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1. Introduction

Luminescence is the emission of light that does not cause energy loss from the temperature of
the emitting material. The emission of light occurs because of an excitation in the material and
has different forms like photoluminescence, electroluminescence, thermoluminescence, etc.
Reasonable efficiency, high stability, and easy and economical fabrication methods make light-
emitting devices a good choice for mass production.

This chapter focuses on the luminescent properties of low-dimensional nanostructures and
reviews the principles of luminescence. Different materials for this application and some of
the best-known electroluminescent devices are reviewed. In addition, low-dimensional
nanostructures, a simple method for preparing them, and the development of these structures
for application in light-emitting devices are briefly described.

2. Fundamentals of luminescence

In this part of the chapter, the basis of radiation from solids that produce visible light is
discussed. Luminescence is the emission of light by an excited substance. In order to create
an emission, an electron needs to be excited from the ground state (E,). During transition
of the electron from the excited (E,) to the ground state, a photon is released. In order to
start this transition, we need to stimulate the electron in the excited state. This process is
shown in Figure 1:
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Figure 1. Transition of an electron from excited (E2) to ground (E1) state in a double-state system that results in the
release of a photon.

In semiconductors, the ground state is usually referred to as electrons in the valance band while
excited state electrons are known as the conduction band. Unlike the metals in semiconductors,
these two states are separated by an energy gap called the bandgap (E,). Therefore, a minimum
energy of the bandgap is necessary to excite an electron from the ground to the excited state.
Luminescence from semiconductors can be observed by exciting the electrons to higher states
like the conduction band and subsequent decay to the ground state. There are different
methods of providing the excitation that cause luminescence from a material. Depending on
the excitation origin, there are several types of luminescence such as photoluminescence,
electroluminescence, cathodoluminescence, chemiluminescence, thermoluminescence, etc.
When an electron is promoted from the valance band to the conduction band, a hole will remain
in the valance band [1].

If a semiconductor absorbs the electromagnetic radiation of a photon, an electron in the valance
band can be excited to the conduction band. When the excited electron returns to a lower state,
it causes the radiation of a photon in a process called photoluminescence (PL). When electrical
potential is applied, the conversion of energy from electrical energy into light emission is called
electroluminescence and the device that produces itis called a light-emitting diode (LED). Due
to the narrow nature of the bandgap in elemental semiconductors, they are not suitable
candidates for LEDs. Instead, other semiconductors with wide bandgaps are frequently used
for this application. The term “‘wide bandgap semiconductors’ describes those that exhibit light
in the visible part of the light spectrum and in the shorter wavelengths of ultraviolet.

Compound semiconductors from group III-V (such as IlI-nitrides), group II-VI (such as oxides
and chalcogenides) are the most important types of wide bandgap semiconductors, although
other semiconductors like SiC, Si, and Ge are also studied for light-emitting devices. Figure
2 shows some of the semiconductors that have been used for light-emitting devices. The
materials with small lattice constants have stronger interatomic forces and their outer electrons
are strongly bound to the lattice, which means that such materials have alarge bandgap energy.
By changing the structure and doping, many colors can be provided for LED applications.
While the infra-red and red LEDs have been studied for 40 years, bright blue, violet, and UV
LEDs have been the subjects of research studies in more recent years.

Even more recently, light-emitting devices based on polymer materials have been investigated.
In the next section, polymer and organic light-emitting devices are discussed briefly.
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Figure 2. A selection of semiconductors for light-emitting devices. The area between 2 and 3eV are distinguished for
visible wavelengths.

3. Light-emitting devices

In this section, different types of light-emitting devices and their working principles are
summarized; they are grouped based on the type of material that is applied to create the light
emission.

3.1. Emission from inorganic semiconductors

To provide LEDs with different colors, III-V and II-VI materials like GaAlAs, AlinGaP, InGaN,
AIN, ZnO, and ZnSe are typically used. The p-n junction is situated between two electrodes,
at least one of which should be transparent. Industrial LED applications are highly focused on
white color as a light source and as backlighting for electronic devices. New types of LEDs
with white color have been developed by mixing luminescent materials in three red-green-
blue (RGB) colors. There are two common methods for the generation of white color in LED
devices.

The first method uses an individual combination of red, blue, and green LEDs to mix the
provided colors and produce the white color shown in Figure 3a, while the second is a
combination of different phosphorous materials to generate the white color shown in Figure 3b.
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Figure 3. Mechanism of providing light-emitting diode with white color (a) Combination of three red-green-blue
(RGB) LEDs (b) Mixing of different luminescent materials to generate the white color.

3.2. Emission from small organic molecules

The first emitting organic material was observed by Pope et. al [2] and led researchers to
investigate organic materials as light-emitting devices [3-6]. The working principles of these
devices are similar to normal LEDs with the difference that an organic compound is used as
an emissive layer. Such devices are called OLEDs (organic light-emitting diodes). A typical
OLED consists of at least one emissive layer and one conductive layer which are deposited
between two electrodes (anode and cathode). Like semiconductors, these organic materials
show other conductivity characteristics under an electrical field between two electrodes.
Analogous to p-n junction semiconductors, the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) are regarded as the valance and conduction
bands, respectively, of inorganic semiconductors [7].

Figure 4 shows the basic schematic structure of an OLED, which can also consist of an electron
transport layer and hole transport layer. At the first stages of the fabrication of OLEDs by
Philips, the devices consisted of simple structures of poly(dialkoxy-p-phenylenvinylene)
(dialkoxy—-PPV) that were situated between a metallic electrode and tin-doped indium oxide
(ITO) as the transparent conductive layer [8]. Glass is extensively used as a substrate to
fabricate this type of LED, while polyethylene terephthalate (PET) can also be used for
fabrication of flexible devices [9, 10].

There has been extensive effort to fabricate OLEDs with primary colors that involved studying
different organic materials. H. Fukagawa et. al. [11] reported highly efficient red phosphores-
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Figure 4. The basic schematic structure of an OLED consist of electrodes (cathode and anode), organic luminescence
layer, and transparent conductive material.

cent OLEDs fabricated using platinum complexes as dopants, but most of the studies were
performed using iridium complexes and proposed novel complexes of platinum and a useful
host/dopant combination. Many host/dopant combinations have been investigated in an effort
to provide red OLEDs that show high stability. The optimized device exhibited good color
saturation and high efficiency as well as working with low driving voltage. The lifetime of the
fabricated devices was estimated to be approximately 10,000 hours.

Green OLEDs with high efficiency, using copper complexes, were reported by S. Igawa et. al.
[12]. The copper complexes are an inexpensive emissive choice and exhibit substantial thermal
stability compared to other rare earth metals. They exhibit strong green emission at room
temperature with a wavelength in the range of 523-544 nm. A conventional OLED structure
containing electron and hole transform layers, polymer complex, and electrodes shows the
bright green emission with quantum efficiencies between 11.9% and 17.7%.

The complexes that can provide blue colors are more attractive than the red and green
complexes for application in OLEDs because of their short wavelength emission. Several
organic emissive materials have been used in blue OLEDs. A novel benzofuropyridine
complex was synthesized by Chil Won Lee et. al. [13]. These OLEDs were fabricated with two
different methods of spin-coating and a vacuum-based route. Both devices exhibited an
emission peak at 486 nm, with a strong shoulder peak at 493 nm also observed due to the
thickness of prepared thin films. They achieved high quantum efficiencies between 18.0% and
25.0%, but they did not report the lifetime of their fabricated devices.

By mixing these three main colors, white color can be created with OLEDs. The pioneer
research study for these LEDs was initiated by Kido et al. [14] by mixing three dyes (blue, green
and orange) into the emissive layer to obtain the white color.
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3.3. Emission from large polymer molecules

In addition to small organic molecules, polymers can also be used as an electroluminescent
material. Due to the variety of polymer molecules, there is great variability in the emission
wavelength of polymer light-emitting diodes (PLEDs) [15-17]. Most of the conjugated poly-
mers are soluble in water-based solutions and therefore can be deposited with wet chemical
coating methods like dip-coating, spin-coating, and printing, which makes them highly
suitable for the fabrication of devices on big substrates [18]. Additionally, by using flexible
substrates, flexible devices like displays can be created. However, because of the degradation
of the polymers by oxygen, such devices should be encapsulated and therefore have shorter
lifetimes compared to inorganic LEDs.

A lot of research has been done to increase the stability of PLEDs [19-20]. A. Berntsen et al. [19]
improved the stability of polymer LEDs operating at daylight under ambient conditions. The
lifetime about 5000 hours is obtained and under higher temperatures (70°C), they have one
tenth of this time. Y. Cao et al. [21] applied an ultra-thin alkaline earth metal as electrodes for
PLEDs and increased their stability and invented this method to increase operating life of
PLEDs in which the decay of efficiency and light output is substantially postponed.

Due to the diversity of organic materials, PLEDs can also create different colors from blue to
red in visible wavelengths. Several polymer emitters can provide the three primary colors. The
common approaches to fabricate the white light OLEDs include doping with small fluorescent
or phosphorescent combinations, polymer blending, fabrication of devices with multiple
emissive layers, and synthesize a single polymer that can provide the white color [22]. In [22],
the authors reported new design techniques for high performance white PLEDs. So far the
external quantum efficiency more than 20% has been obtained for these devices and the total
power efficiency more than 80 Im/W has been achieved. By improving and increasing the
lifetime of these structures, they can be used as energy-saving light sources (for general light,
because of low energy consumption), back light for electronic devices (because of low
thickness), and flat or flexible displays.

3.4. Emission from phosphor particles

Theoretically, the electroluminescence (EL) from phosphor materials is classified into two
groups: injection EL and high field EL. The high-field EL can be further grouped into different
types in terms of the phosphors (powders vs. thin film) and the voltage (DC vs. AC). Due to
the requirements for various applications, injection EL (high intensity lighting-emitting diodes
(LEDs), for example,) have a wide application in liquid crystal displays (LCDs) backlighting
and are entering the lighting market.

Luminescence is the emission of lights that does not derive energy from the heating of emitting
material. Reasonable efficiency, high stability, and an easy and economical fabrication method
make these devices a good choice for mass production. Electroluminescent lamps can be made
by sandwiching a phosphor material between two conductive electrodes. At least one of these
electrodes should be transparent (TCOs like ITO, FTO or AZO layer). An EL lamp consists of
phosphor material; Dielectric layer (e.g. barium titanate with a high dielectric constant to
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increase the electrical field between the electrodes); Conductive layers (e.g. ITO as transparent
layer and silver coating as back contact); Barrier layer to keep phosphor from moisture, and
dust. A schematic structure on an EL lamp is shown in Figure (5).
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Figure 5. Structure of EL lamp.

By applying a high electrical field (provided with an AC voltage through the conductive
electrodes) over the phosphor particles, the electrons will be trapped in the interface layer and
will be tunneled to the conduction band of the phosphor layer. The accelerated electrons by
electrical field (with enough kinetic energies) excite the impurities from the ground state to
excited state. When the electrons come back to their ground state, light is emitted. For this
purpose, the electrons must be able to localize in the ground state; otherwise, having a high
electric field, they do not emit light. The phosphor material for application in EL devices should
be an insulator and contain impurities. It also has to be transparent for the emitted wavelength.

Zinc sulfide is one the most important candidates for phosphor material that have been doped
with different chemical elements like magnesium, manganese, copper, or vanadium to provide
a different range of colors. Due to the simple structure, they can be used for applications in
back-lighting but are still not useful for general light applications.

4. Low dimensional nanostructures

Many physical and chemical properties of materials can be changed effectively by controlling
the size of materials between 1 and 100 nm. In such nanostructures, the finite size can generate
novel optical, electrical, or magnetic properties that cannot be observed in bulk materials. In
other words, the atoms of material on the surface show different properties and therefore by
decreasing the dimensions of a material, the high surface-to-volume ratio enables them to
exhibit new properties.

Nowadays, semiconducting nanostructures have been the subject of great interest due to their
unique optical properties. With more investigation and development into such structures,
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many optoelectronics devices have been produced. Materials with a large surface area-to-
volume ratio can be a good candidate in optoelectronics applications. Applications of devices
based on optical properties can include lasers, solar cells, optical detectors and sensors,
displays, photo-catalysis, imaging and phosphor devices [23-30].

Various methods have been used for the fabrication of nanostructures, like molecular beam
epitaxy (MBE) [31,32], sol-gel [33,34], chemical vapor deposition (CVD) [35,36], lithography
[37,38], physical vapor deposition (PVD) [39], and chemical methods [40-41]. Among these
methods, the low cost and high efficiency technologies have attracted more attention.

In this section, we present a low-cost and industrial method to obtain such nanostructures with
a chemical vapor deposition method by an electrical furnace. In addition, their structural and
optical properties are studied. So far, a large number of methods have been used to synthesize
wide bandgap semiconductors. Some of the currently used methods have problems regarding
high temperature, high vacuum conditions, the necessity of using expensive equipment, and
difficulties with quality or commercialization. The focus of this chapter is on development of
a low-cost method for producing high quality nanostructures with regard to facilities and
experimental conditions.

This method is based on the evaporation of source materials in the hot-zone of a horizontal
electrical furnace, reacting with an active gas and finally transporting on the substrates in cold-
zone of the furnace using a carrier gas. Despite the simplicity of this method, there are a lot of
parameters that can affect a growth mechanism. Among these parameters, the effects of growth
conditions such as synthesis temperature, temperature rate, amount of carrier and active gases,
source chemical materials, and impurities on the structural properties of these nanostructures
are studied.

The variation of these parameters leads us to the systematic modification of one and two
dimensional (1D & 2D) nanostructures such as nanowires, nanorods, nanosaws, nanoden-
drites, nanobelts, and nanosheets. Reasonable emissions of these structures in the blue-green,
violet, and ultra-violet (UV) wavelengths can lead us to produce light emitting devices. Also
the effect of structural properties and impurities are investigated.

A horizontal furnace is used in this experiment, which is divided into two independent zones:
zones (a) and (b), called the hot and cold zones, respectively. Active and carrier gases are
introduced through the tube on one side in order to produce the active gas system and carry
them to the cold zone of the furnace. The other side of the chamber is evacuated using a vacuum
pump. Source materials with the desired molar ratio are inserted into the center of the hot
zone. The substrates can be placed at different distances from the source material in the cold
zone. Before increasing the temperature, the chamber is flashed with inactive gases (like argon)
to remove the residual oxygen from the air. The temperature of the hot zone is increased to,
and kept at, different temperatures for various durations. Finally, a thin layer of synthesized
material is deposited on the substrates in the cold zone. The distance between the source
material and the substrates and also the temperature of the substrates are two important
parameters that should be controlled during the deposition. The schematic setup of this
furnace with a quartz tube is shown in Figure 6.
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Figure 6. The schematic setup for production of low dimensional nanostructures as light emission material.

5. Luminescence from low dimensional materials

Low dimensional materials attract more interest these days for applications as opto-electronic
devices. They have a high surface-to-volume ratio compared to bulk materials and it causes
them to show unique properties. When we talk about the low dimensional materials, they can
be categorized as: two-dimensional (2-D) like thin films and quantum wells, one-dimensional
(1-D) like nanowires, nanorods or quantum wires, and zero dimensional nanostructures (0-D)
like quantum dots. Each category shows interesting optical properties [42]. The emission
behavior of such nanomaterials is much more complicated than the bulk materials.

The optical properties of nanomaterials depend on many parameters like dimensions, size,
shape, temperature, and other variables like dopants and impurities. Even surface character-
istics and the surrounding atmosphere have a strong effect on optical properties of these
materials. So by controlling these properties, one can generate optical devices covering the
whole visible and UV regions of the optical spectrum. The red-shift or blue-shift of photolu-
minescence spectra of semiconductor nanoparticles is one the most famous examples of
changes in optical properties of the materials. In semiconductors, size is the most important
parameter to affect the optical properties.

A.Wolcottet. al [43] studied the optical properties of CdTe quantum dots and the results showed
different emission colors from CdTe quantum dots. The emission of different colors changes
for the particles with different sizes. Increasing the size of the nanoparticles (that were obtained
by changing the refluxing time) causes the emitted light to change from blue to red. Also A.M.
Schwartzberg showed different colors emitted by hollow gold nanospheres. By varying the
diameters and wall thickness, the samples produce different colors from red to violet [44].

Two kinds of wide bandgap semiconductors, such as zinc oxide (ZnO) and aluminum nitride
(AIN), are the main subject of this chapter. These nanostructured wide bandgap semiconduc-
tors show good light emitting properties in blue-green, violet and ultraviolet (UV) wave-
lengths. As we discussed in the last section, by controlling the growth condition in this method,
we can have different nanostructures with various sizes, dimensions, defects, shapes, dopants
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and crystallinities. Changes of the surface-to-volume ratio with size and quantum confinement
effects cause dependency of the optical properties on the size and dimension.

Zn0O is a wide bandgap semiconductor with a direct bandgap of about 3.2 eV at room temper-
ature. Because of the unique optical properties, this material has been used as a suitable
semiconductor for different optical deviceslike UV light emitters, lasers, and detectors. Because
of the wide range of synthesis methods, ZnO can be grown in different shapes and structures
like one or two-dimensional nanostructures. Structure and doping are two important parame-
ters that have a strong effect on optical properties of this material. One of the major aspects of
growth of ZnO is doping of it with different metals to approach an n-type semiconductor.

h

Figure 7. ZnO nanostructures with different shapes to study the effect of shape and size on luminescenct properties
(Reprinted from [45] with permission from Elsevier).
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In the previous work [45] by changing the growth condition, we prepared different ZnO
nanostructures. Nanowires with diameters of 20+5 nm are observed in Figure 7(a). In addition,
as the amount of oxygen in the carrier gas mixture increases, the nanostructures change from
wire structures to nanorods as shown in Figure 7(b). Figures 7(c—e) show the 2D ZnO nanobelts
(with a typical width in the range of 100 to 200 nm), nanodendrites, and nanosheets (typically
10-20 nm in thickness and 1-2 um in width), respectively, grown on the Si substrate.

After the excitation of an electron with an external energy, electrons and holes possess higher
energies and they will recombine together and form an exciton which has a lower energy state.
The released energy from this recombination can result in the emission of photons or Auger
electrons [7]. In photoluminescence, the recombination of electron and hole cause the radiation
of a photon. In semiconductors, these radiations may result from the near band emission
transitions and from the defects in the structures.

To explain this fact, we will return to the PL emission from the nanostructures in Figure 7.
Figure (8) shows the photoluminescence spectra of the crystalline structure at the related spots.
Three main peaks are observed. In addition to an emission in the UV region (A=380 nm), broad
visible emission is observed with two main peaks at ~485 and ~530 nm. The origin of UV
emission is radiation because of the recombination of electrons near or in the conduction band
with a hole near or in the valance band, which is called near band emission. Due to the bandgap
of ZnO (3.37 eV at room temperature), this emission is in the ranges of UV wavelengths. The
visible emission from the ZnO nanostructures has been investigated in many studies [46] and
this green luminescence in ZnO was attributed to oxygen vacancy, zinc vacancies, interstitial
oxygen and zinc atoms, substitution of oxygen at zinc atom positions and donor-acceptor
complexes.

The intensity of emissions is dependent on the nanostructure’s size. The UV emission was
stronger than the visible emission for samples with larger ones. Below a certain size, the
luminescent properties of ZnO nanostructures should be dominated by the properties of the
surface. An enhanced deep-level emission for thinner nanostructures has been observed and
attributed to their larger surface area. As we discussed, the green light emission intensity
progressively increases, in proportion to the UV emission, as the nanostructure dimensions
decreases. This suggests that there are a large number of oxygen vacancies in the nanowires.
Generally, the defects are present at the surface of the ZnO structure. ZnO nanowires with a
small diameter have a higher surface area-to-volume ratio, which results in a high level of
surface defects. Therefore the visible emission intensity increases.

The effect of doping was also investigated on luminescence properties of ZnO nanostrustures.
The ZnO nanostructures grown by this method are doped by only a few percent of copper and
iron as the details are discussed in [45]. The photoluminescence from ZnO:Cu can generally
be similar to pure ZnO nanostructures underlying physical mechanisms as free and defect-
bound excitons, deep and shallow donor-acceptor pair recombinations, and deep-defect
associated emissions. A low-intensity shoulder peak at about 455 nm has also been observed
as shown in Fig. 9(a).
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Figure 8. Photoluminescence spectra of ZnO nanostructure with different shapes and sizes (Reprinted from [45] with
permission from Elsevier).

The recombination of donor-acceptor pairs involving Zn**and Cu'states is known to yield a
blue-green emission. This recombination is responsible for the increased defect luminescence
in the ZnOnanostructure. The peak centered at 455 nm can be attributed to Cu*-Cu‘transitions
where the hole remains localized on the Cu‘center [47,48]. In the case of the introduction of
iron as a dopant, the UV emission band of ZnO has a red shift (from 385 to 485 nm) as well as

the green emission band showing a red shift (from 530 to 542 nm) as shown in Fig. 9(b).
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Figure 9. Photoluminescence spectra of ZnO nanostructure with a few percent of (a) copper (b) iron as dopant (Re-
printed from [45] with permission from Elsevier).
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[II-nitrides are also interesting materials for application as light emitting materials. As another
wide bandgap semiconductor, AIN, with a bandgap of about 6.1 eV at room temperature, will
be introduced. AIN is a direct bandgap semiconductor with a bandgap of about 6.1 eV at room
temperature, the largest among semiconductors. Thus, AIN emitters are expected to be good
candidates for ultraviolet and blue-violet optoelectronics devices [49]. This work emphasizes
novel results on the growth and optical properties of an aluminium nitride (AIN) nanostruc-
ture by direct nitridation. The nitridation process was done in a horizontal tube furnace at
different temperatures by introducing an N, gas flow. Most of the last efforts for synthesizing
AIN nanostructures [50, 51] are performed using ammonia gas as this gas is toxicand corrosive.

Among the synthesis methods for AIN nanowires, the direct nitridation of metallic aluminium
powder has been attractive because of the low cost of raw materials and the simple nitridation
setup. At the beginning of growth, the reaction temperature is higher than the aluminium
melting point, so the Al is in liquid form. These liquid droplets cause the aggregation of
obtaining nanostructures into spherical islands. However, we have overcome this problem by
using ammonium chloride (NH,Cl). The addition of NH,Cl to the starting Al powder produced
many pores because of the decomposition of NH,Cl [52-54]. Therefore, the introduction of
porosity during the synthesis can enhance the nitridation rate because N, gas easily has more
access to the pores, which causes the formation of nanostructures AIN powders with low
agglomeration. Different AIN nanostructures (Figure (10)) were synthesized and analyzed by
scanning electron microscope.

(© (d)

Figure 10. SEM images of AIN nanostructures grown by direct nitridation of aluminium powder. (a, b) AIN nanowires
with diameters less than 50 nm (c) AIN nanotips, and (d) long AIN nanowires with diameters about 1 micrometer.
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The photoluminescence (PL) spectra were obtained by a 325nm He-Cd laser as the excitation
source measured. The results show high intensity light emitting emissions in blue and violet-
blue wavelengths for these structures at room temperature. As shown in Fig (11), a typical PL
spectrum of these nanostructures shows a peak at 450 nm. Photoluminescence properties of
these structures are investigated aiming at the potential application in the field of blue and
violet-blue light emitting diodes (LEDs) [55].

Intensity (a.u.)
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400 400 GO0 oo

Wavelength (nmm

Figure 11. Photoluminescence spectra of AIN nanostructure which shows a broad peak at 450 nm.

6. Conclusions

This chapter was focused on light emitting materials and devices. The working principles of
light emitting devices are discussed and different materials for this application are introduced.
Different types of light emitting devices, including inorganic light emitting diodes (LEDs),
organic light emitting diodes (OLEDs), polymer light emitting diodes (PLEDs), and electro-
luminescence (EL) lamps are compared.

Different types of the inorganic semiconductors from group III-V (such as GaN, AIN), group
II-VI (such as ZnO, ZnS) are the most important wide bandgap semiconductors, for light-
emitting devices. In addition, several organic and polymer complexes that can provide the
main three colors have been used in OLED and PLED deives. Due to the wide applications of
white color LEDs, different methods and different studies for fabrication of these devices are
discussed. Stability of light emitting devices is one the most concerns of the providers. A lot
of research has been done to increase the stability of these structures under ambient conditions.
The lifetime about several thousand hours is obtained. Electroluminescent lamps are other
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applications of light emissive materials. Luminescence is the emission of lights that does not
derive energy from the heating of emitting material. Therefore due to their efficiency and high
stability, these devices are good choices for mass production.

A simple chemical method based on vapor transport is applied for fabrication of semiconduc-
tor nanostructures. Nanostructures with different shapes and structures offer several advan-
tages for light emitting devices and are receiving increasing attention as a light emissive
material to improve the efficiency of the optical devices. These structures could be developed
to overcome the problems for fabrication of UV and blue-violet light emitting devices.

Zn0O is a wide bandgap semiconductor which because of the unique optical properties, has
been used as a useful semiconductor for the optical devices like light emitters, lasers, and
optical detectors. Because of the wide range of synthesis methods, it can be grown in different
shapes and structures from one-dimensional structures like nanowires and nanorods to two
dimensional nanostructures like nanosheets and nanodendrites. AIN with a direct bandgap
semiconductor of 6.1 eV at room temperature, the largest among semiconductors, is one the
most applicable semiconductors for application in light emitting device and the AIN nano-
structures with different shapes and sizes are expected to be good candidates for optoelec-
tronics devices. ZnO and AIN nanostructures are synthesized using a chemical vapor
condensation method and their luminescent properties are investigated at roon temperature.
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