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1. Introduction

With more than 10 million new cases each year cancer is at present one of the most devastating
diseases worldwide with an immense affliction burden not only for affected individuals, their
relatives and friends but also representing heavy challenges to health care systems (Steward
& Kleihues, 2003). In the year 2000, cancer was responsible for 12% of nearly 56 million deaths
worldwide and in many countries this percentage is even higher with more than a quarter of
deaths attributable to cancer. Moreover, it is expected that cancer rates further increase by 50%
to 15 million new cases in the year 2020, mainly due to steadily ageing populations in both
developed and developing countries (Fresco et al., 2010).

In recent years, many studies have shown an association between cell cycle regulation and
cancer inasmuch as the cell cycle inhibitors are being considered as a weapon for the manage‐
ment of cancer (Hajduch et al., 1999). Ultimately a great level of interest has arisen in the
G0/G1 phase regulatory molecules such as cyclin D1, CdkIs, and p53 as potential therapeutic
targets in diseases where control of inappropriate cellular proliferation would be a therapeutic
benefit (Sherr, 1996).

Apoptosis is an essential physiological process throughout the life of multi-cellular organisms
important in the development and in the maintenance of tissue homeostasis. Apoptosis is
involved in controlling the cell number and proliferation during embryogenesis, deletion of
activated lymphocytes at the end of the immune response, elimination of self-reactive
lymphocytes, in controlled destruction of damaged, aged, infected, transformed, and other
harmful cells (Nagata, 1997; Testa, 2004). Zivny et al. have recently reviewed the apoptotic
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pathways, molecules involved in the cross-talk between individual apoptosis pathways,
apoptosis regulation as well as mechanisms of action of conventional anticancer drugs and
new promising agents, which trigger directly or indirectly apoptosis of hematologic cancer
cells (Zivny et al., 2010).

We report herein the synthesis and antiproliferative activities of purine derivatives 1-11 (Chart
2) against the cancerous MCF-7 and MDA-MB-231 human breast cancer cell lines and the
corresponding normal one (MCF-10A) to define the in vitro therapeutic index (TI) as a measure
of the selectivity. From a structural point of view, the compounds studied differ from others
previously reported (Díaz-Gavilán et al., 2008b) by the addition of an extra halogen or PhS-
groups on the purine ring. Finally the most active racemic compound (1) was resolved and the
antiproliferative activity of its enantiomers was measured (López-Cara et al., 2011).

NO2

NN

O

N

SO O

N

N

R6

R2

O

N

SO O

R

N

N

NN

R2

R6
O

H
N

N

N

NN

R2

R6

N

OH

OMeSO O

NO2

N

N

NN

Cl

Cl

O

N

SO O

NO2

N

N

N

NCl Cl

1 Isomer: p-NO2, R2 = R6 = Cl
2 Isomer: o-NO2, R2 = R6 = Cl
3 Isomer: p-NO2, R2 = H, R6 = Br
4 Isomer: o-NO2, R2 = H, R6 = Br

5 R = NO2, R2 = Cl, R6 = l
6 R = NH2, R2 = R6 = Cl
7 R = NHOH, R2 = R6 = Cl

8 R2 = R6 = SPh
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Chart 1. New cyclic (1-9) and acyclic (10, 11) purinic O,N-acetals (López-Cara et al., 2011).

Modern drug discovery relies on high speed organic synthesis. Microwave-assisted organic
synthesis is proving to be instrumental for the rapid synthesis of compounds with new and
improved biological activities (Al-Obeidi et al., 2003; Kappe & Dallinger, 2006). We previously
investigated the Vorbrüggen condensation in microwave-assisted organic synthesis (Conejo-
García et al., 2008). Microwave advantage is chiefly the quick access to the target molecules as
well as the better yield obtained in the only isomer formed making the purification processes
much easier.
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2. The chiral switch from the benzo-fused seven-membered O,N-acetal (1)

Preparation of the O,N-acetals 1-4 was achieved by the microwave-assisted Vorbrüggen one-
pot condensation of the cyclic acetals 12 and 13 (Díaz-Gavilán et al., 2004) and the commercially
available purine bases 6-chloro-, 6-bromo-and 2,6-dichloro-purines, using chlorotrimethylsi‐
lane (TMSCl), 1,1,1,3,3,3-hexamethyldisilazane (HMDS) and tin(IV) chloride as the Lewis acid
in anhydrous acetonitrile. The reaction mixture was microwave-irradiated at a temperature of
140 °C or 160 °C for 5 min (Scheme 1).
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Scheme 1. Reagents and conditions: i) purine, TMSCl, HMDS, SnCl4 (1 M solution in CH2Cl2), 140 or 160°C, microwave, 5
min; ii) NaI, TFA, butanone, -15°C, 6 hours; iii) SnCl2⋅2H2O, EtOH, reflux, 2 hours; iv) PhSH, K2CO3, DMF, rt, 4 hours.

Compounds 14 and 15 were isolated from the reactions and the acyclic O,N-acetal 10 was also
obtained in the synthesis of 1. Traces of the N-7’ regioisomer 11 were detected in the synthesis
of 2. The following modifications were carried out on 2: a) selective nucleophilic substitution
of the chorine atom at position 6 of the purine ring using NaI and trifluoroacetic acid (TFA) to
yield 5; b) reduction of the nitro group with SnCl2 to give rise to 6 and 7; and c) the treatment
with the PhSH to produce 8 and 9.

Compounds 14 and 15 were obtained along with the cyclic and acyclic O,N-acetals in the
reaction of purines with 12 and 13, respectively. Their importance lies in the information that
they provide of the mechanism of the reaction with purines (López-Cara et al., 2011).
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2.1. Resolution of (RS)-1 into its eantiomers: Biological activities

The issue of drug chirality is now a major theme in the design and development of new drugs,
underpinned by a new understanding of the role of molecular recognition in many pharma‐
cologically relevant events. In general, three methods are utilized for the production of a chiral
drug: the chiral pool, separation of racemates, and asymmetric synthesis. Although the use of
chiral drugs predates modern medicine, only since the 1980’s has there been a significant
increase in the development of chiral pharmaceutical drugs. An important commercial reason
is that as patents on racemic drugs expire, pharmaceutical companies have the opportunity to
extend patent coverage through development of the chiral switch enantiomers with desired
bioactivity (Núñez et al., 2009).

(RS)-9-[1-(p-Nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-2,6-di‐
chloro-9H-purine (1) is resolved into its two enantiomers: [(R)-1: [α]25

D=-43.6 (c=0.22, THF), and
(S)-1: [α]25

D=+41.0 (c=0.23, THF];] using a semipreparative column CHIRALPAK® IA and a
mixture of hexane/t-BuOMe/iPrOH as eluent (Marchal et al., 2010).

Table 1 shows the antiproliferative activity (IC50 values) for 1-11 and 5-fluorouracil (5-FU). All
the compounds were first assayed as antiproliferative agents against the human breast
adenocarcinoma cell line MCF-7 (p53 wild-type and ras mutated). Compounds (1, 2, 5-7, and
10, 11) were selected to be further assayed on the human breast cancer cell line MDA-MB-231,
which has high levels of mutant p53, the most commonly mutated gene in human cancer.
Additionally, we used a non-cancerous human mammary epithelial cell line (MCF-10A), in
order to study the therapeutic index against breast cancer.

Compound IC50 MCF-7 (μM) IC50 MDA-MB-231 (μM) IC50 MCF-10A(μM)

1 0.355 ± 0.011 0.166 ± 0.063 1.825 ± 0.503

2 0.383 ± 0.027 0.280 ± 0.006 1.530 ± 0.198

3 1.226 ± 0.348 N.D.b N.D.b

4 3.618 ± 0.273 N.D.b N.D.b

5 0.610 ± 0.043 0.256 ± 0.002 0.351 ± 0.020

6 0.820 ± 0.050 0.467 ± 0.017 1.520 ± 0.498

7 1.530 ± 0.040 0.487 ± 0.006 1.233 ± 0.217

8 9.710 ± 0.380 N.D.b N.D.b

9 13.85 ± 1.790 N.D.b N.D.b

10 0.355 ± 0.122 0.409 ± 0.074 1.863 ± 0.050

11 0.990 ± 0.090 0.318 ± 0.066 1.265 ± 0.163

5-FU 4.32 ± 0.020 N.D.b N.D.b

aAll experiments were conducted in duplicate and gave similar results. The data are means ± SEM of three independ‐
ent determinations. The treatment time was 48 h.

bN.D.=Not determined.

Table 1. Antiproliferative activitiesa for compounds 1-11 and 5-FU against the cancerous cell lines MCF-7 and MDA-
MB-231, and the non-cancerous cell line MCF-10A (López-Cara et al., 2011).
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It must be pointed out that from the twenty IC50 values against the two cancerous cell lines,
the majority of the IC50 values were below 1 μM. As shown in Table 1, all the compounds were
more active as anti-proliferative agents against MDA-MB-231 than against the MCF-7 human
breast cancer cell line, except for the acyclic derivative 10, whose anti-proliferative effect
remains the same in both cancer cell lines. The IC50=0.166 μM for compound 1 against the
human cancerous cell line MDA-MB-231 stands out over the rest of the values.

A comparison between the cancerous cell lines (MCF-7 and MDA-MB-231) and the corre‐
sponding normal one (MCF-10A) was established in an intent to define the in vitro therapeutic
index as a measure of the selectivity. The in vitro TI of a drug is defined as the ratio of the toxic
dose to the therapeutic dose (in vitro TI=IC50 non-tumour cell line/IC50 tumour cell line) (Núñez
et al., 2007). TI was better for compounds 1, 2 and 11 against both cancer cell lines with values
up to 11.0, 5.50 and 4.55, respectively against MDA-MB-231 cell line. 2,6-Dichloro derivatives
1 and 10 were the most selective compounds against the human breast adenocarcinoma MCF-7
cancer cell line (TIs=5.1 and 5.2, respectively) in relation to the normal one. The iodine
derivative 5 showed the most toxic effect against the non-tumour MCF-10A human mammary
epithelial cell line (Table 2).

Compound
Therapeutic index (TI)

MCF-7 MDA-MB-231

1 5.14 11.0

2 4.00 5.50

5 0.57 1.37

6 1.85 3.25

7 0.80 2.53

10 5.25 4.55

11 1.27 4.00

Table 2. Therapeutic indexes for the most representative compounds.

When the homochiral forms were analyzed we found differences in the IC50 values between
(S)-1 and (R)-1 enantiomers, although no differences in activity were found between the two
enantiomers against the MDA-MB-231 cell line. However both enantiomers present higher
anti-proliferative activity than the racemic compound showing the greatest differences against
MCF-7 cells. Enantiomer (S)-1 shows higher anti-tumour activity, up to twice that of (R)-1 in
the MCF-7 cell line (Table 3). Studies with other compounds showed similar results with more
potency in cytotoxicity in an enantiomer in comparison with the racemate. This enantioselec‐
tive cytotoxicity indicates that the enantiomers of some chiral drugs may differ both quanti‐
tatively and qualitatively in their biological activity (Liu et al., 2009; Shelley et al., 1999).
Moreover, enantiomers demonstrate minimal in vitro but a dramatic in vivo chiral dependency
in their anti-tumour activities (Lai et al., 2007; Brown et al., 2010).
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Compound MCF-7 (μM) MDA-MB-231 (μM)

(RS)-1 0.355 ± 0.011 0.166 ± 0.063

(R)-1 0.19 ± 0.001 0.11 ± 0.001

(S)-1 0.10 ± 0.001 0.11 ± 0.001

aAll experiments were conducted in duplicate and gave similar results. The data are means ± SEM of three independ‐
ent determinations.

Table 3. Anti-proliferative activities of (RS)-1 and its enantiomers against the cancerous cell lines MCF-7 and MDA-
MB-231.

Once the anti-tumour activity of compounds was determined against the different breast cell
lines, we carried out a selection between those that showed a great cytotoxic effect against
MCF-7, including (R)-1 and (S)-1, in order to determine their influence on the several cell cycle
phases. In this study we have included drugs used in clinic against breast cancer, such 5-FU
and paclitaxel, with a known mechanism of action at the level of cell cycle.

In order to analyze if the anti-tumour effects of the drugs involve changes in cell cycle
distribution, the non-tumour cell line MCF-10A and the breast cancer cell lines MCF-7 and
MDA-MB-231 were treated with the compounds during 48 hours and then analyzed by flow
cytometry. The non-accumulation in a specific phase was detected during treatment with the
drugs in most of the cell lines analyzed in comparison with control-DMSO-treated cells. Only
the (R)-1 enantiomer was able to induce in MDA-MB-231 cells an accumulation in both G0/G1

and G2/M phases with the consequently significant decreased in the S phase. Also an accu‐
mulation in the phase G2/M was detected in MCF-7-5 treated cells. Treatment with 5-FU and
paclitaxel, as has been described previously (Grem et al., 1999), induced accumulation in the
S or G2/M phases depending on the cell line analyzed. Similar data were obtained when cell
lines were treated for 24 hours with 0.5 mM mimosine to synchronize the cells in the G1/S phase
(data not shown). These results indicate that compounds inhibited all phases of the cell cycle,
probably through the inhibition of protein synthesis as has been proved with other anti-tumour
drugs (Duncan et al., 2009).

Finally, to determine if the observed growth inhibition was due to apoptosis, both flow
cytometry and confocal microscopy studies were carried out. Cells were treated with the
IC50 values of compounds and stained using Annexin V and propidium iodide (PI) at 24 and
48 hours post-drug treatment. Apoptosis assays were accomplished in the MCF-7 human
breast cancer cell line, where the demonstration of programmed cell death by known apop‐
tosis-inducing agents has proved difficult and only few cytotoxic agents act preferentially
through an apoptotic mechanism in human breast cancer cells (Saunders et al., 1997; Chad‐
derton et al., 2000). Paclitaxel (Taxol) induced programmed cell death of up to 43% of the cell
population. Simultaneous staining with annexin V-FITC and the PI non-vital dye made it
possible to distinguish between early apoptosis (stained positive for annexin V-FITC and
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negative for PI), and late apoptosis or cell death (stained positive for both annexin V-FITC and
PI). In MCF-7 control-DMSO cultures neither early nor late apoptosis were detected after 24 h
or 48 h. Similarly, compounds did not induce apoptosis after 24 h of treatment. In contrast,
MCF-7 cells treated during 48 h with the novel compounds showed a significant increase of
early apoptotic cells in relation to the control culture with percentages varying from 13.93%
in cells treated with 11 to 43.30% and 41.99% after treatment with 10 and (R)-1, respectively.
It should be noted that levels of early apoptosis induced by (R)-1 were almost double in
comparison with the corresponding racemic 1, which may explain the enantioselective anti-
proliferative activity shown by this enantiomer. These high apoptotic percentages shown by
(R)-1 are consistent with the G1 and G2/M arrest since cells exposed to specific agents typically
enter apoptosis from a given phase of the cell cycle (Saunders et al., 1997; Marchal et al.,
2004; Lundberg & Weinberg, 1999). Differences in cytotoxicity, cell cycle analysis or apoptotic
levels between (R)-1 and (S)-1 suggest distinct signalling pathways as has been shown with
other anti-tumour enantiomers (De Fátima et al., 2008). Moreover, it is possible that the amount
of cells undergoing apoptosis in response to the compounds have been higher than these
values, because only adherent cells were stained and counted.

The effects of compounds on the pattern of cell death were also confirmed by confocal
microscopy after staining with FITC-conjugated annexin V and the nuclear non-vital stain PI.
MCF-7 cells treated with compounds showed several staining patterns. Some cells displayed
an intense FITC staining located at the plasma membrane and a nucleus with intensely PI-
labelled marginated chromatin, suggesting that they were in the course of apoptosis. Other
cells showed a peculiar staining pattern, because they exhibited nuclei with the same features
observed in true apoptotic cells and, at the same time, cytoplasm homogeneously stained for
annexin V. In fact, the FITC staining was located not only at the cell surface, but also within
the cytoplasm. Therefore, these cells were considered as aponecrotic cells as has been previ‐
ously established (Formigli et al., 2002). In addition, patches of localised partially condensed
chromatin were found in other cells abutted along the inner part of the nuclear membrane. In
the control cultures, most of the cells turned out to be negative for both staining except for
some dying cells with the staining features of apoptosis (data not shown). The present data
support the effect of the compounds in some of the series of steps of the apoptotic process
where a wide range of intermediate morphological and biochemical types of cell death occurs
(Marchal et al., 2004; Gooch & Yee, 1999).

Toxicity was determined selecting (RS)-1, which was the most in vitro cytotoxic compound
against MCF-7 cells. We examined the acute-toxicity profile of (RS)-1 in BALB/c mice when it
was administered in a single i.p. bolus injection (n=25) at dose levels of 50, 75, 100, 150 and 200
mg/kg or via gavage (n=25) in a single p.o. bolus at dose levels of 0.05, 0.5, 5 and 50 mg/kg.
Compound (RS)-1 was nontoxic to BALB/c mice even at the highest i.p. bolus dose of 200 mg/
kg and p.o. bolus dose of 50 mg/kg after 2 weeks. Control mice (n=10; 5 mice for the i.p. group
and 5 mice for the p.o. group) were treated with the vehicle alone. All 50 (RS)-1-treated mice
remained healthy and gained weight throughout the 15-day observation period, with no
evidence of morbidity.
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3. Purines linked to racemic benzo-fused six-membered heterocycles

Very recently, a series of 2-and 6-substituted (RS)-9-(2,3-dihydro-1,4-benzoxathiin-3-ylmeth‐
yl)-9H-purine derivatives (16-26, Chart 2) was obtained by applying a standard Mitsunobu
protocol that led to a six-membered ring contraction from (RS)-3,4-dihydro-2H-1,5-benzoxa‐
thiepin-3-ol via an episulfonium intermediate (Díaz-Gavilán et al., 2008a). The most active
compounds were 17 and 18 with IC50=6.18 ± 1.70 and 8.97 ± 0.83 μM, against MCF-7 cells
respectively. These results suggest that the presence of bulky substituents on position 6 of the
purine ring reduces the anti-proliferative activity. An approach that has guided the origin of
novel drugs is bioisosterism, which we have carried out as suitable structural modifications
of the seven-membered building block, such as the modification O-1/S (Núñez et al., 2005;
Núñez et al., 2007).

O

S

N

N

N N

R2

R1

16 R1 = H, R2 = Cl

17 R1 = H; R2 = Br

18 R1 = R2 = Cl

19 R1 = H; R2 = SMe

20 R1 = H; R2 = OPh

21 R1 = H; R2 = SPh

22 R1 = H; R2 = NHPh

23 R1 = H; R2 = OCH2CH=CH2

24 R1 = H; R2 = OCH2Ph

25 R1 = H; R2 = SCH2Ph

26 R1 = H; R2 = OCH2C6H11

Chart 2. Series of substituted (RS)-9-(2,3-dihydro-1,4-benzoxathiin-3-ylmethyl)-9H-purine derivatives 16-26 (Díaz-Gav‐
ilán et al., 2008a).

The design, synthesis and biological evaluation of two series of substituted (RS)-9-(2,3-
dihydro-1,4-benzoxathiin-2-ylmethyl)-9H-purines 27-30 (Series A, Chart 3), and (RS)-9-(2,3-
dihydro-1,4-benzodioxin-2-ylmethyl)-9H-purines 31-33 (Series B, Chart 3) have been
described (Conejo-García et al., 2011). In series A, the methylene linker that connects the six-
membered ring and the purine moiety has been changed from position 3 to 2 in relation to
derivatives 16-26 (Chart 2). Series B is the isosteric group in which sulfur is replaced by oxygen.
We will show the activity of these compounds in the inhibition of MCF-7 breast cancer cell
growth to ascertain potential directions for synthetic lead-optimization studies.
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Chart 3. Substituted (RS)-9-(2,3-dihydro-1,4-benzoxathiin-2-ylmethyl)-9H-purines 27-30 (series A) and (RS)-9-(2,3-di‐
hydro-1,4-benzodioxin-2-ylmethyl)-9H-purines 31-34 (series B).

The starting material (RS)-2,3-dihydro-2H-1,4-benzoxathiin-2-methanol (35) was prepared as
previously reported (Díaz-Gavilán et al., 2008a) whilst (RS)-(2,3-dihydro-1,4-benzodioxin-2-
yl)methanol (36) was synthesized by the reaction of cathecol with epichlorohydrin in NaOH
and water (Díaz-Gavilán et al., 2007).

27 X = S, R1 = H, R2 = Cl

28 X = S, R1 = H; R2 = Br

29 X = S, R1 = R2 = Cl

30 X = S, R1 = H; R2 = NH2

31 X = O, R1 = H; R2 = Cl

32 X = O, R1 = H; R2 = Br

33 X = O, R1 = R2 = Cl

34 X = O, R1 = H; R2 = NH2
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N N
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R1
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X

N

N

N N

R2

R1

OH a) +

35 X = S
36 X = O

16 X = S, R1 = H, R2 = Cl

17 X = S, R1 = H; R2 = Br

18 X = S, R1 = R2 = Cl

Sheme 2. Reagents and conditions: a) Substituted purines, Ph3P, DIAD, anhydrous THF, microwave irradiation, 140 °C, 5
min, or in the case of 32, 160 °C, 15 min (Conejo-García et al., 2011).

Final compounds 27-34 were synthesized by the Mitsunobu reaction in dry THF between 35
or 36 and the corresponding purines (6-chloropurine, 6-bromopurine, 2,6-dichloropurine and
adenine) under microwave-assisted conditions (Scheme 2).
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It must be pointed out that when starting from 35 and using 6-chloro-, 6-bromo-, and 2,6-
dichloro-purines, apart from the target compounds 27, 28 and 29, their corresponding isomers
16, 17 and 18 (Díaz-Gavilán et al., 2008) previously reported were also obtained as side-
products. Therefore we have justified the formation of such "abnormal" products through a
neighbouring-group mechanism (Conejo-García et al., 2011).

The anti-carcinogenic potential of the target molecules is reported against the MCF-7 human
breast cancer cell line (Table 4). In general, (RS)-9-(2,3-dihydro-1,4-benzoxathiin-2-ylmeth‐
yl)-9H-purines 27-29 (series A) show a better activity than their isosteres (RS)-9-(2,3-dihy‐
dro-1,4-benzodioxin-2-ylmethyl)-9H-purines 31-33 (series B). The anti-cancer activity depends
on the substituent of the purine ring. The most active compound 29, bearing two chlorine atoms
at positions 2 and 6 of the purine ring, shows an IC50=2.75 ± 0.02 μM. In general, compounds
bearing halogen atoms on the purine ring (27-29 and 31-33) present better activity than
compounds substituted bearing an amino group (30 and 34).

Comp. IC50 (μM) Comp. IC50 (μM) Comp. IC50 (μM)

16 10.6 ± 0.66 28 4.87 ± 0.02 32 7.64 ± 0.03

17 6.18 ± 1.70 29 2.75 ± 0.03 33 19.58 ± 0.02

18 8.97 ± 0.83 30 "/>30 34 "/>30

27 9.24 ± 0.01 31 18.75 ± 0.02

Table 4. Anti-proliferative activities against the MCF-7 cell line for the (RS)-9-(2,3-dihydro-1,4-benzoxathiin-3-
ylmethyl)-9H-purines (16, 17 and 18), (RS)-9-(2,3-dihydro-1,4-benzoxathiin-2-ylmethyl)-9H-purines (27-30), and (RS)-9-
(2,3-dihydro-1,4-benzodioxin-2-ylmethyl)-9H-purines (31-34).

In recent years, many studies have shown an association between cell cycle regulation and
cancer inasmuch as the cell cycle inhibitors are being considered as a weapon for the manage‐
ment of cancer (Hajduch et al., 1999). To study the mechanisms of the anti-tumour activity of
the compounds (27-29 and 32), the effects on the cell cycle distribution were analysed by flow
cytometry (Table 5). DMSO-treated cell cultures contain a 62.79 ± 1.30 % of the cells in the G0/
G1-phase, and a 19.29 ± 2.98 % of the cells in the S-phase, a 13.26 ± 2.98 % of the cells in the G2/
M-phase. In contrast, MCF-7 cells treated during 48 h with 27-29 and 32 show important
differences in the cell cycle progression compared with DMSO-treated control cells. The
following can be deduced from the analysis of the cell cycle distribution: compounds 27, 28,
29 and 32 accumulate the cancerous cells in the G2/M-phase (23.35 ± 1.97, 31.37 ± 1.45, 43.89 ±
1.96 and 36.71 ± 7.40, respectively) at the expense of the S-phase cells (13.77 ± 1.13, 17.06 ± 0.75,
10.83 ± 4.70 and 10.27 ± 6.24, respectively) and of the G0/G1-phase cells in the case of compounds
28, 29 and 32 (51.56 ± 1.06, 45.28 ± 2.73 and 53.02 ± 1.16, respectively), except in the case of 27,
which induces a cell cycle arrest in the G2/M-phase cells (23.35 ± 1.97) at the expense of the S-
phase cells (13.77 ± 1.13).
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Compound Cell cyclea Apoptosisb,c

G0/G1 S G2/M

Control 62.79 ± 1.30 19.29 ± 1.68 13.26 ± 2.98 0.92 ± 1.29

27 62.87 ± 0.60 13.77 ± 1.13 23.35 ± 1.97 37.99 ± 8.56

28 51.56 ± 1.06 17.06 ± 0.75 31.37 ± 1.45 14.33 ± 1.23

29 45.28 ± 2.73 10.83 ± 4.70 43.89 ± 1.96 70.08 ± 0.33

32 53.02 ± 1.16 10.27 ± 6.24 36.71 ± 7.40 21.66 ± 0.30

aDetermined by flow cytometry (Marchal et al., 2004).

bApoptosis was determined using an Annexin V-based assay (Marchal et al., 2004). The data indicate the percentage of
cells undergoing apoptosis in each sample.

cAll experiments were conducted in duplicate and gave similar results. The data are means ± SEM of three independent
determinations.

Table 5. Cell cycle distribution and apoptosis induction in the MCF-7 human breast cancer cell line after treatment for
48 h with the three most active compounds as anti-proliferative agents.

The protein expression analysis by western blot showed that 27-29 have an important role in
the activation and phosphorylation of the initiation factor eIF2α. The initiation factor eIF2α
was phosphorylated in MCF-7 human breast cancer cell line after treatment with 27-29. It is
well established that eIF2α phosphorylation correlates with a translational block and conse‐
quently produces inhibition of protein synthesis (Holcik & Sonenberg, 2005). These results are
in concordance with the delay in the G2/M cell cycle phase produced by compounds. Further‐
more, a prolonged induction of eIF2α finally triggers the cell cycle arrest and/or the apoptosis
phenomena (Gil et al., 1999; Dagon et al., 2001).

MCF-7 cells treated for 48 h with compounds 27-29 induced apoptosis, 29 being the compound
that showed a significant increase of apoptotic cells in relation to the control culture with a
percentage of 70.08 ± 0.33 (Table 5). Apoptosis is a major form of cell death characterized by
changes in signalling pathways that lead to the recruitment and activation of caspases, a family
of cysteine-containing, aspartate-specific proteases. Caspases exist as inactive proenzymes in
cells, and are activated through their processing into two subunits in response to apoptotic
stimulation. Activated caspases cleave a variety of important cellular proteins, other caspases,
and Bcl-2 family members, leading to a commitment to cell death. Caspase-9 is involved in one
of the relatively well-characterized caspase cascades. It is triggered by cytochrome C release
from the mitochondria, which promotes the activation of caspase-9 by forming a complex with
Apaf-1 in the presence of dATP. Once activated, caspase-9 initiates a caspase cascade that
finally induces cell death (Altieri, 2003). Western blot assays showed that compounds 27-29
induced activation of caspase 9 at late times (16 h and 36 h of treatment) similarly to paclitaxel
used as control compound. These data confirm that levels of apoptosis showed by annexin V
assays that are dependent of intrinsic pathway of cell death. p53 was not activated by the
compounds which indicate that apoptosis was induced in a p53 independent manner (Conejo-
García et al., 2011).
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4. Different apoptosis modulation in breast cancer cells of enantiomers of
benzo-fused six-membered heterocycles linked to purines

The intrinsically chiral and non-racemic nature of the living world often results in its different
interactions with the enantiomers of a given substance. If this substance is a drug, it might well
be that only one of the two isomers is capable of exerting the desired therapeutic effect. The
other may be inert, harmful or responsible for possibly undesirable side effects.

García-Rubiño et al. have described the preparation of homochiral 27-29 and 31-33 (García-
Rubiño et al., 2013). Compounds (R)-27-29, (R)-16-18, (S)-27-29 and (S)-16-18 have been
subjected to anti-proliferative, apoptosis (Tables 6 and 7) and cell cycle studies in the MCF-7
and SKBR-3 human breast cancer cell lines.

Comp. IC50 (μM)a Total apoptosis Comp. IC50 (μM)a Total apoptosis

(RS)-27 9.24 ± 0.01
67.4 ± 0.90b

10.3 ± 0.14c
(RS)-16 10.6 ± 0.66

73.8 ± 0.42b
22.6 ± 0.07c

(R)-27 4.73 ± 0.02
43.0 ± 0.63b

9.70 ± 0.42c
(R)-16 15.2 ± 0.03

72.0 ± 0.21b
20.2 ± 0.21c

(S)-27 11.4 ± 0.06
89.5 ± 0.70b

19.0 ± 0.63c
(S)-16 3.30 ± 0.02

31.6 ± 1.40b
14.0 ± 0.60c

(RS)-28 4.87 ± 0.02
99.4 ± 0.07b

38.4 ± 4.73c
(RS)-17 6.18 ± 1.70

63.4 ± 1.50b

30.6 ± 6.78c

(R)-28 4.45 ± 0.07
63.8 ± 6.00b

16.0 ± 2.33c
(R)-17 6.17 ± 0.07

55.8 ± 12.0b

26.6 ± 0.20c

(S)-28 3.33 ± 0.13
50.2 ± 1.13b

25.2 ± 0.49c
(S)-17 6.32 ± 0.04

60.5 ± 9.00b

41.8 ± 0.56c

(RS)-29 2.75 ± 0.03
97.7 ± 0.56b

29.4 ± 0.30c
(RS)-18 8.97 ± 0.83

51.4 ± 0.21b

15.8 ± 0.49c

(R)-29 3.33 ± 0.04
99.1 ± 0.65b

77.0 ± 2.80c
(R)-18 10.3 ± 0.01

27.4 ± 0.07b

6.25 ± 3.30c

(S)-29 1.85 ± 0.05
89.4 ± 1.50b

33.2 ± 0.20c
(S)-18 6.93 ± 0.09

58.8 ± 2.75b

60.4 ± 2.40c

aAll experiments were conducted in duplicate and gave similar results. The data are means ± SEM of three independ‐
ent determinations. IC50 was determined after 6 days of treatment. bCells were treated with the 3 × IC50 values of com‐
pounds. cCells were treated with the IC50 values of compounds. Apoptosis was measured after 48 h of treatment.

Table 6. Anti-proliferative effect and apoptosis induction for the target compounds 27-29 and 16-18 in the MCF-7 cell
line
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Comp. IC50 (μM)a Total apoptosis Comp. IC50 (μM)a Total apoptosis

(RS)-27 8.04 ± 0.00
55.2 ± 0.70b

23.6 ± 0.10c
(RS)-16 8.17+/-0.00

40.8 ± 0.12b
13.4 ± 0.14c

(R)-27 6.56 ± 0.11
60.0 ± 1.13b

11.7 ± 0.23c
(R)-16 12.1 ± 0.04

29.2 ± 0.11b
9.35 ± 0.12c

(S)-27 9.46+/-0.00
37.2 ± 0.11b

12.4 ± 0.87c
(S)-16 4.50 ± 0.12

42.0 ± 2.31b
18.4 ± 0.44c

(RS)-28 7.25+/-0.00
95.8 ± 0.21b

36.2 ± 1.03c
(RS)-17 8.98+/-0.00

28.6 ± 0.50b

7.62 ± 0.70c

(R)-28 5.18+/-0,00
47.5 ± 2.11b

8.42 ± 0.41c
(R)-17 9.24+/-0.00

42.7 ± 0.15b

7.95 ± 0.02c

(S)-28 7.78+/-0.00
25.7 ± 0.55b

10.6 ± 0.09c
(S)-17 9.05 ± 0.14

26.6 ± 1.30b

27.2 ± 0.05c

(RS)-29 5+/-0.00
78.2 ± 1.26b

27.5 ± 0.33c
(RS)-18 5.73± 0.22

59.8 ± 0.11b

20.2 ± 0.04c

(R)-29 4.34+/-0.00
87.4 ± 0.35b

37.2 ± 0.30c
(R)-18 7.52+/-0,01

37.5 ± 0.05b

10.6 ± 0.32c

(S)-29 7.03+/-0.00
56.1 ± 0.09b

4.85 ± 0.19c
(S)-18 4.35+/-0.00

69.0 ± 0.57b

27.5 ± 0.60c

aAll experiments were conducted in duplicate and gave similar results. The data are means ± SEM of three independent
determinations. IC50 was determined after 6 days of treatment. bCells were treated with the 3 × IC50 values of compounds.
cCells were treated with the IC50 values of compounds. Apoptosis was measured after 48 h of treatment.

Table 7. Anti-proliferative effect and apoptosis induction for the target compounds 27-29 and 16-18 in the SKBR3 cell
line.

Compounds 27-29, 16 and 18 show one major bioactive enantiomer against both MCF-7 and
SKBR-3 human breast cancer cells whereas compound 17 has presented equally bioactive
enantiomers. In general, the IC50 values of racemates (RS)-27-29, 16 and 18 are similar to the
average IC50 of the corresponding enantiomers (R)-27-29,-16,-18 and (S)-27-29,-16,-18. Struc‐
ture-activity relationship between the configuration of the enantiomers and the anti-prolifer‐
ative effect indicates that in general, (S)-enantiomers are more active in the MCF-7 cell line.
Thus, (S)-28, (S)-29, (S)-16 and (S)-18 are more potent than their corresponding enantiomers
while (R)-27 is more active than (RS)-27 in the MCF-7 cell line. However, (R)-27-29 and (S)-16
and (S)-18 show more cytotoxicin the SKBR-3 cell line.

In the MCF-7 cell line racemic and homochiral compounds 27, 28, and 29, with the purine
moiety at position 2, are more active than their corresponding regioisomers 16, 17 and 18, with
the purine moiety at position 3, except for (S)-27. The most active compound (S)-29, with 2,6-
dichloropurine moiety at position 2, shows an IC50=1.85 ± 0.05 μM being 2.5-fold more potent
than the clinically used drug 5-FU (IC50=4.32 ± 0.02 μM) (García-Rubiño et al., 2013). In contrast,
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in the SKBR-3 cell line both racemic and homochiral compounds 27, 28 and 29 are more active
than their corresponding regioisomers 16, 17 and 18, except for (S)-16 and (S)-18. The most
active compound in this case is (R)-29 with 2,6-dichloropurine moiety at position 2, shows an
IC50=4.34 ± 0.00 μM.

The cell cycle does not show significant differences among the compounds (data not shown).
Since it is well established that the eukaryotic initiation factor 2 alpha (eIF2α) phosphorylation
correlates with a translational block and consequently leads to the inhibition of protein
synthesis and induction of apoptosis (García-Rubiño et al., 2013), we have analyzed the protein
activation of this factor by western blot. eIF2α is significantly phosphorylated in MCF-7 cancer
cells after treatment with (S)-29, (S)-17 and (R)-16 at 16 h and 36 h.

Interestingly, (S)-29 induces high eIF2α phosphorylation in the MCF-7 cell line in comparison
with its racemate and its enantiomer, where no activation is shown. These results support the
highest anti-proliferative activity displayed by (S)-29 and suggest that this activity is in part
due to the suppression of protein synthesis provoked by eIF2α phosphorylation (Baltzis et al.,
2007). Furthermore, a prolonged induction of eIF2α finally triggers the apoptosis phenomena
(Gil et al., 1999; 20, Dagon et al., 2001).

The following can be stated from Tables 6 and 7:

a. In the MCF-7 cell line, compounds are more potent as programmed cell-death inducers
than in SKBR-3, and more specifically, (R)-29 and (S)-18 are the more effective apoptotic
inducers (77% and 60% at their IC50, respectively) in the MCF-7 cell line.

b. In the SKBR-3 cell line the best apoptotic values are observed at their 3 × IC50 concentra‐
tions.

c. Compounds (RS)-28, (RS)-29 and (R)-29 present the best apoptotic percentages in both
cancerous cell lines at their 3 × IC50 concentrations (99%, 98%, and 99%, respectively in
MCF-7, and 96%, 78%, and 87%, respectively, in SKBR-3).

Previous works scarcely reports a different pattern in apoptosis levels between enantiomers.
An exception is D-(_)-lentiginosine, the non-natural enantiomer of the iminosugar indolizidine
alkaloid that acts as an apoptosis inducer on different tumour cells in contrast to its natural
enantiomer (Macchi et al., 2010). All homochiral compounds included in this study show a
different apoptosis effect between the two enantiomers. Apoptotic defects in cancer cells are
the primary obstacle that limits the therapeutic efficacy of anticancer agents, and hence the
development of novel agents targeting novel canonical and non-canonical programmed cell
death pathways has become an imperative mission for clinical research (Cummings et al.,
2004). Compounds 27-29, and 16-18 induce strong levels of cell death measured by citotoxicity
analysis and by phosphatidylserine externalization (Annexin V binding) (Tables 6 and 7) even
in the MCF-7 breast cancer cells that have shown deficiency in the caspase-activation mecha‐
nisms (Kagawa et al., 2001).

Whereas compound (S)-27 activates the canonical intrinsic caspase-8/caspase-3 apoptotic
pathway on the MCF-7 cell line, compound (RS)-29 induces caspase-2 activation. However, a
strong apoptosis induction is also detected in the rest of the compounds analysed. The caspase-
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independent apoptosis in cells exposed to different drugs with diverse cellular effects has been
previously described (Macchi et al., 2010). While caspase-2 activation could induce cell death
through cytochrome c/mitochondria damage (Robertson et al., 2002), non-caspase-mediated
increase in phosphatidylserine externalization can occur in response to high intracellular
Ca2+levels that alters scramblase and translocase (Vanags et al., 1996; 26, Kagan et al., 2000).
Additionally, non-caspase proteases may activate and cleave the cytoskeleton proteins
attached to phospholipids, including focal adhesion kinase and the actin-capping protein α-
adducin (van de Water, 1999). To further confirm the involvement of caspases, including
caspase-3, in the apoptosis induced by the most apoptotic compounds in the caspase-3 wild
type SKBR-3 cell line, cells were pre-treated with the pan-caspase inhibitor z-VAD-fmk for 2
h, followed by the (RS)-28 and (RS)-29 treatment, and cell viability metabolic-analysis was
carried out. Our results show that (RS)-28 and (RS)-29 were sensible to the effect of z-VAD-
fmk caspase inhibitor, which could rescue SKBR-3 cells from the cytotoxicity of compounds.
These results demonstrate the involvement of caspase activation during cell death induced by
the compounds in the SKBR-3 cells as previously described for numerous anti-tumour
apoptotic drugs (Yang et al., 2012; Kumar et al., 2013; Lamberto et al., 2013). These and other
anti-tumour effects such as autophagy or senescence events could be involved in the caspase-
dependent and caspase-independent cell death induced by the compounds included in this
study. This fact opens an important line of research that is yet to be explored.

N

O

S
O

O

CH3

O

N

·HCl

37

Indian researchers have very recently investigated the effect of α tyrosine-based benzoxaze‐
pine derivative in MCF-7 and MDA-MB-231 cells (Dwivedi et al., 2013). The anti-proliferative
effect of 37 on MCF-7 cells was associated with G1 cell-cycle arrest. This G1 growth arrest was
followed by apoptosis as 37-dose dependently increased phosphatidylserine exposure. PARP
cleavage and DNA fragmentation that are hallmarks of apoptotic cell death. Compound 37
activated components of both intrinsic and extrinsic pathways of apoptosis characterized by
activation of caspase-8 and-9, mitochondrial membrane depolarization and increase in Bax/
Bcl2 ratio. However, use of selective caspase inhibitors revealed that the caspase-8-dependent
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pathway is the major contributor to 37-induced apopotosis. Compound 37 also significantly
reduced the growth of MCF-7 xenograft tumours in athymic nude mice (Dwivedi et al., 2013).

5. Conclusion

Cancer continues to be a major health problem in developing as well as undeveloped countries.
Although major advances have been made in the chemotherapeutic management of some
patients, the continued commitment to the laborious task of discovering new anticancer agents
remains critically important, in the course of identifying various chemical substances, which
may serve as leads for designing novel anti-tumour agents.

The ever-increasing use of asymmetric syntheses over many years has been manifested by the
biological importance of enantiomerically pure single compound entity factors and further has
been strongly guided by drug regulatory bodies because of strict rules and regulations about
single isomers. A contributing factor to this effect has been, and continues to be the develop‐
ment of new, novel and efficient methods for accessing single isomers. In general, the binomial
enantiomers →  different biological activities and in particular, enantiomers →  different anti-
proliferative activities are rarely known, in spite of their great importance. It seems that in the
future this topic will receive increasing attention and will help better understanding of the
molecular recognition between drugs and biological targets.
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