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1. Introduction

Malignant cutaneous melanoma is an aggressive form of skin cancer that affects well over
100,000 individuals world-wide each year. Melanoma results from uncontrolled proliferation
of melanocytes and can occur throughout the body including skin, mucosal surfaces, and the
retina. This chapter will focus on cutaneous melanoma because it is the most common site of
the disease. Cutaneous melanoma has a high association with exposure to UV radiation and
is most commonly found on sun exposed surfaces [5]. If diagnosed in its early stages, resection
of cutaneous melanoma is associated with favorable five-year survival rates. As melanoma
progresses, however, it has a tendency to metastasize beyond its primary site. It expands both
radially and vertically through the skin and eventually spreads throughout the body via
hematogenous or lymphatic routes. Long-term prognosis correlates strongly with the stage of
disease, and after melanoma metastasizes, survival rates markedly decline. In general, five-
year survival rates for metastatic melanoma are under 20%. Thus, early identification and
treatment are essential clinical tools to minimize mortality.

For a variety of reasons, the incidence of melanoma has increased faster than any other cancer
over the last several decades [6] (Figure 1), and the estimated healthcare cost in 2020 is
predicted to be 4.58 billion dollars [7]. Considering the deadly nature of metastatic melanoma
along with the steady increase in incidence throughout the past century, appropriate measures
to prevent the development of the disease are important and will require a more complete
knowledge of the risk factors associated with this disease. This chapter reviews the epidemio-
logic and genetic risk factors associated with the development of malignant cutaneous
melanoma, with an emphasis on mechanisms of melanocyte resistance to UV damage in the
skin.

I NT E C H © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and eproduction in any medium, provided the original work is properly cited.
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Figure 1. Lifetime risk of melanoma has increased in the United States from 1935-2011. (Adapted from [4]).

2. Epidemiology

This section will address the epidemiology of melanoma in reference to risk factors, incidence
and mortality, gender differences, and variations between ethnicities.

2.1. Incidence and mortality

The Surveillance, Epidemiology, and End Results (SEER) database predicts a diagnosis of
melanoma in over 76,000 individuals in the United States for 2014. Though it can affect patients
of any age, melanoma traditionally affects older individuals with an average age at diagnosis
and death of 62 and 69 years respectively. While many cancer incidence rates have plateaued
over the last century, the incidence of melanoma has steadily increased [6]. In the early 1930s,
the lifetime risk of developing melanoma for an American was 1 in 1500, while in 2002, it was
reported to be 1 in 68 [8]. The melanoma incidence rate increased an additional 1.8% per year
between 2002 and 2012, such that 21.3 per 100,000 individuals were diagnosed with melanoma
between 2007 and 2011 [1]. Though some portion of this rise is due to enhanced awareness and
improvements in diagnosis, the causes underlying the increased incidence may be diverse. An
important factor may be that life span has increased during this time period. As melanoma
incidence correlates with age, we would expect more cases in a population of individuals that
live longer [9]. However, chief among the potential contributive factors is increased exposure
to ultraviolet (UV) radiation, either solar or artificial. The popularization of a tanned physique
in Western cultures beginning the early 1900’s has led to intentional exposures to UV. Many
individuals believe they look better, feel healthier, appear younger and are happier with
tanned skin [10]. The desire for UV exposure coupled with increased recreational and occu-
pational opportunities, results in significantly more time devoted to sun exposure or in
artificial tanning beds.
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Although incidence rates have been increasing steadily, melanoma mortality rates have
stabilized over the past 20 years due to advances in medical, surgical and supportive care [11].
The overall five-year survival rate is currently above 90%, likely related to diagnosis at curable
stages for the majority of cases [1]. From 1975 until the 1990’s, the mortality rate climbed 1.9%
per year. From 2006-2010, there were 2.7 deaths per 100,000 individuals, and 9,700 individuals
are predicted to die from melanoma in 2014 [1] (Figure 2). The mortality rate for women has
actually decreased by 0.6% from 1989-2007. The mortality rate for men has increase 0.2% during
the same time frame [1].
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Figure 2. A. Five year relative survival rate for melanoma in the United States from 1975-2009. B. Mortality rate for
melanoma in the United States from 1975-2009 (Adapted from [1]).

2.2. Gender

Melanoma affects men and women differently. Before the age of 40, women are more suscep-
tible to melanoma (1 in 391 women versus 1 in 691 men diagnosed each year), however, after
the age of 40, the rates reverse, and 1 in 35 men will develop melanoma versus 1 in 54 women
[12]. Overall men are more susceptible to melanoma, with 27.7 new cases per 100,000 men
versus 16.7 new cases per 100,000 women [1]. While the mortality rate for women is decreasing,
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it is actually increasing for men [13]. Men account for 60% of deaths due to melanoma [14].
Although both genders are experiencing a rise in melanoma rates, there has been a massive
increase in the incidence rate for women under 40, presumably due to recreational UV
exposure and the popularization of having a tanned complexion [15]. In women between the
ages of 20-29, melanoma is the 2" most common cancer, trailing behind breast cancer [16]. In
fact, there has been a 50% increase in melanoma incidence in young adult women since 1980
such that it is now the leading cause of cancer death among women ages 20 — 25 years old.
Melanoma also is the second-most common cancer in adolescents and young adults (men and
women) between the ages of 15 and 29 years. Melanoma presentation appears to differ
somewhat between genders. In women, melanoma often presents on the extremities while in
men, it most frequently presents on the trunk [17].

2.3. Ethnicity

The incidence, mortality rates, and presentation for melanoma differ markedly by ethnicity
(Figure 3). Caucasians are the most likely to develop melanoma, however the overall five year
survival is lower for African Americans than Caucasians (77% and 91% respectively) [13]. The
initial diagnosis is generally at a later stage in individuals with darker skin pigmentation than
in Caucasians [18] and tends to be a different subtype. Caucasians frequently present with
superficial spreading melanoma while individuals with darker pigmentation often present
with acral lentigenous melanoma[19]. In African Americans, Asians, Filipinos, Indonesians,
and Native Hawaiians, melanoma often presents on areas that are not sun exposed including
the palms and soles of hands and feet respectively, mucous membranes, and nail beds while
melanoma in Caucasians generally presents on sun-exposed areas [20].
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Figure 3. Melanoma incidence rate by ethnicity in the United States from 1975-2011. There is a discrepancy in the inci-
dence rate between the different ethnicities. Ethnicities with fairer complexions have a higher incidence rate than eth-
nicities with darker complexions (Adapted from [1]).
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3. Risk factors

Risk factors for the development of melanoma can be divided into extrinsic and intrinsic factors
and include exposure to UV radiation either via sunlight or indoor tanning salons, medica-

tions, chemical exposures, presence of nevi, family history of cancer, and pigment of skin [21]
(Table 1).

Extrinsic Risk Factors Intrinsic Risk Factors
UV exposure, especially blistering . A family and personal history of
. : History of .
sunburns in childhood, correlates - melanoma and non-melanoma skin
- . Skin Cancer . .
with melanoma risk. cancer increases risk of melanoma
Countries located closer to the A large number of congenital nevi,
- equator with increased sun - nevi with large diameter, and
Ultraviolet ) Nevi . . X
- exposure have a higher melanoma dysplastic nevi are all associated
Radiation o 4 . .
incidence rate with an increased risk
. . Immunosuppressive states and a
Indoor tanning bed use increases . . i
S . Medical past medical history of non-
incidence and mortality rate of - . .
History cutaneous skin cancer increase the
melanoma :
risk of melanoma
Psoralen, UVA.“ght therapy and . Individuals diagnosed with
I neonatal blue light phototherapy Defective .
Medication : . : .| xeroderma pigmentosum cannot
are associated with an increased DNA Repair : :
. repair UV induced DNA damage
risk of melanoma
. . Fair skin, inability to tan, and
. Polyvinyl chloride, heavy metals . . o
Environmental . . . Skin increased susceptibility to UV
and pesticides are associated with . . : !
Exposure . ! Complexion | induced sunburn increase risk for
an increased risk of melanoma melanoma

Table 1. Major melanoma risk factors.
3.1. Extrinsic

3.1.1. Ultraviolet radiation

Ultraviolet radiation, probably the single-most important environmental carcinogen with
respect to melanoma, is found in natural sunlight and in artificial tanning sources. UV energy
is conventionally divided into three wavelengths: UVA (320-400 nm), UVB (290-320 nm), and
UVC (100-280 nm). Each type of UV energy has its own distinctive energy profile, biophysical
characteristics, and effects on biologic tissue. Although solar energy contains all three UV
subtypes, absorption of the higher-energy UV components by atmospheric ozone results in
ambient sunlight being mainly (>90%) UVA and the remainder UVB. Both UVA and UVB are
bioactive and cause DNA damage and cellular injury that contribute to carcinogenesis. In fact,
exposure to UV radiation may be responsible for over 80% of all melanomas [22].

UVA and UVB contribute to the pathogenesis of melanoma via distinct but overlapping
mechanisms [23]. UVA (and to a lesser extent UVB) causes DNA damage indirectly through
the generation of highly reactive free radicals and oxidative injury [24, 25]. Free radicals change
DNA in ways that ultimately affect base-pairing, which can lead to mutation. Oxidation of
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Figure 4. Generation of 6,4-photoproducts and cyclobutane dimers from adjacent pyrimidines. UVB radiation is absor-
bed by thymine and cytosine residues, resulting in the formation of mutagenic photoproducts that contribute to malig-
nancy.

guanine, for example, is well-known to cause formation of 8-oxo-dG which base pairs with A
instead of C; this change leads to transversion point mutationsif notrepaired in a timely manner.
Indeed, some estimate that up to 80% of malignant cutaneous melanomas may result from
indirect DNA damage, highlighting the importance of “lower UV energy” in the pathogene-
sis of melanoma [26]. UVB radiation, in contrast, is higher in energy and directly affects adjacent
pyrimidines in the double helix to cause a photochemical reaction. Through direct absorption
of UVB energy by pyrimidines, two major types of photoproducts are generated: cyclopyrimi-
dine dimers (CPD’s) and 6,4 photoproducts (6,4-PP) [27-30] (Figure 4). Both lesions distort the
DNA double helix and, if left unrepaired, lead to characteristic “UV signature” transition
mutations (G —T and G—C mutations) [30]. It is largely through the identification of these UV
signature mutations that we know that UV is a major risk factor for skin cancer and melano-
ma [31]. Although UVC, the UV component with the highest energy per photon, can cause
substantial damage to cells, the ozone layer absorbs the majority of UVC emitted by the sun,
therefore this componentisnotthoughttobeasignificant contributor tomost cases of melanoma.
Melanomas classically occur on sun exposed skin [32], and exposure to UV radiation corre-
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lates with not only the risk for melanoma [33] but also mortality rates [34]. The correlation
between melanoma risk is particularly strong with the UVA component, providing further
evidence that UVA may be a significant causative factor in melanomagenesis [35].

3.1.1.1. Geographic factors

The global distribution of melanoma also demonstrates the importance of UV radiation in the
pathogenesis of this disease. Countries that are located on latitudes closer to the equator have
increased UV intensity and higher rates of melanoma among fair-skinned persons [4, 36].
Australia and New Zealand, which are near the equator, have the highest incidence of
melanoma in the world with a risk of 1 in 50 individuals [21]. The World Heath Organization
reports that Australia and New Zealand have an age adjusted incidence rate of 35.1 individuals
per 100,000 individuals [2]. The incidence of melanoma in Australia has doubled from
1986-2006 [37]. Norway, despite also having a fair-skinned, UV-sensitive population predom-
inantly of Scandinavian descent, has a relatively low incidence of melanoma, presumably due
toits high latitude (with comparatively weak ambient solar energy) and low UV exposure [38].
High altitudes are also a risk factor for development of melanoma, presumably because UV
strength is higher due to less interference between solar energy and particulate matter present
in the atmosphere [39, 40] (Figure 5).

Although latitude and altitude do play a major role in melanoma risk, skin complexion is
also an important component to explain the variations in melanoma incidence through-
out the world. Central America, despite being closer to the equator than North America
has a significantly lower age adjusted incidence rates (1.5 and 13.8 individuals per 100,000
individuals) presumably due to having a predominantly dark-skinned complexion [2].

3.1.1.2. UV exposure patterns

Intermittent sun exposure confers a higher risk for developing melanoma than continual
exposure [41-43], but the age at which the exposure causes the greatest damage is still
controversial. Some studies suggest that sun exposure for a younger individual is more likely
to be associated with the development of melanoma [44], while others suggest age of exposure
is less important than the cumulative dose of UV [45]. Regardless of age, sunburn is a major
risk factor in the development of melanoma, and the risk doubles with more than 5 sunburns
[45, 46] or one or more blistering sunburns [43].

3.1.1.3. Sunscreen

The effect of sunscreen on melanoma prevalence is also controversial for a variety of reasons.
The widespread use of broad-spectrum sunscreen has not decreased the incidence despite
blocking both UVA and UVB radiation. Early sunscreens were designed to prevent sunburn
and only blocked UVB radiation. Individuals who used UVB blocking sunscreen were able to
stay out in the sun for longer periods of time and were exposed to greater doses of UVA
radiation. A delay may exist between the advent of broad-spectrum sunscreen and its effect
on melanoma incidence due to the latency between sun exposure and development of

9
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Figure 5. Geographical variation in melanoma incidence (A) and mortality (B). Melanoma incidence is highest in coun-
tries populated by fair-skinned persons living in high-UV environments (adapted with permission from [2]).

melanoma. In addition, the use of sunscreen can also promote cellular damage by increasing
the reactive oxygen species [47] and if absorbed past the epidermis, can cause photosensitiza-
tion in melanocytes [48]. Despite some negative effects, the American Society for Clinical
Oncology states that the use of broad-spectrum sunscreen with an SPF of 15 or greater

decreases an individual’s risk of melanoma by up to 50% and should be worn daily to prevent
damage from UV radiation [45, 49].

3.1.1.4. Indoor tanning bed use

There has been an explosive increase in the widespread use of indoor tanning beds since their
invention in the early 1970’s. Over 30 million individuals use indoor tanning salons [50] and
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over 70% are female [51]. Overall, 2-3 million of salon-users are teenagers [52]. At age 17, 35%
of American females admit to use of an artificial tanning device [53]. The prevalence of artificial
tanning is concerning, especially among young adolescents. The earlier tanning begins, the
more potential risk there is for carcinogenesis and malignant transformation. In individuals
between 18-29 years of age, 76% diagnosed with malignant melanoma had previously used
artificial tanning devices [54]. There is a strong positive correlation not only between the use
of indoor tanning beds and the development of melanoma [55] but also with death due to
melanoma [56]. One tanning session increases the chance an individual will develop melanoma
by 20%, and each additional session per year increases risk by another 2% [54]. The Interna-
tional Agency for Research on Cancer classifies UV tanning devices in Group1, most dangerous
oncogenic substances [57]. Among salon establishments, artificial tanning beds vary in their
delivered dose, and the amount of UVA and UVB radiation is unregulated [10] making
artificial tanning incredibly dangerous. State legislative statues vary as to whether minors have
restricted access. Many experts hypothesize that the burgeoning use of artificial tanning salons
over the last three decades may be a major contributing factor to the continued increase in
melanoma incidence.

3.1.2. Medications

Many medications that have great benefit for disease treatment also increase patient suscept-
ibility to cancer. Psoralen and ultraviolet A radiation (PUVA) is an effective treatment for
psoriasis and other dermatologic conditions. Psoralen increases reactivity to UV radiation,
therefore the combination of psoralen and UVA causes a substantial degree of cellular damage.
Patients who receive PUVA have a 10 fold increase in risk of developing melanoma 15 years
after treatment, and the risk increases with number of treatment sessions (>250) and time
following treatments [58].

Neonatal blue light phototherapy (NBLP) is another example of light therapy that may lead
to an increased risk for the development of melanoma. NBLP is a treatment for neonates with
elevated bilirubin levels and risk of kernicterus. The therapy is associated with short term side
effects that are treatable and/or reversible; however, it may also increase the risk of develop-
ment of melanoma in later years. The blue lamps used for treatment generally emit a combi-
nation of blue light and wavelengths in the UVA region of the spectrum [59]. UVA is known
to cause DNA damage as explained above, and some studies have demonstrated that visual
light can also cause damage through increased activity along the cytokine and oxidant
signaling pathways [60]. Reports disagree as to whether exposure to NBLP causes an increase
in nevi number and melanoma susceptibility. Bauer et al. assessed 8112 Caucasian children
and showed no correlation between nevi number and exposure to NBLP [61]. However,
Matichard et al. and Csoma et al. demonstrated that treatment with NBLP correlated with size
of nevus (nevi>2mm in diameter significantly correlated with exposure to NBLP) [62] or with
presence of atypical nevi respectively [63]. A study of twins in 2011 demonstrated that NBLP
treatment correlated with a higher prevalence of both clinically normal and dysplastic nevi
[64] suggesting that NBLP does increase the risk of development of melanoma in adulthood,
and children who receive NBLP should be monitored throughout life.

11
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3.1.3. Heavy metals and chemical exposure

Exposure to heavy metals and certain chemicals are associated with an increased risk of
melanoma, presumably through mutagenic changes to DNA in melanocytes. Fortes and de
Vries suggest that exposure to polycyclic hydrocarbons (for example, individuals who work
in industries associated with petroleum, printing, and electronics), ionizing radiation, poly-
vinyl chloride (a substance present in clothing dye), heavy metals, and pesticides all increase
the risk of developing melanoma [65]. Both polycyclic aromatic hydrocarbons [66] and heavy
metals [67] react with UVA to generate free radicals which can subsequently damage DNA,
but a variety of molecular mechanisms may be involved in carcinogenesis with these agents.

3.2. Intrinsic

3.2.1. History of skin cancer

Personal or family history of skin cancers is associated with higher melanoma risk. UV-
initiated malignancies such as squamous cell carcinoma, basal cell carcinoma or actinic
keratosis [68, 69] may indicate cumulative UV exposure, however other skin malignancies not
thought to be UV-related (e.g. mycosis fungoides) also increase risk of melanoma [70].
Increased risk from skin cancers such as mycosis fungoides may be due to the immunosup-
pression associated with the disease (immunodeficiency discussed below). First degree
relatives of an individual with melanoma also have a higher risk of developing melanoma than
the general population [71], and if a first degree relative has had multiple melanomas, the
relative risk of an individual developing melanoma is increased to 61.78 [72]. A past medical
history of cutaneous melanoma also substantially increases the risk of subsequently develop-
ing another [73, 74]. Although the majority of melanomas are sporadic, 10% of diagnoses are
in the setting of familial syndromes [75]. For example, individuals diagnosed with Dysplastic
Nevus Syndrome, also known as the Familial Atypical Multiple-Mole Melanoma Syndrome,
have a 48.9% risk of developing melanoma by age 50 and an 82% risk by age 72 [76]. One of
the most common causes of a familial melanoma syndrome is a mutation in the cyclin
dependent kinase inhibitor 2A (CDKN2A) gene [75] which regulates cell cycle progression.
However it is important to note that increased melanoma prevalence within a family may also
represent shared environmental factors such as geography and chemical exposure rather than
genetic mutations.

3.2.2. Nevi

Nevi can foreshadow the development of melanoma [77-79]. In 1978 two independent studies
reported an association between nevi and melanoma for individuals with familial melanoma
syndromes. Reimer et al. reported there was “a syndrome of pigmented lesions in melanoma-
prone families” [80] while Lynch et al. described melanomas that were linked to individuals
with a large number of “moles of variable size and color” [81]. A majority of benign nevi and
melanomas share a common mutation in the BRAF gene (V600E) which results in a gain of
function in BRAF signaling [26, 82-84]. This mutation activates the mitogen activated protein
kinase cascade leading to the deregulation of the cell cycle and an increase in cell division.
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While the BRAF mutation may be sufficient for the formation of a benign nevus, additional
mutations are needed (e.g. PTEN loss) for the nevus to convert to a malignant melanoma.

The number of nevi, the presence of atypical or large nevi, and the development of new nevi
all correlate with melanoma risk [85, 86]. De novo nevi formation is a result of exposure to UV
radiation, and sunscreen may not influence this process [87-89]. While the risk of melanoma
rises with an increased number of total body nevi, malignant degeneration of any particular
nevus is rare. Rather, melanomas generally arise from dysplastic nevi, [90], and the risk of a
normal nevus converting to melanoma is very low [91]. The presence of only one dysplastic
nevus increases risk by 2 fold, however, >10 dysplastic nevi can increase the risk up to 12 fold
[92] [93]. Dysplastic nevi are present in 34-56% of melanoma cases [94].

Risk associated with congenital nevi varies with size and quantity. Small congenital nevi are
not associated with an increase in risk [92] while large congenital nevi covering over 5% of the
body surface area confers an increased risk [95]. Individual large congenital nevi >20 cm in
diameter increase an individual’s lifetime risk of melanoma to 10% [96]. Reports suggest that
if a melanoma is going to arise from a congenital nevi, most will occur by the age of 10 pointing
to the importance for screening the pediatric population [97].

3.2.3. Medical history

Medical conditions associated with immunodeficiency or that use immunosuppressive
therapies can trigger melanoma. Patients diagnosed with human immunodeficiency virus/
acquired immunodeficiency syndrome have an increased prevalence of melanoma with a 50%
increased risk of the disease [98] [99]. Because antiretroviral treatment for HIV/AIDS has
increased patient’s lifespan, these individuals should be closely monitored and obtain regular
screening throughout their life. Patients who receive an organ transplant not only have 2.4
greater risk of developing melanoma [100], they also have a more aggressive cancer [101] and
a worse prognosis [102] than the general population. Transfer of melanoma from donor to
recipient is possible if the donor was previously afflicted with the condition [103].

A previous medical history of noncutaneous skin cancer is also associated with an increased
risk of developing melanoma. Individuals who were previously diagnosed with Kaposi
sarcoma, breast cancer, lymphoma, prostate cancer, thyroid cancer, and leukemia had an
increased risk of subsequently developing melanoma [104]. Childhood cancer survivors have
a 2.5 fold increased risk of developing melanoma [105] and are diagnosed at a younger age
than the general population (32 years) [106]. Studies speculate that the increased risk following
malignancy may be due to either germline mutations in oncogenes or due to the chemotherapy
and radiation to treat the prior malignancy [105].

Although melanoma is associated with the production of female hormones, no increased risk
of melanoma-associated pathogenesis can be attributed to pregnancy [107]. A majority of
women who are pregnant experience a phenomenon known as melasma, an increase in
pigment due to increases in melanocyte activity [108]; however, the increase in pigment is not
associated with an increase in melanoma incidence.

13
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3.2.4. Nucleotide excision repair

Nucleotide excision repair (NER) is the molecular process by which bulky DNA lesions are
recognized, excised, and repaired by the coordinated actions of multiple factors [109-111]. As
described above, UVB radiation and to a lesser extent UVA radiation promote the formation
of photoproducts that distort the double helix and prevent transcription [112, 113]. Without
accurate repair, these photoproducts may cause transition mutations and lead to unregulated
cellular proliferation and carcinogenesis.

There are two primary mechanisms of NER, global genome NER (GGR) and transcription
coupled NER (TCR), which differ in their initiation site (Figure 6). GGR recognizes damage in
non-transcribed regions of the genome. Xeroderma pigmentosum (XP) complementation
group C (XPC) and HR23B heterodimerize, recognize distortions within the DNA double helix
[114, 115], and recruit the TFIIH complex. TFIIH is a multiprotein complex composed of nine
proteins including the helicases XPB and XPD. XPB and XPD unwind 20-30 nucleotides
surrounding the damaged base in the 3’-5" and 5’-3" direction respectively [116]. The opened
DNA structure is stabilized by recruitment of XPA and RPA [117, 118]. After the structure is
stabilized, XPF and XPG endonucleases remove the damaged base [119, 120] and the gap is
repaired by polymerase d and ¢ [121].

Global Genome Repair Transcription-Coupled Repair
DNA Damage [T [TTTTTTTTITTITI
Recognition Pl O Ittt iriittl Q [ 11111
DNA Ur:winding

A

Incision of
Damaged DNA

|

Fragment Release

Repairag‘;jnthesis RelmEEES ’ . .
YIS N

Figure 6. The nucleotide excision repair (NER) pathway is the major way cells rid themselves of bulky DNA lesions
such as UV photoproducts. NER is accomplished through the cooperative action of a variety of proteins, working in
concert to (1) recognize DNA damage, (2) access and unwind the DNA in the region of the lesion, (3) incise and re-
move the damage, and (4) repair the gap with a high degree of fidelity using the undamaged strand as a template.
Without effective NER, UV mutations accumulate and skin cancers of all kinds occur with high incidence. (Adapted
from [3]).
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TCR recognizes damage in transcribed regions of the genome after transcription by RNA
polymerase II has stalled [122, 123]. Following exposure to UV radiation, Cockayne syndrome
B (CSB), Cockayne syndrome A (CSA), and the core NER factors (excluding XPC) are recruited
to the sites of stalled RNA polymerase II [124-126]. After damage recognition, either by GGR
or TCR, many NER factors work in concert to unwind the double helix in the area of photo-
damage, excise the damaged strand, and repair the gap using the undamaged sister strand as
a template. In this way, NER corrects UV photodamage with a high degree of fidelity and
minimizes the chances for UV-induced mutagenesis..

The importance of DNA repair in preventing melanoma is evident in individuals diagnosed
with xeroderma pigmentosum (XP) [127, 128]. They are highly sensitive to UV radiation and
develop epidermal thinning, telangiectasias, and altered pigmentation in addition to increased
prevalence of skin malignancies [129], with a large number of UV-induced mutations in
oncogenes and tumor suppressors [130]. These patients have defective DNA repair due to
mutations in one of 8 factors associated with NER [131]. Since DNA repair is not possible,
patients with XP are encouraged to limit exposure to UV radiation in order to prevent cellular
damage. Individuals diagnosed with XP have a 1000 fold increase in skin cancer risk compared
to the average population and are often diagnosed with melanoma in the second decade (on
average over 40 years before the general public) [132].

3.2.5. Skin complexion

The amount of melanin pigment present in the skin determines skin complexion, and low basal
pigmentation (having a fair-skinned phenotype) constitutes a major risk factor for the devel-
opment of melanoma. Melanin pigments, all derived from the amino acid tyrosine, are
synthesized by melanocytes, transported to the keratinocytes where they absorb UV radiation,
and prevent damage to the sensitive layers of the skin. In fact, melanocytes produce two
distinct forms of melanin. Eumelanin is a dark brown/black chemically inert pigment that
potently blocks penetration of UV energy into the skin. Pheomelanin, in contrast, is a lighter-
colored pigment that is much less effective at blocking UV penetration and that may even
potentiate oxidative UV damage [133] (Figure 7).

The amount of eumelanin in the epidermis largely determines skin complexion. The Fitzpa-
trick skin phototype was developed by a Harvard University Medical School dermatologist to
classify an individual’s UV susceptibility based on basal pigment levels, tendency to burn, and
ability to tan [134]. Individuals with a lower Fitzpatrick score have fair skin (less pigment), red
or blonde hair, burn easily and are unable to tan, while individuals with a higher Fitzpatrick
score have a darker complexion (more pigment), do not burn, and tan easily (Table 2).
Compared to individuals with a Fitzpatrick score of IV, individuals with a Fitzpatrick score of
I have a relative risk of 2.09 developing melanoma [71]. A recent study demonstrated that
pigment and race were not sufficient to predict an individual’s Fitzpatrick score and sun
sensitivity; this finding highlights the importance of physician-based counseling to all patients
regarding sun safety and prevention of sun-induced malignancies [135].
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Figure 7. Synthesis of eumelanin and pheomelanin is regulated by the melanocortin 1 receptor (MCIR). Eumelanin, a
dark brown/black pigment with excellent UV protective properties, is produced when melanocytes are stimulated
through MCIR signaling and cytoplasmic cAMP levels are increased. In contrast, pheomelanin, a sulfated pigment
with poorer UV-blocking properties is made when MCI1R is inactive.

Cysteine

MED Melanoma
Phototype Skin color (mJ/cm? UV Response Risk
uv)
Ivory/pale Burns easily and
| White 15-30 strongly, never HHH
tans
Burns easily, tans
1 Very white 25-40 minimally with HH
difficulty
Burns
11 White 30-50 moderately, tans HHH
somewhat
" ng_ht brgwn, 20-60 Burns minimally, -
beige, olive tans moderately
v Moderate 60-90 Rarely burns, N
brown tans well
Dark MNever burns, tans
- T +/-
vi brown/black P10 profusely /

Table 2. The Fitzpatrick scale of skin complexion. MED represents the minimal erythematous dose (the least amount of
UV required to cause a sunburn).

4. Pigmentation and MCIR

The melanocortin 1 receptor (MCIR) is a major determinant of skin pigmentation and UV
sensitivity. UV exposure activates the MCIR, which directly controls not only the adaptive
tanning response (UV-induced pigmentation) but regulates melanocyte DNA repair and, thus,
the mutagenic risk as well.
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4.1. Eumelanin versus pheomelanin

Melanocytes, derived from neural crest cells, produce pigment in the skin. As described above,
lack of basal skin pigmentation is a major risk factor for the development of melanoma. The
two major types of pigment produced by the melanocyte are eumelanin and pheomelanin.
Pigmentation depends on the type and amount of melanin produced in addition to its cellular
distribution rather than number of melanocytes present in the skin [136-138]. Eumelanin is a
dark insoluble polymer that absorbs UV light [139, 140] and oxidants [141], protecting DNA
from the damaging effects of these factors. Pheomelanin is a soluble red/yellow polymer
containing cysteine, which provides little protection from UV light and reports demonstrate
that pheomelanin can promote oxidative damage [133, 142]. Synthesis of both eumelanin and
pheomelanin begins with the conversion of tyrosine to DOPA and then to DOPAquinone via
the enzyme tyrosinase [143]. Incorporation of a cysteine into DOPAquinone molecule even-
tually leads to the production of pheomelanin rather than eumelanin. Individuals without a
functional tyrosinase are unable to produce any pigment and have a condition known as
albinism [140]. Control of the ratio of pheomelanin to eumelanin in a cell is determined by
multiple factors including pH of the cellular milieu and levels of the tyrosinase enzyme [133,
144]. Higher levels of tyrosinase and neutral pH favor eumelanin production and darker
pigmentation [144, 145]. In addition to pH and tyrosinase, the melanocortin 1 receptor is one
of the major factors controlling the pigment ratio.

4.2. MC1R and pigment switch

The melanocortin 1 receptor (MCIR) is one of the major proteins controlling the switch
between the production of eumelanin and pheomelanin, and therefore is a one of the major
control points of pigment production. Increased activation of MCIR by melanotropic hor-
mones leads to an increase in tyrosinase expression and eumelanin production [146]. MCIR
is a G-coupled protein receptor that is activated by alpha-melanocyte stimulating hormone («a-
MSH) leading to the activation of adenylate cyclase and an accumulation of cAMP. cAMP
promotes two pathways: 1) it activates protein kinase A (PKA) and 2) it up-regulates cAMP
responsible binding element (CREB) and microphthalmia transcription factor (MITF); these
factors ultimately cause an increased expression of enzymes involved in pigment production
[136, 140, 147-149]. MC1R is a highly polymorphic protein with over 100 variants reported
[150-152]. Five specific variants, D84E, R142H, R151C, R160W, and D294H, are associated with
a decrease in pigment production and the red hair/fair skin phenotype [153-155]. These
individuals are more susceptible to melanoma due to a decrease in eumelanin production
coupled with inefficient DNA repair; this latter point suggests that MCI1R plays a role not only
in pigment production, but also in nucleotide excision repair [156, 157].

Studies using agouti signaling protein (ASIP) confirm the role of MCIR in the production of
eumelanin. ASIP is a competitive antagonist of MSH and binds to MCIR causing an increase
in the production of pheomelanin [158]. The effects of ASIP on melanocyte pigment production
require a functional MCIR [158, 159]. The reduction in eumelanogenesis and increase in
pheomelanogensis accompanied by ASIP signaling is only partially due to inhibition of MSH
binding to MC1R. Binding of ASIP to MCIR causes a decrease in tyrosinase activity as well as
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tyrosinase related protein 1 and 2 protein levels, thus promoting pheomelanin synthesis
[158-161]. ASIP also signals through a cAMP independent pathway via attractin and mahoguin
to influence MCIR signaling and increase pheomelanin levels [162].

4.3. MCIR and adaptive pigmentation

The inability to have an adequate adaptive tanning response is a major risk factor for the
development of melanoma. As explained above, the tanning response increases the produc-
tion of pigment in the skin and serves as a protective barrier from the damaging effects of UV
radiation. Adaptive pigmentation is dependent upon MCIR signaling [163]. UV radiation
promotes cellular damage in keratinocytes, activating the damage response protein p53. p53
activation increases the transcription of proopiomelanocortin, which is processed and cleaved
to MSH [164]. MSH is secreted from the keratinocytes and diffuses to the melanocyte mem-
brane where it binds to and activates MC1R promoting the synthesis of eumelanin [146, 165].
Individualswith defective MC1R signaling, whether frominability of MC1R tobind toitsligands
or from an inert response upon binding, cannot increase their pigment production following
exposure to UV radiation and instead are highly susceptible to burning [163] (Figure 8).

UV Radiation >
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Figure 8. Cutaneous response to UV radiation. UV radiation induces the secretion of MSH and agouti signaling pro-
tein. MSH binds to MCIR and activates adenylyl cyclase (AC) which leads to the accumulation of cAMP. cAMP signal-
ing to promote pathways responsible for cutaneous UV protection. Agouti signaling protein binds to MCIR and
prevents activation of adenylyl cyclase inhibiting the adaptive tanning pathways.



Melanoma — Epidemiology, Risk Factors, and the Role of Adaptive Pigmentation
http://dx.doi.org/10.5772/58994

Current research is investigating pharmacological methods to increase the tanning response
in order to prevent damage, particularly in those individuals who have defective MCIR
signaling. Forskolin is an activator of adenylyl cyclase and functions downstream of MCIR
leading to an increase in the production of cAMP. Forskolin applied to a transgenic mouse
model with humanized skin promoted the synthesis of eumelanin and adaptive pigmentation
[166]. Phosphodiesterase inhibitors including rolipram prevent cAMP degradation and is
hypothesized to have similar effects to forskolin. Rolipram is currently an FDA-approved drug
and may have clinical applications for this condition.

5. Conclusion

The incidence of melanoma has dramatically increased throughout the past century. Although
the cause for the increase is unknown, it is clear there are a number of environmental and
genetic factors responsible for melanoma risk. The major environmental risk factor is exposure
to UV radiation via ambient sunlight or artificial tanning beds. The intensity of the ambient
sunlight varies with geography throughout the world. Countries located on latitudes closer to
the equator have a higher incidence rate compared to countries located further away from the
equator. Exposure to UV radiation, however, does not entirely explain the increase in mela-
noma diagnoses. Other environmental factors also play a role including certain medications
(PUVA, NBLP) and exposure to heavy metals. Genetic factors also play a major role in
melanoma risk. As melanoma often originates from pre-existing nevi, the presence of a large
number of nevi, nevi with large diameters, or the presence of dysplastic nevi increase the risk.
A past medical history of cutaneous or non-cutaneous cancer also increases the risk of
subsequently developing melanoma. Although there are many intrinsic factors which play a
role in determining one’s risk of developing melanoma, the most important is the ability to
produce pigment. Eumelanin protects the skin from UV induced damage. Individuals with
fair skin and a low Fitzpatrick phototype are highly susceptible to melanoma. A subset of
individuals with fair skin also has defective MCIR signaling and is unable to promote the
adaptive tanning pathway. Clearly, much is known about the risk factors for developing
melanoma, and hopefully as we better understand the pathogenesis of the disease, we will
develop therapeutics and strategies to prevent melanoma from occurring.
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