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1. Introduction

Cognitive development is the construction of thought processes, including remembering,
problem solving, and decision-making, from childhood to adulthood. Moreover, it refers to
how a person perceives, thinks, and gains understanding of his or her world through the
interaction of genetic and learned factors. Among the areas of cognitive development are
information processing, intelligence, reasoning, language development, and memory.

Historically, the cognitive development of children has been studied in a variety of ways. The
oldest is through the Intelligence Quotient (IQ) based on the concept of "mental age" according
to which the scores of a child of average intelligence match his or her age, while a gifted child's
performance is comparable to that of an older child, and a slow learner's scores are similar to
those of a younger child. IQ tests are used worldwide, but they have come under increasing
criticism for defining intelligence too narrowly and for being biased with regard to race and
gender.

Therefore, the study and knowledge of the various exogenous/environmental factors that
could  influence  the  cognitive  development  could  be  considered  mandatory  for  the
comprehension of the childhood general developing.

2. Sleep and cognitive processes in children

In healthy children, disturbed sleep has been associated with behavioural impairments (e.g.,
hyperactivity, aggression, anxiety, etc.) [1-7] and reduced neurocognitive performance (e.g.,
lower IQ, impaired memory, reduced academic performance, reduced attentive ability, etc.)
[1,2,6,8].
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Among pediatric age, growing evidence suggests the role of sleep habits as disturbing factor
for influencing the cognitive development. The sleep disturbance can impact cognition as
shown by the negative effects of sleep breathing disorders both in adults [9] and children [10]
and as pinpointed by studies on the interaction between specific sleep stages in declarative
memory functioning [11] and learning disabilities [12].

Since 1980, [13]more studies have suggested that sleep is associated with IQ levels in children,
although the underlying mechanism remains still unknown. Studies involving children and
adults have identified a significant relationship between poor or insufficient sleep and
decreased cognitive capacity [14-26]. Furthermore, longer habitual sleep duration in healthy
school-aged participants has been associated with better performance on measures of percep‐
tual reasoning and overall IQ [23]. These findings reveal an association between sleep duration
and performance on IQ tests. Actually, the DSM-5 [27] highlighted the importance of general
mental abilities and of the adaptive functioning, beyond the IQ scores for the assessment of
individual cognition. In this light, the social and practical domains appear to be more relevant,
although the role of sleep cannot be excluded by these aspects, as showed by reports among
subjects affected by intellectual disabilities (28-32).

Several Authors have proposed that sleep spindles may physiologically underpin intelligence
or high-level general mental ability [33-35]. Sleep spindles are a feature of (predominantly)
stage 2 Non-Rapid Eye Movement (NREM) sleep, and are characterized by recurrent and brief
bursts of spindle-like EEG activity.

Moreover, spindles may be classified as either slow (10–13 Hz) or fast (13–16 Hz), with different
EEG scalp topographies [36], and are both co-active also with hemodynamic responses in
different cortical regions [37] and playing a strong role in the reprocessing of previously
encoded information [38].Moreover, Mednick et al in 2013 have been showed as the pharma‐
cological increase induction in spindle occurrence tend to improve memory, providing even
stronger support for a mechanistic role of spindles in memory consolidation [39]. Specifically,
retention of verbal informations are related to spindles recorded over frontal brain regions [40],
while parietal spindles correlate with spatial memory [41].

In general, in humans the maturation of cognitive skills seems to be linked to a subsequent
period of slow-wave activity (SWA), that undergoes maturation in parallel with cortical
morphology [42,43] and sleep spindles (10–14 Hz) directly involved in synaptic remodeling,
leading to alterations in synaptic strength and synchronized neuronal firing [44-47]

On the other hand, sleep spindle frequency in healthy school-age children seems to be
negatively associated with performance on the working memory and perceptual reasoning
modules of the Wechsler Intelligence Scale for Children-IV (WISC-IV) [48]. Moreover, lower
sleep spindle frequency may be associated with better performance on the Intelligence
perceptual reasoning and working memory WISC-IV scales, although sleep spindle amplitude,
duration and density could be not directly associated with performance on the IQ test. [48]

In general in paediatric age children, sleep disturbances have been often considered as the
epiphenomena of an underlying maturational disorder leading to cognitive impairments.
However, cortical maturation and sleep-dependent mechanisms of brain plasticity seem to
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follow similar developmental trajectories, suggesting closer interactions between these two
dynamic processes [42,43,49,50]. In this light, abnormal sleep activity in children might be a
causal, or at least a contributing factor in cognitive and learning impairments [51,52].

Specifically, converging evidence demonstrated that sleep plays a critical role in the ‘evolution’
of memories [53]. In fact, once encoded, sleep-dependent memory processing can not only
stabilize memories – a process classically referred to as memory consolidation – but can also
enhance them and integrate them into existing memory networks, extracting key elements for
retention, abstracting the gist from multi-item memories, discovering the rules governing such
collections of item memories, and even modifying them in ways that facilitate the subsequent
discovery of creative insights [53].

Conversely,  in  the  declarative  memory  domain  (i.e.  the  memory  for  facts  and  events,
usually verbalizable and explicit), beneficial effects of post-learning sleep on performance
have been highlighted using mostly verbal (word pairs) and visuospatial (e.g. memory for
pictures or objects' location, virtual navigation) hippocampus-dependent learning tasks. For
instance, cued recall  of learned pairs of words was consistently shown better after post-
learning sleep than after a similar period of time spent awake [54-61]. Additionally, sleep
may help protecting recently learned memories against retroactive interference due to the
acquisition of a novel and related verbal material [62,63]. Therefore, sleep would partici‐
pate in memory consolidation processes more than by merely protecting novel memories
from  ongoing,  non-specific  daytime  interferences  and  memory  decay  as  previously
advocated [64]. Likewise in the non-declarative or procedural memory domain, beneficial
effects of post-learning sleep have been evidenced for the consolidation of novel skills and
habits,  although results are more controversial.  Sleep-dependent improvements in visual
discrimination  skills  have  been  consistently  demonstrated  using  the  texture  discrimina‐
tion task (TDT) [65-70]. Furthermore in this task, performance deteriorates over repeated
practice sessions within a day reflecting the saturation of the underlying neural circuits,
unless sleep is allowed between sessions [71].

In this light, performance stabilizes or even increases depending on the duration of the sleep
episode and the availability of slow wave sleep (SWS) and rapid eye movement (REM) sleep
[72].

A most characteristic electrophysiological feature of non-rapid eye movement (NREM) sleep
is the slow oscillation, visible on scalp electroencephalography (EEG) as a biphasic wave of
high amplitude and a fundamental frequency of around 1 Hz [73]. This slow oscillation is the
result of the alternation of periods of extended synchronization and desynchronization of the
membrane potentials of numerous cerebral cortical neurons [74].

During the hyperpolarized phase, often called “down state”, neurons remain silent for up to
a few hundred milliseconds. During the depolarized phase, also called “up state”, neuronal
spike activity takes place, often including burst firing [74]. The “up states” seem to be associ‐
ated with complex and widespread neuronal network activity throughout the brain [75],
including high-frequency oscillations. Especially these oscillations, and their coalescence with
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slow oscillations, have been implicated in network communication and systems consolidation
of memory traces [76-79].

During the up states of slow oscillations, newly encoded memory representations are thought
to be reactivated and redistributed, enabling a shift from temporary storage to long-term
storage. Crucial for the dynamic formation of neuronal ensembles and altering of the synaptic
connections during the up state is the co-occurring thalamo-cortical and cortico-cortical
neuronal activity in higher frequency bands, notably the 10–15 Hz sleep spindles [80] and the
>30 Hz gamma oscillations [81-83].

Over past decades, it has been evidenced that sleep can contribute to the consolidation of
declarative memories in children. How and whether sleep helps in consolidating verbal and
non-verbal procedural skills in this population remains a matter of debate and deserves further
investigations. Dedicated studies combining comprehensive behavioural measures, neuro‐
physiological and/or neuroimaging recordings in healthy and pathological populations are
crucially needed to unravel the mechanisms underlying the evolution of sleep-dependent
memory consolidation processes during childhood. Moreover, we could speculate that
neurophysiological and neuroimaging investigations may contribute to enlighten the patho‐
physiological associations linking abnormal sleep patterns, cognitive disturbances and
impaired sleep-dependent plasticity processes throughout the developmental phase. These
investigations should be conducted in parallel with the study of pathological conditions in
which children present abnormal sleep patterns and cognitive deficits, such as, for a few
instances, ADHD, specific language impairments and epileptic syndromes. In this framework,
comparing the development of sleep-dependent plasticity markers [84] in children with or
without cognitive disorders, and how this evolution interacts with cognitive functioning and/
or cortical maturation, constitutes a promising field of research to understand the pathophy‐
siological conditions subtending the long-term disruption of cerebral plasticity processes
involved in memory consolidation during sleep [84].

Moreover, the well known relationship between sleep and cognition in all ages of life suggests
a key role of sleep in cognitive impairment conditions such as mental retardation [85-89],
borderline intellectual functioning [32], learning [12,90], memory [91,92] and executive
functions disabilities [93-95]. The approaching to the intellectual disabilities could be difficult,
particularly in developmental age. In this framework sleep neuropshysiology may help the
knowledge and comprehension for the functional interrelationships between the cerebral
areas.

In general, the decreasing of sleep efficiency and decreased REM ratio were reported as
characteristic neurophysiological signs in several developmental disabilities like Down
syndrome [96,97], autism [96], Angelman syndrome [98] and in ADHD [99].

Moreover, lower sleep efficiency, higher WASO, increases in NREM sleep EEG (relative) delta
and region-dependent decreases in sigma/high frequency activities were reported in subjects
with Asperger syndrome [100].

Finally, reduced total sleep time, decreased sleep efficiency percentage, higher WASO,
increases in frontally measured NREM sleep EEG delta power and SWS time, as well as region-
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dependent decreases in sigma power and reduced REM sleep percent were reported in
Williams syndrome [101]. Thus, several papers are reporting similar sleep-EEG alterations in
different conditions affecting intellectual functioning.

3. From childhood to adulthood: Differences and similarities in the
developmental course

The differences between children and adults are legion, and how they approach and learn from
new situations is clearly one of them. Purely psychological studies, ranging from the work of
Piaget in the 1950s and 1960s to the ongoing work of Spelke and Carey [102], have focused on
the developmental trajectory of learning capacities and the dependence of each incremental
improvement on the ones preceding it. Other studies focused on the continuing development
of the cerebral cortex as key to changes in learning style and intellectual development [103].
In their recent study, Wilhelm et al. suggest that at least some of the differences in how adults
and children process newly acquired information result from age-dependent differences in the
forms of sleep-dependent processing applied to such memories [104]. Specifically, their
findings suggest that children, 8–11 years of age, show greater sleep-dependent extraction of
explicit, or declarative, knowledge of the rules that govern an implicit procedural task than do
adults, 18–35 years old [104].

In general, not every memory undergoes all of these forms of sleep-dependent processing, and
the mechanisms that determine which ones are employed for a given memory remain poorly
understood. [104].

A possible explanation of this age difference in declarative knowledge is found in the structure
of children’ sleep. Children not only obtained significantly more sleep than the adults (9.8 vs
6.5 hr), but spent more than twice as much of that time in deep, slow wave sleep (SWS; 39%
vs 17%; 217 vs 64 min)). [105].

The suggestion that increased SWS in children might lead to better extraction or maintenance
of declarative as opposed to non-declarative (e.g., procedural) knowledge has its counterpart
in the suggestion found in a recent report [106] that further decreases in SWS with aging might
underlie the difficulty to retain new declarative memories experienced by the elderly.

Even childhood naps may be part of this story. Among 15-month-old infants, only those who
napped after a learning task retained knowledge of it the next morning [107]. Moreover, they
suggested that the developmental changes in sleep architecture, with more naps, SWS, and
REM sleep in children than adults, reflects parallel changes in how sleep guides the evolution
of memories across the life cycle, in part enhancing explicit fact memory in children, but more
abstract knowledge in adults. Perhaps sleep makes children smarter, but adults wiser [105].

The expression of slow waves undergoes remarkable changes during development, both with
respect to their topographical distribution [43, 108-110], as well as with respect to their
amplitude [111-113]. The amplitude of slow oscillations increases during childhood to peak
shortly before puberty [112]. Conversely, a steep drop occurs during adolescence, decelerating
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at the age of about 17 years, after which the amplitude declines only slowly [111]. The
amplitude of slow oscillations reflects the degree of synchronization by which cortical neurons
switch between up and down states [88]. Although receiving much less attention, the capacity
of a densely connected neuronal network to synchronize its activity may not only be reflected
in the amplitude of slow oscillations, but might as well lead to more pronounced oscillations
in frequency bands other than the 0.5–4 Hz range. Indeed, power in the theta (4–8 Hz) range
declines across puberty and early adolescence [113]. Gaudreau et al. [114] investigated NREM
sleep EEG power in a wider range of frequency bands across the age range of 6 to 60 years.
They report a much higher absolute power of theta (4.0–7.75 Hz), alpha (8.0–12.0 Hz) and beta
(15.25–31.0 Hz) in the group of children in the range of 6 to10 years, as compared to the groups
of adolescents (range 14 to 16 years), young adults (range 19 to 29 years) and middle aged
adults (range 36 to 60 years). The largest values for spindle-range power (12.25–15.0 Hz) were
found in the adolescent group, suggestive of an inverted-U shape peaking somewhere between
the age of about 10 years and late adolescence. Jenni and Carskadon [115] investigated
developmental changes across the 0.6 to 25 Hz NREM-sleep power spectrum and found that
children aged 9.6–12.9 years, as compared to children aged 11.8–15.9 years, had significantly
higher absolute power not only in the low frequencies up to about 7 Hz, but also in the 12–13
Hz sigma range and 16–17 Hz low beta range. Recently, both Tarokh et al. [109, 110,116] and
Baker et al. [117] applied within-subject follow-up design rather than the above-mentioned
cross-sectional approaches, to confirm that changes in the sleep EEG across adolescence were
not restricted to the lower frequency bands, neither to NREM sleep only. Across adolescence,
the sleep EEG power decreases over a wide range of frequencies, up to the beta range for at
least some derivations. In summary, the above mentioned developmental studies suggest that
a wide range of cortical oscillations measured in the scalp EEG show their maximal signal to-
noise ratio in late childhood, around the age of 11, where the signal of interest is the amplitude
of the oscillations and the noise reflects the noise floor of scalp EEG assessment [118]. In
contrast the gamma power increased on the rising slope and positive peak of the slow wave,
with strongly suppression of both gamma and spindle activities during the negative peak,
independently by external stiulation (i.e. acoustic) [118]

Recently, the topographic distribution of slow wave activity (SWA; EEG power between 0.75
and 4.5 Hz) during non-rapid eye movement (NREM) sleep was proposed to parallel cortical
maturation from childhood through adolescence [43]. High density sleep EEG recordings in
children and adolescents between 2 and 20 years of age showed that SWA exhibits a regional,
age specific predominance with a developmental shift from occipital to frontal regions
reaching frontal derivations only during adolescence. Strikingly, the local SWA maxima
paralleled the time course of cortical gray matter [119, 120] and behavioural maturation [121]
indicating that SWA may be a marker of brain maturation. This interpretation seems to be in
line with the increasing number of reports showing a direct relationship between sleep slow
waves and plastic cortical processes [122, 123]. More specifically, it has been hypothesized that
wakefulness is associated with a significant increasing in synaptic strength, which is homeo‐
statically rebalanced during sleep. This hypothesis was confirmed in various species examin‐
ing markers of synaptic strength. A close relationship between SWA and cortical synapses has
been proposed early on [124]. Although direct evidence is lacking, recent findings from animal
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studies or humans using current in vivo measures for cortical structure and activity support
the suggestion that synaptic strength is reflected in deep sleep slow waves [125]. Several
studies have shown that slow wave characteristics (SWA, topography, slope, amplitude) are
closely related to maturational alterations in the cortex [42,43,49,50]. Moreover, slow waves
represent synchronized activity among cortical neurons, as shown by multiunit recordings in
the rat [123]. Thus, neurons show synchronized activity, the larger is the amplitude of slow
waves displayed by this network. Increased synchronization is achieved by stronger synaptic
connections and/or a denser network (i.e. more connections) [125].

In general it has been stated that the SWA is related to cortical plasticity [123, 126-130] (e.g., a
change in strength and/or number of synapses) not only occurs because of learning processes,
but also in the course of brain maturation. In fact, it was shown that SWA is not equally
distributed across the scalp in children and adolescents, but exhibits local age-specific maxima
[43]. Furthermore, the location of maximal SWA seems to parallel the time course of cortical
maturation along the posteroanterior axis [131]. Thus, the topography of SWA may reflect
cortical plasticity during development [125].

Regarding the effect of sleep deprivation, children demonstrate difficult behaviors when sleep
deprived that can be stressful and impact quality of life for the entire family. Connecting sleep
problems with daytime behavioral challenges may not be intuitive to parents. Adults manifest
different symptoms when sleep deprived such as daytime sleepiness, psychomotor slowing
and impairments in cognitive processing and memory [132]. In comparison, sleep deprivation
in children is more likely to be associated with a range of emotional/behavioral disturbances,
including problematic behaviors [133], attention problems [134-136], anxiety/depression [137],
and hyperactivity [138, 139]. Brain maturation is a complex process [140] that begins prenatally
with neural proliferation and migration and synapse formation continuing till two years of
age. Myelination is an important process that begins prenatally as well but continues into
adolescence with different systems myelinating at different times. The determinants of
neurodevelopment and behavior rely on complex neural circuits that connect neural substrates
to serve a specific function. The development of these neural circuits is still a mystery and
influenced by genetic, sociocultural, medical and environmental factors [141]. The neuroana‐
tomic substrates involved in neurobehavioral functioning span cortical, subcortical and
brainstem regions and formulate complex networks which include the prefrontal cortex,
amygdale and striatum. Executive functioning is highly localized to the prefrontal cortex. The
amygdala is of great importance to emotional reactivity and affect and striatum to reward
seeking behavior. Neuroimaging techniques reveal complex patterns of neuroanatomical
functioning during specific sleep stages.

During NREM slow wave sleep, the brainstem, thalamus, basal ganglia, and prefrontal and
temporal lobe regions all appear to undergo reduced activity [142]. In REM sleep, significant
levels of activity are reported in the pontine tegmentum, thalamic nuclei, occipital cortex,
mediobasal prefrontal lobes together with affect related regions including the amygdala,
hippocampus, and anterior cingulate cortex [142]. The prefrontal cortex is relatively inactive
all through sleep in contrast to its high activity during waking states [143]. This inactivity is
reflected by the high voltage and slow brain wave oscillations in NREM sleep in the frontal
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lobes, relative to other cortical regions, suggesting that the thalamocortical input is disabled
and a lower level of metabolism in the frontal lobes during NREM sleep stages is present [144].
Several investigators have suggested that sleep is particularly important for restoring pre‐
frontal cortical activity [145-148] however, this restorative process remains poorly understood.
Neuroimaging studies showed profound effects of one night's total sleep deprivation on the
blood flow to prefrontal areas which correspond to the deteriorations in daytime prefrontal
task performance [149,150].

On the other hand, sleep deprivation also impacts neural circuitry underlying regulation of
emotions, impulsivity and reward seeking behavior. Sleep deprived adult volunteers viewing
emotional images have increased activation of the amygdala on functional neuroimaging yet
weaker connection between the prefrontal cortex and the amygdala [151]. This scenario allows
for uncontrolled, increased emotional response. Likewise, neurocognitive functions that
involve the striatum and basal ganglia such as risk avoidance and responsiveness to rewards
are also impacted by sleep deprivation. For instance, sleep deprived adults take greater risks
and are less concerned about consequences of their behavior [152]. Such findings have also
been noted in adolescents aged 11–13 years using functional magnetic resonance imaging
(fMRI) and a guessing task with monetary rewards [153]. During reward anticipation, less
activation in the caudate nucleus (part of the ventral striatum) was associated with reduced
sleep time, later sleep onset time, and lower self-reported sleep quality. During reward
outcome, less caudate activation was seen with later sleep onset time, earlier sleep offset time,
and lower sleep quality. This findings suggested that sleep deprivation could contribute to
low reactivity in reward-related brain areas in adolescents and may lead to compensatory
increases in reward-driven behavior. Such findings have significant public health implications
when one considers that reward seeking behaviors are associated with depressive symptoms,
sensation seeking, and substance abuse in adolescents [137, 154].

4. Conclusions

The relationship between sleep and cognition is intriguing and not yet well understood.

Investigation into sleep habits in the young and the neurophysiological study of sleep (e.g.
sleep macrostructure, microstructure, power spectra and CAP) may be considered as manda‐
tory in the future for a better knowledge and comprehension of cognition development.
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