L(Y | K = k)
(

λ
k/k!

)

is the normalising constant.

Therefore, in order to obtain the probability of interest, we just have to use (7) to estimate
the value of K that maximises that posterior probability, and then use (4), (5), and/or (6)
(depending on the case), in order to calculate the corresponding transition matrix and initial
distribution, respectively.

The hyperparameters appearing in the prior distribution will be considered known and will
be specified later.

4. Application to ozone data from the monitoring network of Mexico City

In this section we apply the model to the Mexico City’s ozone measurements. The data used
consist of twenty two years of the daily maximum ozone measurements (from 01 January
1990 to 31 December 2011) provided by the monitoring network of the Metropolitan Area
of Mexico City. The Metropolitan Area is divided into five regions, namely, Northeast
(NE), Northwest (NW), Centre (CE), Southeast (SE), and Southwest (SW). The monitoring
stations are placed throughout the city. Measurements in each monitoring station are
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obtained minute by minute and the averaged hourly result is reported at each station. The
daily maximum measurement for a given region is the maximum over all the maximum
averaged values recorded hourly during a 24-hour period by each station placed in the
region. Since emergency alerts in Mexico City are declared regionally, we will analyse each
region separately.

The Mexican ozone standard considers the threshold 0.11ppm (see [38]). Hence, we will
take that value as one of our thresholds. Additionally, for comparison purpose, we will
also take the threshold values 0.15ppm and 0.17ppm. One of the reasons for choosing these
latter values is that we would like to know what would happen if the threshold for declaring
emergency alerts in Mexico City was lowered to 0.17ppm. The reason for choosing the
threshold 0.15ppm is because it is an intermediate value between the Mexican standard and
0.17ppm.

During the observational period considered here, we have that the mean of the daily observed
measurements were 0.12, 0.098, 0.13, 0.12, and 0.14, in regions NE. NW, CE, SE, and SW,
respectively, with corresponding standard deviations of 0.06, 0.04, 0.06, 0.05, and 0.06, for
those same regions. The threshold 0.11ppm was either reached or exceeded in 4280, 3139,
4921, 4921, and 5711 days in regions NE, NW, CE, SE, and SW, respectively. In those same
regions, the threshold 0.15ppm was reached or exceeded in 2460, 963, 2819, 2299, and 3594
days, and the numbers in the case of the threshold 0.17ppm are, 1769, 479, 1896, 1419, and
2660, respectively.

Even though it is a general belief that ozone measurements depend on the measurements of
only a few days in the past, we are taking M = 16 when we consider the threshold values
0.15ppm and 0.17ppm. We have decided to do that because in previous works the order for
homogeneous segments could have higher order. In the case of L = 0.11ppm, in some cases,
larger values of M were needed. Hence, we also take M = 16, in the case of region NW, and
we take M = 18 in the case of regions CE, NE, SE, and SW. In order to account also for the
possibility of low order, we take λ = 1 in the prior distribution of K.

The hyperparameters of the Dirichlet prior distributions are assigned as in [25]. Therefore,

the values of α
(K)
mi

(t), α
(0)
m

(t), and α
(K)
m

will belong to the set {3, 4, 5, 6, 7, 8}. Hence, assign

α
(K)
mi

(t) = 8 for the coordinate corresponding to the max{n
(K)
m0 (t), n

(K)
m1 (t)}. Depending on the

difference max{n
(K)
m0 (t), n

(K)
m1 (t)} − min{n

(K)
m0 (t), n

(K)
m1 (t)}, an integer value in {3, 4, 5, 6, 7} is

assigned to the hyperparameter corresponding to min{n
(K)
m0 (t), n

(K)
m1 (t)}. If we have n

(K)
mi

(t) =

0, then the value 3 is automatically assigned to the corresponding α
(K)
mi

(t). Similar procedure

is applied in the cases of α
(0)
m

(t) and α
(K)
m

.

Table 1 gives the values of P(K |Y). Even though, S includes the values 0, 1, 2, and 3, since
the posterior probabilities at those points are of order 10−8 and below, we have omitted
those values of K. We use the symbol “-” to indicate that the specific value of K either
was not considered in the corresponding region or the probability associated to it was small
compared to the values shown.

Looking at Table 1 we may see that, if we consider the threshold L = 0.11ppm, then the
selected order of the chain is K equal to 16 in the case of region NE, equal to 12 for region
NW, and equal to 17 for regions CE and SE. When we consider region SW, the value of K is
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NE NW CE SE SW
0.11 0.15 0.17 0.11 0.15 0.17 0.11 0.15 0.17 0.11 0.15 0.17 0.11 0.15 0.17

K = 4 – – – – – < 10−7 – – – – – – – – –
K = 5 – – – – 0.33 1 – – – – – 0.641 – – –
K = 6 – – 0.02 – 0.67 < 10−16 – – – – – 0.359 – – –
K = 7 – – 0.93 – – – – – 0.33 – – – – – –
K = 8 – 0.007 0.05 – – – – – 0.67 – 0.09 – – – 0.024
K = 9 – 0.173 – – – – – – – – 0.9 – – – 0.635

K = 10 – 0.67 – – – – – 0.05 – – 0.01 – – – 0.383
K = 11 – 0.15 – 0.47 – – – 0.68 – – – – – – 0.003
K = 12 – – – 0.53 – – – 0.26 – – – – – 0.008 –
K = 13 – – – – – – – – – – – – – 0.095 –
K = 14 – – – – – – – – – – – – – 0.792 –
K = 15 – – – – – – – – – – – 0.012 – 0.105 –
K = 16 0. 66 – – – – – 0.01 – – 0.004 – – – – –
K = 17 0.07 – – – – – 0.99 – – 0.984 – – – – –
K = 18 0.27 – – – – – – – – – – – – – –

Table 1. Posterior distribution of the order of the chain for all regions and threshold considered. The symbol “-” is
used to indicate that the specific value of K either was not considered in the corresponding region or the probability
associated to it was small compared to the values shown.

either larger than or equal to 18 with probability one. If we take into account the threshold
L = 0.15ppm, then, also by looking at Table 1, we have that the chosen orders are 10, 6, 11, 9,
and 14, in the cases of regions NE, NW, CE, SE, and SW, respectively. When we consider the
threshold L = 0.17ppm, then the selected orders are 7, 8, and 9, for regions NE, CE, and SW,
respectively. In the cases of regions NW and SE, the estimated order is 5. Therefore, using
this information and (4), the corresponding transition and initial probabilities may then be
calculated.

As an example, consider the case of region CE and the threshold 0.17ppm. In that case,

we have that the order of the chain is K = 8. Therefore, S
(K)
2 = {0, 1, . . . , 255}. In Table

2, we have the approximated estimated values of the initial distribution Q
(K)
m (1), and of the

transition probabilities P
(K)
m0 (t), t = 1, 2. (We have truncated the values and the total sum

is approximately one.) We use the notation m′ − m′′, to indicate that for all values of m in
{m′, m′ + 1, . . . , m′′}, the estimated probabilities are equal to the values shown.

Looking at Table 2, it is possible to see that the highest initial probability is that associated
to the state 0, i.e., the first eight days of the year form a string of zeros, meaning that the
concentration levels are below 0.17ppm. Additionally, once you have the information that
the ozone concentration levels on the first eight days are below 0.17ppm, then the highest
transition probability is also associated to the transition to zeros, i.e., the two days following
the eight initial days with concentration below 0.17ppm are more likely to present lower
concentration levels as well.

In order to illustrate the type of information that may be obtained using the methodology
considered here, take the case of the year 2012 and region CE. Suppose we want to calculate
the probability that during the first nine days of January we have that the ozone concentration
is below 0.17ppm from the first eight days, and it is above it on the ninth. Therefore, we want
to know the probability that (0, 0, 0, 0, 0, 0, 0, 0) is followed by one. Hence, we want the
probability of having the following sequence of zeros and ones: 0, 0, 0, 0, 0, 0, 0, 0, 1.
Therefore,

P((0, 0, 0, 0, 0, 0, 0, 0, 1)) = P
(8)

01
(1)× Q

(8)

0
(1) = 0.238 × 0.0327 ≈ 0.008.
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m Q
(8)
m (1) m P

(8)
m0 (1) P

(8)
m0 (2)

0 0.0327 0 0.762 0.889

1 − 15 0.0036 1 − 11 0.5 0.5

16 0.0073 12 0.5 0.286

17 − 23 0.0036 13 − 62 0.5 0.5

24 0.0073 63 0.286 0.8

25 − 27 0.0036 64 − 127 0.5 0.5

28 0.0073 128 0.5 0.444

29 − 31 0.0036 129 − 158 0.5 0.5

32 0.0073 159 0.5 0.286

33 − 62 0.0036 160 − 247 0.5 0.5

63 0.0073 248 0.286 0.5

63 − 125 0.0036 249 0.5 0.5

126 0.0073 250 0.286 0.5

127 − 191 0.0036 251 0.5 0.6

192 0.0073 252 − 253 0.5 0.286

193 − 241 0.0036 254 − 255 0.5 0.5

242 0.0073 – – –

243 0.0036 – – –

244 0.0073 – – –

245 − 247 0.0036 – – –

248 0.0073 – – –

249 0.0036 – – –

250 0.0073 – – –

251 − 255 0.0036 – – –

Table 2. Transition probabilities P
(8)
m0 (1) and P

(8)
m0 (2) as well as the initial probabilities Q

(8)
m (1), for all values of m ∈ S

(K)
2

in the case of region CE and threshold 0.17ppm. The notation m′ − m′′ is used to indicate that for all values of m in
{m′ , m′ + 1, . . . , m′′}, the estimated probabilities are equal to the values shown.

In order to obtain the values of the probabilities of interest, recall that P
(K)
m0 (t) = 1 − P

(K)
m1 (t),

m ∈ S
(K)
2 , t = 1, 2, . . . , T − K. Therefore, looking at Table 2, we have that P

(8)

01
(1) is one minus

the value on the column corresponding to P
(K)
m0 (1) with m = 0. Similar comment is valid in

the case of Q
(8)
m (1), m ∈ S

(K)
2 .

Suppose now that we want to know the probability of having (0, 0, 0, 0, 0, 0, 0, 0) followed
by (1, 1). Hence, we want to know what the probability that (0, 0, 0, 0, 0, 0, 0, 0) is followed
by one and that (0, 0, 0, 0, 0, 0, 0, 1) is followed by one. Therefore, we need to calculate

P((0, 0, 0, 0, 0, 0, 0, 0, 1, 1)) = P
(8)

255 1
(2)× P

(8)

01
(1)× Q

(8)

0
(1) = 0.5 × 0.238 × 0.0327 ≈ 0.0004.

Proceeding in this way we may calculate the probability of having any string of states at any
time of the year.

If we compare to the actual measurements in the year 2012, then we have that in the first ten
days, the sequence Y, in the case of region CE, has the configuration 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.
In fact, the estimated probability of that sequence of zeros and ones is 0.5 × 0.762 × 0.0327 ≈
0.0125 which is three times higher than the probability of having (0, 0, 0, 0, 0, 0, 0, 0) followed
by (1, 1). If we consider also the year 2013, the results are similar. Hence, the methodology
used here can produce estimated values that may describe well the behaviour of the data.
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5. Conclusion

In this work we have considered a non-homogeneous Markov chain model to study the
ozone’s behaviour in Mexico City. The interest resides in estimating the probability that the
ozone level will be above (below) a certain threshold given that it is either above or below
it in the present and in the recent past. Due to the nature of the questions asked here, a
natural way of trying to answer them is to use Markov chain models. However, due to the
non-homogeneity of the data, a non-homogeneous version of the chain is used.

Figure 1. Proportion of years in which, for a given day, the threshold 0.11ppm was exceeded by the ozone concentration.

Using the Bayesian approach a maximum à posteriori estimation of the order of the matrix
as well as its transition matrix and initial distribution was made. The results have shown
that higher order should be considered for the chain. One explanation for that could be the
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way the empirical probability of having an exceedance in a given day behaves. That can be
seen in Figure 1 where, as an illustration, the proportion of exceedances of the threshold
0.11ppm is presented for each region. The values correspond to the proportion of years
in which in a fixed day the threshold was exceeded. As we vary the days, we have the
behaviour throughout the 366 days. In that figure we have in the horizontal axis the days

and in the vertical axis we have the values of prop(t) = (1/N) ∑
N
i=1 Y

(i)
t , which represents

the proportion of years with an exceedance in the tth day, t = 1, 2, . . . , T. The notation Y
(i)
t is

used to indicate the variable Yt defined in (1) on the ith year.

The plots in Figure 1 reflect well the fact that in region SW, in most of the days of the
year, there are exceedances of the threshold 0.11. We may also see the influence of the
seasons of the year. The hill between days 100 and 200 appearing in every plot, corresponds
to measurements taken between April and June. Higher values occur during the days
corresponding to approximately mid April to mid May. Those months are in the middle
of Spring. During this season it does rain much in Mexico City. Additionally, there is a lot
of sunlight. Hence, the ozone concentration is bound to be high, and as a consequence, the
proportion of years in which exceedances occur at that period is large. The values decrease
when the raining season starts (around the beginning of June).

If we consider the threshold values 0.15ppm and 0.17ppm, the behaviour of the proportion
of years where in a given day exceedances occurred is similar to the case of 0.11ppm. The
difference is that the values of the proportions are smaller. It is possible to see that the
proportion of exceedances may vary according to the seasons of the year, and that, within a
given season, changes are, in general, not drastic. Therefore, it is possible that measurements
from more than a few days may have an influence on the behaviour of future measurements,
and with that, make the estimation method considered here to produce high values for the
order of the chain.
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Appendix

In this Appendix we present the code of the programme in R used to estimate the order
of the non-homogeneous Markov chain as well as its transition probabilities. The code it
not optimal and can be highly improved, but in its present form it provides elements for
estimating the necessary quantities.
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# ESTIMATING THE ORDER OF THE CHAIN

ozonio_sw=read.table(’data.txt’, header=T)

attach(ozonio_sw)

anos=NCOL(ozonio_sw)

dias=NROW(ozonio_sw)

# assigning the value of M

M = 15 # for instance

# initialisation of the matrices to store the values of the likelihood

# for each order and day

term_init_like <- matrix(0, M+1, 1)

term_general_like <- matrix(0, dias, M+1)

#######

# Case K = 0

#######

# counting the numbers of ones and zeros in each row

count_init_0 <- matrix(0, dias, 2)

for(i in 1:dias){

for(j in 1:anos){

if(ozonio_sw[i,j] == 0){count_init_0[i,1] = count_init_0[i,1] + 1} }

count_init_0[i,2] = anos - count_init_0[i,1]}

# assigning the values of alpha

alpha_init_0 <- matrix(0,dias,2)

for(i in 1:dias){

for(j in 1:2){if(count_init_0[i,j] == 0){alpha_init_0[i,j] = 3} }

if ((count_init_0[i,1] == min(count_init_0[i,])) & (count_init_0[i,1] != 0)){

if(alpha_init_0[i,1] == 0){alpha_init_0[i,1] = 4

if(alpha_init_0[i,2] == 0){alpha_init_0[i,2] = 8}} }

if ((count_init_0[i,1] == max(count_init_0[i,])) & (count_init_0[i,2] != 0)){

if(alpha_init_0[i,1] == 0){alpha_init_0[i,1] = 8

if(alpha_init_0[i,2] == 0){alpha_init_0[i,2] = 4}} }

if ((count_init_0[i,1] == min(count_init_0[i,])) & (count_init_0[i,1] == 0)){

if(alpha_init_0[i,2] == 0){alpha_init_0[i,2] = 8} }

if ((count_init_0[i,1] == max(count_init_0[i,])) & (count_init_0[i,2] == 0)){

if(alpha_init_0[i,1] == 0){alpha_init_0[i,1] = 8} }

}

# calculating the value of the likelihood L(Y | K = 0)

prod_1_k0 <- matrix(0,dias,1)

prod_2_k0 <- matrix(0,dias,1)

prod_k0 <- matrix(0,dias,1)

for(i in 1:dias){

for(j in 1:2){

prod_1_k0[i] = (gamma(count_init_0[i,j]+alpha_init_0[i,j])/gamma(alpha_init_0[i,j])) }

prod_2_k0[i] = (gamma(sum(alpha_init_0[i,]))/gamma(sum(count_init_0[i,] +

alpha_init_0[i,])))

prod_k0 [i] = prod_1_k0[i]*prod_2_k0[i]}

for(i in 1:dias){

term_general_like[i, 1] = prod_k0[i]}

#######

# Caso K = 1

#######

# the initial states in this case is the first row of the case K=0

# assigning the values of count_init_0[1,i] to count_init_1[i]

count_init_1 <- matrix(0,1,2)

for(j in 1:2){count_init_1[j]= count_init_0[1,j]}

# assigning the same values of alpha_init_0[1,i] to alpha_init_1[i]

alpha_init_1 <- matrix(0,1,2)

for(j in 1:2){alpha_init_1[j]= alpha_init_0[1,j]}

#############

# counting the number of transitions 0 -> 0, 0 -> 1, 1 -> 0 and 1 -> 1

# count_0_k1[i,1] counts the number of transitions from zero to zero in row i,
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# count_0_k1[i,2] counts the number of transitions from zero to one in row i,

#count_1_k1[i,1] counts the number of transitions from one to zero in row i

# count_1_k1[i,2] counts the number of transitions from ne to one in row i

##############

count_0_k1 <- matrix(0, dias-1, 2)

count_1_k1 <- matrix(0, dias-1, 2)

for(i in 1:(dias-1)){

for(j in 1:anos){

if((ozonio_sw[i, j] == 0) & (ozonio_sw[i+1,j] == 0))

{count_0_k1[i,1] = count_0_k1[i,1] + 1}

if((ozonio_sw[i, j] == 0) & (ozonio_sw[i+1,j] == 1))

{count_0_k1[i,2] = count_0_k1[i,2] + 1}

if((ozonio_sw[i, j] == 1) & (ozonio_sw[i+1,j] == 0))

{count_1_k1[i,1] = count_1_k1[i,1] + 1}

if((ozonio_sw[i, j] == 1) & (ozonio_sw[i+1,j] == 1))

{count_1_k1[i,2] = count_1_k1[i,2] + 1}}}

# assigning the values of the values of alpha

# alpha_0_k1 is associated with the transitions 0 -> 0 and 0 -> 1

# alpha_1_k1 is associated with the transitions 1 -> 0 and 1 -> 1

alpha_0_k1 <- matrix(0, dias-1, 2)

alpha_1_k1 <- matrix(0, dias-1, 2)

for(i in 1:(dias-1)){

for(j in 1:2){

if(count_0_k1[i,j] == 0){alpha_0_k1[i,j] = 3}

if(count_1_k1[i,j] == 0){alpha_1_k1[i,j] = 3} }

if((count_0_k1[i,1] == count_0_k1[i,2]) & (count_0_k1[i,1] != 0) &

(count_0_k1[i,1] < 5) & (alpha_0_k1[i, 1] == 0)){alpha_0_k1[i,1] = 5

if(alpha_0_k1[i,2] == 0){alpha_0_k1[i,2] = 5} }

if((count_1_k1[i,1] == count_1_k1[i,2]) & (count_1_k1[i,1] != 0) &

(count_1_k1[i,1] < 5) & (alpha_1_k1[i, 1] == 0)){alpha_1_k1[i,1] = 5

if(alpha_1_k1[i,2] == 0){alpha_1_k1[i,2] = 5} }

if((count_0_k1[i,1] == count_0_k1[i,2]) & (count_0_k1[i,1] != 0) &

(count_0_k1[i,1] >= 5) & (alpha_0_k1[i, 1] == 0)){alpha_0_k1[i,1] = 7

if(alpha_0_k1[i,2] == 0){alpha_0_k1[i,2] = 7} }

if((count_1_k1[i,1] == count_1_k1[i,2]) & (count_1_k1[i,1] != 0) &

(count_1_k1[i,1] >= 5) & (alpha_1_k1[i, 1] == 0)){

alpha_1_k1[i,1] = 7

if(alpha_1_k1[i,2] == 0){alpha_1_k1[i,2] = 7} }

if((count_0_k1[i,1] == min(count_0_k1[i,])) & (count_0_k1[i,1] != 0)){

if(alpha_0_k1[i,1] == 0){alpha_0_k1[i,1] = 4}

if(alpha_0_k1[i,2] == 0){alpha_0_k1[i,2] = 8} }

if((count_1_k1[i,1] == min(count_1_k1[i,])) & (count_1_k1[i,1] != 0)){

if(alpha_1_k1[i,1] == 0){alpha_1_k1[i,1] = 4}

if(alpha_1_k1[i,2] == 0){alpha_1_k1[i,2] = 8} }

if((count_0_k1[i,1] == min(count_0_k1[i,])) & (count_0_k1[i,1] == 0)){

if(alpha_0_k1[i,2] == 0){alpha_0_k1[i,2] = 8} }

if((count_1_k1[i,1] == min(count_1_k1[i,])) & (count_1_k1[i,1] == 0)){

if(alpha_1_k1[i,2] == 0){alpha_1_k1[i,2] = 8} }

if((count_0_k1[i,1] == max(count_0_k1[i,])) & (count_0_k1[i,2] != 0)){

if(alpha_0_k1[i,1] == 0){alpha_0_k1[i,1] = 8}

if(alpha_0_k1[i,2] == 0){alpha_0_k1[i,2] = 4} }

if((count_1_k1[i,1] == max(count_1_k1[i,])) & (count_1_k1[i,2] != 0)){

if(alpha_1_k1[i,1] == 0){alpha_1_k1[i,1] = 8}

if(alpha_1_k1[i,2] == 0){alpha_1_k1[i,2] = 4} }

if((count_0_k1[i,1] == max(count_0_k1[i,])) & (count_0_k1[i,2] == 0)){

if(alpha_0_k1[i,1] == 0){alpha_0_k1[i,1] = 8} }

if((count_1_k1[i,1] == max(count_1_k1[i,])) & (count_1_k1[i,2] == 0)){

if(alpha_1_k1[i,1] == 0){alpha_1_k1[i,1] = 8} }

}

# calculating the value of the likelihood L(Y | K = 1)

# term corresponding to the initial distribution
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prod_1_k1 = 1

for(j in 1:2){

prod_1_k1 = prod_1_k1*((gamma(count_init_1[j]+alpha_init_1[j])/

gamma(alpha_init_1[j])))*((gamma(sum(alpha_init_1))/

gamma(sum(count_init_1+ alpha_init_1))))}

term_init_like[2] = prod_1_k1

# term corresponding to the rest of the days (rows)

prod_2_k1 <- matrix(0,(dias - 1),1)

prod_3_k1 <- matrix(0,(dias - 1),1)

prod_k1 <- matrix(0,(dias - 1),1)

for(i in 1:(dias - 1)){

for(j in 1:2){

prod_2_k1[i] = (gamma(count_0_k1[i,j] + alpha_0_k1[i,j])/gamma(alpha_0_k1[i,j]))*
(gamma(count_1_k1[i,j] + alpha_1_k1[i,j])/gamma(alpha_1_k1[i,j]))}

for(j in 1:2){

prod_3_k1[i] = (gamma(sum(alpha_0_k1[i,])+1)*gamma(sum(alpha_1_k1[i,])))/

(gamma(sum(count_0_k1[i,]+alpha_0_k1[i,])+sum(count_1_k1[i,]+alpha_1_k1[i,])+1))}

prod_k1[i] = prod_2_k1[i] * prod_3_k1[i]}

for(i in 1:(dias-1)){

term_general_like[i, 2] = prod_k1[i]}

####

# Case K >=2

#####

# Transforming vector of zeros and ones in an element of S_{2}^{(K)}

# counting the initial values of the chain (K >= 2) initialisation of the

# matrices to store the values of the likelihood for each order and day

##########

prod_init <- matrix(0, 1, M)

for(K in 2:M){

count_init_k <- matrix(0, 1, (2^K))

mbase_init <- matrix(0, 1, anos)

alpha_init_k <- matrix(0, 1, 2^K)

# transforming the k-dimensional initial vector into an integer number

for(j in 1:anos){

for(l in 0:(K-1)){

mbase_init[j] = mbase_init[j] + ozonio_sw[1+l,j]*2^l}

# counting the number of m in the initial state

for(n in 0:(2^K-1)){if(mbase_init[j] == n){

count_init_k[mbase_init[j]+1] = count_init_k[mbase_init[j]+1] + 1}}}

# assigning the respective values of alpha_init_k

for(n in 0:(2^K - 1)){

if(count_init_k[n+1] == 0){

alpha_init_k[n+1] = 3}

if((count_init_k[n+1] == min(count_init_k)) & (alpha_init_k[n+1] == 0)){

alpha_init_k[n+1] = 3}

if((count_init_k[n+1] == max(count_init_k)) & (alpha_init_k[n+1] == 0)){

alpha_init_k[n+1] = 8}

if((abs(count_init_k[n+1]-max(count_init_k)) > 5) & (alpha_init_k[n+1] == 0)){

alpha_init_k[n+1] = 4}

if((abs(count_init_k[n+1]-max(count_init_k)) <= 5) & (alpha_init_k[n+1] == 0))

{alpha_init_k[n+1] = 6}}

# calculation of the first term in the product in the likelihood L(Y | K)

prod_1_init = 1

prod_2_init = 1

prod_init_k = 0

for(n in 1:(2^K)){

prod_1_init = prod_1_init*(gamma(count_init_k[n]+alpha_init_k[n])

/gamma(alpha_init_k[n]))}

prod_2_init = 1

sumalphacount = sum(alpha_init_k+count_init_k)

sumalpha = sum(alpha_init_k)
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limsup = sum(alpha_init_k+count_init_k) - sum(alpha_init_k)

for(k in 0:(limsup-1)){prod_2_init = prod_2_init*((sumalphacount-1)-k)^(-1)}

prod_init_k = prod_1_init*prod_2_init

term_init_like[K+1] = prod_init_k

# initialisation of the matrices of interest in the case of i not the initial state

mbase <- matrix(0, dias - K, anos) # that is overline{m}

count_Km <- matrix(0, 2^K, 2) # matrix counting the transitions from m

s <- matrix(0, (dias-K), 2^K)

# transforming the vectors of length K into a number in the base 2 for

# each day for all years

for(i in 1:(dias-K)){

for(j in 1:anos){

for(l in 0:(K-1)){

mbase[i,j] = mbase[i,j] + ozonio_sw[i+l,j]*2^l}

# storing the number of mbase in row i in the vector s[day, mbase]

for(n in 0:(2^K-1)){

if(mbase[i,j] == n){s[i,n+1] = s[i, n+1] + 1} }

} # closes the j loop

} # closes the i loop

# counting the number of transitions for each day (day is kept fixed while

# counting goes through years)

# count_Km[m,1] counts the number of transitions m -> 0 in the 22 years for fixed i

# count_Km[m,2] counts the number of transitions m -> 1 in the 22 years for fixed i

# n_m0[dias,m] counts the number of transitions m -> 0 in the 22 years for each i

# n_m1[dias,m] counts the number of transitions m -> 1 in the 22 years for each i

n_m0 <- matrix(0, (dias - K), 2^K) # matrix counting m -> 0

n_m1 <- matrix(0, (dias - K), 2^K) # matrix counting m -> 1

for(i in 1:(dias-K)){

for(j in 1:anos){

if(ozonio_sw[i+K,j] == 0){

for(n in 0:(2^K-1)){

if(mbase[i,j] == n){

count_Km[n+1,1] = count_Km[n+1,1]+1}}}

if(ozonio_sw[i+K,j] == 1){

for(n in 0:(2^K-1)){if(mbase[i,j] == n){

count_Km[n+1,2] = count_Km[n+1,2]+1}}} }

for(m in 1:(2^K)){

n_m0[i,m] = count_Km[m,1]

n_m1[i,m] = count_Km[m,2] }

count_Km <- matrix(0, 2^K, 2)

} # closes de i loop

# assignation of the values of the corresponding values of

# alpha the hyperparameter of the Dirichlet prior distribution

# alpha_m0 is associated to the transitions m -> 0 for each day and each m

# alpha_m1 is associated to the transitions m -> 1 for each day and each m

alpha_m0 <- matrix(0, (dias - K), 2^K)

alpha_m1 <- matrix(0, (dias - K), 2^K)

for(i in 1:(dias-K)){

for(m in 1:2^K){

if(n_m0[i,m] == 0){alpha_m0[i,m] = 3}

if(n_m1[i,m] == 0){alpha_m1[i,m] = 3}

} #closes the m loop

for(m in 1:2^K){

if((n_m0[i,m] == min(n_m0[i,m], n_m1[i,m])) & (alpha_m0[i,m] == 0)){

alpha_m0[i,m] = 4

if((abs(n_m0[i,m] - n_m1[i,m]) >= 5) & (alpha_m1[i,m] == 0)){alpha_m1[i,m] = 7}

if((abs(n_m0[i,m] - n_m1[i,m]) < 5) & (alpha_m1[i,m] == 0)){alpha_m1[i,m] = 5}}

if((n_m0[i,m] == min(n_m0[i,m], n_m1[i,m])) & (alpha_m0[i,m] != 0)){

if((abs(n_m0[i,m] - n_m1[i,m]) >= 5) & (alpha_m1[i,m] == 0)){alpha_m1[i,m] = 7}

if((abs(n_m0[i,m] - n_m1[i,m]) < 5) & (alpha_m1[i,m] == 0)){alpha_m1[i,m] = 5} }

if((n_m0[i,m] == max(n_m0[i,m], n_m1[i,m])) & (alpha_m0[i,m] == 0))
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{ alpha_m0[i,m] = 8

if((abs(n_m0[i,m] - n_m1[i,m]) >= 5) & (alpha_m1[i,m] == 0)){alpha_m1[i,m] = 4}

if((abs(n_m0[i,m] - n_m1[i,m]) < 5) & (alpha_m1[i,m] == 0)){alpha_m1[i,m] = 7} }

if((n_m0[i,m] == min(n_m0[i,m], n_m1[i,m])) & (alpha_m0[i,m] != 0)){

if((abs(n_m0[i,m] - n_m1[i,m]) >= 5) & (alpha_m1[i,m] == 0)){alpha_m1[i,m] = 4}

if((abs(n_m0[i,m] - n_m1[i,m]) < 5) & (alpha_m1[i,m] == 0)){alpha_m1[i,m] = 7} }

} #closes the second m loop

} #closes the i loop

# calculation of the likelihood L(Y | K)

prod_1_km <- matrix(0, (dias - K), 1)

prod_2_km <- matrix(0, (dias - K), 1)

prod_km <- matrix(0, (dias-K), 1)

for(i in 1:(dias-K)){

for(n in 1:2^K){

prod_1_km[i] = (gamma(n_m0[i,m]+alpha_m0[i,m])*gamma(n_m1[i,m]+alpha_m1[i,m]))/

(gamma(alpha_m0[i,m])*gamma(alpha_m1[i,m]))

prod_2_km[i] = gamma(alpha_m0[i,m] + alpha_m1[i,m])/gamma(alpha_m0[i,m] +

n_m0[i,m] + alpha_m1[i,m] + n_m1[i,m])

} #closed the m loop

prod_km[i] = prod_1_km[i]*prod_2_km[i]

} # closes the i loop

for(i in 1:(dias-K)){

term_general_like[i,K+1] = prod_km[i]}

} #close the K loop

write.csv(term_general_like, file = "results-file-1.csv")

write.csv(term_init_like, file = "results-file-2.txt")

#

# TRANSITION PROBABILITIES - CASE OF REGION CE, THRESHOLD 0.17

#

K = 8 # may change for other regions and thresholds

# calculation of the normalising constant in the case of the initial distribution

somainit = 0

for(m in 1:2^K){

somainit = somainit + (alpha_init_k[m] + count_init_k[m] - 1)}

# calculation of the initial distribution

prob_init <- matrix(0, 2^K, 1)

for(m in 1: 2^K){

prob_init[m] = (alpha_init_k[m] + count_init_k[m] - 1)/somainit}

write.csv(prob_init, file = "prob_init_chain.txt")

# limiting the number of days

dd = 2 # because I need p_{mj}(1) and p_{mj}(2)

# alpha_m1[i,m] where i is day and m is the value of the vector

# the m1 indicates that m is followed by 1

p_m0 <- matrix(0, dd, 2^K)

p_m1 <- matrix(0, dd, 2^K)

# calculation of the transition probabilities m -> 0 and m -> 1

for(m in 1:2^K){

for(i in 1:dd){

p_m0[i,m] = (alpha_m0[i,m] + n_m0[i,m] - 1)/((alpha_m1[i,m] + n_m1[i,m] - 1)

+(alpha_m0[i,m] + n_m0[i,m] - 1))

p_m1[i,m] = (alpha_m1[i,m] + n_m1[i,m] - 1)/((alpha_m1[i,m] + n_m1[i,m] - 1)

+(alpha_m0[i,m] + n_m0[i,m] - 1)) }}

trans_mat <- matrix(0, 2^K, dd)

for(m in 1:2^K){

for(i in 1:dd){

trans_mat[m,i] = p_m0[i,m]}}

write.csv(trans_mat, file = "trans_mat.txt")
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