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1. Introduction

Since a long time ago health sciences and natural products have been linked by the use of
remedies and poisons, and nowadays there is little doubt that humans used natural drugs long
before the emergence of written history [1,2]. The Ebers Papyrus dating from about 1600 BC,
is one of the oldest medical treatise, which documents natural product-derived drugs used by
the Sumerians and Akkadians in the 3rd century BC. Today there is information on medicinal
plants dating back over about 500 years, as documented in herbaria. Laboratory studies of
medicinal natural products started only about 200 years ago, with the isolation of of morphine,
an alkaloid, from opium (Papaver spp.) [2,3].

Aspisoperma genus (Apocynaceae) species are trees of a great diversity of sizes that grow in
different habitats and are distributed mainly among the Americas; In Brazil about 50 species
of this genus have been catalogued [4–6]. There are several reports in the literature concerning
the folk utilization of plants of this genus, as in treatment of malaria, dysentery, appendicitis,
wounds, fever, dyspnea, asthma, scabies, stomachache, cough, constipation, boils, rheuma‐
tism, leishmaniasis, toothache, urinary tract inflammation and dermatitis. However several
studies show that some plants of the genus are not recommended for pregnant women because
of their potential abortifacient and teratogenic effects [7–28].

Given the diversity of popular uses of plants of the genus Aspidosperma as well as the pre‐
dominance of terpenoid-alkaloids production in this genus and the importance of these
substances for organic synthesis, medicinal chemistry and for knowledge of the biosynthetic
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pathways used by plants to produce them, we propose to review the literature concerning the
aspidosperma-type terpenoid-alkaloids chemical synthesis and their biological potential.

2. Biosynthesis of Aspidosperma terpenoid alkaloids

The isolation of alkaloids from species of Aspidosperma trees and their structural elucidation
give rise to theories that attempt to explain their biosynthetic origin. In the field of indole-type
alkaloids, one of the earliest theories to explain its biosynthesis arose in 1933, proposing that
this type of alkaloid has origin in the reaction between tryptophan, phenylalanine and glicine
(although at the time the proposed structures do not represent exactly the known reality today)
[29]. Revisions of this theory lead to a new biosynthetic route, proposing that the indole-type
alkaloids are derived from shikimic and prephenic acids and their interactions with seco-
prephenate-formadehyde units and aromatic aminoacids as tryptamine and tryptophan
(figure 1) [30,31]. As Aspidosperma type alkaloids were isolated theories that tried to explain
their biosynthetic origin began to emerge, which, at this moment, were based on the chemical
synthesis of such alkaloids, as done by several research groups [32].
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Figure 1. Early propositions for indole alkaloid precursors.

Early work on proof of terpenoid alkaloid biosynthesis were based on administration of
deuterium-labelled precursors of alkaloids to the plants tested and analysis of the metabolites
produced to confirm a proposed biosynthetic way. The earliest proposition for the biosynthesis
of Aspidosperma terpenoid alkaloids was the synthesis via mevalonate pathway, demonstrat‐
ed in 1966 by the administration of 1-[²H2]-geraniol and 2-¹4C-geraniol to Vinca rosea and mass
spectrometry detection of labeled vindoline, what allowed the proposition of the biosynthetic
route showed in figure 2 [33,34]. This biosynthetic way was refined two years later with the
demonstration that administration of 14C-labelled loganin (produced by the administration of
2-¹4C-geraniol to Meyanthes trifoliata) to V. rosea and Rawfolia serpentina allowed the isolation of
14C-labeled catharantine, serpentine, ajmalicine, vindoline and perivine [35], whose biosyn‐
thetic mechanism was detailed elsewhere [36–47].

Phytochemicals - Isolation, Characterisation and Role in Human Health164



OH




N

N

O
O

O

OH

O

O

Geraniol
Vindoline



O

HO

H

H

O

O

O-Glu

Loganin

Figure 2. Proposal to Aspidosperma terpenoid alkaloid biosynthesis (adapted from [1-2]).

3. Chemical synthesis of Aspidosperma terpenoid alkaloids

Since the structure elucidation of the first isolated Aspidosperma alkaloids, various alterna‐
tives and techniques have emerged, due mainly the great structural complexity of this family
of alkaloids. One of the earliest syntheses of an Aspidosperma alkaloid was published by a
group from Havard University in 1959, which obtained the recently-isolated alkaloid ellipti‐
cine from condensation of indole with 3-acetylpyridine followed by reduction and pyrolisis,
as shown in figure 3 [48].
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Figure 3. First synthesis of ellipticine.

Many years later, a new synthesis of aspidosperma-type skeleton was published, in a very
simple way using four steps (figure 4) [49]. Another example is the synthesis of quebrachamine,
one way published in 1966, and another three ways, one of them based on alkylation of cyclic
enamines, other starting with 1,3-propanediol and another based on the cleavage of a thioketal
group (figure 5) [50–53].
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Figure 4. Synthesis of 3-Methylaspidospermidine (adapted from [49]).
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Despite the many synthetic routes described for obtaining quebrachamine, none was obtained
with enantiomeric purity until the problem was addressed in 1980, with the development of
a synthetic route to (+)-quebrachamine using L-glutamic acid as a chiral template (figure 6) [54].
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Enamines were also utilized in the synthesis of aspidospermine, as showed in 1971 by a group
from Rice University (figure 7) and other groups [55,56].
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Figure 7. Synthesis of aspidospermine.

In 1978 was published a work that introduced a conceptually new approach to the synthesis
of Aspidosperma-type alkaloids, the photocyclization-rearrangement or heteroatom directed
photoarylation of anilinocyclohexanones, exemplified by the synthesis of the indolines A and
B shown in figure 8 [57], this concept being expanded many years later, with the demonstration
of different techniques of photo-induced reactions [58–60].
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Figure 8. Photoarylation in the synthesis of Aspidosperma-type substructures.

Given the biosynthetic route proposed by Wenkert [30], a group from Yale University
developed a synthetic route for obtaining the alkaloid minovine in a biogenetically modeled
way (figure 9), refined many years later by the same group [61,62].
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Based on the fact that the Aspidosperma alkaloids share common structural features, a group
from the Chinese Academy of Synthesis developed a strategy to aspidophytine enantioselec‐
tive and stereo-controlled synthesis that could be applied to the synthesis of several other
alkaloids of this family by simply varying the initial aniline (figure 10) [63].
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Figure 10. Aspidophytine synthesis (adapted from [63]).

Another powerful technique for the Aspidosperma alkaloids skeleton is the utilization of aza-
Cope rearrangements, utilized for the first time in 1981 for the stereoselective synthesis of 9a-
arylhydrolilolidines precursors of vindoline (figure 11) and later expanded to other alkaloids
[64–66].
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Figure 11. Application of aza-Cope rearrangement (adapted from [64]).

Based on the premise that Heck reaction is a powerful method for the construction of quater‐
nary carbon centers, researchers from Kyoto University decided to apply this methodology to
the entantioselective synthesis of (-)-epieburnamonine (figure 12) [67].
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Exploiting the possibilities of C-H bond functionalization on the pyrrole ring, a group from
Cambridge University recently proposed the total synthesis of rhanizilam-type alkaloids as
precursors to Aspidosperma-type alkaloids, as shown in figure 13 [68].
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Figure 13. Metal-catalyzed C-H bond functionalization on terpenoid alkaloid synthesis (adapted from [68]).

3.1. Aspidosperma alkaloid precursors

Another field of great interest is in synthesis of precursors which can serve to the achieve
greater structural diversity from common structures. Various approaches have been utilized
in this field, such as ketone annelation of endocyclic enamines [69] (figure 14) and the utiliza‐
tion of photochemistry with the one pot synthesis of a 9-membered ring system that could be
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applied not only in the synthesis of Aspidosperma-type alkaloids, but also Strychnos, Schiz‐
ozygane and Eburnamine-types, as shown in figure 15 [70].
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Figure 14. Ketone annelation of endocyclic enamines on the synthesis of alkaloids.
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Another approach relied on the conversion of para-substituted anisoles into 4,4-dissubstitued
cyclohexenones via cyclohexadiene-Fe(CO)3 complexes, to obtain the tetrasubstituted carbon
of Aspidosperma-type alkaloids, as demonstrated by the synthesis shown in figure 16 [71].
The iron complexes were also utilized in the synthesis of limaspermine derivatives, as shown
in figure 17 [72]. Iron [73] and others metals were also utilized in Aspidosperma alkaloids
synthesis, such as rhodium [74–77], copper [75,78], ruthenium and molybdenum [79], titanium
[80] and palladium [81,82].
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Figure 16. Synthesis of alkaloids with functionalised C(20) substituents via diene-Fe(CO)3 complex (adapted from [71]).

Another precursor of Aspidosperma type alkaloids was synthesized in 1978, from azocetones
or iminomalonates via acid-catalysed and Birch reduction reactions (figure 18) [83].
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3.2. Novel strategies

One of the main concerns of chemists worldwide is the development of more efficient and
“green” procedures in organic synthesis procedures. Among the procedures developed we
can cite the so-called domino synthesis, where several bonds are formed in sequence, without
isolation of intermediates, addition of reagents or changes in reaction conditions, so that the
subsequent reaction result as a consequence of the functionality formed in the previous step
[84]. One example of domino synthesis application to Aspidosperma alkaloids synthesis was
recently published, where the alkaloids (-)-aspidospermidine, (-)-tabersonine and (-)-vinca‐
difformine were synthesized in an asymmetric domino Michael/Mannich/N-alkylation
sequence, as shown in figure 19 [85].

The majority of synthetic strategies employed to obtain natural products are based on the
construction of a single target skeleton, in contrast with the strategy utilized by plants, where
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divergent molecular cyclizations of a polyunsaturated common intermediate produce
different scaffolds, as recently demonstrated in two different papers, by the synthesis of
different Aspidosperma alkaloids[81] and diverse indole alkaloids skeletons [86] from a
common intermediate in a biogenetically-inspired way, as shown in figure 20 [86].
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4. Biological importance of Aspidosperma terpenoid alkaloids

One of the research interests of our group is the isolation of alkaloids from Aspidosperma species
with pharmacological potential. From a chemotaxonomic point of view, alkaloids are sub‐
stances of great potential in malaria treatment [87,88]. In this perspective, we decided to study
the alkaloids produced by A. pyrifolium, resulting in the isolation of the alkaloids 15-deme‐
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thoxypyrifoline, aspidofractinine and N-formylaspidofractinine [89]. We have identified in A.
pyrifolium insecticidal [90], antibacterial [91] and hypotensive activities [92]. Another plant
studied by our group was A. tomentosum, which showed great anti-hipertensive [93,94],
antinociceptive, anti-inflammatory and analgesic [95–98] and A. macrocarpum, which showed
anti-hypertensive activity in spontaneously hypertensive mice [99].

Some species have been the subject of research in order to identify its pharmacological
properties and other biological activities. In vitro assay with aqueous extracts of the aerial parts
and roots of A. pachypterum against Staphylococcus aureus and the Human Immunodeficiency
Virus (HIV), respectively, showed that this species exhibited a moderate activity [100,101]. The
methanolic extract of the aerial parts of A. ramiflorum was active in vitro against gram-negative
bacterium Escherichia coli [102] and against the fungus Cryptococcus neoformans (causing
opportunistic infections in humans) [103] while the methanol extract of the stem bark of the
same species was found to be moderately active against gram-positive bacteria and inactive
against gram-negatives ones [104]. Studying tailings from the processing of hardwoods in
Paraná (Brazil), it was found that the methanol extract of the wood of the plant identified as
Peroba pink (Aspidosperma sp.) had a composition rich in phenols and alkaloids as well as
strong activity against gram-negative bacteria Proteus mirabilis [105]. In two trials conducted
with various plant species, among them five from Aspidosperma genre, it was observed that the
ethanol extract of the stem bark of A. excelsum, A. megalocarpon, A. oblongum and A. marcgra‐
vianum were active against gram-positive bacteria Bacillus subtilis and that the same extracts
and also the ethanol extract of the stem bark of A. album were active against gram-positive S.
aureus [106,107]. In a study of Peruvian plants, it was reported that the extract of the bark of
A. rigidum showed antibacterial activity against B. subtilis [108].

Another reported activity for species was the anti-Leishmania, where in vitro assay for
Leishmania amazonensis promastigotes ahead and L. braziliensis, the fraction rich in alkaloids
obtained from the stem bark proved to be active, with the highest activity observed against
the first species [109]. Yet in order to find alternatives for the treatment of neglected diseases,
the methanol extract of the bark of A. megalocarpon was tested against the D2 and F32 Plasmo‐
dium falciparum strains, being active [110]. The dichloromethane extract of the roots of A.
tomentosum was active front P. falciparum (strain FcB1/Colombia) with a selectivity index of
67.5 compared with the activity front NIH-3T3 cells. In relation to substances with antifungal
properties, it was seen that the ethanol extract of the stem of A. polyneuron was capable of
inhibiting Cladosporium herbarum (pathogen of plants) [111].

In order to find alternatives for the treatment of cancer, the dichloromethane extract of the
aerial parts of A. tomentosum was capable of inhibiting the proliferation of cell lines MCF-7
(breast cancer), UACC62 (melanoma), NCIADR (breast cancer phenotype with resistance to
multiple drugs and NCl460 (lung cancer), and we observed that the activity was concentrated
in fractions rich in terpenes and species of high polarity [112].

In vivo assay of the ethanol extract of the stem of A. nitidum showed significant anti-inflam‐
matory activity when evaluated in the trial of edema induced by carrageenan in mice.
Prospecting for sources of antioxidant compounds, the hot aqueous extract of A. quebracho-
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blanco was tested for oxidation power / ferric reduction, showing a low activity and is therefore
not considered as potential producer of antioxidant compounds [113].

It was observed that administration of a fraction rich in alkaloids obtained from the root bark
of A. ulei exerted pro-erectile effect in rats and suggested a mechanism of action via blocking
presynaptic α2-adrenergic receptors, the activation of the dopaminergic system and release of
nitric oxide [114]. When the same fraction was tested in corpus cavernosum penis obtained
from rabbit, its ability to cause relaxation was observed and the proposed mechanism blocking
the influx of calcium into the cells [115]. In assay using α-adrenergic receptors isolated from
human penis, it was shown that the crude extract and four fractions obtained from the bark of
A. quebracho-blanco were able to block them, and the magnitude of interaction directly propor‐
tional to the content of the alkaloid yohimbine [116].

Despite reports of low toxicity associated with the use of plants of the genus Aspidosperma
[109,110,117–119], some studies show a contrary position regarding the species A. pyrifolium
[89,120]. In a study of the species A. pyrifolium cases of abortion in goats were reported due to
ingestion of parts of the plants and when the ethanol extract of the leaves was administered
to pregnant rats reduced fetal weight and maternal toxicity was observed, as well as hemolysis
and toxicity test the front microcrustacean Artemia salina [120]. In a toxicity study with the
microcrustacean A. franciscana with several species found in the Brazilian Amazon, among
them seven species of Aspidosperma, it was reported that the bark extracts of A. marcgravia‐
num, A. vargasii, A. nitidum and A. sprucenaum led to mortality of 100, 94, 70 and 65% of the
crustaceans, whilst extracts from the bark of A. desmanthum, A. sandwithianum and A. shulte‐
sii led to a mortality rate of 6, 0 and 0% crustaceans, showing the potential toxicity of some
species gender [121]. In another test with brine shrimp, both the dichloromethane extract and
the methanol extract of the bark of A. excelsum showed toxicity [14].

5. Conclusion

The present literature review shows the importance of the study of Aspidosperma type
alkaloids due to the widespread usage of plants that produce these substances in folk medicine
and the great array of potential biomedical applications that these substances exhibit. Beyond
this it is clear the importance of developments in synthetic organic chemistry to obtain these
substances without the necessity of extraction from natural sources.
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