
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 14

Implications of the “Subquantum Level” in
Carcinogenesis and Tumor Progression via Scale
Relativity Theory

Daniel Timofte, Lucian Eva, Decebal Vasincu,
Călin Gh. Buzea, Maricel Agop and Radu Florin Popa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59233

1. Introduction

The last 25 years witnessed tremendous achievements in cancer diagnose and treatment.
Technology currently permits small size tumors (like breast cancers) diagnosis and treatment,
ductal cancer in situ currently including 25...30% of all freshly diagnosed breast cancers at the
majority of medical centers [1]. Thus, early detection now allows the understanding of growth
patterns. Surgeons are in the front line of technological and basic scientific medical advances.
Current ideas, such as the physiological characteristics of shock, organ transplantation,
antisepsis, wound healing, or sequence medical care, are cast by surgical investigators.

The field of mathematics suffered an identical evolution. Revolutionary mathematical
branches such as topology, fractals, chaos theory, and development of nonlinear descriptive
strategies have provided mathematicians new inventive tools to create growth models and to
behaviors at the small environmental level [2, 3]. Growth, angiogenesis [4], cell-to-cell adhesion
[5], hydrogen ion concentration regulation and drug delivery [6] can now systematically be
described using specific formulas. From a clinical viewpoint several of these formulas could
seem simple, however they put together a very important foundation for descriptive insight.

What is currently lacking is a connection between these two naturally and mutual analysis
endeavors. For oncology surgeons, the ability to mathematically analyze and predict patterns
of growth provides precise techniques that are beneficent for both current and future therapies.
For mathematicians, defining the clinical factors essential for growth development and
metastasis can provide realistic insight into these biological processes, successively allowing
the event of correct, clinically relevant mathematical formulas. In almost every dedicated
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medical institutions, the teams that have comprehensive cancer are being led by surgeons.
Mathematics that can be applied in the oncology field provide a chance to expand the leader‐
ship role of the surgeons and to raise awareness about the significance of understanding
growth behavior and, also improve cancer treatments.

The present study aims at defining a new concept of carcinogenesis and tumor progression.
Consequently, we use the natural ‘environment’ where malignant tumors grow, space(-time)
with non-integer fractal dimension, questing for further applications of the newly discovered
and intriguing phenomenon of tumor self-seeding by circulating cancer cells (CTC). More
precisely, we assume that the metastatic tumor cells move (through the systemic circulation,
yet not necessarily only there) as a coherent wave, or even more precisely, a chemically
pumped travelling laser wave with oxygen. The extracellular matrix (ECM) and in particular,
the tumor microenvironment (TME) are assumed as non-differential media endowed with
holographic properties and may be good candidates for “recording” materials. As a result, the
tumor self-seeding by CTC may be proved mathematically, the fact that the CTC returning to
the initial tumor site and fueling the primary tumor growth or even grow a new tumor is a
particular case of complete holography (i.e. a hologram which does not represent only the
virtual object’s image, but it becomes the very object - which we believe, is a characteristic of
the living organisms). We believe our findings may provide new opportunities to set up new
targeted therapies that may slow down or even prevent tumor progression.

According to the Pribram-Bohm’s holographic theory (http://en.wikipedia.org/wiki/Holo‐
nomic_brain_theory) of the brain, the intercellular and intracellular communication implies
the existence of a fractal medium equivalent to the vacuum between the elementary particles.
Since vacuum dynamics is studied using quantum mechanics, it is only natural that the status
of the fractal medium implies the use of a quantum type mathematical formalism (i.e. Scale
Relativity theory either in its Schrödinger type representation or the fractal hydrodynamic one)
applicable to different resolution scales (mesoscopic for intercellular communications or
nanoscopic for intracellular ones). In Nottale’s interpretation, each resolution scale is charac‐
terized by a Planck type constant h̄

( )2 1FDdth
-

æ ö
= ç ÷tè ø
h

where ħ is the standard Planck’s constant, dt is time’s resolution scale, τ the time’s reference
scale and DF is the fractal dimension of the motion curve.

2. The biology of cancer

2.1. Cancer, what should be noticed

Cancer or malignant neoplasm is a class of diseases that rises from the anomalous behavior of
normal tissue. Cancer cells are aberrant cells which have acquired malignant traits such as
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uncontrolled growth (cells continuously proliferate), tissue invasion (they intrude into normal
tissue and destroy it) and metastasis (they spread outside the location of the body where they
were originally generated). Additionally, the term tumor or neoplasm is used to indicate an
abnormal swelling of tissue caused by an excessive cell proliferation.

A tumor can be of benign or malignant nature, while benign tumors are self-limiting, do not
express patterns of invasion, and they do not metastasize, malignant tumors do possess all
these characteristics. The term malignant tumor is also used as synonym for cancer, although
some cancers, such as leukemia, do not form tumors.

Cancer cells develop these malignant features because of genetic mutations, accumulated
during the organism lifetime. Cancer is in fact a multi-step chance process that transforms a
normal cell into a tumor cell, after having collected a set of 5...8 crucial genetic alterations [7-9]
as schematically shown in Fig. 1.

A newborn malignant cell, expressing aberrant traits, can lead to the formation of cancer and,
in most of the cases, of a tumor. Without treatment, the destructive behavior of such colony of
cells is usually lethal for the patient. The probabilistic nature of this disease and the increase
in life expectancy had made cancer the second cause of death in the industrialized countries
(see any cancer statistics). Nevertheless, cancer it is not a modern disease and it was known
since the antiquity: Egyptians of the New Kingdom [10], Greeks [11] and Romans [12]
accurately described medical treatments for tumor removal. It is only within the last two
centuries however, that due to the higher standards of living, cancer has become one of the
main life-threatening diseases.

 
 

Figure 1. Acquisition of the tumorigenic phenotype by a population of normal cells through multiple genetic mutations.

2.2. Distinguishing traits of cancer

The tumorigenic properties, generically discussed in the previous section, have shown to be
common to almost all cancers. They have been studied since the dawn of cancer research and
they can be enumerated and defined with a relatively high accuracy. These hallmarks are a set
of characteristic traits typical of cancer cells that are essential for the formation of a macroscopic
malignant neoplasm [13]:
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Self-Sufficiency in Growth Signals. All cells communicate through signals. A biological signal is,
in most of the cases, a protein able to deliver a particular piece of information by binding
uniquely to specific receptors on the cell surface. Normal cells need mitogenic growth signals
to proliferate (signals that allow and stimulate cell proliferation). Those signals are regulated
by the homeostasis of the tissue and they guarantee a correct balance between cell proliferation
and death, according to the needs of the organism. In order to lead to cancer, tumor cells may
develop the ability of self-generating such signals in one way or another. One possible way is
a genetic aberration in one of the fundamental genes responsible for the building of the
signaling pathway, for instance the RAS oncogene [9,14]. As consequence, the associated
component of the signaling system would become constitutively active and hence, independ‐
ent by the signal molecule. A second option is the self-production of growth factors that would
stimulate growth by paracrine signaling, where a cells stimulates the neighbors and vice-versa
or even autocrine signaling, when the cell stimulates its own receptors as shown in Fig. 2.

 

Figure 2. Example of self-signaling (autocrine): the cell produces its own growth factors which stimulate the growth
receptors on the surface (Dr. W.H. Moolenaar, Netherlands Cancer Institute).

Insensitivity to Antigrowth Signals. As counterparts of growth factors, homeostasis employs
growth inhibiting signals as well. These signals act similarly to their antagonists but they
promote cell cycle arrest or cell quiescence, rather than proliferation. An example of a crucial
gene involved in anti-growth pathways is the retinoblastoma protein (pRb). The retinoblas‐
toma protein is capable of altering the function of the E2F transcription factors and control the
expression of the bank of genes essential for the transition from GAP-1 phase to DNA Synthesis
phase of the cell cycle [15]. The disruption of such pathway results in the insensitivity of the
cell to anti-growth signals.

Evading Apoptosis. Apoptosis is a mechanism of controlled cell death. Through special signals,
a cell has the capacity of terminating itself in a highly regulated way. A normal cell dying by
apoptosis undergoes a sequence of events such as condensation, fragmentation and phagocy‐
tosis. This avoids the cell to free potentially dangerous enzymes and proteins stored inside its
cytoplasm and its nucleus. During apoptosis the cell membrane is kept intact while, in 30...120
minutes the cell is fragmented in small parts or apoptotic bodies, still protected by pieces of
membrane. Those cell leftovers are successively phagocytated by macrophages within the next
24 hours [16]. Apoptosis is a common mechanism of cell death and takes part in the homeostasis
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of a healthy organism as well as in its embryogenesis and in its morphogenesis. When any cell
violates such homeostasis, an apoptotic signal is delivered to it. Therefore, in order for cancer
cells to develop into a malignant lesion, it is necessary to deactivate apoptotic signal pathways.
A mutation in the p53 tumor suppressor gene (TSG) is one of the most common ways to acquire
resistance to apoptosis because p53 regulates the whole signaling process of programmed cell
death. Indeed, more than 50% of human cancers carry a mutation in the p53 tumor suppressor
gene [17].

Limitless Replicative Potential. Even with all the anti-growth and anti-apoptosis pathways
triggered off, a cell could not generate a vast population able to form a tumor. That is because
of the intrinsic proliferation limit of all mammalian cells. All chromosomes have an ending
cap called telomere, a T-loop non-coding DNA sequence (2...50 Kb) that prevents the end of
the chromosomes from attaching to other genetic material. At every mitosis the cell loses a
small part of its telomeres because of the impossibility for DNA duplication enzymes, for
instance DNA-polymerase, to continue working until the very end of the genome (Fig. 3). This
limitation is due to the fact that enzymes like DNA-polymerase always move in the 5’...3’
direction of the DNA sequence, so when the side of the replication is opposite, a small part of
the genome is lost. The shortening of the telomeres induces cell senescence, a state of cellular
elderly where division no longer occurs. This avoids genetically unstable cells to replicate.
Senescence starts after the so called Hayflick limit [18] of about 50 cell divisions. In cancer cells
instead, the disabling of the pRb and the p53 pathways allows unlimited replication, until the
point when the telomeres are completely absent. Once having entirely consumed the telo‐
meres, the cell population is believed to undergo a phase of massive genomic instability,
causing extended cell death. The high selective pressure induced by this crisis may permit
specific resistant clones to emerge (Fig. 4). Those survivor cells would be immortalized
(unlimited proliferative potential) by finding ways to maintain their telomeres long enough.
A possible way is the over expression of the telomerase gene [19] which appears to take place
in 85...90 % of cancers. Telomerase is a telomere-rebuilding enzyme normally expressed in
germ line cells and stem cells, in which immortalization is an essential feature. Once immor‐
talized, malignant cells have made a further step towards the formation of cancer.

Figure 3. Illustration of the end replication problem: at both sides of the copying, the leading DNA strand has lost part
of the telomeric sequence, which stops at the 5’ end of the parental strand, whereas the lagging strand results complet‐
ed until the very end (Dr. R. Beijersbergen, Netherlands Cancer Institute).
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Sustained Angiogenesis. In order for a cell to survive normally, it must rely within 100 μm from
a capillary blood vessel [13]. For this reason, the initial exponential growth of a newborn
malignant neoplasm causes a shortage of nutrients among cancer cells. Local pre-existent
vascularisation is never enough to sustain growth for more than 108 cells. The colony must
therefore develop angiogenesis-triggering capabilities [20, 21]. Angiogenesis is the process of
formation of new blood vessels in response to a stimulus secreted by poor vascularised tissues.
Angiogenesis is important for the organism morphogenesis and even later maintains the
correct supply of nutrients for all tissues. Fast growing cells, such as cancer cells, start soon to
starve, and have the need of additional blood supply in order to keep expanding. A possible
solution is the production by cancer cells of vascular endothelial growth factors (VEGF) and
fibroblast growth factors (FGF1/2) which bind to the transmembrane receptors of endothelial
cells (cells covering the interior surface of blood vessels) stimulating their growth towards the
signal concentration gradient [22]. Angiogenesis is the principal mechanism that transforms a
microscopic malignancy into a macroscopic tumor and, also in the later stages, it is necessary
for a lesion to grow and sustain itself. This implies that angiogenesis is an important target for
anti-cancer drugs like thrombospondin-1 [23] and bevacizumab [24], also known as avastin.

 

Figure 4. The progressive shortening of the telomeres leads to a massive cell death due to the induced genomic insta‐
bility (death by genomic catastrophe while duplicating). From such process of intense genetic mutation and selection
an immortalized clone could emerge (Dr. R. Beijersbergen, Netherlands Cancer Institute).

Tissue Invasion and Metastasis. The most dangerous and destructive features of cancer are tissue
invasion and the consequent metastasis. Its ability of forming distant colonies or metastases
all over the body represents the cause of 90% of all cancer related deaths [25]. Normal cells are
usually unable to travel outside their own tissue due to their necessity to be anchored and
reside among similar cells. An eventual detachment from the extracellular matrix or ECM (a
complex structure of proteins and specific cells forming the tissue scaffold and microenviron‐
ment – see Sec. 6.1) would occur in a form of apoptosis called anoikis [26]. Contrary to their
normal counterparts, cancer cells are able to survive the loss of anchorage, to travel through
the vascular system and form distant tumors elsewhere (Fig. 5). The traits expressed by
invasive and metastatic cancer cells are principally loss of cell-to-cell adhesion, anchorage-
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independence, chemotaxis (migration towards a diffusible substance gradient), haptotaxis
(migration towards a non-diffusible substance gradient) and production of matrix degrading
enzymes (e.g. Matrix metalloproteinase) which cleave the extracellular matrix [27-29] making
space for invasion and freeing growth and angiogenic factors trapped inside.

Figure 5. Tissue invasion is a multi-step process that requires the cancer cell to have developed many malignant traits,
necessary for the formation of new distant colonies called metastases [27].

3. Mathematics of cancer

In comparison to biology, cell biology, and drug delivery analysis, mathematics has, to date,
made comparatively very few contributions to this field of research. A statistical analysis of
the PubMed platform list information (http://www.ncbi.nlm. nih.gov/PubMed/) showed that
out of 1.5 million works that deal with cancer analysis, only 5% are associated with mathe‐
matical modeling. However, it is clear that mathematics could contribute significantly to areas
of experimental cancer analysis since there is currently a wealth of experimental information
which needs a systematic analysis.

Even in these conditions, in the last decade, mathematical modeling and machine simulation
of cancer has multiplied dramatically (e.g., reviews like [30-35]. A broad range of strategies
were developed, specializing in one or additional aspects of cancer. For example, genetic
instability, natural selection or interactions of individual cell with each other or the environ‐
ment have been modeled using methods of cellular automata and agent-based modeling.
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These discrete methods have the disadvantage of being difficult to use when we deal with
tumors of significant size. (see [36-38] for samples of cellular automata modeling and [39,40]
for samples of agent-based modeling). In systems at larger scales, the neoplasic cell population
is of the order of 106 or more, making these discrete methods unfitted. For these situations, the
continuum methods provide the best approach. Early work, as well as [41-43], used ODE to
model cancer as a uniform population and partial differential equation models restricted to
spherical geometries. To assess the stability of spherical tumors to asymmetric perturbations
and to characterize the degree of aggression [31, 44-48] use linear and weakly nonlinear
analysis. The interactions of a growth with the microenvironment, like stress-induced limita‐
tions to growth, are studied in [30,49-54]. For the sake of simplicity, most of the modeling has
considered single-phase (e.g., single cell species) tumors. To provide an elaborate account of
growth non-uniformity, [50, 55, 56] have been developed a mixture of models.

The results of morphology instabilities on each avascular and vascular solid neoplasm growth
have been recently studied using non-linear modeling. With the help of boundary integral
methods, Cristini et al [47] performed the first absolutely nonlinear simulations of a time model
of neoplasm growth within the avascular and vascular growth stages with arbitrary bounda‐
ries. The model from [47] has been extended in 3D by Li et al. [48] via adaptive boundary
integral technique. The inclusion of angiogenesis and extratumoral environment has been
performed by Zheng et al., [57]. By developing and coupling a level set implementation with
a hybrid continuum-discrete growing model originally developed by Anderson & Chaplain
[58]they found that low-nutrient (e.g., hypoxic) conditions could lead to morphological
instability. Their work served as a building block for recent studies of the impact of therapy
on neoplasm growth [59] and for studies of morphological instability and invasion [60-62].
Macklin & Lowengrub used a ghost cell/level set technique for evolving interfaces to check
neoplasm growth in heterogeneous tissue and additional studied neoplasm growth as a
function of the microenvironment [63]. Wise et al. [64] and Frieboes et al. [65] have developed
a diffuse interface implementation of solid neoplasm growth for the study of the evolution of
multiple neoplasm cell species, that was used in [65] to model the 3-D vascularised growth of
malignant gliomas (brain tumors).

In biological systems, the fractal structure of area in which cells act and differentiate is
important for their organization and emergence of the hierarchical network of multiple cross-
interacting cells, sensitive to external and internal conditions. The biological phenomena occur
within the area whose dimensions aren't represented solely by integers (1, 2, 3, etc.) of
Euclidean space. Particularly, malignant tumors [53-56] grow in a space with non-integer
dimension, i.e. fractal dimension. The analytical formulae describing the time-dependence of
the temporal fractal dimension and scaling reproduce the expansion of the Flexner–Jobling
rat’s neoplasm in particular and growth of different rat’s tumors generally. The results of some
calculations indicated that the formula derived for the time-dependent temporal fractal
dimension and the scaling factor describe the experimental data obtained by Schrek for the
Brown-Pearce rabbit’s neoplasm growth within the fractal time-space [3, 66-68].

In our assertion, fractal space(-time) consists in developing the consequences of the withdrawal
of space(-time) differentiability’s hypothesis and acquiring a fractal geometry, namely space(-
time) becomes explicitly dependent on the observation scale [69].
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On the other hand, of great use in our further reasonings will be the fact that in many biological
systems it is possible to empirically demonstrate the presence of attractors that operate starting
from different initial conditions (Ivancevic). Some of these attractors are points, some are
closed curves, while the others have non–integer, fractal dimension and are termed “strange
attractors” [70]. It has been proposed that a prerequisite for proper simulating tumor growth
by computer is to establish whether typical tumor growth patterns are fractal. The fractal
dimension of tumor outlines was empirically determined using the box-counting method [71].
In particular, fractal analysis of a breast carcinoma was performed using a morphometric
method, which is the box-counting method applied to the mammogram as well as to the
histological section of a breast carcinoma [72].

If tumor growth is chaotic, this could explain the unreliability of treatment and prediction of
tumor evolution. More importantly, if chaos is established, this could be used to adjust
strategies for fighting cancer. Treatment could include some form of chaos control and/or anti-
control.

4. A few words about holography

“Although it generates a three-dimensional image, a hologram is most often recorded on a
photographic plate or a flat piece of film. Moreover, producing a hologram does not imply, in
the conventional sense, the recording of an image. To better understand this apparent paradox
and, as a result, the way holography works, we have to begin with the main principles.

In conventional imaging techniques, e.g. photography, what is being recorded is merely the
intensity distribution in the original scene. Thus, all information about the optical paths to
different parts of the scene is lost.

The unique property of holography is the method of recording both the phase and the
amplitude of the light waves from an object. Since all recording materials respond only to the
intensity in the image, it is mandatory to convert the phase information into intensity varia‐
tions. Holography accomplishes this by using coherent illumination and introducing, as shown
in Fig. 6, a reference beam derived from the same source. The photographic film records the
interference pattern produced by this beam and the light waves scattered by the object in cause.

Since the intensity at any given point in this pattern of interference also depends on the phase
of the object wave, the resulting recording (the hologram) contains information on the phase
as well as the amplitude of the object wave. If the hologram is illuminated once again with the
original reference wave, as shown in Fig. 7, it reconstructs the original object wave.

An observer looking through the hologram sees a perfect three-dimensional image. This image
exhibits all the effects of perspective, and depth of focus when photographed, that character‐
ized the original object.
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4.1. Early development

Gabor’s historical experiment of holographic imaging [73] consisted in a transparency formed
of opaque lines on a clear background which was illuminated with a collimated beam of
monochromatic light, the interference pattern produced by the directly transmitted beam (the
reference wave) and the light scattered by the lines on the transparency being recorded on a
photographic plate. When the hologram (i.e. a positive transparency made from this photo‐
graphic negative) was illuminated with the original collimated beam, it produced two
diffracted waves, one which reconstructed an image of the object in its original location, and
the other, with identical amplitude but an opposite phase, which formed a second, conjugate
image.

Figure 7. Image reconstruction: light diffracted by the hologram reconstructs the object wave.

An important flaw of this method of image reconstruction was the poor quality of the resulting
image, due to the fact that it was degraded by the conjugate image that was superimposing
on it as well as by the scattered light from the directly transmitted beam.

Leith and Upatnieks [74-76] found a solution to the above-mentioned problem developing a
off-axis reference beam technique presented schematically in Figs. 6 and 7. They used a

 

Figure 6. Hologram recording: the interference pattern produced by the reference wave and the object wave is recorded.
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separate reference wave incident on the photographic plate at an appreciable angle to the object
wave. As a result, when the hologram was illuminated with the original reference beam, the
two images were separated by large enough angles from the directly transmitted beam, and
from each other, thus ensuring that the images not overlap.

The improvement of the off-axis technique, and, in equal measure, the invention of the laser,
which provided a powerful source of coherent light, resulted in a surge of activity in holog‐
raphy that led to several crucial applications.

4.2. The in-line hologram

Let us now look upon the optical system presented in Fig. 8 in which the object (a transparency
containing small opaque details on a clear background) is illuminated by a collimated beam
of monochromatic light along an axis normal to the photographic plate.

 
 

Figure 8. Optical system used to record an in-line hologram.

We can observe two components of the incident light. The first is the directly transmitted wave,
which is a plane wave whose amplitude and phase do not vary across the photographic plate.
Thus, its complex amplitude can be noted as a real constant r. The second one is a weak
scattered wave whose complex amplitude at any point (x, y) on the photographic plate can be
noted as o(x, y), where |o(x, y)| << r.

From these it can be shown that the resulting complex amplitude is the sum of these two
complex amplitudes, and because of that the intensity at this point is

2 22( , ) ( , ) ( , ) ( , ) ( , )I x y r o x y r o x y ro x y ro x y*= + = + + + (1)

where o*(x, y) is the complex conjugate of o(x, y).
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A ‘positive’ transparency (the hologram) is then made by contact printing from this recording.
Therefore it can be assumed that this transparency is processed so that its amplitude trans‐
mittance (the ratio of the transmitted amplitude to that incident on it) can be written as

0t t TI= + b (2)

where t0 is a constant background transmittance, T is the exposure time and β is a parameter
determined by the photographic material used and the processing conditions, the amplitude
transmittance of the hologram is

22
0( , ) [ ( , ) ( , ) ( , )]t x y t T r o x y ro x y ro x y*= + b + + + (3)

Then, the hologram is illuminated, as shown in Fig. 9, with the same collimated beam of
monochromatic light employed to produce the original recording. Since the complex ampli‐
tude at any point in this beam is, aside from a constant factor, the same as that in the original
reference beam, the complex amplitude transmitted by the hologram can be written as

22 2 2
0( , ) ( , ) ( ) ( , ) ( , ) ( , )u x y rt x y r t Tr Tr o x y Tr o x y Tr o x y*= = + b + b + b + b (4)

The right-hand side of (4) contains four terms. The first, r(t0+βTr2), which represents a uniformly
attenuated plane wave, corresponds to the directly transmitted beam.

The second, βTr |o(x, y)|2, can be neglected, because is extremely small, compared to the other
terms.

The third term, βTr2o(x, y), is, except for a constant factor, identical with the complex amplitude
of the scattered wave from the object and has the property of reconstructing an image of the
object in its original position. Due to the fact that this image forms behind the hologram, and
the reconstructed wave appears to diverge from it, it is a virtual image.

The fourth term, βTr2o*(x, y), represents a wave similar to the object wave, but having an
opposite curvature. This wave converges to form a real image (the conjugate image) at the
same distance in front of the hologram.

With an in-line hologram, an observer viewing one image sees it superimposed on the out-of-
focus twin image as well as a strong coherent background. Another problem is that the object
must have a high average transmittance in order for the second term on the right-hand side of
(4) to be negligible. Thus, it is possible to form images of fine opaque lines on a transparent
background, but not vice versa. Finally, the hologram must be a ‘positive’ transparency. If the
initial recording is used directly, β in (2) is negative, and the reconstructed image can be
considered a photographic negative of the object.
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Figure 9. Optical system used to reconstruct the image with an in-line hologram, showing the formation of the twin
images.

4.3. Off-axis holograms

In order to understand the formation of an image by an off-axis hologram, we must consider
the recording arrangement shown in Fig. 10, in which (for simplicity) the reference beam is a
collimated beam of uniform intensity, derived from the same source as the one used to
illuminate the object.

 
 

Figure 10. The off-axis hologram: `recording.

The complex amplitude at any point (x, y) on the photographic plate due to the reference beam
can then be written as

( , ) exp( 2 )r x y r i x= px (5)

where ξ=(sinθ)/λ. Since only the phase of the reference beam varies across the photographic
plat and because of the object beam, for which both the amplitude and phase vary, we can
write the following:
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( , ) ( , )exp ( , )o x y o x y i x yé ù= - fë û (6)

The resultant intensity is, therefore,

2 2 2

22

( , ) ( , ) ( , ) ( , ) ( , )
( , ) exp ( , ) exp( 2 ) ( , ) exp ( , ) exp( 2 )

( , ) 2 ( , ) cos[2 ( , )]

I x y r x y o x y r x y o x y
r o x y i x y i x r o x y i x y i x

r o x y r o x y x x y

= + = + +

é ù é ù+ - f - px + f px =ë û ë û

= + + px + f

(7)

The amplitude and phase of the object wave are encoded as amplitude and phase modulation,
respectively, of a set of interference fringes equivalent to a carrier with a spatial frequency of
ξ.

If, as in (2), we assume that the amplitude transmittance of the processed photographic plate
is a linear function of the intensity, the resultant amplitude transmittance of the hologram is

2
0( , ) ( , ) ( , ) exp[ ( , )]exp[ 2 ]

( , ) exp[ ( , )]exp[ 2 ]
t x y t T o x y Tr o x y i x y i x

Tr o x y i x y i x

¢= + b + b - f - px +

+b f px
(8)

where t0
' = t0 +βTr2 is a constant background transmittance.

When the hologram is illuminated for a second time with the original reference beam, as shown
in Fig. 11, the complex amplitude of the transmitted wave can be written as

2
0

2 2

( , ) ( , ) ( , ) exp( 2 ) ( , ) exp( 2 )

( , ) ( , )exp( 4 )

u x y r x y t x y t r i x Tr o x y i x

Tr o x y Tr o x y i x*

¢= = px + b px +

+b + b px
(9)

The first term on the right-hand side of (9) corresponds to the directly transmitted beam, while
the second term generates a halo surrounding it, with approximately twice the angular spread
of the object. The third term is identical to the original object wave, except for a constant factor
βTr2, and produces a virtual image of the object in its original position. The fourth term
corresponds to the conjugate image which, in this case, is a real image. If the offset angle of
the reference beam is taken large enough, the virtual image can be separated from the directly
transmitted beam and the conjugate image.

In this setup, corresponding points on the real and virtual images are located at equal distances
from the hologram, but on opposite sides of it. Because the depth of the real image is inverted,
it is called a pseudoscopic image, as opposed to the normal, or orthoscopic, virtual image. It
should also be mentioned that the phase of the reconstructed image is influenced only by the
sign of β, always resulting in a “positive” image, even in the case of the hologram recording
being a photographic negative.
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Figure 11. The off-axis hologram: image reconstruction.

4.4. Recording materials

Several recording materials have been used for holography [77]. Table 1 lists the principal
characteristics of those that have been found most useful.

Material
Exposure
J/m2

Resolution
mm-1

Processing Type
ηmax
(diffraction
efficiency)

Photographic ≈1.5 ≈ 5000 Normal Amplitude 0.06

Bleach Phase 0.60

DCG
(dichromated gelatin)

102 10000 Wet Phase 0.90

Photoresists 102 3000 Wet Phase 0.30

Photopolymers 10-104 5000 Dry Phase 0.90

PTP
(photothermoplastics)

10-1 500-1200 Dry Phase 0.30

BSO
( Bi12SiO20 photorefractive
crystals)

10 10000 None Phase 0.20

Table 1. Recording materials for holography

High-resolution photographic plates and films were the first materials used to record holo‐
grams. These are used widely even now, due to the fact that they exhibit relatively high
sensitivity when compared to other hologram recording materials [78]. Moreover, they can be
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dye sensitized so that their spectral sensitivity matches the most commonly used laser
wavelengths.

Combining the high sensitivity of photographic materials with the high diffraction efficiency,
low scattering and high light-stability of DCG (dichromated gelatin) [79] was made possible
by the silver-halide sensitized gelatin technique.

In positive photoresists, such as Shipley AZ-1350, the areas exposed to light become soluble
and are washed away during development to produce a relief image [80].

Several organic materials can be activated by a photosensitizer to produce refractive index
changes, because they suffer photopolymerization, when exposed to light [81]. A commercial
photopolymer, coated on a polyester film base (DuPont OmniDex) that can be used to produce
volume phase holograms with high diffraction efficiency is being currently produced [82].

Photothermoplastics (PTP) - a hologram can be recorded in a multilayer structure consisting
of a glass or Mylar substrate coated with a thin, transparent, conducting layer of indium oxide,
a photoconductor, and a thermoplastic [83,84].

When a photorefractive crystal is exposed to a spatially varying light pattern, electrons are
liberated in the illuminated areas. These electrons migrate to adjacent dark regions, being
trapped there. The spatially varying electric field produced by this space-charge pattern
modulates the refractive index through the electro-optic effect, producing the equivalent of a
phase grating. The space charge pattern can be removed by uniformly illuminating the crystal,
after which another recording can take place [85,86].

It is essential to use coherent illumination for maximizing the visibility of the interference
fringes formed by the object and reference beams, in the process of recording a hologram. In
addition to being spatially coherent, the coherence length of the light must be much greater
than the maximum value of the optical path difference between the object and the reference
beams in the recording system. Lasers are, as a result, employed almost universally as light
sources for recording holograms.” (The text in quotation marks was reproduced from Hari‐
haran P. [165]).

Consequently, to get a hologram, one needs a laser, which provides a powerful source of
coherent light, and a ‘recording material’ which records the interference pattern produced by
a reference beam and the light waves scattered by the object.

5. Tumor-associated ECM or tumor microenvironment, nonlinear medium
with holographic properties

5.1. Extracellular matrix and tumor microenvironment

Within tissue, cells are surrounded by a meshwork of proteins and proteoglycans collectively
called the extracellular matrix (ECM), which compartmentalizes tissues. The ECM is divided
into two distinct layers:
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i. the basement membrane, which is composed of sheet-like layers of ECM and lies
under epithelial cells segregating tissues into functionally distinct regions;

ii. the interstitial matrix, which exists within intercellular space. The ECM serves
multiple functions that are critical for embryonic development and wound repair.
These functions include providing tissues with shape and flexibility and acting as a
cushion to absorb external pressure. The ECM also serves as a base for cell anchorage,
which mediates cell polarity, intercellular signaling, and assists in migration. The key
to the ECM function lies in its unique composition and structure. The ECM is
constructed in a specific pattern that is critical to its ability to carry out these functions
and alterations in the expression level or arrangement of proteins within the ECM
can be used to manipulate its function.

The most obvious function of the ECM is to provide structural support, shape, and stability
for tissues. It does this by functioning as a base for cell anchorage. This base consists of three
main structural components collagen, fibronectin, and elastic fibers, which bind to one another
building a protein lattice upon which cells adhere.

Cell adherence to the ECM lattice provides cells support needed for cell migration. This is
particularly important during embryonic development when cells are required to migrate into
surrounding regions and differentiate into specific tissues [87]. A less obvious yet possibly
more important function of the ECM in regards to tissue homeostasis and disease is its ability
to mediate intracellular signaling. The ECM affects signaling through three main mechanisms:

i. cell – ECM interaction;

ii. regulation of the bioavailability of growth factors;

iii. the function of matricellular proteins. Cell attachment to the ECM via integrins
induces signaling cascades that promote survival. Loss of cell-ECM contact can result
in a form of apoptosis termed anoikis [88]. Anchorage-dependent survival is observed
in most cells with the exception of red blood cells and inflammatory cells. However,
tumor cells are often resistant to anoikis and can survive without a physical attach‐
ment to the ECM allowing them to successfully metastasize to distant tissues [89].

The ECM also affects cellular activity by serving as a reservoir for proteins required for proper
tissue function and repair. This includes a plethora of growth factors and proteases. These
pleiotropic molecules have been shown to robustly affect proliferation, survival and migration
in numerous cell types. Once growth factors are secreted from cells, they often become
embedded within the ECM and require ECM degradation by proteases such as elastase to
release the active protein allowing it to interact with surrounding and transduce downstream
signaling. The ability of the ECM to control the bioavailability of growth factors provides
another means of regulating cellular activities and further explains how alterations in the
makeup of the ECM as observed in diseases such as cancer affect cell response.

Matricellular proteins also reside in the ECM. They are a unique family of proteins that do not
function as structural proteins but rather orchestrate the deposition of the ECM and mediate
cell-cell and cell-ECM interactions. To do this, matricellular proteins interact directly with cell
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surface receptors, structural proteins, growth factors and proteases found within the ECM [90].
Their expression is found in every tissue begins early in development, persists throughout
adulthood and is increased during tissue remodeling events. Matricellular proteins are critical
regulators of many aspects of cell function including differentiation, survival, proliferation
and migration making them necessary for proper tissue function. Not surprisingly, given their
affect on cell-ECM mediated signaling pathways, matricellular proteins have been shown to
strongly influence tumor growth.

For tumor cells to metastasize, the local ECM must be remodeled to create an environment
conducive to tumor survival and progression. This includes altering the architecture and
composition of the tumor-associated ECM or tumor microenvironment (TME) to facilitate
tumor cell dissemination [91]. Changes in ECM architecture are primarily carried out by
enzymes such as MMPs which assist in remodeling of the TME by degrading structural
proteins such as collagen and fibronectin allowing tumor cells to freely navigate through the
surrounding ECM. MMPs and other proteases assist in destruction of the first barrier tumor
cells face to successful metastasis, the basement membrane. They degrade the underlying
basement membrane allowing tumor cells to escape the primary tumor and invade into
surrounding non-neoplasic tissues. MMPs continue to breakdown barriers in the surrounding
ECM clearing a path to blood vessels where tumor cells will intravasate into the circulatory
system and seed secondary tumors [92]. Destruction of the ECM by proteases also promotes
tumor progression by facilitating the release of angiogenic and mitogenic factors bound within
the ECM [93]. In a surprising unexpected twist, studies revealed that the breakdown of ECM
proteins by MMPs was more complex than anticipated. In fact it is a highly organized process
which results in the generation of both protumor and antitumor cleavage products [94].

Presence of the ECM is required for cellular survival therefore increased degradation of the
ECM within the TME must be balanced by an increase in ECM synthesis. The development of
a tumor, much like a wound, provokes a robust inflammatory response causing an influx of
mast cells, macrophages and neutrophiles into the TME [95].

We may summarize that the extracellular matrix generates signaling cues that regulate cell
behavior and orchestrate functions of cells in tissue formation and homeostasis. Microenvir‐
onmental signaling, a process that determines cell shape, motility, growth, survival and
differentiation is highly influenced by the ECM properties: composition, three-dimensional
organization and proteolytic remodeling. Recent studies have shown that misregulation of
cell–ECM interactions can contribute to many diseases, including developmental, immune,
haemostasis, degenerative and malignant disorders.

Consequently,  the structure and the behavior of the tumor-associated ECM allows us to
think of it  as a non-differential medium, and as will  be shown below, a medium which
holds the properties of a hologram (capacity to memorize, interference abilities) and may
become a source of forces. In other words, ECM and TME are very suitable candidates for
a ‘recording material’.
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5.2. Tumor-associated ECM as a non-differential fractal medium

We can simplify the dynamics of a biological system supposing that the motions on ECM take
place on continuous but non-differentiable curves, i.e. fractal curves (for example, the Peano
curve, the Koch curve or the Weierstrass curve [69,96,97].

Once this hypothesis has been accepted, some consequences of non-differentiability by SRT
are evident [69,96]: i) the physical quantities that are used in describing the biological system
dynamics are fractal functions, i.e. functions dependent both on spatial coordinates and time
as well as on the scale resolution, δt/τ (identified here with dt/τ by means of the substitution
principle [69,96]. We mention that in the standard biophysics, the physical quantities describ‐
ing the dynamics of a biological system are continuous, but differentiable functions depending
only on spatial coordinates and time; ii) the dynamics of the biological systems are given by
the fractal operator d̂  /dt [98]:

2 12ˆ ˆ FDd dtV i
dt t

æ ö
-ç ÷ç ÷

è øæ ö¶ l
= + ×Ñ - Dç ÷¶ t tè ø

(10)

where

ˆ
D Fi= -V V V (11)

is the complex velocity, VD is the differentiable and resolution scale independent velocity, VF

is the non-differentiable and resolution scale dependent velocity, V̂  ∇ is the convective term,
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2 2 2

F FD Ddt dt
x y z

æ ö æ ö
- -ç ÷ ç ÷ç ÷ ç ÷

è ø è ø æ öæ ö æ öl l ¶ ¶ ¶
D = + +ç ÷ç ÷ ç ÷ ç ÷t t t t ¶ ¶ ¶è ø è ø è ø

(12)

is the dissipative term, DF is the fractal dimension of the movement curve, λ is the space scale,
τ is the time scale and λ2/τ is a coefficient specific to the fractal – non - fractal transition. For
DF any definition can be used (the Hausdorff – Besikovici fractal dimension, the Kolmogorov
fractal dimension, etc. [97], but once such definition is accepted for DF, it has to remain constant
over the entire analysis of the complex fluid dynamics. In a particular case, for motions on
Peano curves, DF = 2 [97] of the complex fluid entities, the fractal operator (1) is reduced to
Nottale’s operator (d̂  /dt)Ν

ˆ ˆ
N

d iD
dt t

¶
= + ×Ñ - D
¶

V

where DN = λ2/τ is the Nottale’s coefficient associated to the fractal-non-fractal transition.

Applying the fractal operator (10) to the complex velocity (11) and accepting the principle of
scale covariance [69,96] in the form:
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ˆ ˆd U
dt

= -Ñ
V (13)

we obtain the motion equation:

( )
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dt t
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where U is an external scalar potential. Equation (14) is a Navier – Stokes type equation. It
means that at any point of a fractal path, the local acceleration term, ∂tV̂ , the non-linearly

(convective) term, (V̂  ∇) V̂ , the dissipative term, (λ 2 / τ)(dt / τ)
( 2

DF
)−1

ΔV̂ , and the external free
term ∇U make their balance. Therefore, the biological fluid is assimilated to a “rheological”
fractal fluid, whose dynamics are described by the complex velocities field, V̂ , and by the

imaginary viscosity type coefficient, i(λ 2 / τ)(dt / τ)
( 2

DF
)−1. The “rheology” of the fractal fluid can

provide hysteretic properties to the biological fluid (the fractal fluid has a hysteresis cycle,
memory, etc. [98-100].

For irrotational motions of the biological system entities

ˆ 0, a
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(15)

we can choose V̂  of the form

2 12
ˆ lnFDdti

æ ö
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V (16)

where ϕ ≡ lnψ is the velocity scalar potential. By substituting (16) in (14) and using the method
described in [98-100], it results
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This equation can be integrated in a universal way and yields
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up to an arbitrary phase factor which may be set to zero by an appropriate selection of the
phase of ψ. Relation (18) is a Schrödinger type equation. For motions on Peano curves, DF = 2
[97] at Compton scale, which implies λ2 /τ = ħ /2m0 [69,96], with ħ the reduced Plank constant
and m0 the rest mass of the biological entities, the relation (18) becomes the standard Schrö‐
dinger equation:
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If ψ = √ρ eiS, with √ρ the amplitude and S the phase of ψ, the complex velocity field (16) takes
the explicit form:
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By substituting (19a-c) in (14) and separating the real and the imaginary parts, up to an
arbitrary phase factor which may be set to zero by appropriate selection of the phase of ψ, we
obtain:
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with Q the specific fractal potential
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Equation (20) represents the specific momentum conservation law, while equation (21)
represents the states density conservation law. By means of the fractal velocity, VF, the specific
fractal potential Q is a measure of non-differentiability of the biological entities trajectories, i.e.
of their chaoticity. The equations (20)-(22) define the fractal hydrodynamics model (FHM). In
such a context, the biological system can be considered a fractal fluid.

Thus,  it  can be  concluded that:  i)Any entity  of  the  biological  system is  in  a  permanent
interaction with the fractal medium by means of the specific fractal potential; ii) The fractal
medium is identified with a non-relativistic fractal fluid described by equations (20)-(22);
iii) For motions on Peano curves at Compton scale [69,96,97], the FHM reduces to a quantum
hydrodynamic  model  (QHM).  Indeed,  according  to  our  previous  considerations  the
relations (19a-c) become

0 0
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in order that the momentum and density conservation laws are given by (20) and (21),
respectively, with VD and VF previously defined, and the specific fractal potential by the
expression
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Moreover the fractal medium is assimilated to Bohm subquantum level [96]; iv) The fractal
velocity VF cannot be regarded as actual mechanical motion; it contributes to the transfer of
the specific momentum and the concentration of energy. This fact can easily be deduced from
the absence of VF in the states density conservation law, and from its role in the variational
principle. Any interpretation of Q should take into account the “self” or internal nature of the
specific momentum transfer. While the energy is stored in the form of mass motion and
potential energy (as it is classically), a part of it is available elsewhere and only the total is
conserved. Reversibility and the existence of eigenstates is ensured by the conservation of
energy and specific momentum, but this also means that a Brownian motion [97] form of
interaction with an external medium is denied; v) For Peano curves motions [96,97], at spatial
scales higher than the dimension of the boundary layer and at temporal scales higher than the
oscillation periods of the pulsating velocities which overlaps the average velocity of the
biological fluid motions (for details see [101-103], the FHM reduces to the standard hydrody‐
namical model [104]; vi) Since the position vector of the biological system entity is assimilated
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with a stochastic Wiener type process [96,97], ψ is not only the scalar potential of a complex
velocity (through ϕ ≡ lnψ) in the frame of FHM, but represents also the states density (through
ψ2) in the frame of a Schrödinger type model. Thus it can be seen that the formalism of the
FHM and the one of Schrödinger type are equivalent. In addition, the chaoticity, either by
means of turbulence in the fractal hydrodynamics approach, or by means of stochasticization
in the Schrödinger type approach, is generated only by the non-differentiability of the
movement trajectories in a fractal space; vii) In the standard model (Landau’s scenario [104])
the Fourier spectrum is always discrete and cannot approximate a continuum spectrum that
in case of a large number of frequencies will generate an unlimited number of spectral
components as a result of their beats which appear due to the presence of nonlinearities in the
biological fluid. Still, taking into account the standard model, the flow can never be exactly
chaotic because, in case of multiple periodic functions, correlations tend to be null, although
having an oscillating character. As a result, the transition towards chaotic behavior can be
described by Landau’s scenario only in a biological system with an infinite number of degrees
of freedom. In our case, when δ t/τ →  0 for DF ≠ 2 the physical quantities that describe the
dynamics of the biological system are no longer defined. So, in this approximation, a simulation
of a system with an infinite number of degrees of freedom is used. Moreover, the possibility
of the dynamic states generation should be noted, which is characterized by windows of
regular oscillations interrupted by chaotic bursts, the transition between the two states being
spontaneous, unpredictable and independent of any of the control parameters variation
(turbulence through intermittency); viii) The fractal medium and in particular the subquantum
level has some computational properties: viii1) bistability, which implies the existence of its
fractality and in particular, for motions on Peano curves at Compton scales, of the quantum
bit. And from here, the entire fractal logics and in particular the quantum one; viii2) the self-
replication, which implies the existence of some specific self-copying mechanisms; viii3)
memory, which implies hysteresis type mechanisms; viii4) self-similarity, which implies the
holographic type behavior; viii5) polarization, which implies mechanisms of changing the
“computational state” from a given to a desired one; viii6) depositing and transmitting the
information etc. For details see [105].

6. Tumor self-seeding by CTC and hypoxia support the idea of complete
holography

6.1. The self-seeding hypothesis of tumor growth

The unfolding of cancer cells from their original sites to different ones within the body, i.e
metastasis, has, for many years, been regarded as a unidirectional journey. However some
researchers conjointly consider that metastatic cancer cells can increase primary tumor growth,
this fact being crucial for the planning and type of the cancer treatment.

The concept of growing self-metastasis, or tumor “self-seeding,” was first introduced at
Memorial Sloan-Kettering Cancer Center, in a range of studies conducted by Drs. Joan
Massagué, head of the Metastasis research facility, and Larry Norton, deputy physician-in-
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chief of the center’s breast cancer programs. In the studies conducted on mice, Dr. Massagué
discovered that breast tumors express genes related to metastasis were growing quicker than
tumors that didn't express these genes, even if the genes had no apparent role in increased
cellular division or decreased cell death (Fig. 12). These results did not fit within the standard
tumor growth theories. In 2006, the researchers theorized that cells that become independent
from a tumor and colonize distant tissues may also return home to the microenvironment
within which they initial developed via the cardiovascular system [106]. They tested their
hypothesis in a mouse model of cancer and revealed their findings in 2009 in Cell [107].

In one particular experiment, they selected a non-metastatic breast cancer cell line and an
isolated set of daughter cells from that line that had gained the ability over time to metastasize
to the lungs. Consequently, they implanted the parent cells in one mammary gland and the
metastatic daughter cells in the opposite gland to serve as “donor tumors”. They noticed that
the daughter cells migrated to the lungs and to the tumors that were being formed by the
parent cells in the opposite organ, accounting for 5 to 30% of the size of the parent tumors.
Also, it was obvious that parent tumors seeded by daughter cells grew quicker than parent
tumors that were implanted without daughter cells within the opposite gland.

This specific seeding behavior with daughter cells that spread to the bones and brain was
noticed in the studies of colon cancer and skin cancer cell lines, but not when non-metastatic
daughter cells were transplanted.

Furthermore, in various related follow-up laboratory experiments, the researchers demon‐
strated that cells from primary tumors can attract circulating metastatic tumor cells, and found
several proteins that probably encourage this migration. They also found that the “come-back”
metastatic cells mainly influenced primary tumor growth through the release of proteins that
modify the tumor microenvironment, as well as blood vessels and immune cells.

Their hypothesis started to obtain support from different researchers at the United Nations
agency. In 2009, Dr. Philip Hahnfeldt and his colleagues published the results of computer
modeling studies conceived to search at the intersection of two biological phenomena found
in tumors [108]. One of these phenomena consists in a small population of cancer cells acting
like stem cells; thus, they could possess the ability to reproduce an infinite number of times,
and also to generate secondary cancer cells that, with time, lose the ability to divide. The second
phenomena is that tumor growth is restricted by the available space for growing. Normally,
healthy cells are spatially separated by a space that is not available in the tumor, due to the
fact that cancer cells grow tightly in a dense mass till all the available has been occupied and
the cellular division stops. At the periphery of the tumor, where the normal tissues density
decreases, cancer cells continue to multiply and expand, increasing the size of the tumor.

Their models showed a crucial relation between cell migration, cell death, and tumor growth.
When the offspring of a cancer stem cell within the model did not migrate or die spontaneously,
tumor growth remained constant at around 110 cells. On the other hand, a high death rate
among the non-stem cell progeny combined with a high cell migration rate produced the
biggest tumors within the shortest amount of your time, to virtually 100,000 cells in over three
years.
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This theoretical phenomena − accelerated growth jump-started by a high rate of growth death
− has potential implications for the clinical treatment of cancer. Traditional cytotoxic therapy
medicine kill massive numbers of speedily dividing cancer cells, however might not have an
effect on cancer stem cells in each tumor type.

In the light of the above, we think of the CTC returning to the initial tumor site and fueling the
primary tumor growth or even grow a new tumor as a particular case of complete holography
(i.e. a hologram which does not represent only the virtual object’s image, but becomes the very
object - which we believe, is a characteristic of the living organisms).

6.2. Hypoxia and cancer

Vascularized tissues is the trigger factor for a large number of cellular processes, combined
with an adaptive response. [109,110]. Following the drop in oxygen supplies, cells start to adapt
to the less favorable environment and to initiate a vascularization| process in order for them
to raise the local oxygen supply. In the center of the hypoxic response is the angiogenic shift,
with production of potent angiogenic factors such as vascular endothelial growth factor
(VEGF). Hypoxia, which is present in many solid malignancies, means that oxygen level in
tumors corresponds to around 1.5% [109]. This is caused on one hand by the result of the
abnormal vascularisation in tumors, that is short in supply oxygen to the sometimes rapidly
expanding malignant lesion and on the other hand, the existence of areas with acute lack of

 

Figure 12. In the self-seeding concept of cancer growth and metastasis, a mobile tumor cell can take one of five differ‐
ent pathways in the body. A – evade and return to the primary tumor, using only the close ECM and not the systemic
circulation; B – escape into the systemic circulation and then return to the original tumor; C – migrate through the sys‐
temic circulation and grow a metastatic tumor elsewhere in the organism; D – evade and return to the metastatic tu‐
mor, not using the systemic circulation; E –escape and return to the metastatic tumor through the systemic circulation.
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oxygen, resulting in necroses and cell death on a large scale. In breast cancer these forms are
usually related to clinically aggressive behavior. Markers for hypoxia like HIF-1a have been
connected to extremely malignant features and could be relevant prognostic markers for
distinguishing subgroups of breast cancer with certain malignant properties [111,112]. There
is a current discussion whether or not hypoxia contributes to increase the aggressiveness of
tumors or if aggressive tumors have more widespread hypoxia, but, apparently, one explan‐
ation doesn't essentially exclude the opposite. Recent analysis has shown that ‘the hypoxia
response’ in tumors may be used to conceive new treatment methods [113]. Emerging cancer
therapies will most definitely put more focus on specific targeting of hypoxic processes.

Human cancers are characterized by intratumoral hypoxia that results from the proliferation
of deregulated cell and the physiological responses that is triggered by it have impact on all
aspects of cancer progression, together with im mortalization, transformation, differentiation,
genetic instability, ontogeny, metabolic adaptation, autocrine protein communication,
invasion, metastasis, and resistance to therapy.

We assume the relationship between hypoxia and aggressive tumors may be due to the
presence of the coherent wave laser with oxygen of metastatic tumor cells in the area, where
the produced oxygen gradients lead to oxygen consumption. It has been already shown that
laser photocoagulation is effective in the treatment of diabetic retinopathy, in a series of major
studies [114-117]. The oxygen-consumption may be based on a multilayer solution to Fick’s
law of diffusion, yet the essence is that the oxygen consumption is greatest where the oxygen
gradient changes most rapidly [118-120].

All the above considerations and hypoxia’s impact on all critical aspects of cancer progression
support the idea that, the metastatic tumor cells moving through the systemic circulation (and
not necessarily in there), may be considered a travelling wave chemically pumped type laser
with oxygen.

7. Basic model

7.1. The PDE cancer-invasion model

We consider and present in what follows in extenso, the basic mathematical model of growth
of a generic solid tumor, which is assumed just been vascularised, i.e. a blood supply has been
established. Let us focus on four key variables involved in tumor cell invasion, in order to
produce a minimal model, namely tumor cell density (denoted by n), matrix-degradative
enzymes (MDE) concentration (denoted by m), the complex mixture of macromolecules from
the extracellular material’s (MM) concentration (denoted by f) and the oxygen concentration
(denoted by c). Each of the four variables (n, m, f, c) is a function of the spatial variable x and
time t. Firstly, we have to define a system of coupled non-linear partial differential equations
to model tumor invasion of surrounding tissue.

We make the assumption that the ECM is a mixture of MM (e.g. collagen, fibronectin, laminin
and vitronectin) only and not any other cells. Most of the MM of the ECM which are important
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for cell adhesion, spreading and motility are fixed or bound to the surrounding tissue. MDEs
are important at many stages of tumor growth, invasion and metastasis, and they interact with
inhibitors, growth factors and tumor cells in a very complex way. Yet it is widely accepted that
tumor cells produce MDEs which locally degrade the ECM. As well as creating space into
which tumor cells may be transported by simple diffusion (random motility), we can assume
that this also results in a gradient of these bound cell-adhesion molecules, such as fibronectin.
As a result, while the ECM may be a barrier to normal cell movement, it also represents a
substrate to which cells may adhere and move upon. The presence of a minimum of ECM
elements is a requirement for the growth and survival of most mammalian cells, and indeed
these cell will migrate up a gradient of bound (i.e. non-diffusible) cell-adhesion molecules in
the in vitro cultures [121-126].

We can define haptotaxis as a directed migratory response of the cells to gradients of fixed or
bound chemicals (i.e. non-diffusible chemicals). While studies have not yet clearly shown
haptotaxis occurs in an in vivo situation, given the structure of human tissue, it is not without
reason to assume that haptotaxis is a major component of directed movement in tumor cell
invasion. Indeed, there has been much recent effort to characterize such directed movement
[125-127]. We therefore will treat this directed movement of tumor cells in this model as
haptotaxis, i.e. a response to gradients of bound MM such as fibronectin. To incorporate this
response in the mathematical model, we take the haptotactic flux to be Jhapto = χ n ∇ f, where
χ > 0 is the (constant) haptotactic coefficient.

As we stated early, the only other contribution to tumor cell motility in this model is the random
motion. To describe the random motility of the tumor cells, we assume a flux of the form Jrand

= −Dn∇n, where Dn is the constant random motility coefficient.

We only model the tumor cell migration at this level, as all other tumour cell processes, such
as proliferation, adhesion and death will be treated at a single cell level within the hybrid
discrete-continuum model. The conservation equation for the tumour cell density n can
therefore be written as

( ) 0rand hapto
n
t

¶
+ Ñ + =

¶
J J

and hence the partial differential equation governing tumor cell motion (in the absence of cell
proliferation) is

( )2
n

n D n n f
t

¶
= Ñ - cÑ Ñ

¶
(23)

The ECM is known to contain many MM, including fibronectin, laminin and collagen, which
can be degraded by MDEs [128,129]. We assume that the MDEs degrade ECM upon contact
and hence the degradation process is modeled by the following simple equation
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f mf
t
¶

= -d
¶

(24)

where δ is a positive constant.

Active MDEs are produced (or activated) by the tumor cells, diffuse throughout the tissue and
undergo some form of decay (either passive or active). The equation governing the evolution
of MDE concentration is therefore given by

2 ( , ) ( , , )m
m D m g n m h n m f
t

¶
= Ñ + -

¶
(25)

where Dm is a positive constant, the MDE diffusion coefficient, g is a function modeling the
production of active MDEs by the tumor cells and h is a function modeling the MDE decay.
For simplicity we assume that there is a linear relationship between the density of tumor cells
and the level of active MDEs in the surrounding tissues (not taking into consideration the
amount of enzyme precursors secreted and the presence of endogenous inhibitors) and so these
functions will be g = μ n (MDE production by the tumor cells) and h = λ m (natural decay),
respectively.

The fact solid tumors need oxygen to grow and invade is a well-known one. Oxygen is assumed
to diffuse into the MM, decay naturally and be consumed by the tumor. We assume that oxygen
production is proportional to the MM density. This is a crude way of modeling an angiogenic
oxygen supply for a more appropriate way of modeling the angiogenic network. The oxygen
equation then has the form,

2
c

c D c f n c
t
¶

= Ñ + b - g - a
¶

(26)

where Dc, β, γ, α are positive constants representing the oxygen diffusion coefficient, produc‐
tion, uptake and natural decay rates, respectively.

The complete system of equations describing the interactions of the tumor cells, MM, MDEs
and oxygen as detailed above, is

( )
}

} }

} } }

random  motility haptotaxis

2

degradation

diffusion production decay
2

diffusion production uptake decay
2

a

b

c

d

n

m

c

n D n n f
t

f mf
t

m D m n m
t

c D c f n c
t

¶
= Ñ - Ñ Ñ

¶

¶
= -

¶

¶
= Ñ + -

¶

¶
= Ñ + - -

¶

678 64748

64748

678

c

d

m l

b g a

(27)
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where Dn, Dm and Dc are the tumor cell, MDE and oxygen diffusion coefficients, respectively,
χ is the haptotaxis coefficient and δ, μ, λ, β, γ and α are positive constants. We should also note
that cell–matrix adhesion is modeled here by the use of haptotaxis in the cell equation, i.e.
directed movement up gradients of MM. Therefore, χ maybe considered as relating to the
strength of the cell–matrix adhesion.

7.2. The PDE cancer-invasion model via scale relativity theory

The presence of the fractal medium implies the substitution of the standard derivative d/dt
with the fractal operator (10). Then the system (27a-d) becomes

( )
( )

( )

( )
( )

( )
( )

( )
( )

2 12
2

2 12

2 12
2

2 12
2

ˆ ˆ a

ˆ
ˆ b

ˆ ˆ c

ˆ ˆ d

F

F

F

F

D

n

D

D

m

D

c

dn n dtn i n D n n f
dt t

df f dtf i f mf
dt t

dm m dtm i m D m n m
dt t

dc c dtc i c D c f n c
dt t

-

-

-

-

æ ö¶
= + ×Ñ - D = Ñ - Ñ Ñç ÷¶ è ø

¶ æ ö
= + ×Ñ - D = -ç ÷¶ è ø

æ ö¶
= + ×Ñ - D = Ñ + -ç ÷¶ è ø

æ ö¶
= + ×Ñ - D = Ñ + - -ç ÷¶ è ø

V

V

V

V

l c
t t

l d
t t

l m l
t t

l b g a
t t

(28)

or more explicitly, by separating the scales of interaction, for the differentiable scale

( ) ( )

( )
( )
( )

2

2

2

ˆ a

ˆ b

ˆ c

ˆ d

D n

D

D m

D c

n n D n n f
t
f f mf
t
m m D m n m
t
c c D c f n c
t

¶
+ ×Ñ = Ñ - Ñ Ñ

¶
¶

+ ×Ñ = -
¶
¶

+ ×Ñ = Ñ + -
¶
¶

+ ×Ñ = Ñ + - -
¶

V

V

V

V

c

d

m l

b g a

(29)

and for the fractal scale

( )
( )

( )
( )

( )
( )

( )
( )

2 12

2 12
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2 12

ˆ a

ˆ b

ˆ c

ˆ d
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F

D

F
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F

dtn n

dtf f

dtm m

dtc c

-

-

-

-
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V
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l
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(30)
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Thus, the transport equations (27a-d) are generalized by involving the convective terms
(V̂ F ⋅∇ )n, (V̂ F ⋅∇ ) f , (V̂ F ⋅∇ )m, (V̂ F ⋅∇ )c at differentiable scale. Moreover, at the fractal
level one specifies new transport mechanisms where the convective effects are balanced by
dissipative ones.

Now, the transport equations for the fractal to non-fractal transition are obtained by substract‐
ing the relations (29a) and (30a), (29b) and (30b), (29c) and (30c), (29d) and (30d) and using the
substitution V=VD-VF. One gets

( )
( )

( )

( )
( )

( )
( )

( )
( )

2 12

2 12

2 12

2 12

ˆ a

ˆ b

ˆ c
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c dtc D c f n c
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-

-

-
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t t
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(31)

Assuming now both the coherence fractal to non-fractal and harmonic type behavior for the f
field the system of equations (31a-d) becomes

( )
( )

( )

( )

2 12

2 12

2 12

a

b

c

d

F

F

F

D

n

D

m

D

c

n dtD n n f
t

f mf
t

m dtD m n m
t

c dtD c f n c
t

-

-

-

é ùæ ö¶ ê ú= - D - Ñ Ñç ÷ê ú¶ è øë û
¶

= -
¶

é ùæ ö¶ ê ú= - D + -ç ÷ê ú¶ è øë û
é ùæ ö¶ ê ú= - D + - -ç ÷ê ú¶ è øë û

l c
t t

d

l m l
t t

l b g a
t t

(32)

7.3. Non-dimensionalization and parameterization

For us to utilize realistic parameter values, we must first non-dimensionalize the equations in
the standard formalism. We therefore rescale the distance with an appropriate length scale L
(e.g. the maximum invasion distance of the cancer cells at the first stage of invasion, approxi‐
mately 1 cm), time with τ (e.g. the average time taken for mitosis to occur, approximately 8...24
h [130], tumor cell density with n0, ECM density with f0, MDE concentration with m0 and oxygen
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concentration with c0 (where n0, f0, m0 and c0 are appropriate reference variables). Therefore,
setting

0 0 0 0 0

,    f ,    m ,    c ,    ,       fn m c tn t
n f m c L t

= = = = = =
xx% %% % % %

in (27) and dropping the tildes for notational convenience, we obtain the scaled system of
equations

( )
}

} }

} } } }

random  motility haptotaxis

2

degradation

diffusion production decay
2

diffusion production uptake decay
2

a

b
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d
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t

m d m kn m
t

c d c f n c
t

¶
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¶

¶
= -

¶

¶
= Ñ + -

¶

¶
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¶

678 64748

64748

r

h

s

n w j

(33)

where dn= τ Dn −
λ 2

τ ( dt
τ )(2/DF )−1

 /L2, ρ=τχ f0/L2, η=τm0δ, dm=τ Dm−
λ 2

τ ( dt
τ )(2/DF )−1

 /L2, κ=τμn0/m0,

σ=τλ, dc =τ Dc −
λ 2

τ ( dt
τ )(2/DF )−1

 /L2, ν=τ f0β/c0, ω=τn0γ/c0, ϕ=τα.

The cell cycle time can be highly variable (particularly the G1 phase) and in fact depends on
the specific tumor taken under consideration. As an approximate reference time we take τ =
16 h, halfway between 8...24 h [130]. The cell motility parameter Dn ~ 10−9 cm2 s−1 was estimated
from available experimental evidence [131]. Tumor cell diameters again will vary depending
on the type of tumor being considered but are in the range 10...100 μm [132] with an approx‐
imate volume of 10−9 to 3 × 10−8 cm3 [133,134]. We will assume that a tumor cell has the volume
1.5 × 10−8 cm3 and therefore take n0 = 6.7 × 107 cells cm−3. The haptotactic parameter χ ~ 2600
cm2 s−1 M−1 was estimated to be in line with that calculated in [135] and the parameter f0 ~ 10−8

to 10−11 M was taken from the experiments of [136]. We took Dm to be 10−9 cm2 s−1, which is
perchance small for a diffusing chemical, but current studies imply that it is in fact a combi‐
nation of the MDE and MM, and, as a result, the MM degrades and diffuses very little [137].
An in vivo estimate for the MDE concentration m0 is rather difficult to obtain since no value
(that we are aware of) has been currently determined and we also know that certain inhibitors
(e.g. tissue inhibiting metalloproteases) are produced within the ECM which affects the MDE
concentration. Plasma levels of specific MDEs have been measured (e.g. MMP-2 [138]) and are
approximately 130 ng ml−1 with further increases observed in patients with cancer [139]. How
is this related to the MDE concentration within the ECM is not clear and we have therefore left
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this parameter undefined. Estimates for the kinetic parameters μ, λ and δ were not available
since these are rather hard to obtain experimentally – and thus we use the values of [135]. The
diffusion rate of oxygen through water is Dc = 10−5 cm2 s−1 and also, the oxygen consume rate
of the cells is 6.25 × 10−17 M cells−1 s−1 [134]. The background oxygen concentration estimation
within the tissue was somehow difficult to be done as it depends on the tissue vascularization.
If we set the value of the oxygen concentration in the blood supplying the tumor/tissue to be
0.15 ml O2 per ml of blood, since we know that 1 M of oxygen occupies 22400 ml then there is
0.15/22400 M O2 ml−1 = 6.7 x 10−6 M O2 ml−1, and since 1 ml = 1 cm3 then we calculate c0 = 6.7 x
10−6 M O2 cm−3 [140]. Obviously this would be an overestimate, due to the fact that not all of
the domain will be fully vascularised but at least we have obtained a reference value. The
values of the non-dimensional parameters were given as
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h
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=
=
=

(34)

7.4. Laser beam in a multiscale diffusion cancer-invasion model

7.4.1. Laser as a lorenz system

A laser system is the result of an interaction between the electromagnetic field and the
substance, under certain circumstances. The Lorenz form of laser equations may be obtained
using a semi-classical reasoning where the environment is analyzed quantically using the
formalism of density matrix, and the electromagnetic field is treated classically, by means of
Maxwell’s equations [141,142]. Here we consider only two energy levels of the involved
microscopic systems (atoms, molecules, ions).

The first treatment of a two levels system was made by Bloch who analyzed the interaction of
electrons with an oscillatory magnetic field superposed over a static magnetic field, in the
framework of a magnetic resonance phenomenon. Due to the similarity of treatments and form
of the obtained equations for the laser system, one can say that it forms the Maxwell-Bloch
system.

Note that the density matrix method is applied in the treatment of laser systems, no matter
how many energy levels, or number of oscillating modes are considered, as well as, in the
consequent quantum treatment, where the electromagnetic field is quantized [143,144].
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We start by discussing the effect of the electromagnetic field on the atoms of the environment.
In the simplest situation, the electric field will induce in each atom an electric dipole whose
moment is proportional to the field and is oriented along its direction. Neglecting the vectorial
character, we have

Em = a (35)

where α is a constant characteristic to the type of the atom considered. If the concentration of
(identical) atoms in the considered environment is Na, then the polarization vector of the
environment, equals the vectorial sum of all the dipole moments from the unit volume, and
will be given by

0aP N E= m = e c (36)

where ε0 is the empty space permittivity and χ represents the electric susceptibility of the
environment.

The problem of the induced dipole moment must be solved quantically using Schrödinger’s
equation (see paragraph 5.2)

ˆi H
t

¶y
= y

¶
h (37)

where Ĥ  is the Hamiltonian operator and ψ the wave function of the atom.

Since a monochromatic field of frequency ω0, not very intense, interacts with the atom inducing
transitions between two of its energetic levels, E1 and E2 i.e. E2 - E1 = ħω0, it is usual to neglect
the other levels and to approximate the atom as a system with two energy levels. If the wave
functions of the atom in the two states are ψ1 and ψ2, respectively, then we have

1 1 2 2C Cy = y + y (38)

where C1, C2 are the time dependent complex amplitude probabilities for the atom to find itself
on the energy levels E1 and E2, respectively. In other words ρ11 =C1

∗C1≡ |C1 | 2 represents the
probability of the atom to find itself in the state ψ1, and ρ22 =C2

∗C2≡ |C2 | 2 the probability of the
atom to find itself in the state ψ2. The combinations ρ12 =C1C2

∗ and ρ21 =C2C1
∗ are transition

probabilities between the two states. The four numbers ρij (i, j = 1, 2) forms the so called density
matrix for the 2-levels system. The asterisk attached to a parameter means the complex
conjugate of the respective parameter. Obviously, ρ21 = ρ*

12.
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The Hamiltonian operator of the system will consist of a sum between the Hamiltonian of the
nonperturbed atom Ĥ 0 and a term which describes the interaction of the atom with the field,
Ĥ ′,

0
ˆ ˆ ˆH H H¢= + (39)

The functions ψ1 and ψ2 are eigenfunctions of the nonperturbed Hamiltonian, i.e.

0 1 1 1 0 2 2 2
ˆ ˆ, ,H E H Ey = y y = y (40)

Replacing (38), (39) and (40) into the Schrödinger equation, and after some standard calculus,
we get the equations

1 1 1 12 2

2 2 2 21 1

, a
 , b
i C E C H C
i C E C H C

¢= +

¢= +

&h
&h

(41)

where we introduced the notations

12 1 2

21 2 1

ˆ ,a
ˆ , b

H H dV

H H dV

*

*

¢ ¢=

¢ ¢=

ò
ò
y y

y y
(42)

It has been taken into account the orthonormal property of the wave functions ψ1 and ψ2

( )    , 1,2i j ijdV i j*y y = d =ò (43)

where δij is Kroeneker’s symbol, and the fact that the interaction matrix H ij
'  has no diagonal

elements.

It is common to introduce the following simplification: if one chooses the zero energy value at
the center of the interval between the two energies, then they become

( )
( )

2 0

1 0

1 2 , a
1 2 , b

E
E

=

= -

h

h

w

w
(44)

and Eqs. (41) rewrite
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0 1
1 12 2

0 2
2 21 1

, a
2

, b
2

C
i C H C

C
i C H C

¢= - +

¢= +

h&h

h&h

w

w (45)

In quantum mechanics, the electric dipole momentum is calculated as the expectation value
of the classical electric dipole momentum μ = ex, where e is the electron charge and x is its
displacement along the direction of the electric field.

For an atom in the state ψ this is given by

( )1 2 1 2 1 2ex dV C C C C ex dV* * * *m = y y = + y yò ò (46)

The integral μ12 = ∫ψ1
∗exψ2dV  represents the electric dipole momentum of the interaction. In the

considered approximation, the interaction Hamiltonian is identical to the classical expression
of the interaction energy between an electric field and the induced electric dipole: U = -μE, but
with μ →  μ12 (the dipole momentum of the interaction), i.e.

12 12H E¢ = -m (47)

By choosing a convenient phase relation between the wave functions, we can make μ12 real so
H12

' ,H21
'  to be also real.

Eq. (46) suggests considering the expression

1 2 1 2 12 21X C C C C* *= + º r + r (48)

We remark that the polarization (36) is expressed as a function of X through the equation

12 12 12 . .a aP N X N c c= m = m r + (49)

where by c.c. we denote the complex conjugate of the previous expression.

We further consider the combinations

( ) ( )1 2 1 2 12 21Y i C C C C i* *= - º - r - r (50)
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2 2
2 1 22 11Z C C= - º r - r (51)

For Z we also have a simple interpretation. If we multiply (51) by Na we get the expressions
Naρ22 and Naρ11, which represents the populations from the unit volume of the two levels, in
other words, Na Z ≡ N represents the difference of population between the levels (inversion of
population) from the unit volume.

All the three expressions X, Y, Z are functions depending only on time. Their time derivatives
are easily calculated using Eqs. (45) and their complex conjugates. The following relations
result:

( )0 12 21 0
iX Y H H Z Y¢ ¢= -w - - = -w&
h

(52)

12
0

2Y X EZm
= w +&

h
(53)

122Z EYm
= -&

h
(54)

where in Eq. (52) the second form was obtained taking into account H12
'  = H21

' .

By multiplication of Eq. (52) with Naμ12, it transforms into an equation for Ṗ , namely

( )12 12 12 21 12 12 . .a a aP N X N N c c= = + = +& & & & &m m r r m r (55)

The equation for ρ̇12 is obtained from Eqs. (52) and (53), taking into account Eqs. (48) and (50).
It results

12
12 0 12i i EZ= +&

h
m

r w r (56)

Another equation for polarization is obtained by deriving Eq. (52) once again and using (53).
It results

2 20
0 12

2P P EN+ = -&&
h
w

w m (57)
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It is interesting to note that, in the absence of the electromagnetic field, i.e. for E = 0, Eq. (57)
describes a harmonic oscillator. This is unacceptable, since polarization is induced by the field,
so it must attenuate after the field cancels. Physically, it occurs both because of the internal
dynamics of the atomic (molecular) systems and of the dephasing between the oscillations of
different dipoles by means of their self-interaction or their interaction with the crystal lattice
(for a solid environment). This phenomenon is taken into consideration through phenomeno‐
logical reasonings by introducing an amortization term of the form Ṗ / T2 in the equation. Eq.
(57) transforms into the equation of a forced dumped oscillator:

2 20
0 12

2

2PP P EN
T

w
+ + w = - m
&&&

h (58)

Usually, the time T2 is named transversal relaxation time. It is characteristic to the non-diagonal
elements of the density matrix, so Eq. (56) must be rewritten

12
12 12 0 12( )i i EZm
r + g - w r =&

h
(59)

where γ12 =1/T2.

By multiplication of Eq. (54) with Na the left side becomes Ṅ . Replacing Y from (52) in (54),
we get

0

2N EP
t

¶
=

¶ w
&

h (60)

Eq. (60) shows that, at the disappearance of the electromagnetic field, the inversion of popu‐
lation must remain constant. However, an electromagnetic field resonant with the considered
transition (ω ≈ ω0) is composed of quanta which can be absorbed by atoms, so may have the
effect of a transfer of population between the two levels. It is obvious that, at the canceling of
the field, the inversion of population must evolve towards an equilibrium value Ne which is
obtained by a process of pumping and by spontaneous relaxation processes. They imply the
presence of other energetic levels besides those already considered. We proceed again by
phenomenological reasonings. We suppose that this evolution is again exponentially, thus we
add a term of the form (N −N e) / T1≡γ11(N −N e), where T1 is named longitudinal relaxation
time (it is characteristic to the diagonal elements of the density matrix). The equation for the
inversion of population becomes

11
0

2( )eN N N EP
t

¶
+ g - =

¶ w
&

h (61)
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Eq. (61), together with (55) coupled with (59), or with (58) represents the substance equations.
They must be associated with the electromagnetic field equation which we transcribe here

2 2 2
2

02 2 2c t t
h ¶ ¶

Ñ - = m
¶ ¶

E PE (62)

where c2 = 1/ε0μ0, η =√ε/ε0 is the refraction index of the environment (without the contribution
of the transition between the two levels), P is the resonant part of the induced polarization and
two non-conductive and non-magnetic laser environments were considered. In this case also,
the energy losses produced by different mechanisms will be considered phenomenologically
by means of an attenuation term introduced in the final form of the equation.

If we have a laser oscillator, the laser medium is placed between two mirrors which form an
open cavity, and the oscillations may be triggered only by modes of oscillation characteristic
to the cavity. They must satisfy the Helmholtz equation

2 2 0U k UÑ + = (63)

where k = ηωc/c, ωc being the frequency of the considered mode (index c from cavity). For
simplification, in what follows, we consider η=1 (gaseous environment).

We suppose the oscillation is produced on a single mode described by a spatial dependence
of the form W(x, y, z). This dependence will characterize both the field and polarization, so we
can write

( ) ( , , )exp( ) . .ct W x y z i t c c= w +E E% (64)

and

( ) ( , , )exp( ) . .ct W x y z i t c c= w +P P% (65)

respectively, where Ẽ (t) and P̃(t) are slowly time-varying (complex) amplitudes.

Since the vectors E and P have the same directions, we can neglect the vectorial aspect.
Introducing (64) and (66) in (62), applying the slowly varying amplitude approximation, i.e.
taking d 2Ẽ / dt 2≈0, d 2P̃ / dt 2≈ −ωcP and having in view that W(x, y, z) satisfies Eq. (63), we get

02
cidE P

dt
w

=
e

% % (66)

It is necessary to include the loss by radiation which are due to, in the first place, mirrors
imperfections. We do that by introducing a term κẼ  in the left hand side, so the field equation
becomes
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w

+ k =
e

% % % (67)

The equation for polarization is obtained comparing Eqs. (49) and (65). It results
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r w w
m

(68)

which introduced in Eq. (59), and after multiplying both sides with W*exp(-iωct) and integrat‐
ing over the entire volume (mode) of the cavity, leads to

2
12

12 0( ( ))c
idP i P EN

dt
m

+ g + w -w =
% % %

h
(69)

where, in the left hand side, we introduced the first term from (64) and where N represents the
inversion of population from the volume occupied by the cavity mode, defined by the relation

22 11( )aN W WdV
N

W WdV

*

*

r - r
= ò

ò
(70)

We then introduce the relations for the field and polarization (64) and (65) into the equation
for the inversion (61). Using the approximation Ṗ = iωcP, neglecting the rapidly varying terms
(which contain exp (±2iωct)), multiplying by WW* and integrating over the volume of the cavity,
we get

0
11

2
( ) ( )e iAN N N E P EP

t
* *¶

+ - = -
¶

% % % %
h

g (71)

where N is given by Eq. (70). We consider ωc/ω0 = 1, and note

2

0

( )aN W W dV
A

W WdV

*

*
= ò

ò
(72)

Eqs. (67), (69) and (71) form the Bloch-Maxwell system and describe a unimodal laser oscillator.
If we make the change of variables
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the Bloch-Maxwell equations gets the form of the Lorenz system. They become

a
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where the following notations were used
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In the form (74) the equations make up a complex Lorenz system. This was discussed in detail
in the paper [145]. The complex Lorenz system transforms into the well known real Lorenz
system if the resonance is exact (ωc = ω0 ⇒ Ω = 0) and the phases of the amplitudes Ẽ  and P̃  are
chosen so the functions A and R to be real

( ) a

( ) b

c

dA R A
dt
dR A r n R
dt
dn AR bn
dt

= -
¢

= - -
¢

= -
¢

s

(76)
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The fact that a unimodal laser oscillator is described by the Lorenz system was remarked for
the first time by Haken (Haken, 1975). Therefore, it was demonstrated that the immense variety
of dynamical behaviors, including the chaotic ones, presented by a Lorenz system, must be
expected to occur in a laser. Among the first who reported Lorenz type chaotic behaviors in a
laser, were Weiss and Brock [147].

Equations of the same form are obtained also when one considers a travelling wave laser, such
as laser amplificators where the wave passes only one time the environment, or a circular
unidirectional laser [148,149].

7.5. A chaotic multi-scale cancer-invasion model

From the non–dimensional space-time model (33), discretization was performed by neglecting
all the spatial derivatives resulting in the following simple 4D temporal dynamical system

0 a

b

c

d

dn
dt
df mf
dt
dm n m
dt
dc f n c
dt

=

= -

= -

= - -

h

k s

n w j

(77)

When simulated, the temporal system (77) with the set of parameters (34) exhibits a virtually
linear temporal behavior with almost no coupling between the four concentrations that have
very different quantitative values (all phase plots between the four concentrations, not shown
here, are virtually one-dimensional). To see if a modified version of the system (77) could lead
to a chaotic description of tumor growth, and following the method in [150], four new
parameters, a1, a2, a3, and a4 are introduced. The resulting model is

( )

1

3 2

4

0 a

( ) b

c
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dt
df a m f
dt
dm f a c m a n
dt
dc fm a c n
dt

=

= -

= - - +

= - -

h

k

n j w

(78)

The introduction of the parameters (a1, a2, a3, a4) was motivated by the fact that tumor cell shape
represents a visual manifestation of an underlying balance of forces and chemical reactions
[151]. Specifically, the parameters represent the following quantities: a1 = tumor cell volume
(proliferation/non-proliferation fraction), a2 = glucose level, a3 = number of tumor cells, a4 =
diffusion from the surface (saturation level).
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A tumor is composed of proliferating (P) and quiescent (or non-proliferating) (Q) cells. Tumor
cells shift from class P to class Q as the tumor grows in size [152]. Model dependence on the
ratio of proliferation to non-proliferation is introduced via the first parameter, a1. The discre‐
tization of Eq. (33a) leads to cell density being modeled as a constant in Eq. (78a). Accordingly,
cell density does not play a role in the dynamics. In (78) the cell density is re-introduced into
the dynamics via the cell number, a3. The importance of introducing a3 also appears in
connection with the cyclin-dependent kinase (Cdk) inhibitor p27, the level and activity of
which increase in response to cell density. Levels and activity of Cdk inhibitor p27 also increase
with differentiation following loss of adhesion to the ECM [153].

The ability to estimate the growth pattern of an individual tumor cell type on the basis of
morphological measurements should have general applicability in cellular investigations, cell–
growth kinetics, cell transformation and morphogenesis [154].

Cell spreading alone is conducive to proliferation and increases in DNA synthesis, indicating
that cell morphology is a critical determinant of cell function, at least in the presence of optimal
growth factors and extracellular matrix (ECM) binding [155]. The varying morphology of most
cells can stimulate cell proliferation through integrin-mediated signaling indicating that cell
shape may govern how individual cells will respond to chemical signals [156].

Parameters (a1, a2, a3, a4), introduced in connection with cancer cells morphology and dynamics
could also influence the very important factor chromatin associated with aggressive tumor
phenotype and shorter patient survival time.

For computations, the parameters were set to a1=0.06, a2=0.05, a3=26.5 and a4=40. Small variation
of these chosen values would not affect the qualitative behavior of the new temporal model
(78). Simulations of (78), using the same initial conditions and the same non-dimensional
parameters as before, show chaotic behavior in the form of Lorenz-like strange attractor in the
3D (f−m−c) subspace of the full 4D (n−f−m−c) phase-space (Figs. 13-Figs. 16).

) phase-space (Figs. 13-16). 

 

Figure 13. A 3D Lorenz-like chaotic attractor from the modified tumor growth model (78 b-d). The attractor effectively
couples the MM–concentration f, the MDE–concentration m, and the oxygen concentration c in a mask–like fashion.
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Fig. 14  The m  f phase plot of the 3D attractor. 

Figure 14. The m − f phase plot of the 3D attractor.

 
 

 
 

Figure 15. The m − c phase plot of the 3D attractor.

 

 
 

Figure 16. The f − c phase plot of the 3D attractor.
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The space-time system of rate PDEs corresponding to the system in (33) provides the following
multi-scale cancer invasion model
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( )

2

1

2
2 3

2
4

a

( ) b

c

d

n

m

c

n d n n f
t
f a m f
t
m d m a kn f a c m
t
c d c fm n a c
t

¶
= Ñ - Ñ × Ñ

¶
¶

= -
¶
¶

= Ñ + + - -
¶
¶

= Ñ + - -
¶

r

h

n w j

(79)

The new tumor–growth model (79) retains all the qualities of the original model (33) plus
includes the temporal chaotic ‘butterfly’–attractor. This chaotic behavior may be a more
realistic view on the tumor growth, including stochastic–like long–term unpredictability and
uncontrollability, as well as sensitive dependence of a tumor growth on its initial conditions.

Now, if we compare (78) with (76) and make a one-to-one correspondence between these two
systems of equations, we see that A which is the electric field amplitude corresponds to f, the
MM concentration, R which is the polarization amplitude corresponds to m, the MDE concen‐
tration and n the inversion of population corresponds to c, the oxygen concentration. Since
both systems, the laser and the tumor invasion can be written in the form of a Lorenz system,
we can suppose that the metastatic cancer cells moving through the systemic circulation form
a coherent wave, i.e. a particular type of chemically pumped (since it may obtain its energy
from chemical reactions) laser with oxygen. In the following section we show moreover, that
this coherent wave can be identified with a travelling wave laser with oxygen.

7.6. Travelling waves in the multiscale diffusion cancer-invasion model

Let us write the system (28) again. We assume the model refers to the the averaged behavior
of the tumor cells in the direction of invasion only and ignores variations in a plane normal to
the direction of invasion.

Invasive cells. Since in their experiments Aznavoorian et al. [157] reported minimal chemoki‐
netic movement, a key feature of the following model is the absence of the term for random
cell motility. Also, we introduce a term of increased proliferation of malignant cells relative to
normal cells, F(n), which will be initially modeled as a logistic type growth of the form k1 n (k2

− n) which has been shown [158], in order for us to describe adequately the growth of human
tumors grown [159].

Extracellular matrix. The motility of extracellular matrix elements, unlike the one of malignant
cells and oxygen, is negligible due to the fact that these elements are much longer than cells.
The dynamics of connective tissue can therefore be modeled as a simple passive degradation
by the activity of the tissue proteases; this proteolysis can now be described by −G(f, m), since
it depends on the amount of collagen f still present as well as on the protease m.
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Proteases. Proteases generation is narrowly confined to the interface invading tumor and
receding connective tissue interface. In some cases it is possible to localize the interstitial
collagenase production to the stromal fibroblasts immediately adjacent to the site of tumor
invasion, possibly leading to the fact that invasive cells release a stimulus for induction of
interstitial collagenase by fibroblasts. Nabeshima et al. [160] managed to sequence a tumor cell
derived collagenase stimulatory factor. Protease generation located only at the invading front
can be explained however in other ways. In their work, Xie et al. [161] have revealed that the
induction of 92-kd type IV collagenase activity in cultures of A431 human epidermoid
carcinoma cells is density dependent. They showed that only dividing cells stained positive
when treated with anti-MMP antibodies and as a consequence only noncontact-inhibited
tumor cells produce protease. Many proteases are predominantly membrane bound (e.g.
uroplasminogen activator), but even when the protease is secreted into the extracellular space,
activation occurs only on the cell surface, so as a result the behavior closely resembles that for
membrane bound proteases [162]. Therefore protease diffusion in the model is not included.
We must then define the function H(n, f) to represent the dependence of this tightly regulated
protease production on the local concentrations of the melanoma cells and collagen. In addition
we assume that the protease decays linearly, with half-life K.

Oxygen. As in the original model, we presuppose it diffuses into the MM, decays naturally, is
consumed by the tumor and for simplicity, oxygen production is proportional to the MM
density. Therefore, we introduce the function I(n, f) and c decays linearly, with half-life Λ. The
parameter c does not appear anywhere else in the system, so this equation will be easily
separated.

Combining all of the above, we are now ready to write the model as

}

}
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(80)

where F, G, H and I are functions of n, f and m. Compared to previous work on the modeling
of cell movement, this model is unusual in that there is no cellular diffusion. This case has been
considered previously [163] in the very different context of cellular aggregation, where they
obtained conditions for blow-up in the absence of cell kinetics.

Before proceeding further, we must eliminate m from the equations as follows. The time scales
associated with protease production and protease decay are much shorter than a typical
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timescale for the invading cells. Hence writing H (n, f )= K H̄ (n, f ), where we assume K>>1,
and multiplying through Eq. (80c) by the small parameter K−1, we deduce that to leading order
m = H̄ (n, f ). Henceforth no reference to m is needed: this expression may be used to eliminate
m from Eqs. (80a) and (80b). In the same way, writing I ( f , n)=ΛĪ ( f , n), assuming Λ >> 1 and
multiplying through Eq. (80d) by the small parameter Λ−1, we deduce that to leading order
c = Ī ( f , n). This type of quasi-steady state assumption is a common one in enzyme kinetics
[164], and numerical simulations of the four equations (80a-d) are in good accordance with the
simplified system of two equations; a strong point of the two equation case is that it is amenable
to detailed mathematical analysis.

We examine the model using the simple functional forms

1 2
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6 7
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( , ) , b
( , ) , c

( , ) d

F n k n k n
G f m k mf
H n f k nf
I f n k f k n

= -
=
=

= -

(81)

7.7. Nondimensionalization

After making the substitutions for F, G, H and I from (81) into equations (80a-d) and eliminating
m using m = H(n, f) and c using c = I(f, n) we nondimensionalize the resulting equations using
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3 1
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Dropping tildes for notational convenience then gives rise to the system
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(82)

7.8. Spatially homogeneous system

Setting ∂/∂x = 0 in (82a) we note that the spatially homogeneous system has two steady states:

i. n = 0, f arbitrary − this is a continuum of (unstable) steady states parameterized by
the (variable) amount of connective tissue in different tissues;

ii. n = 1, f = 0 − this (stable) steady state corresponds to complete replacement of the
normal tissue by invading malignant cells.

With ∂/∂x = 0, (82a) and (82b) can be solved explicitly giving
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where c1 and c2 are arbitrary constants. The behavior as t →  ∞ shows that n →  1 and f →  0,
hence justifying our classification of the steady state (n, f) = (1, 0) as stable.

7.9. Travelling wave analysis

The invasion process should normally correspond to the travelling wave solutions of the model
(82a) and (82b) with the normal tissue steady state n = 0 ahead of the wave and the fully
malignant state n = 1, f = 0 behind the wave. This fact is verified by numerical solutions of (82a)
and (82b), which are not detailed here. These travelling wave solutions can be studied
analytically using the travelling wave differential equations. We look for constant shape
travelling wave front solutions of (82a) and (82b) by setting

( , ) ( ), a
( , ) ( ), b
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n x t N z
f x t F z
z x t

=
=

= -x
(84)

where ξ is the positive wave speed which has to be determined. When solutions of the type
(84) exist, they represent travelling waves moving in the positive x - direction. Substitution of
(84) into (82a) and (82b) followed by simple algebraic manipulation gives
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The analysis of (85a,b) involves the study of the (N, F) phase plane. Since we are looking for
travelling waves connecting (1, 0) and (0, F̂ ) in the (N, F) phase plane we look for solutions of
(85a,b) with boundary conditions

( ) 1, a
( ) 0, b
( ) 0, c

ˆ( ) , d

N
F
N
F F

-¥ =
-¥ =
¥ =

¥ =

(86)

which requires (1, 0) to have an unstable manifold while (0, F̂ ) must have a stable manifold.
In order to study this we look at the stability of the system (85a,b).

Implications of the “Subquantum Level” in Carcinogenesis and Tumor Progression via Scale Relativity Theory
http://dx.doi.org/10.5772/59233

445



7.10. Stability analysis

The steady states (N0, F0) of (85a) and (85b) are (0, F̂ ) and (1, 0), where F̂  represents a steady
states continuum. We study their stability by analyzing the eigenvalues of the stability matrix
linearized about the steady states. The eigenvalues about (0, F̂ ) are −1/ξ and 0. The corre‐
sponding eigenvectors are (1, − F̂ ) and (0, 1). The negative eigenvalue shows that there is a
stable manifold along (1, − F̂ ). The zero eigenvalue represents translations along the steady
states continuum.

The eigenvalues about (1, 0) are 1/ξ and 0. The eigenvector corresponding to 1/ξ is (1, 0)
and represents  movement  along  the  N  axis.  The  eigenvector  corresponding  to  the  zero
eigenvalue is (0, 1) which is in the direction normal to the N  axis. The trajectory leaving
this steady state leaves along the eigenvector corresponding to the zero eigenvalue of the
linearized system, as shown by the numerical solutions of (85a,b). This zero eigenvalue is
a result of (85b). In order to get a more detailed and clear image of the behavior close to
(1,  0)  we  must  look  at  the  nonlinear  terms  in  (85b).  One  way  to  do  this  is  to  use  the
techniques of the centre manifold theory which shows that as z →  - ∞, N(z) approaches 1
exponentially while F(z) tends zero as z−1.

The existence of an unstable manifold about (0, F̂ ) as z →  ∞ and a stable centre manifold about
(1, 0) as z →  −∞ is consistent with the existence of a travelling wave orbit connecting the two
steady states.

8. Conclusions

1. Cancer cannot be reduced to simple mathematical principles. Its irregular mode of
carcinogenesis, erratic tumor growth, variable response to tumoricidal agents, and less-
known metastatic patterns constitute highly variable clinical behavior. Characterizing this
process requires an accurate understanding of tumor cells and host tissues interactions
and ultimately determines prognosis. Applying time-tested and evolving mathematical
methods to oncology may provide new methods, with inherent advantages, for the
description of tumor behavior, selection of therapeutic modes, prediction of metastatic
patterns, and the defining of an inclusive basis for prognostication. Mathematicians
describe equations that define tumor growth and behavior, whereas surgeons actively
deal with biological processes. Mathematics in oncology applies these principles to clinical
settings.

2. The main conclusions of this work are as follows:

i. mathematics of cancer proves to be chaotic and highly non-linear, justifying the
use of space(-time) non-differentiability as a starting base model;

ii. a chaotic multi-scale cancer-invasion model is manufactured, which embeds a
Lorenz attractor in its solutions;
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iii. since laser can be expressed as a Lorenz system, we may assume some corre‐
spondences between the laser and the above mentioned chaotic multi-scale
cancer-invasion model;

iv. the basic model for solid tumor growth admits a travelling wave solution;

v. we suggest that metastatic tumor cells which move through the systemic
circulation are similar to a coherent wave, i.e. a travelling wave chemically
pumped type laser with oxygen;

vi. we assume the extracellular matrix and in particular, the tumor microenviron‐
ment are non-differential media endowed with holographic properties (capacity
to memorize, interference abilities and source of forces);

vii. the two well-known phenomena: tumor self-seeding by CTC and hypoxia, in our
opinion, both support the idea of complete holography (a hologram which
becomes the very object in the particular case of living organisms).

3. Experimentally testable, mathematics applied in oncology may provide a framework to
determine clinical outcome on a patient-specific basis and increase the growing awareness
that mathematical models help simplify seemingly complex and random tumor behavior.
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