
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322424018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 13

Bulk Heterojunction Solar Cells — Opportunities and
Challenges

Qun  Ye and Jian Wei  Xu

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/58924

1. Introduction

Due to the rising concerns over the exhaust of fossil fuel and the associated environmental
consequence of the carbon emission problem, search for renewable energy has become a hot
research topic worldwide. Organic semiconducting materials based photovoltaic (PV)
technology developments have attracted tremendous attention from both the academic
community and the industry. In principle, the organic solar cells employ organic material
based light absorbing functional layer to convert sunlight to electricity. Typically the light
absorbing layer is made of a blend of donor material and a fullerene based acceptor material.
The observation of photovoltaic effect on organic materials began in 1986 with the “Tang cell”
[1], which was a two-layer device with a structure of ITO/copper phthalocyanine/perylene
diimide/gold. Later in the early 1990s, the discovery of ultrafast charge transfer from polymer
to fullerene [2] initiated the research field of bulk hetero-junction (BHJ) solar cells. Over the
past two decades, substantial research progress have been made in the development of more
robust light harvesting materials, the further modification of the modelling theory of the OPV
physics, better understanding and elucidation of the light-to-electricity process and the
continuous optimization of the device fabrication process with new strategies employed. This
process can be witnessed by the fast growing efficiency data of the OPV cells (Figure 1) and
the vast amount of literatures published annually on the topic of OPV technology. Concur‐
rently, the industrial attention is mainly focused on development of robust materials with long
lifetime and good efficiency in large scale application, production technique optimization and
market exploration for OPV technology. The fast growing research activity on OPV technology
involves the collaborative consolidation of knowledge from synthetic chemistry, especially on
π-chemistry, semiconductor physics and device engineering. Figure 1 [3] depicts the certified
record PCE data of various types of PV technologies that have been continuously optimized
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in the past decade. Compared with inorganic PV technologies, organic solar cells have
achieved magnificent improvement in terms of efficiency. Currently the record holder is
Mitsubishi Chemicals who has demonstrated a reproducible 10.7 ± 0.3% organic solar cell.

Compared with the existing mature inorganic based photovoltaic technology, a list of pro‐
posed advantages of OPV technology should be mentioned which include 1) short energy
payback time [4]; 2) lower production cost compared with inorganic PVs; 3) potential fabrica‐
tion via continuous printing tools; 4) new market opportunities, such as flexible PV, wearable
PV, semitransparent PV window, etc.; 5) low weight and easy integration of the organic PV
products. Nevertheless, inorganic based PV technologies, such as silicon, cadmium telluride
(CdTe), III-V group semiconductors and copper indium gallium selenide (CIGS), are still
dominating the PV market.[5] The reasons why the OPV are short of the market are mainly
due to the inferior power conversion efficiency (PCE) and the poor stability of the organic solar
cell devices compared with their inorganic analogs. As the ultimate goal of materials research
is to apply the material based science and technology into material based products, the
applicability and the competitiveness of the technology should always be buried in mind. The
economic aspects of the OPV technology have attracted more attention as many companies
start to step into the OPV market and create opportunities. The optimization of the OPV device,
both in terms of device stability and power conversion efficiency, has become a synergistic
work between the academia and the industries. Moreover, the industrial production of OPV
modules, which is very different from the lab-scale production step, is also being optimized.
All these efforts will be highlight in this Chapter.

With both the advantages and existing disadvantages of OPV technology in mind, we plan to
give an overview of how to transform a molecule to a material and finally to a product for OPV
technology and we organize this Chapter in the following way. Firstly we will summarize the
existing strategies to prepare new and better light harvesting materials by synthetic chemists.
Due to the limited space, we focus on the most commonly used polymeric donor-acceptor (D-
A) type materials. In the following part, we summarize the recently developed device
engineering methods to improve the performance of the OPV materials. This part deserves its
own merit because the OPV device engineering process is essential to demonstrate the full
potential of a new polymer molecule as a functional light harvesting material. Then we will
summarize some aspects of OPV materials which are important for the production develop‐
ment, such as the lifetime/stability of the material and production techniques. Finally we will
end up our discussion with a summary and perspective on the future research. There have
been many excellent summary works dealing with various aspects of OPV technology, such
as the working mechanism and physics of the OPV device [6-9], design principles and synthesis
of new light absorbing materials [9-19], thin film morphology control and characterization
[20-21], new device architecture development [22-24], interface engineering [25], quantum
chemical calculations [26], economical aspects [27-29] and many insightful overviews and
perspectives [30-42]. There are also a series of Photovoltaics Literature Survey papers by Santosh
Shrestha [43] in Progress in Photovoltaics: Research and Applications which are useful for readers
to catch up current research progress in various aspects regarding PV technology.
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Figure 1. Best Research Cell Efficiencies for all types of PV technology. Data from National Renewable Energy Labora‐
tory (NREL).[3]

2. Development of new materials

2.1. Chromophores with new π-structure

In the concept of BHJ solar cells, the active layer is comprised of a blend of electron-donating
material and electron-withdrawing material. The electron-donating material can be small
molecules [12, 13] or polymeric materials [10,11,14-19] while polymeric materials are more
commonly used in the literature. Both types of materials typically follow a Donor-Acceptor
(D-A) design principle, in which the conjugated backbone is constructed by covalent linkage
of a series of electron rich moieties and electron deficient moieties in an alternative way. This
design strategy is especially useful in tuning the physical properties (absorption, frontier
orbital energy levels, etc.) of the final materials due to the vast stock of electron rich and electron
deficient building blocks. Guo and co-workers [44] have presented a thorough summary of
current prevailing donor and acceptor species, which include about 45 donor and 60 acceptor
backbones. Note that there are also variations on the solubilizing chains and spacer groups.
Hence the actual number of such building blocks would be much larger than the summarized
numbers. Given the wide choice of building blocks, there is no surprise that a huge structural
diversity of OPV materials exists and a large amount of new materials are coming out every
year in the literature. The design principle of the donor material in the BHJ blend has been
summarized [45]. Basic considerations include light absorption range, frontier orbital energy
levels, charge carrier mobility, favorable blend morphology, stability and solubility.
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Concurrently new building blocks are being synthesized to provide more possibilities to
further optimize the optical and electronic properties of the final material. Take benzothiadia‐
zole (BT) as an example (Figure 2). Benzothiadiazole (BT) is one of the most commonly used
building blocks for the construction of D-A type conjugated polymers. By carrying out
structural modification of the backbone, a series of new electron-deficient moieties with
different electronic properties can be prepared. One strategy is to replace the sulfur atom in
the thiadiazole hetero-cycle with other elements such as carbon [46], oxygen [47,48], nitrogen
[49], selenium [50,51], etc. The new building blocks have various electron withdrawing
properties and hence are useful in tuning the properties of the polymer materials. The second
strategy is to introduce substitutions on the BT unit, such as fluorine atoms [52-60], alkoxy
groups [61-65], or replacement of C-H with imine nitrogen [66-69]. More building blocks can
be prepared with the combination of these two strategies [70-75]. The third strategy is to extend
the π-conjugation of the BT unit to prepare π-extended moieties [76-81]. Extension of the π-
backbone is a versatile route to tune the electronic properties of the BT unit; however, the new
building blocks typically exhibit poorer solubility and have to be prepared in longer synthetic
steps. For example, by fusion of one more thiadiazole ring to the BT unit, bis-benzothiadiazole
(BBT) can be prepared and possess much higher electron deficiency but poorer solubility.
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Figure 2. Evolution of benzothiadiazole (BT) based electron withdrawing moieties for the preparation of D-A type
light absorbing polymers.

Out of all these strategies, the substitution of fluorine atoms on the aromatic backbone turns
out to be a very efficient approach to achieve high-performance OPV materials. Introduction
of fluorine substitutions has minor influence on the absorption behavior of the polymer;
however, it induces a decrease of the frontier orbital energy levels due to its strong electrone‐
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gativity and consequently the fluorinated polymers typically exhibit higher open circuit
voltage (Voc). The advantages of fluorine in OPV polymer have been demonstrated by Zhou
et al. [82] Polymer PBnDT-DTBT (Figure 3) exhibits a HOMO and LUMO energy level at-5.20
eV and-2.92 eV, respectively. After addition of two fluorine atoms on the BT unit, the HOMO
and LUMO energy level of PBnDT-DTffBT decreases to-5.30 eV and-2.97 eV, respectively.
PBnDT-DTBT/PC61BM based solar cell device exhibits the best PCE=5.0% with Jsc=10.03 mA
cm-2, Voc=0.87 V and FF=0.57. For PBnDT-DTffBT, the best device exhibits PCE=7.2% with
Jsc=12.91 mA cm-2, Voc=0.91 V and FF=0.61. It is found that after attachment of the fluorine atoms
on the repeating unit, the short circuit current, the open circuit voltage and the factor are all
enhanced.
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Figure 3. Chemical structures of PBnDT-DTBT and PBnDT-DTffBT.

The longer synthesis steps for the more complicated building blocks are also a concern if they
are to attract industrial attention. Although achieving materials in a cost-effective way is
generally neglected in the academic publication and in many cases the complicated synthesis
of a monomer is considered as novelty of the work, a simple, high yield and easily scalable
synthesis of materials is highly desirable in the industry from the application point of view.
For example, 4,7-dibromobenzo[c][1,2,5]thiadiazole can be prepared in three steps from 1,2-
phenylenediamine (Scheme 1). As this building block is so commonly used nowadays, it has
become commercially available by vendors such as Sigma Aldrich. While for alkylated 4,8-
dibromo-[1,2,5]thiadiazole[3,4-f]benzotriazole [83], which is a BT unit fused with a triazole
hetero-cycle, is prepared with four more synthetic steps from 4,7-dibromobenzo[c]
[1,2,5]thiadiazole. According to a recent estimation [84], the cost per gram of the final material
increases linearly with the number of synthetic steps needed for the synthesis. The extended
synthesis would definitely reduce the potential applicability of the material, as the value of a
material is a compromise between the performance and the cost.

A list of D-A type polymers that have demonstrated PCE values > 7% are shown in Figure 4
[85]. It should be highlighted that the high performance of the polymers does not necessarily
mean that the embedded building blocks are superior. The power conversion efficiency is
determined by a number of factors and the chemical structure of the polymer is just one of
them. Even for a classical polymer P3HT, after careful optimization of the device condition,
the PCE can also reach 7.4% [86]. Many other factors, like the fabrication conditions, also play
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a significant role in determining the overall efficiency of the cell. These factors will be discussed
in the following text.
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Figure 4. Chemical structures of polymers that exhibit PCE > 7%.
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2.2. Side chain engineering

Side chains are attached on the rigid aromatic π-backbones to form “hairy rod” type polymers
with suitable solubility to allow solution based processing techniques viable. In fact, the role
of the side chains are far beyond the solubility concerns. Other physical properties of the
polymer, such as absorption, emission, energy levels, molecular packing, charge transport and
the morphology of the thin film are critically affected by the side chains attached in many cases.
Commonly used side chains include linear alkyl side chains (n-CnH2n+1), branched alkyl side
chains, electron donating side chains (-OR,-SR,-NHR, etc.), electron withdrawing side chains
(-C(=O)R,-SO2R, etc.), aromatic side chains (4-alkoxyphenyl, etc.), functional side chains (e.g.
with cleavable groups on the side chains), ionic side chains, oligoether side chains, fluorinated
side chains and so on. A comprehensive discussion on various types of side chains has been
presented by Mei and Bao [87]. Side chain engineering has become a routinely used strategy
to modify the physical properties, especially the self-assembly of the materials in the thin film,
and thus to optimize the light absorbing materials in the OPV device. Given the importance
of side chain engineering, it should be noted that as the side chains do not contribute to the
light absorption or charge transport in the thin films, a trade-off between the solubility and
the performance of the final polymer must be made.

2.3. New synthetic methodology

Currently, the D-A type polymers are typically synthesized via palladium catalyzed cross
coupling reactions such as  Stille  coupling [88]  and Suzuki  coupling reactions [89].  Stille
coupling involves C-C bond formation between trialkylstannyl species and aromatic halide
species  and  has  been  routinely  used  for  the  preparation  of  a  large  number  of  high
performance polymers.  However,  the high toxicity of  the tin reagent and the associated
environmental  issue  of  the  generated tin  wastes  inhibit  its  wide industrial  applications.
Recently,  a  new polymerization  method involving  direct  heteroarylation  polymerization
(DHAP) between aryl C-H bond and aromatic halides has been developed as a promis‐
ing greener alternative of Stille coupling for the preparation of conjugated polymers (Scheme
2).  Berrouard et  al.  [90]  has  demonstrated  that  the  DHAP reaction  between 5-alkyl[3,4-
c]thienopyrrole-4,6-dione and 5,5’-dibromo-4,4’-dioctyl-2,2’-bithiophene is as efficient as the
corresponding Stille approach. As in this direct coupling reaction no organo-tin or organo
boron reagents are needed, it shortens the synthesis of final polymer by at least two steps.
This strategy has been successfully implemented for the synthesis of OPV polymers [91,92],
OFET polymers [92] and EC polymers [93] with reasonable molecular weight and polydis‐
persity  after  judicious  optimization  of  the  coupling  condition.  Nevertheless,  as  this
polymerization technique is still  in its infancy, the reaction is still  difficult to control for
some substrates and the final polymer might be branched due to unselective C-H activa‐
tion in the substrate [94,95]. The reaction conditions of the reaction including the catalyst,
ligand, base,  additive,  solvent,  temperature and duration have to be carefully controlled
and optimized in order to achieve the highest molecular weight.
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2.4. Molecular weight and purity of the polymer

The molecular weight and the purity of the polymers are issues beyond the molecular
architecture of the semiconducting polymers. But both factors have been demonstrated as
essential parameters to ensure the good performance of the prepared polymers within the
device. A high molecular weight increases the regularity of thin film and in many cases induces
enhanced charge carrier transport in the transistor device [96,97] and power conversion
efficiency in the BHJ solar cell device [98]. For instance, P1 (Figure 5) [99,100] with a low
molecular weight (Mn < 10 kg mol-1) exhibits a charge carrier mobility of μ=5.2 × 10-5 cm2 V-1 s-1

and power conversion efficiency of η=2.7% with Jsc=4.2 mA cm-2, Voc=0.64 V, and FF=0.35. For
P1 with high molecular weight (Mn > 34 kg mol-1), it exhibits an enhanced mobility of μ=3.6 ×
10-2 cm2 V-1 s-1 and power conversion efficiency of η=5.9% with Jsc=17.3 mA cm-2, Voc=0.57 V,
and FF=0.61. Similar phenomenon is also observed for P2 [98]. P2 with a low molecular weight
(Mn ~ 46 kg mol-1) exhibits an ambipolar behavior with μh=2 × 10-3 cm2 V-1 s-1 and μe=5.2 × 10-5

cm2 V-1 s-1 and a PCE η=5.48% with Jsc=12.1 mA cm-2, Voc=0.90 V, and FF=0.50. For P2 with high
molecular weight (Mn ~ 61.8 kg mol-1), the mobility increases to μh=0.15 cm2 V-1 s-1 and μe=0.064
cm2 V-1 s-1 and an enhanced PCE η=6.79% with Jsc=13.7 mA cm-2, Voc=0.89 V, and FF=0.56. The
improved mobility for high molecular weight samples is ascribed to improved π-π stacking,
thin-film formation properties and increased inter-chain interactions. The increased Jsc and fill
factor are mainly because of the improved hole mobility of the polymer, which facilitates the
charge collection and inhibit charge recombination in the blend.

The purity [101-103] and the end group effect [104-106] on the performance of transistor
materials and OPV materials have also been investigated. However, as the exact determination
of “contaminant” or “purity level” of a given material, especially for polymers, is very difficult
to achieve, the attempts to correlate the performance of an “impure” material to the existence
of some extrinsic impurity would be questionable. Even though the end capping strategy has
been found efficient to improve the performance of the polymer [104-106], it is still not
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commonly adopted by research groups, even not routinely used by the groups who claimed
the positive effect. Questions such as how the end group influences the performance of the
polymer, what kinds of impurities are detrimental to the performance and what kinds of
impurities serve as friendly dopants still remain unaddressed. More research effort, for
example, intentional doping [107,108], is in need to solve the impurity issue of organic
semiconductors in both the theoretical aspect and the practical aspect. But it is commonly
believed that tedious and labor-intensive purification processes, such as Soxhlet extraction and
silica gel column chromatography is always necessary to ensure sufficient purity of the sample
for characterization.
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Figure 5. Chemical structures of P1 and P2.

2.5. Acceptor

The other important active species in the BHJ blend is the acceptor. The benchmark acceptors
are fullerene based derivatives, mainly [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)
and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) (Figure 6) [109,110]. The key features
of these sphere-shaped acceptors are their low internal reorganization energy, high polariza‐
bility, relatively high dielectric constant, favorable LUMO energy level, reversible redox
properties, good electron transport properties and anisotropic charge transport behavior
[109,110]. The superior performance of these two acceptors in the BHJ devices renders them
as the first choice for most of the newly developed donor materials. Whereas PC61BM absorbs
minimal amount of light in the visible region, PC71BM is strongly blue and green light
absorbing acceptor and is more useful when the absorption of it is complementary to that of
the donor so that more sunlight can be captured [111]. Nevertheless, some drawbacks of these
fullerene derivatives would hamper their wide application in the industrial production. One
is the high production energy cost of these fullerene based acceptors. For PC71BM, the pro‐
duction energy is approximately 90 GJ kg-1 [112]. For comparison, the production energy of
P3HT is only about 1.9 GJ kg-1[113]. The other concern is the relative high price of these fullerene
derivatives. A recent analysis by Lewis and Nocera [114] indicates that the OPV system should
cost no more than $10 per m2 to compete with fossil fuels for energy production. The cost of
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PCBM at roughly $500-1000 per m2 [42] makes the BHJ based PV technology with PCBM
problematic for commercialization. Use of technical grade PCBM (~80% PC61BM and 20%
PC71BM) [115] might help relieve the stress but is far away from the desired price range. In
fact, various types of small molecule based [116] or polymer based [117] acceptors have been
tested to replace fullerene derivatives in OPV cells. But yet the efficiency of these acceptors
still cannot surpass that of fullerene based derivatives.

Figure 6. Chemical structures of PC61BM and PC71BM.

3. Morphology and device engineering

3.1. Characterization of morphology

Along with the research effort to prepare D-A type conjugated polymers in BHJ solar cells to
achieve the world record efficiency value, studies revealing the importance of the morphology
of the polymer/fullerene blend have been carried out and the experience gained on controlling
the morphology has become a valuable tool to explore the full potential of a new polymer as
light harvesting materials. The thin film morphology characterization tools include grazing
incidence wide-angle X-ray scattering, grazing incidence small angle X-ray scattering, resonant
soft X-ray scattering, small-angle neutron scattering, transmission electron microscopy, atomic
force microscopy, solid-state nuclear magnetic resonance, dynamic secondary ion mass
spectrometry, near-edge X-ray absorption fine structure and scanning transmission X-ray
microscopy. These analysis techniques are comprehensively summarized by Huang et al. [21].
As so much work has been done to investigate the morphology of the thin film, a rational
question to ask is: what is the best morphology? Unfortunately, so far a precise answer to this
question has not been achieved. One reason is because every characterization technique only
sees the film from one aspect and a thorough mapping of the material distribution in the film
still remains a challenge [118-119]. Another reason may be due to the fact that the reported
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polymers with the highest power conversion efficiency values do not really share exactly the
same morphology profile. As a result, the optimal morphology and the engineering method to
achieve the best performance are case-by-case and mostly obtained in a trial-and-error
approach. General descriptions like homogeneous and interpenetrating networks with nanoscale
phase-separated domains are routinely used to describe the morphology in the cells with distinct
performance.

3.2. Morphology optimization by device engineering

A series of parameters that will influence the morphology of the polymer/fullerene thin film
are listed in Figure 7. The physical properties of the polymer such as the π-backbone, side-
chains, the molecular weight, the identity of the fullerene acceptors used and the mass ratio
between the two etc., are factors related to the materials. The determination of the ideal D:A
ratio for a new polymer material has been a matter of trial and error, with the ratio 1:1 to 1:4
most commonly used. The solubility of the polymer and the fullerene derivative should be
sufficient in the processing solvent. Halogenated solvents (chloroform, chlorobenzene, 1,2-
dichlorobenzene, 1,2,4-trichlorobenzene) are routinely used as they possess high solubility for
both the donor polymer and the fullerene acceptors. For many reported polymers [20,21],
judicious choice of the processing solvent has to be made in order to achieve the optimal
morphology and power conversion efficiency. For a specific new polymer, or a new polymer/
fullerene blend, the choice of optimal processing solvent is not trivial, normally based on trial-
and-error investigations. Recently, more research has been focused on the replacement of
halogenated processing solvents with more environmentally friendly solvents, such as
toluene, xylenes and long alkanes [120]. This is especially important for the industrial pro‐
duction of OPV modules [121].

Processing additives with low vapor pressure and high boiling point are commonly added in
the solvent to optimize the morphology of the polymer/fullerene blend [85]. Commonly used
additives include 1,8-diiodooctane, 1,8-octanedithiol and 1-chloronaphthalene (Figure 8).
General guideline for selection of the additive is that the solvent additive should be less volatile
with higher boiling points than the host solvents. The mechanism how the additive influence
the morphology and the overall performance of the device has been discussed by Lee et al.
[122]. It should be noted that solvent additives added during the fabrication process might
remain in the solar cell and behave as contaminants to hamper the performance of the solar
cell. In some case, addition of additives shows no effect [123,124] while in some case the
addition of additives is detrimental to the performance [125]. These results indicate that the
solvent additive is not an elixir to enhance the PCE performance of all polymers and the
detailed effect and mechanism should be made case by case. Moreover, a specific process step
must be added to remove the residual deleterious compounds which are obviously unfavor‐
able in the industrial application. Hence, it is more desirable to design high performance
polymer/fullerene system with no such additives needed to achieve the good performance.
During the production of OPV modules, some other additives, such as rheology modifiers,
anti-foaming agents and surface tension modifiers would be added into the ink formulation
to make it more suitable for printing technology. The effect of these additives on the solar cell
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performance has not yet been well studied. There are research attempts to incorporate various
non-solvent additives, such as nanoparticles [126], carbon nanotubes [127], small molecules
[128] and polymers [129], to create a ternary blend BHJ solar cell. These strategies have
demonstrated how a third component in the polymer/fullerene blend influences the overall
morphology and performance of the solar cell, which could be used as a potent routine method
to enhance the performance of the device [130].

Thermal annealing is an alternative method for controlling the BHJ morphology and improv‐
ing the PCEs. By applying thermal energy to the thin film, it helps the reorganization of the
polymer/fullerene blends and increases the crystallinity of the film [131]. This processing
method has been routinely used to optimize the thin films for transistors [132] and BHJ solar
cells [20,21]. The annealing temperature, the annealing duration and the cooling rate are key
parameters to optimize the performance of the device and the optimal combination of the
thermal treatment is material-dependent. Even for the same material, e.g., P3HT/PCBM blend,
the optimal annealing condition differs from lab to lab [20], presumably due to different device
structure, different solvent, different purity, different molecular weight, or even different
operator. So far there is no general guideline to predict the optimal condition for a new OPV
material and the optimal condition is obtained via a tedious trial-and-error approach.

Figure 7. Summary of parameters that influence the morphology of the BHJ active thin film.
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Solvent annealing refers to the treatment of the BHJ thin film with solvent vapor, typically in
a petri dish contained with the solvent. Parameters to optimize include the solvent type and
the treatment duration. By exposing the coated thin film with solvent vapors, there is reor‐
ganization and further morphological evolution over time. This method has been demonstrat‐
ed to enhance the morphology, the hole mobility of P3HT [133] and the PCE performance of
the P3HT/PCBM solar cell [134]. Treatment of the thin film with polar solvents, such as
methanol and ethanol, is also found to improve the morphology and render higher PCE values
for P3HT/PCBM [135].

In summary, the morphology of the active polymer/fullerene blend in the BHJ solar cell can
be tuned by a number of factors, such as the materials, choice of solvent, solvent additives,
annealing condition, etc. The optimal condition to achieve the best device performance is
typically material dependent and achieved in a trial-and-error approach. Sometimes, a minor
modification of the processing condition can introduce magnificent enhancement of the device
performance, for example, addition of processing additives. The complexity of the morphology
control and the tedious optimization process would account for the phenomenon that why so
many promising polymer materials in the literature with suitable absorption, energy level and
solubility possess inferior device performance. Even for the same polymer motif, the OPV
performance would vary significantly by different processing methods [136]. This again
highlights the importance of device engineering work to explore the full potential of a new
polymer in the BHJ solar cell.

4. Industrial concerns

As the ultimate goal of any material related research and technology development is to apply
the material and to fulfill the promises of the material, such stress on the large scale manufac‐
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Figure 8. Chemical structures of solvent additives for BHJ solar cells.
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turing and product development has also been witnessed for OPV technology. With the fast
performance improvement of OPV cells in research labs, the application of OPV technology
as a renewable energy source has become more appealing. However, it is never trivial to
translate a lab-based technology into a large volume production process. A large number of
difficulties and problems have to be overcome to ensure the successful commercialization of
the technology. In this session, we will highlight some aspects related to the industrialization
of OPV technology.

4.1. The stability and the lifetime issue

The stability issue of the light harvesting material in the solar cell device should be brought
into discussion as the OPV technology is aimed to generate electricity from sunlight for a long
period of service time. The materials used to construct the OPV module, which include the
active layer, the electrode materials and the encapsulating materials, should be robust under
the outdoor condition and the performance of the OPV module should be maintained to ensure
the power generation efficiency of the technology. The currently known degradation mecha‐
nisms of the solar cell device, including morphology degradation, photo-oxidation, interface
degradation, physical and mechanical degradation, have been well discussed in a number of
review articles [137-139]. It should be highlighted that the active layers and the metal electrode
materials are especially prone to degrade upon contact with water and oxygen. Therefore, in
real practice the encapsulation of the device is mandatory to guarantee the long-term stability
of the device. The water and oxygen transmission properties of the encapsulant materials are
thus essential to ensure the stability of the OPV module [29]. The growing concerns over the
stability issue on OPV technology and fulfillment of the promise of OPV as a renewable energy
technology has initiated the “International Summits on Organic Photovoltaic Stability” (ISOS)
[140] to stimulate the research effort to address these issues.

Figure 9. Typical decay curve of a polymer solar cell employing a standard device architecture. The lifetime is defined
by the point at which the efficiency has dropped by 20% from the start of the linear decay period. [141] Copyright 2011
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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The degradation profile of an OPV module typically follows a trend shown in Figure 9 [141].
The device suffers a burn-in degradation process at the early working life which is character‐
ized by an exponential loss in efficiency and then a linear decay process. The lifetime of the
device is defined as the time at which the efficiency drops to 80% of the efficiency after burn-
in process. By appropriate encapsulation, solar cell devices based on poly[9’-hepta-decan‐
yl-2,7-carbazole-alt-5,5-(4’,7’-di-thienyl-2’,1’,3’-benzothiadiazole)] and PC71BM blend have
demonstrated a lifetime of ca. six years [141]. This lifetime is marvelous in reported lifetime of
OPV solar cells [142]. However, such lifetime is still considered insufficient if OPV technology
is aimed to compete with the mainstream Si-based PV technology. A silicon based solar cells
typically lasts on the order of 25 years and much higher PCE (Figure 1). In this regard, there
is still a huge space for OPV technology to improve in order to survive in the PV market.

4.2. Processing technique

As one of the potential advantages, solution based processing methods, such as roll-to-roll
printing and ink-jet printing, are suitable for organic solar cell materials [143-145]. So far in the
lab scale, the BHJ solar cells are typically fabricated by spin-coating method. As spin-coating
turns out to be suitable for the reproducible formation of homogeneous thin films, it is difficult
to scale up and a large amount of inks is wasted during the spin-coating process. Wet-printing
with a roll to roll production process is a more favorable processing technique for large scale
OPV module fabrication. These printing techniques include gravure printing, flexographic
printing, screen printing, rotary screen-printing, knife coating, slot die coating, and so on. More
details regarding these printing techniques can be found in [144, 145]. Demonstration of large
scale printing of OPV modules has been done by Krebs et al. [146] and currently OPV based
solar parks have been established to explore the potential this new energy technology. One
issue related to the printing technology is the uniformity and reproducibility of the final OPV
module since the OPV performance of BHJ blend is very sensitive to the morphology of the
thin film whereas the morphology is very sensitive to the processing condition. The materials
used and the processing technique should be able to provide an OPV module with lifetime >
10 years with an average power conversion efficiency > 10% to compete with the mature
inorganic PV products in the mainstream market. Even though the current start-of-the-art
efficiency can reach >10% for small devices in the research lab, the efficiencies of the large area
devices by solution processing methods are still low (< 3.5%) [144]. Further optimization of
both the materials and the processing methods is urgently needed to fulfill all the advanta‐
geous claims of OPV technology.

4.3. The economic potential of OPV technology

One concern regarding the OPV technology is that how cheap the electricity generated by this
renewable technology can be. More anxiety appears after the business failures of endeavors
in the OPV market [147,148]. As a matter of fact, in the past years only a number of companies
(Solarmer Energy Inc., Ossila, DyeSol, Heliatek, G24 Power, Eight19, Mitsubishi, Plextronics,
Sharp Solar, Solaronix, SolarPrint, etc.) have ventured into the OPV technology related
business, and are struggling to survive in the market. A number of articles have addressed the
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economic potential of OPV technology to estimate the cost of the OPV electricity [4, 27-29,
149-150]. One key factor that dominates the cost is definitely the power conversion efficiency.
Figure 10 shows the PCE values of the reported OPV devices vs. the area (top) and the year
(bottom) by Krebs et al.[30] It is found that most of the highly promising efficiency data are

Figure 10. Top: A plot of the power conversion efficiency versus the active area. Bottom: The PCE values obtained ver‐
sus the publication year. [30] Copyright Elsevier 2013.
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only achievable with a device area < 1 cm2. Furthermore, even though there are promising
efficiency data (~7-10%) of some hero polymers, the majority of the research work exhibits a
power conversion efficiency of less than 3%. As the area of the solar cell device increases, the
efficiency is expected to be lower. With the current efficiency number for large scale OPV
modules (< 3.5%), the applicability as mainstream power generation technology is rather dim.
Some potential market and niche products for OPV technology include portable, low weight
charger for electronics, PV covered uniforms, backpacks and tents for military usage and OPV
integrated windows and walls. One intriguing idea about OPV usage is to serve as top cell in
a tandem device with an inorganic bottom cell [151]. The tandem cell design strategy for all
organic based materials has been proven efficient to improve the power conversion efficiency
[22,24]. Key to the success of this tandem organic/inorganic strategy is the development of
OPV modules with comparable lifetimes so that the technology can be used in a time of 5-10
years range. Another aspect is the energy pay-back time. For crystalline silicone PV technology,
the energy pay-back time is estimated to be 4.12-2.38 year while for OPV it is about 2.02 to 0.79
year [28]. An even more optimistic estimation of the energy pay-back time of OPV technology
is only 1 day [4]. As currently all promising data about OPV technology come from research
labs and theoretical work, it is still difficult to conclude on the future and fate of OPV tech‐
nology. Efficiency and stability are two major obstacles, but may also become opportunities
for new business players.

5. Summary and outlook

The concept of bulk hetero junction solar cells has been continuously developed over the past
two decades. Enormous achievements have been witnessed over the journey and currently the
record efficiency of BHJ solar cells has reached over 10% (Figure 1). New materials, especially
the donor materials in the blend, have been developed in an expanding rate, with new design
strategies, new building blocks and new polymerization methods at the same time. For the
acceptor part, fullerene based derivatives, PC61BM and PC71BM, are still the first choice for
researchers. As the energy conversion process involves charge transfer over the donor/acceptor
interface, the morphology of the donor/acceptor is therefore essential for an efficient power
conversion process. The morphology of the thin film, however, is very sensitive to the
processing conditions, such as the materials used, solvent, solvent additives, annealing, spin-
coating conditions, etc. A tedious but worthwhile optimization process of all these parameters
has to be carried out to explore the full potential of any newly synthesized polymer donor
material or any new acceptor material. So far, the choice of the best condition is still based on
a trial-and-error approach. Furthermore, problems arise as the OPV technology is translated
from the lab-scale to industrial scale, e.g., how to achieve the optimal morphology of a cm2

device in the industrial scale, how to optimally process the OPV module, and how to improve
the device stability by suitable encapsulation. The solutions to these questions are by no means
trivial. Most probably a rediscovery process has to be carried out to optimize all the parameters
associated with the industrial scale production.
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As the OPV technology has gradually become business relevant and quite a number of
companies are currently active in the OPV market to cash the promises of OPV researchers,
more creative breakthroughs are in urgent need to solve the intrinsic efficiency and stability
issues of current OPV technology. Other than further development of more efficient light
harvesting materials, some new concepts such as ternary solar cell [23, 130], and modification
of the solar cell structures [22,24], e.g., inverted solar cells, tandem solar cells, or tandem
organic/inorganic solar cells would pave new ways to improve the efficiency of the solar cell.
Further development of encapsulant materials with lower water/oxygen transmission rate
would help the solar cells survive longer under ambient conditions [29]. The continuous
optimization effort on the industrial roll-to-roll printing techniques would help minimize the
gap between the best efficiency data from lab devices and the large scale OPV modules. These
developments have to be fast, as tremendous work is spent to optimize current inorganic PV
technology as well (Figure 1). Furthermore, BHJ based solar cells also have to compete with
other organic material based PV technology, such as dye-sensitized solar cells [152] and
perovskite solar cells [153]. There are also issues regarding the marketing of OPV based
technology. As it is envisaged that OPV will not be able to compete with inorganic PV
technology in the mainstream energy production market in the coming 5 to 10 years [28], niche
markets, such as portable electronics chargers, flexible PV and wearable PV, are therefore
sought in the short term. The light weight and the flexibility of OPV technology would become
advantageous to survive in the market.

To end up our discussion, we will emphasize the nature of OPV research and related materials
development. Any science and technology development, if it is aimed at large scale application,
it should be robust, reproducible, affordable and efficient in its claimed function. The materials
used in the device should be accessed in an easy and cheap way and the production process
should be cost-effective. And more importantly, the commercial products should have
attractive features to survive in the market. There are still a lot of obstacles for OPV researchers
to conquer, but more opportunities in the future.
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