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1. Introduction

Neurotransmitters,  which  connect  neurons  with  each  other,  have  key  roles  in  normal
development of brain, memory, motor activity and behavior regulation [1]. Based on these
knowledge,  neurotransmitter  system  dysfunction  thought  to  be  the  cause  of  Autism
Spectrum  Disorder  (ASD),  by  affecting  neuronal  cell  migration,  differentiation  and
synaptogenesis and eventually developmental processes of the brain [2, 3]. In pathophysi‐
ology of  ASD many neurotransmitter  systems has been investigated and dysfunction of
these systems has been shown to be responsible. In the literature, neurotransmitters that
are most commonly associated with the pathogenesis of ASD are, GABAergic, glutamater‐
gic and serotonergic systems [4].

2. GABA

In order to maintain function and homeostasis of Central Nervous System (CNS) the balance
between excitation and inhibition of neurons is very important. Main inhibitory neurotrans‐
mitter in the brain is gamma amino butyric acid (GABA) [5]. GABA is synthesized from
glutamate  by  the  enzyme glutamic  acid  decarbosilase  (GAD)  [6].  This  enzyme has  two
isoforms known as GAD67 and GAD65, these are encoded by GAD1 and GAD2 gene. These
enzymes different from each other in terms of the intracellular localization, expression, and
enzymatic activity [7]. After GABA sythesized, it is taken to the vesicle by vesicular GABA
transporter  (VGATs)  [8].  GABA is  released to  synaptic  space  under  influence  of  Action
Potential (AP) and binds to the GABAA and GABAC iyonotrophic receptors or metabotrop‐
ic GABAB receptors [9]. The activity of GABA that is released to the synaptic space is ended
by GABA transporters which are located at cell membrane (GAT) [10]. Finally GABA that
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is taken to the inside cell  furtherly degrades by the transaminase or succinate semialde‐
hide dehidrogenase enzymes [9].

GABA has a  key role  in  the regulation of  early developmental  stages of  cell  migration,
neuronal  differentiation and stages of  maturation [11].  Besides,  formation of  GABAergic
system has a critical role in migration of GABAergic neurons and formation of glutamer‐
gic  system  mediated  excitatory  processes  that  regulate  cortical  inhibitory  system  [12].
Therefore,  it  is  not  suprising  that  especially  in  ASD  and  in  many  neurodevelopmental
disorders  GABAergic  system  is  the  main  responsible  [13,  14].  In  addition,  the  high
prevalence of epilepsy in patients with autism have made it  worth to investigate GABA
neurotransmitter system in individuals who has ASD [15].

Neurochemical abnormality that postulated to be associated with pathophysiology of ASD is
the reduction in the expression of GAD65 and GAD67 which cause suppression of GABAergic
inhibition [16]. Fatemi and his colleagues [17], in the cerebellum and parietal cortex of patients
has shown significantly decrease in two isoforms of the rate-limiting enzyme which are
responsible for the conversion of glutamate to GABA. Detection of low platelet GABA levels
in children with ASD [18] and postmortem studies that illustrtaed significant reduction in
GABAA and GABAB receptor subunit in various brain regions [19, 20] support the widespread
dysfunction of GABAergic system in patients with ASD. Reduced production or signaling of
GABA cause hyperexcitability state and leads to cognitive dysfunction [21]. Deletional
mutations of genes encoded by chromosome 15q11-q13 which is some of the GABAA receptor
subtype unites (GABRB3, GABRA5 and GABRG3) might be cause of reduction in GABAergic
transmission, and these mutations have been suggested to be a risk factor ASD [14]. Also, many
of the candidate genes associated with ASD are expressed in interneurons [22]. Antiepileptic
agents, especially benzodiazepines has been used in ASD and epilepsy coexisted patients and
they have shown to improve socialization and communication skills, though, in some cases,
they lead to increased anxiety and aggression, because of this, the information mentioned
above is not clear yet [23,24]. Lemonier and Ben-Ari [25] sugeested that the inhibition of Na /
K / Cl transporter (NKCC1) lead intracellular increased Cl levels, so the GABAergic transmis‐
sion will change depolarization to the hyperpolarization and in five ASD cases they get positive
results after the treatment with NKCC1 inihbitor bumetanide. Then they carried out double
blind randomized controlled clinical trial of bumetanide for treatment of ASD for 3 months of
period in 54 patients, the results has shown to provide a significant improvement of ASD
symptoms [26]. In utero exposure to valproate in mice model, has caused dissappearance of
swicth between GABA excitation / inhibition and this problem has shown to lead the devel‐
opment of chronic chlorine deficits and autistic-like behavior [27]. Ion channels mutated mouse
model which led to the reduced GABAergic transmission, and the corelation between ASD
symptoms and reduced GABAergic transmission level and with benzodiazepine treatment
autistic-like behavior to has shown to decrease [28].

As a result of animal model publications and studies conducted in patients with ASD has
confirmed the hypothesis of "decreased GABAergic transmission in ASD patients". In future
studies, to develop a new therapeutic agents, and to even prevent the disease focus should be
directed on the GABA neurotransmitter system.
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3. Glutamate

Glutamate is essential excitatory neurotransmitter of the central nervous system. It is synthe‐
sized from glutamine via glutaminase enzyme. There are two types which are iyontropic and
metabotropic receptors. Metabotropic receptors (mGluR) are coupled with G protein and
within the cell according to signaling pathways they divided 3 into subtypes: Group I (mGluR1
and mGluR5), group II (mGluR2 and mGluR3), Group III (mGluR4 and mGluR6-8). Group I
works through activation of phospholipase C whereas Group II and Group III works through
decreasing cyclic AMP level [29]. Ionotropic receptors which are coupled with ion-channel,
have 3 sub-types: N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole‐
propionic acid (AMPA) and kainate receptors. Kainat receptors located presynaptically at the
hippocampus, stimulation of them reduce glutamatergic transmission [30]. Induction of
AMPA receptors, these are associated with learning and memory, lead to the long-term
potentiatio (LTP) and long-term depressio of (LTD) [31]. High levels of glutamate leading to
overstimulation of NMDA receptors and cause a high amount of calcium influx, which is main
responsible for excitotoxicity lead to the neuronal damage. Therefore, optimization of the level
of glutamate in the synaptic cleft is critical. To protect post-synaptic neurons from excitotoxic
effect the neuronal glutamate transporters which reside at the presynaptic membrane take
back glutamate into cell from synaptic cleft. In final stage, glutamate is destroyed with GAD
[1]. Balance between excitation / inhibition is crucial for synaptogenesis and plasticity,
especially in first 3 years of life [32]. Blockade of NMDA receptors in the prenatal period
initiates apoptosis in neurons [1].

From this point, glutamate plays a central role in shaping the architecture of the brain. Cell
migration, maturation and developmental stages, such as synaptogenesis and neuroplastisic‐
ity is accomplished with the optimum glutamat transmission level [33, 34]. At the same time
it is directly associated with cognitive processes such as memory and learning [35].

Glutamate receptors associated with ASD are highly expressed in the hippocampus and
cerebellum [36]. For these reasons, the role of glutamatergic system in patiets with ASD has
been substantially investigated, two opposite hypotheses regarding the role of this system
have been proposed [37]. First hypotheses of ASD has been proposed hypoglutamatergic state
[38, 39, 40], the second postulated the depletion of GABAergic inhibition excitation / inhibition
rate which eventually lead to the hyperglutamatergic state [41, 42, 43]. Consistent with the
hypothesis suggested that ASD is hypoglutamatergic disorder, in 1998 Carlsson has postulated
decrease in glutamate signaling lead to activation of receptors at the cortical GABA interneur‐
ons and this state cause significant depression in excitator glutamate circuit [38, 44].

Other supportive evidence is hypoglutamatergic state in mouse models caused similiar
presentation to ASD including inability to change behavior paradigm, limitation in habits and
behavior [45] In a postmortem study patients with ASD has shown significant decrease in
AMPA type 2 and 3 in cerebellum tissue [40].

Another hypothesis that might be surrogate to explain ASD is hypoglutamatergic state and
associated cortical tissue hyperexcitability in spesific cortical areas. Some studies has demon‐
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strated higher serum glutamate levels in individuals with autism [46]. Increased glutamate level
probably connected with diminished GAD enzyme level [47, 48, 49]. This diminish also explain
reduction in GABA transmission [50]. First study was done by Shimmura has illustrated higher
serum glutamate levels and lower glutamine levels [51]. Secondly Shimmura et al. [52] has done
another study they researched brain tissue from 7 postmortem ASD patients, they found higher
levels of glutamate and glutamine levels at anterior cingulate cortex, interstingly levlels of
glutaminase, glutamine synthase, and GAD were normal. As mentioned above ASD patients
have high incidence of epilepsy, this is due to increase in glutamatergic activity [53, 54].

Animal models and conducted clinical studies in ASD subjects support hyperglutamatergic
hypothesis. Silverman et al. [55] is conducted a study on ASD core symptoms observed mice
model and found that GRN-529 (allosteric modulators of mGluR5 receptor) ameliorated all
core symptoms of ASD. Another study conducted with AMPA receptor agonist (Ampakin)
relieved symptoms of respiratory system on mice model with Rett syndrome [56]. Lamotrigine,
which reduce glutamate transmission, has improved communication skills, socialization and
behavior problems in 28 children diagnosed with ASD [57]. Ketamine, an NMDA receptor
antagonist, has been shown to have a positive impact on focused attention in ASD cases [58].

Another NMDA receptor antagonist, memantine, significant improvement was observed on
learning, language skills and in the areas of socialization in patients with ASD [59]. Recently,
a randomized controlled study carried out, the memantine and risperidone receiving group
were compared to placebo and risperidone receiving group, at the 10th week of treatment,
memantine and risperidone received group better recovered compared to only risperidone
received group in terms of the irritability, stereotypies and hyperactivity symptoms [60].
Recently, non-invasive brain imaging techniques such as magnetic resonance spectroscopy
has enabled measurment of glutamate levels in brain tissue. Since first study was published
in 2006 to date there were 15 studies done and conflicting results have been obtained [37]. In
some studies, the anterior cingulate cortex [61] and auditory cortex [62] areas glutamate levels
was increased compared to healthy controls, while in others there was no difference, and in
the rest lower glutamate levels was observed [63, 64].

Some researchers thought these two hypotheses related to glutamatergic system are not
completely opposite, some spesific cortical areas has increased excitatory / inhibitory ratio
whereas in other regions, this ratio could turn opposite [44].

As a result, it is not clear yet whether the ASD individuals hyper or hypoglutamatergic, but it
is clear that there is dysfunction in the glutamatergic system. New investigations has focused
more in hyper-glutamatergic state and efforts are directed at glutamate receptor antagonismin
order to develop new therapeutic agents. A better understanding of the glutamatergic system
agents in the future will contribute to enlight ASD pathogenesis.

4. Serotonin

Serotonin is a neuromodulator which acts as a developmental signal [65]. Serotonin is
synthesized by the enzyme triptophanhidroksilase which convert triptpohan to 5-hydroxy-
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tryptophan, and decarboksilation at the end [66]. Serotonin neurotransmitter system has
critical role in the regulation of crucial steps of neuronal development such as cell proliferation,
differentiation, migration, apoptosis synaptogenesis, neuronal and glial development [67, 68].
Serotonin system in the prefrontal cortex and temporal cortex regulates GABAergic inhibition,
therefore it has played a role in the regulation of many aspects of cognitive functions [69].

Serotonin plays an important role in the development of social skills during gestational period
and early childhood. Inadequate stimulation of serotonin in the early stages of life, can lead to
the unpreventable abnormalities in serotonin metabolism in subsequent period of life. These
defect may cause permanent problems in serotonin metabolism in people who have been
deprived serotonin effects necessary for the brains especially early developmental stages of
life. This is why, adequate levels of serotonin are necessary for the development of close
relationships and social skills in the early stages of life [70]. Social skills and behavior have
been shown to be associated with hippocampal neurogenesis in ASD individuals and because
of that hippocampal abnormalities are found frequently [71]. Serotonin play a central regu‐
lating role in serotonin dependent neurogenesis activity in the hippocampus [72].

Pathophysiology of ASD has two main hypothesis for serotonin neurotransmitter systems, just
like glutamate hypothesis. One widely accepted for a long time and confirmed for many times
is hyperserotonin state and while the other one is hyposerotonin hypothesis which became
prominent in recent years [66]. Two main findings of hyperserotonin hypothesis in patients
with ASD are increased blood serotonin levels (my hiperserotone) and decreased brain
serotonin levels [66]. The presence of hyperserotonemia in 25 to 50% of individuals with ASD
is important to showing they may have abnormalities in the serotonergic pathway [73, 74,75].

Furthermore, first-degree relatives of individuals with ASD found to have hyperserotonemia,
as well as parents of these kids more often showed the presence of serotonin associated
psychiatric disorders, such as depression and obsessive-compulsive disorder [74, 76]. Other
supportive evidence, brain serotonin level decreased and exacerbation of many repetitive
behavior was observed (such as spinning, stepping, self-hit and shoot) with tryptophan poor
diet (low-tryptophan diet) [77]. Serum levels of tryptophan to large neutral amino acid ratio
was shown to be decreased in children with ASD. This rate is an indicative of presence of
tryptophan for serotonin synthesis in the brain and this lower ratio demonstrate low trypto‐
phan usability which might suggest one of the mechanisms associated with serotonergic
dysfunction in ASD [78]. Another study demonstrated, after L-5-hydroxytryptophan admin‐
istration young people with ASD, their blood serotonin levels increased, whereas in control
group no difference was seen [79].

Severity of at least one specific behavioral problem in ASD is reported to be associated with
5HT1D  receptor  sensitivity  [80].  Various  studies  have  reported  controversial  results
regarding association of serotonin transporter gene in ASD. In contrast, in accordance with
the data regarding the transfer of serotonin transporter gene polymorphic alleles associat‐
ed with the findings of the degree of the social and communicative deficits, these alleles
instead of being risk factor for ASD they might change the severity of clinical presenta‐
tion in autistic children [75].
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Shown correlation between ASD and serotonin transporter gene and found mutations in genes
encode rate-limiting enzyme in the catabolism of L-tryptophan such as 2,3 dioxygenase gene
is thought to be responsible for increased serotonin levels [81]. There might be defect in the
development of the serotonergic system in patients with ASD. Normally, the serotonin
neurotransmitter system follows a pattern of age-related development, for example, develop‐
mental studies of serotonin receptor binding in monkeys showed that increment during
infancy and throughout childhood, a prepubertal peak, and eventually slowly reduction
during adolescence and early adulthood [82]. In humans at 6 year of age serotonin receptor
binding is higher than neonatal period or 13-14 year of age [83]. This dynamic changes are
impaired in ASD, at the beginning of childhood low serotonin levels are observed compared
to normal baseline, but steadily increased from 2 to 15 years of age and reaches higher than
adult levels [84, 85]. In various animal models when effect of higher levels of serotonin
investigated particılarly in the development of somatosensory system, the deterioration in the
formation of thalamo-cortical sensory circuits were observed [86]. Recently "ASD is a hypo‐
serotonergic condition" hypothesis is worth to discuss. In a study of volunteer postmortem
brain tissue of ASD patients examined, and the increase in number of serotonergic axons were
observed [87].

This situation cannot be explained by the hypothesis of compensatory mechanisms which
expected to result reduction of serotonergic axons in hyperserotonergic state [88]. In men with
ASD, in one side of the brain of frontal region and thalamus, typically synthesis of serotonin
was reduced, in opposite side of the brain of cerebellum, and dentate nucleus serotonin has
been shown to be increased [70].

Several PET and SPECT studies in individuals with ASD has shown serotonin transporter
binding amount decreased significantly in various brain regions (frontal cortex, cingulate,
thalamus, etc..) [89, 90]. Other study was exhibited that low levels of blood serotonin in mothers
of children with ASD compared to normal developing children's mother [91]. In another study,
individuals with ASD were shown to have low levels of gene responsible for synthesis of
serotonin [92]. Serotonergic drugs, the main symptoms of ASD respond less to treatment, but
some are partially effective in the symptomatic treatment of patients with autism. These drugs
include selective serotonin reuptake inhibitors (selective serotonin reuptake inhibitör=SSRI),
5-HT 2A receptor antagonists, tricyclic antidepressants and receptor antagonists (dopamin/5-
HT) mix.

Mechanism of action of these treatments are unknown, but they are thought to act on the
developmental defects in serotonergic pathways such as serotonin synthesis, catabolism, and
transport-related dynamic abnormalities [93, 94].

As a result, the highest level of evidence for ASD relationship with monoamines is the
serotonergic system. Hyperserotonemia in peripheral blood in individuals with ASD, despite
the presence of opposite results, has been shown to be present in many studies. Low levels of
serotonin in the brain tissue is the common finding of hyposerotonergic and hyperserotonergic
hypothesis. Future studies will enlight reson for lower serotonin levels in the brain tissue and
will open new horizons both for diagnosis and treatment.

Autism Spectrum Disorder - Recent Advances20



5. Catecholamines

Evidence for the relationship of dopamine and norepinephrine with ASD was gathered from
the studies reported decrease in DBH (Dopamine B Hydroxilase) activity and increased serum
norepinephrine levels in children with autism and in their parents [95]. Findings increased
catecholamine levels of the blood, urine, and cerebrospinal fluid in children with ASD [96,
97] as well as evidences sugested abnormal dopaminergic activity in the medial prefrontal
cortex proposed abnormal cathecolaminergic activity [98]. Another supportive study has
shown that, patients with ASD have increased urinary homovalinic acid level which is a
degradation product of dopamine [99].

Robinson et al [100] demonstrated, mothers of children with ASD has low serum DBH levels
and this interpreted to cause possible risk factor for ASD by creating a non-ideal intrauterine
environment (leading to reduced norepinephrine and increased levels of dopamine). Study
was done by using positron emission tomography (PET) in high-functioning ASD individuals
has enligthened that increased activity of dopamine transporter (DAT) at the orbitofontal
cortex region [89]. In a more detail study, Neale BM and his colleagues have found a de novo
mutation of DAT gene (SLC6A3] in individuals with ASD [101].

6. Acetylcholine

Chemical and histochemical studies in the brains of individuals with ASD has shown loss of
nicotinic receptors, in addition to that basal forebrain cholinergic neurons have been reported
to be abnormally large and surplus [102]. A postmortem investigation of parietal neocortex
showed reduced number of neuronal α-4 and β-2 nicotinic acetylcholine receptor (nAChR)
subunit [103]. A while decreased cerebellar α-3/α-4 / β-2 nAChR ligand binding was detected,
α-7 receptor subunit was exhibited compensatory increase [104].

Another study showed reduction in the expression of α-4 nAChR subunit  in the frontal
cortex  whereas  expression of  α-4  nAChR subunit  was  found to  increase  in  the  cerebel‐
lum [105]. In another study, the α-7 nAChR subunit was determined to decreas especial‐
ly in paraventricular nucleus and nucleus reuniens [106]. Postmortem samples taken from
ASD individuals demonstrated significantly decreased α-7 receptor mRNA levels in frontal
cortex [107]

Brain samples of cerebral cortex and basal forebrain choline acetyltransferase and acetylcho‐
linesterase enzyme activity was measured, but no significant relationship was found with
ASD.  However,  increased BDNF levels  were  detected which has  affect  on development
and  functions  of  cholinergic  neurons  in  the  basal  forebrain  [103].  Evidence  of  relation‐
ship between ASD and cholinergic  circuits  is  still  weak.  Therefore extensive research in
this area are needed.
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