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1. Introduction

“Once development was ended, the fonts of growth and regeneration of the axons and dendrites dried
up irrevocably. In the adult centers, the nerve paths are something fixed, and immutable: everything
may die, nothing may be regenerated.”-Santiago Ramon y Cajal

The central nervous system (CNS) is inhabited by a heterogeneous population of cells (i.e.
neurons and glia) and is marked by a highly complex anatomical structure [1]. In states of host
homoeostasis the putative majority of cells in the CNS are long-lived and typically do not
require replacement. Nonetheless, neurogenesis in the adult mammalian brain has been shown
to occur in a myriad of locations, under a diverse set of physiologic/pathophysiologic condi‐
tions [2-10]. Neurogenesis is driven by stem cells which can be defined by their ability to
produce both identical daughter cells (self-renewal) and progeny with more restricted fates
(commitment and differentiation) [11]. To be classified as a neural stem cell (NSC), cells should
be able to self-renew and give rise to a variety of mature progeny that make up the CNS,
including neurons, astrocytes and oligodendrocytes [12-16]. However, fate-restricted precur‐
sor cells capable of self-renewal, but which concurrently display restricted differentiation
potential, also reside in the CNS. These cells are often unipotent and are referred to as neural
progenitor cells (NPC) [17, 18], for example, oligodendrocyte precursor cells (OPC) are able to
self-renew, but typically produce only oligodendrocytes [18, 19].

Identification of NSC in vivo is clearly complicated and relies on the analysis of cell morphol‐
ogy, mitotic activity, and gene and protein expression. Commonly used NSC markers include
nestin, glial fibrillary acidic protein (GFAP), Musashi 1/2, and the Shy-related high mobility
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group box transcription factor 2 (Sox2) [20-23]. Nestin is a class VI intermediate filament linked
to mitotically active cells in the CNS [20, 24]. GFAP is expressed in multipotent ependymal
cells, radial glia, and also in mature astrocytes [21]. Musashi 1 and 2 expression can be found
in embryonic neuroepithelial cells [22] while Sox2 is found primarily in undifferentiated cells
that possess self-renewal capabilities [23]. As noted above, NSC can exist in either a quiescent
or mitotically active state. Quiescent cells have been shown to express Sox2 and FoxO3A, and
are further demarcated by a prolonged retention of bromodeoxyuridine (BrdU) [24-28].
Dividing cells, on the other hand, show a rapid turnover of BrdU and simultaneously contain
various markers of cell-cycle entry/progression: Mcm-2, Ki67, cyclin D1 and E (G1 phase),
cyclin A (S phase), cytoplasmic cyclin B1 (G2 phase), and phosphohistone H3 (M phase) [10,
29]. Fate restricted precursor cells have traditionally been recognized via the expression of
doublecortin (DCX) and the polysialylated-neural adhesion molecule (PSA-NCAM) [30, 31].

As  stem  cells  (SC)  continue  to  be  identified,  characterized  and  localized,  the  critical
importance  of  specific  signals  from  their  microenvironment,  or  niche,  have  become
apparent.  Stem  cell  niches  in  the  brain  can  be  classified  as  either  “typical”  or  “non-
typical”. The three typical NSC niches found in the CNS are the subventricular zone (SVZ),
the subgranular  zone (SGZ) and the central  canal  (CC) of  the spinal  cord [32-34].  Non-
typical  (germinal)  niches  have  been  identified  in  the  hypothalamus,  circumventricular
organs (CVO), the meninges and the subpial layer of the cerebellum [32, 35-37]. Further,
non-typical  (non-germinal)  niches  can be  found throughout  parenchyma of  the  cerebral
cortex,  cerebellum  and  spinal  cord,  and  are  mainly  comprised  of  restricted  neuroglia
precursors [10, 32, 38, 39]. Much of the aforementioned has recently been confirmed in vitro
via  an  assortment  of  neurosphere  assays,  which  are  considered  to  represent  the  “gold-
standard”  technique  for  identifying  the  presence  of  NSC  in  the  adult  brain  [33,  40].
Neurospheres have been obtained from many regions in the brain, including the olfacto‐
ry  bulb,  cerebellum,  various  white  matter  tracts,  spinal  cord,  substantia  nigra,  retina,
hypothalamus, and hypophysis [41-45]. Finally, the concept of atypical niches has recent‐
ly emerged and references the unique microenvironment formed upon exogenous stem cell
transplantation.  These  niches  are  reported  to  evolve  in  close  proximity  to  perivascular
regions [32, 46].

The capacities of stem cells to contribute to growth and diversification during development
and in so doing sustain homeostasis/repair processes throughout adult life is now clear.
Elucidation of the mechanisms that govern stem cell behavior is therefore of fundamental
significance in cell, developmental, and organismal biology. The capabilities arising from such
knowledge are anticipated to have major biomedical and clinical translational applications [11,
47]. The remainder of this chapter will therefore offer an overview that will touch upon the
distribution and relevant components (e.g. stem cells, support cells, signaling molecules) of
stem cell niches in the CNS, in states of both homeostasis and various pathobiologies (e.g.
ischemic, inflammatory, traumatic) and in the process will attempt to highlight potential
therapeutic targets that may be manipulated in an effort to promote effective and translational
repair and regeneration of the CNS after insult/injury.
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2. Neural stem cells niches within the central nervous system

2.1. Definition/critical components of the “niche”

As stem cells in adult organs continue to be identified, characterized and localized, it has
become clear that the vast majority of these cells depend on specific signals from the micro‐
environment of their niche to regulate their quiescence, activation, self-renewal and ultimate
survival. Such a phenomenon was hypothesized by Schofield nearly 35 years ago and has been
shown to hold true today [48]. The evolution of this concept has led to the definition of the
niche as a microenvironment capable of integrating intrinsic and extrinsic factors and in so
doing, influence stem cell proliferation, migration and fate specification [49, 50]. Intrinsic
determinants are governed mainly by the genetic/epigenetic status of stem cells and their
subsequent ability to decipher signals within the niche. Extrinsic determinants may be thought
of as the processing of extracellular signals and include such events as cell-to-cell and cell-to-
extracellular matrix (ECM) signaling [50, 51]. Generally, the cellular makeup of these niches
has been shown to consist of a variety of cells, which typically include the immature progeny
of NSC accompanied by endothelial, astroglial, and ependymal cells [50, 52]. Along with the
ECM, they provide not only structural/trophic support, but have been shown to provide critical
temporal and spatial information, thereby enabling stem cells to respond to both physiological
and pathological stimuli [49]. Acting through these pathways, stem cell niches in the CNS have
been shown to play essential roles in supporting active neurogenesis via the mobilization of
endogenous neural stem/precursor cells and further serve to regulate different stages of adult
neurogenesis in health/disease [52]. Clearly, an understanding of the detailed molecular,
structural and functional properties of the niche may help to influence intractable neurological
disease processes and/or yield novel clinically relevant NSC-based therapeutic approaches via
the enhancement of endogenous regeneration and repair.

2.2. Subventricular zone (SVZ)

In the adult brain, NSC have traditionally been assumed to be restricted to certain regions,
such as the SVZ of the lateral ventricles and the SGZ of the dentate gyrus (DG) of the hippo‐
campus. Both of these niches have been shown to be capable of sustaining neurogenesis in the
adult CNS [53-55]. The vast majority of adult neurogenesis in mammalian species has been
demonstrated to occur within the SVZ niche as it retains many of its early embryonic features/
primitive germinal layers. The SVZ also represents the largest neurogenic region and has by
most accounts been the best characterized of the endogenous CNS niches [50]. Interestingly,
recent work suggests that SVZ neural stem cells are not homogenous; rather they may
represent a heterogeneous population capable of differentiating into restricted subsets/cells of
differential fates [42]. Within the niche, a subset of GFAP-expressing astrocytes (type B/B1
cells) are thought to represent the NSC population (Figure 1) [56, 57]. These primary progen‐
itors either slowly self-renew or differentiate and give rise to transit-amplifying cells (type C
cells), which are capable of generating a substantial number of neuroblasts (type A cells) [58,
59]. SVZ neuronal precursors have been shown to migrate extensive distances in chains via
the rostral migratory stream (RMS) [60] toward the olfactory bulb [61]. Upon arrival, they
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undergo the process of differentiation into mature neurons, and migrate into the granular and
periglomerular layers [62, 63]. The type B cells mentioned above share morphologic features
that are similar to astrocytes and strengthen the argument for a radial glial origin [64].
Uniquely, type B cells are in direct contact with blood vessels via their basal processes and
concurrently interact with the ventricular lumen through apical processes [26, 65, 66].

Cells that eventually give rise to olfactory bulb neurons in the human brain have been
identified via the expression of DCX in the SVZ [67]. Detailed studies have revealed a ribbon
of SVZ astrocytes that line the lateral ventricles of adult human brain, and work has confirmed
that these cells are in fact self-renewing and multipotent [68]. Interestingly humans do not
display features characteristic of the RMS [68]. However, the migration of immature neurons
away from the SVZ has been documented to occur [69, 70]. While some studies have indicated
progressive decline in neuroblasts over the course of an adult life [70-72], recent work-utilizing
carbon-14 has demonstrated that neurons continue to be generated and to integrate into host
circuitry [73, 74]. Additionally, contemporary studies have begun to suggest a role for
supraependymal 5-hydroxytryptamine (5-HT, serotonin) axons that directly contact NSC and
therefore may serve in part to regulate neurogenesis via 5-HT2C receptors [75]. Such complex
cytoarchitecture coupled with the emerging diversity of SVZ precursor cells leads to a unique
microenvironment capable of supporting sustained neurogenesis throughout the life of an
organism [25].

2.3. Subgranular Zone (SGZ) of the hippocampus

The second major region that produces new neurons in the adult mammalian brain is the SGZ
of the hippocampus, which is located at the interface of the granule cell layer (GCL) and the
hilus of the dentate gyrus [76, 77]. This has been shown to be true in a variety of mammalian
species (e.g. rodents, primates, humans) [78-85]. In stark contrast to the new neurons born in
the subventricular zone, newly formed hippocampal neurons transmigrate only a short
distance into the granule cell layer before functionally integrating into existing hippocampal
circuitry [77, 86-88]. While it has been suggested that neurogenesis in the adult hippocampus
contributes to the processes involved in learning and memory, the definitive function of
neuronal replacement in DG has yet to be elucidated [88, 89]. Similar to the SVZ, neurogenesis
in the dentate gyrus has been demonstrated to occur throughout life [89, 90] and has been
shown to be influenced/regulated by a multiplicity of physiological and environmental cues.
These cues have not been fully characterized, but they include adrenal steroids, glutamate
receptor activation, seizures, enriched environmental conditions, exercise, inflammation/brain
injury, and antidepressant medication [59, 81, 83, 91, 92].

Given the presence of multiple precursor subtypes found within the adult hippocampus, a
reliable method to distinguish molecular identities is needed in order to adequately reveal the
degree to which primary precursors self-renew and/or differentiate into multiple progeny [93].
Briefly, a core tenant of the prevailing model of adult hippocampal neurogenesis is that GFAP/
nestin/Sox2 expressing radial glia-like cells (RGL) [77, 86, 89, 93], or type-1 cells [94], represent
a quiescent population which may be induced to generate the proliferative precursors known
as intermediate progenitors, IPC1 (type-2a) and IPC2 (type-2b) cells. Via the use of anti-mitotic
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agents, genetic ablation, and transgenic fate mapping, a vast body of experimental evidence
now exists in support of RGL as functional NSC [86, 95-98]. Of note, RGL seem to maintain
both ultrastructural features and surface markers characteristic of astrocytes [59] and have
been shown to be capable of undergoing several rounds of both self-renewal and differentia‐
tion over a prolonged period of time [99]. Importantly, RGL in the niche are polarized, a
characteristic that provides a spatiotemporal nature to signals received within the niche. RGL
zones within the niche can be subdivided into proximal, intermediate and distal domains along
which RGL maintain their polarized structure (i.e. from apical-basal). They span from the hilar/

Figure 1. Subventricular Zone Niche. Coronal brain section (Allen Developing Mouse Brain Atlas) shows the location
of the neurogenic subventricular zone (SVZ) niche. The SVZ can be found contacting the overlying ventricular zone
(VZ), a pseudo-stratified epithelium layer that lines the cerebrospinal fluid (CSF) filled ventricles (V). NSC (type B cells,
B) are found in a subependymal position, contacting both ependymal cells (E) and blood vessels (BV). Type B cells pro‐
liferate through asymmetric division, giving rise to transit-amplifying type C cells (C) that further differentiate to form
neuroblasts (type A cells, A). Supported by type B cells, these neuroblasts proliferate, expand and migrate, allowing for
adult neurogenesis. Adapted from Fuentealba et al. [100].
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SGZ interface (proximal domain I) to the inner molecular layer (IML) (distal domain III) [100]
(Figure 2). The proximal domain harbors a distinctive primary cilium which has been shown
to be important for Sonic hedgehog (Shh) signaling, sensing/sampling of the hilus microen‐
vironment, and contacting other RGL and blood vessels [100]. Here, endothelial cells provide
access to critical factors, namely, vascular endothelial growth factor (VEGF), insulin-like
growth factor (IGF) and brain-derived neurotrophic factor (BDNF), which together serve to
coordinate the complex regulation between proliferation and differentiation [100]. RGL cell
bodies/main shafts are located within the SGZ and GCL (domain II) and facilitate cell-cell based
interactions of the RGL with progeny (feedback from which may serve to regulate RGL
quiescence or transition via Notch signaling) and simultaneous sampling of local neural
activity via resident granular cells [101, 102]. In the IML (domain III), RGL terminate and
display an elaborate/branched structure. While the governing dynamics in this area have yet
to be fully elucidated, it seems reasonable to deduce that inputs via interneurons and mossy
cells have a role to play in the regulation of RGL/NSC [103].

Returning to the abovementioned progeny of the RGL, the IPC, it should be noted that they
produce novel neuroblasts and eventually immature granule neurons (type-3 cells), which
migrate into the inner granule cell layer, thereby differentiating into immature granule cells
of the DG [88, 89, 100]. Retroviral mediated gene transduction has allowed such newborn
neurons to be labeled and subsequently tracked. Using this technique, Zhao et al. demonstrat‐
ed that these novel neurons extend dendrites toward the molecular layer and project axons
through the hilus toward the CA3 region in a matter of days in an effort to become functionally
integrated into host circuitry [104, 105]. Despite the complexity of events outlined above, and
the relatively high rate of neurogenesis occurring in the SGZ, it is important to note that only
a minority of newly born cells ultimately survive to mature and integrate within the granule
cell layer of the hippocampus, highlighting the need for further exploration/characterization
of the niche/neurogenic processes in the SGZ [106].

2.4. Central canal of the spinal cord

The spinal cord comprises the caudal part of CNS, extending from the medulla to the cauda
equina. It contains 33 nerve segments, rostro-caudally grouped as the cervical, thoracic,
lumbar, sacral, and coccygeal segments. At the center of the spinal cord lays the central canal,
an ependymal region forming a round-shaped lumen, lined by epithelium, which contains
cerebrospinal fluid (CSF). The spinal cord transmits signals between the brain and the rest of
the body and contains complex circuitry thereby enabling reflexive and rhythmic motor
patterns [107]. The inner region of the spinal cord surrounding the central canal is comprised
of gray matter and contains neurons that are commonly arranged by function: motor neurons
are clustered anteriorly, sensory projection neurons posteriorly, with a more mixed population
in the intermediate areas, including the afferent and efferent neurons of autonomic nuclei. All
regions are supported by and connected through a complex network of interneurons, which
serve to modulate transmission and activity. The outer region is comprised of white matter
and contains afferent and efferent axons arranged in tracts. Like the gray matter, white matter
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exhibits functional organization, with afferent tracts clustered dorsally and at the lateral
periphery, and efferent tracts clustered anteriorly and medially [107, 108].

The ependymal layer of the spinal cord is well known for its role in embryonic develop‐
ment and its function as neuroprogenitor niche. Ependymal cells divide symmetrically and
migrate away from the central canal, giving rise to the different neural lineages [19, 109].
Postnatally,  the  spinal  cord  elongates  and  increases  in  size  [110].  The  proliferation  re‐
quired for such growth gradually declines, leaving adult rodents and humans with little to
no ependymal proliferation [111, 112].

Figure 2. Subgranular Zone Niche. Coronal brain section (Allen Developing Mouse Brain Atlas) shows the location of
the subgranular zone (SGZ) niche in the dentate gyrus of the hippocampus. Radial glial-like cells (RGL) are the type of
NSC that make up the SGZ. In the proximal domain (I) or hilus, they contact blood vessels (BV) and their radial process‐
es span the granule cell layer (GCL), in domain II, to reach the inner molecular layer (IML) in the distal domain (III). RGL
divide asymmetrically to generate intermediate progenitor cells 1 (type-2a cells, IPC1) and 2 (type-2b cells, IPC2).
These progenitors give rise to neuroblasts that differentiate to immature granule neurons (type-3 cells) that in turn
migrate to the GCL and differentiate to immature granule cells (IGC). These cells further differentiate to form mature
granule cells (GC), allowing for adult neurogenesis. Adapted from Fuentealba et al. [100].
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The presence of multipotent cells in the adult mammalian spinal cord was first discovered in
the late 1990s. Rat and mouse NSC were isolated and characterized in vitro. Cultured cells were
able to produce neurospheres capable of self-renewal, extended proliferation, passaging, and
differentiation into the three major CNS cell types, i.e. neurons, oligodendrocytes, and
astrocytes [12, 15, 113]. It was shown later that NSC reside at the central canal and in the
parenchyma of the spinal cord [13, 14]. Although able to self-renew and generate mature
oligodendrocytes, these parenchymal cells do not produce neurospheres, indicating that they
are progenitors (i.e. restricted in fate) rather than NSC [114]. When spinal cord derived
neurospheres are transplanted into the hippocampus they can give rise to neurons, a property
that is not observed when transplanted back to the cord, and is suggestive of a non-conducive
progenitor microenvironment [18].

The adult central canal is comprised of a pseudo-stratified epithelium with a myriad of cell
types that contact the lumen or are present in a subependymal position (all Sox2+) (Figure 3)
[34, 112, 115]. The main constituents are ependymal cells, some of which are positive for GFAP
[112, 116-118]. Although under physiological conditions most of these ependymal cells are
quiescent, some proliferation has been observed at the dorsal tip of the central canal and
ependymal cells from this region have enriched neurosphere-forming capabilities [112, 114,
119]. Dorsal ependymal cells show a radial morphology, much like radial glia, and their
processes can reach up to the white matter or even the pial surface [112, 117, 119, 120]. They
divide symmetrically, as they did during postnatal development [114]. Dorsal ependymal cells
show enriched expression of GFAP, nestin, CD15 and/or brain lipid-binding protein (BLBP)
[34, 112, 117, 119, 120]. A similar population and morphology has also been observed at the
ventral part of the central canal, although to a lesser extent [112, 117, 119]. It has now been
shown that ependymal cells are able to generate progeny of multiple fates under physiological
and pathological conditions [114, 119, 121]. Other cells that make up the central canal are
tanycytes and CSF-contacting neuron-like cells. Tanycytes, a specific subset of ependymal
cells, contact blood vessels through their long basal processes and thus bridge the CSF and
capillaries [119, 122]. Neuron-like cells that contact the CSF through dendrite-like processes
are thought to be involved in CSF homeostasis (e.g. pressure sensing) and/or spinal cord
extension/flexion sensing [112, 123, 124]. Surrounding the central canal, nerve fibers, neurons
(NeuN+), oligodendrocytes (Olig2+) and blood vessels can also be found [34, 112]. Pericytes
that are an active part of the blood brain barrier surrounding blood vessels have also been
shown to be an important source of astrocytes, implicating stem cell-like properties for these
cells. These astrocytes mainly contribute to astrogliosis during injury [125].

Central canal derived neurospheres tend to house a heterogeneous population of cells, much
like neurospheres derived from other neurogenenic regions [34]. Neurosphere cells all express
nestin but show variable expression levels of prominin-1 (CD133) (stem cell marker), GFAP,
and aldehyde dehydrogenase 1 family member, L1 (ALDH1L1) (astrocytic markers), CD15,
BLBP, glutamate aspartate transporter (GLAST), and radial glial cell marker-2 (RC2) (radial
glial markers), and neuron-glial antigen 2 (NG2), A2B5 antigen (A2B5), and platelet-derived
growth factor receptor α (PDGFRα) (oligodendrocytic markers) [34]. Only a small number of
cells express neuronal markers such as microtubule-associated protein 2 (MAP2) and DCX,
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which correlates with the overall preference of the cord toward oligodendrocytic and astrocytic
differentiation [34]. Expression of motor neuron development transcription factors (Islet1,
lim1, HB9) has not been observed, reflecting the in vivo tendency towards production of
GABAergic neurons [16, 112, 126]. Motor neuron differentiation can however be induced by
certain morphogens, such as retinoic acid (RA) and Shh [126]. Notably, neurospheres preserve
information related to their rostro-caudal location, namely the expression of certain combina‐
tions of developmental genes of the Hox family [112, 127].

In conclusion, the central canal of the spinal cord is mainly comprised of a heterogeneous
population of ependymal cells. Stem cell properties have mainly been attributed to ependymal
cells at the dorsal tip of the central canal and to pericytes. Further research is needed to fully
unravel the neurogenic properties/potential of the central canal in states of both health and
disease.

2.5. Non-typical neural stem cell niches

Beyond the typical NSC niches referenced above it should be noted that non-typical niches
have now been identified and have begun to be characterized. These non-typical niches can
be further divided into those areas that are germinal (neurogenic) and those that are not. Non-
typical germinal regions include the hypothalamus, CVO, the meninges and the subpial layer
of the cerebellum. Non-typical, non-germinal regions can be found throughout parenchyma
of the cerebral cortex and spinal cord, and are mainly comprised of restricted neuroglia
precursors [10, 32, 35-39, 128-131]. Accordingly, the following paragraphs will briefly discuss
selected non-typical niches in neurogenic and non-neurogenic areas.

2.5.1. Non-typical germinal regions

As was the case with the typical niches, non-typical germinal regions are characterized by their
inherent neurogenic capabilities, i.e. composed of a heterogeneous population of NSC able to
self-renew and give rise to most of the neuronal and glial precursors [32, 132, 133]. To be
characterized as neurogenic, isolated cells should be able to give rise to secondary neuro‐
spheres in vitro whilst being able to produce all three neuronal lineages [36, 37].

Constitutive adult neurogenesis has been identified in regions lining the third ventricle,
including the hypothalamus and the CVO [131, 134-137]. Cells from these areas are not only
positive for nestin, GFAP, Sox2 and Ki-67, but have also been shown to incorporate BrdU. Their
ability to produce both proliferating and differentiating neurospheres in vitro strongly suggests
that these areas represent germinal neurogenic NSC niches [137]. Furthermore, it should be
noted that the ECM structure and composition of the aforesaid areas strongly resemble that
of the SVZ [138].

Cells positive for nestin and DCX have also been found in the meninges of the brain and spinal
cord [139-143]. These nestin+ cells are able to give rise to neurospheres in vitro and show highly
efficient generation of excitable cells with neuronal phenotype and morphology [139],
congruent with the meninges’ important role during development, harboring neuroepithelial
cells [144]. Further, within the adult meninges, neurogenic factors such as basic fibroblast
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growth factor (bFGF), Chemokine (C-X-C motif) ligand 2 (CXCL2)/macrophage inflammatory
protein 2-alpha (MIP2-alpha) and RA can still be observed [145-147].

Neurosphere-forming NSC have also been obtained from the cerebellum and are isolated
based on their expression of the NSC marker prominin-1 (CD133) and their lack of markers of

Figure 3. Central Canal Niche. Cross-section through the spinal cord at lumbar level 1 (Allen Developing Mouse Brain
Atlas) shows the location of the central canal. Lining the lumen of the cerebrospinal fluid (CSF)-filled central canal is a
pseudo-stratified epithelium with interspersed ependymal cells (ependymocytes). Ependymal cells GFAP can be found
throughout the canal and are enriched in the dorsal and ventral part (latter not shown) where they have a radial mor‐
phology, much like that of radial glia. These radial GFAP+ cells are believed to be NSC since they proliferate and differ‐
entiate, allowing for (glial-restricted) neurogenesis. This is further supported by co-expression of stem cell markers,
BLBP or CD15. Although mainly quiescent under physiological conditions, these cells become mitotically active under
pathological conditions. After symmetrical division their progeny differentiate to astrocytes and oligodendrocytes.
Other cells that make up the central canal are tanycytes that bridge the CSF and blood vessels (BV), and CSF-contact‐
ing neurons. Pericytes surrounding BV (not shown) have been found to also contribute to the generation of astrocytes
under pathological conditions, and are thus considered another form of NSC around the central canal.

Adult Stem Cell Niches220



neuronal and glial lineage markers. Purified CD133+ cells form self-renewing neurospheres
and can differentiate into astrocytes, oligodendrocytes and neurons in vitro [148]. Although
the exact location and composition of this niche remains unclear, proliferative elements have
been putatively allocated to the subpial layer [149-151], with newly generated cells divided in
two populations: DCX+/PSA-NCAM+/Pax+ neuroblast neural precursors and microtubule-
associated protein 5 (MAP5+)/Olig2+/Sox2+ glial precursors [149, 150].

2.5.2. Non-typical non-germinal regions

Non-typical non-germinal regions are those that demonstrate proliferative properties, but are
unable to induce comprehensive neurogenesis. Often these are areas within the parenchyma
and consist of committed precursor cells that can self-renew and give rise only to a specific
type of neuronal cell. The potential of cells in these areas to produce multipotent neurospheres
is lost soon after birth [32, 38, 152, 153]. While there are non-typical regions that may be
germinal in nature rather than non-germinal, proof is still lacking. These putative areas include
the striatum, amygdala, substantia nigra, and vagal nucleus [35, 153].

In the cerebral cortex, A2B5+ glial restricted precursors give rise to oligodendrocytes and
astrocytes [154]. Oligodendrocyte precursor cells that express integral chondroitin sulfate
proteoglycan 4 (CSPG4), also known as NG2+ cells, can also be found through the cerebral
cortex [155, 156]. These cells are restricted to producing oligodendrocytes and astrocytes. In
the spinal cord, these NG2+ cells can also be observed [152, 156]. Olig2+ OPC are also widely
found in the spinal cord. These cells are typically deemed to be more committed than NG2+

cells, only able to give rise to oligodendrocytes [114, 152]. Furthermore, progenitors that
produce immature DCX+/GAD-65+/GAD-67+/GABA+ neurons have been found enriched in the
dorsal part of the spinal cord [19, 157].

The abovementioned progenitors are some of the more predominant cellular populations, yet
it should be noted that parenchymal progenitors consist of an incredibly heterogeneous
population, as evidenced by expression of stem cell markers. While crosstalk between cells
populating non-typical niches under varied pathological conditions have also been begun to
be highlighted [153], much work still needs to be done to fully elucidate the function and
therapeutic potential of such regions [10, 35, 152, 153].

3. Neural stem cell niches in CNS disease

"I say all the most acute, most powerful, and most deadly diseases, and those which are most difficult
to be understood by the inexperienced, fall upon the brain."-Hippocrates

Diseases of the central nervous system pose a massive societal burden and continue to be a
leading cause of morbidity and mortality throughout the world; however, the medical
community possesses few effective therapies that are able to modulate the pathogenesis of
brain injury/illness. The paucity of viable therapeutic options stands in stark contrast to the
intensity of research efforts and number of clinical trials that have been performed to date. As
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of yet, there are few, if any, treatments capable of markedly improving functional recovery to
levels concordant with a pre-disease state (i.e. regenerative therapies). The restricted success
of such a massive research investment demands a reevaluation of the pathobiology of the
injured and/or dysfunctional brain.

Beyond homeostasis, it has been clearly established that the basic biological descriptors of
neural stem cells-which include self-renewal, proliferation/differentiation, and migration-are
affected by certain pathogenic stimuli e.g. excitotoxicity, mechanical trauma, ischemic and/or
inflammatory) [158-167]. It follows that a greater knowledge of the factors involved in the
dynamic regulation of adult neurogenesis may pave the way for the development of suitable
treatments and preventative strategies that would delay the onset and/or mitigate the symp‐
toms of a number of devastating brain disorders. Therefore, the remainder of this section will
seek to highlight core components of the response of adult neurogenic regions in the face of
the distinctly relevant clinical entities: ischemic stroke, multiple sclerosis (MS) and spinal cord
injury (SCI).

3.1. Effects of ischemic stroke on the neurogenic process/niche

Stroke is the one of the most common causes of death and disability worldwide. Due to an
aging population, the burden will markedly increase in the coming decades and will be
particularly pronounced in developing countries [168, 169]. Of strokes that occur in the United
States, 87% are ischemic and 10% are intracerebral hemorrhagic strokes, whereas 3% are
subarachnoid hemorrhage strokes [169]. Based on this distribution, the remainder of this
discussion will focus on ischemic stroke. Cerebral ischemia triggers the pathological pathways
of the “ischemic cascade” that if untreated causes irreversible neuronal injury in the ischemic
core within mere minutes of the onset [170-172]. Cerebral ischemia and, if applicable, reper‐
fusion cause extreme changes in the parenchymal microenvironment to include variations in
oxygen (O2) concentrations, depletion of cellular energy stores e.g. adenosine triphosphate
(ATP), perturbation of ion homeostasis, inflammation and aberrant neurotransmitter release
[173]. The primary drivers of this pathogenic process stem from a crisis in energy availability
and result from a reduction in O2 and glucose [173]. Clearly such a vast array of pathology
would suggest that the incidence/activity of endogenous neurogenic niches would be affected
and this has proven correct.

Numerous studies have now demonstrated that ischemic stroke is in fact capable of increasing
neural stem cell proliferation [158, 159, 174-184]. In the SGZ, ischemia seems to act preferen‐
tially on proliferation of type 1 and 2 progenitor cells, and to a lesser extent neuroblasts [167,
185]. Within the SVZ, stroke selectively increases the number of type A and C cells [186], yet
there is also data to suggest that type B cells undergo a period of transient symmetric division
after stroke [187]. Ependymal cells bordering the SVZ have also been noted to proliferate
transiently after ischemic stroke [188]. Mitotic activity appears to peak during between 7-10
days post ischemia then returns to baseline levels between the 3-5th week [160, 175, 187,
189-191]. While maximal cell proliferation occurs on the order of days-weeks it should be noted
that neuroblasts have been documented to exist for at least one year after an ischemic insult
[176]. Signals that stimulate the stroke-induced neurogenesis have yet to be fully elucidated
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but likely involve the interplay of many non-dominant effectors, namely cytokines and growth
factors/neurotrophins that have been shown to be upregulated during brain ischemia, the
putative majority of which have established links to the neurogenic process [189, 192]. bFGF,
BDNF, epidermal growth factor (EGF), glial cell-derived neurotrophic factor (GDNF), bone
morphogenic protein (BMP) and erythropoietin (EPO), ciliary neurotrophic factor (CNTF),
transforming growth factor (TGF)-α, VEGF and erythropoietin (EPO) have all been proposed
to play prominent roles in neurogenesis [191, 193-210]. Insulin-like factor-1 (IGF-1) and
granulocyte-colony stimulating factor (G-CSF) have also been shown to be inextricably
involved in the abovementioned stroke-induced neurogenic process [211, 212]. It is also
important to note that the physiologic stressors of ischemia directly affect other components
of the neurogenic niche and in so doing may influence neurogenesis as highlighted by studies
of cerebral endothelial cells [27, 213, 214].

Of particular note, inflammation also accompanies ischemic insults/injuries and is predomi‐
nantly driven in the CNS by the activation of resident microglia, astrocytes and infiltrating
immune cells, which go on to release a plethora of inflammatory cytokines/chemokines and
reactive oxygen species [189, 215]. Inflammatory mediators have been shown to have varying
effects on neural progenitor cell proliferation, migration, differentiation, survival and incor‐
poration of newly born neurons into the CNS circuitry [216-222]. These studies suggest that
additional work is warranted and will be needed to clarify the precise effects/outcomes as
influenced by inflammation post-stroke. Further complicating the picture, evidence has
emerged to suggest that neurotransmitters and associated excitotoxicity also mediate stroke-
induced neurogenesis [223, 224].

In the post-ischemic brain newly generated cells from DG and SVZ have been shown to be
capable of replacing dying neurons via directed migration toward areas of damage [225].
Studies have indicated that newly arrived neuroblasts in the ischemic boundary zones display
phenotypes that are indeed characteristic of mature/functional neurons [160, 176, 181, 190, 191,
226-228]. The neural precursors that develop, transmigrate and integrate display an innate
form of pathotropism [229, 230]. Work has come to suggest that EPO may promote neuroblast
migration via the secretion of matrix metalloproteinases, MMP2 and MMP9, by EPO-activated
endothelial cells [231]. Additional factors presumed to be involved in the progenitor cell
migration to sites of injury are C-X-C motif chemokine 12/stromal cell-derived factor 1 (SDF-1)/
its receptor CXCR4: stroke has been shown to upregulate penumbral SDF-1 and NSC/
neuroblast CXCR4 expression [232-236]. Lastly, chemokine (C-C motif) ligand 2 (CCL2)/
monocyte chemotactic protein-1 (MCP-1) has also been shown to regulate migration of
neuroblasts to the areas of damage as the expression of MCP-1 has been localized to the
activated microglia/astrocytes present in ischemic areas post reperfusion [237]; correspond‐
ingly, ischemia-induced migrating neuroblasts express the MCP-1 receptor CCR2 [237, 238].

The experimental evidence that has been put forth hitherto clearly suggests that ischemia
stimulates neurogenesis in the adult brain. Recently reports have emerged which demonstrate
that the endogenous neurogenic response following experimental stroke influences the course
of recovery in both short and long-term settings [239, 240]. Although this evidence indicates
that cerebral ischemia-induced neurogenesis may affect neurological recovery after stroke, it
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is clear that such an endogenous repair response is far from ideal as patients continue to
experience various levels of physical/cognitive morbidities post-injury [241-243]. In order to
become a clinically valuable tool, the stroke induced neurogenic response will need to be
markedly enhanced which requires consideration of ways to support/supplement the process.
Understanding that the process of generating new neurons essentially consists of four phases:
proliferation, migration, differentiation, and survival [89, 244] one might begin to design
interventions that rationally target one or more of the aforementioned (e.g. therapeutics to
prevent the death of the vast majority of neuroblasts) [176, 245]. Specifically, Kokaia et al. note
“of particular importance for the promotion of neurogenesis and its functional benefit [will]
be to increase the survival of stroke-induced neuroblasts and mature neurons [as the] the
majority of new neuroblasts die soon after formation” [176, 245, 246].

3.2. Effects of multiple sclerosis on CNS neurogenic processes/niches

Multiple sclerosis is one of the most common causes of chronic neurologic disability beginning
in early to middle adult life (median age of onset being 29 years of age) and is characterized
by a triad of inflammation, demyelination and gliosis [247-249]. MS is idiopathic in nature yet
is presumed to be driven by the complex interaction of autoimmunity, genetic predisposition,
and environmental associations [248, 250]. MS affects approximately 400,000 people in the
United States and 2.5 million worldwide [251]. Symptoms of MS have primarily been shown
to result from a disruption in the integrity of myelinated tracts in the CNS [247, 252]. More
recently research has also highlighted the underappreciated involvement of gray matter in MS
pathogenesis, which may be especially relevant when one considers the development of
irreversible disability [253, 254]. As such, the need to understand mechanisms governing
endogenous stem cell/stem cell niches in MS is clearly justified.

Contrasting reports have emerged with regard to the activation of the SVZ and its cellular
components in MS, in both the human disease state and in animal models. SVZ activation has
been shown to be especially dependent on the temporal nature of the disease (i.e. acute vs.
chronic inflammation) [163, 255, 256]. Such findings suggest that inflammation may be either
advantageous or deleterious depending on the pathophysiologic context (see Table 2). In
experimental autoimmune encephalomyelitis (EAE), the most widely used/accepted animal
model of MS [257], alterations in SVZ NSC proliferation and mobilization have been demon‐
strated throughout the disease process [87, 163, 255, 258]. Such changes are concordant with
other models of CNS injury (e.g. stroke) in which surviving cells that activate locally or
infiltrate post-damage, secrete mediators that alter the neurogenic process [256, 259, 260].
Beyond the preclinical animal models, increases in SVZ activity have also been noted in
humans with MS [261]. Further, enhanced proliferation has been found at the level of the
hippocampal neurogenic niche in animal models of MS. However, the downstream network
dynamics of these progenitors appears to be altered, leading to aberrant differentiation i.e.
these EAE animals exhibited a significantly higher percentage of newborn radial-glia-like NSC
yet the mean percentage of newborn/mature neurons was decreased [262, 263]. Such findings
align with the clinical phenotypes/histopathology [264, 265] displayed by many human
patients and correlate with findings on magnetic resonance imaging (MRI), which highlight
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the existence of focal hippocampal hyperintensities [266] and hippocampal atrophy [267]. Of
note, neurogenesis/gliogenesis in the spinal cord in various murine models of MS [46, 166,
268] and in human patients with MS [269] have also been demonstrated to occur. Although
accumulating evidence indicates that endogenous neurogenesis/gliogenesis do occur as part
of an intrinsic attempt at self-repair (i.e. oligodendrocyte precursors in the MS lesions of human
patients) [270-272], it has become clear that the endogenous stem cell compartment’s capacity
for mobilization is unable to achieve meaningful restoration of impaired CNS function in the
face of a chronic inflammatory disorder [46]. Data now suggest that inflammatory components,
such as infiltrating blood-born mononuclear cells, reactive CNS-resident cells (i.e. astrocytes,
endothelial cells and microglia), and humoral mediators such as cytokines/chemokines may
be partially responsible for such an inadequate response as they can and do affect proliferation/
differentiation of NSC [32, 46, 87, 163, 222, 256, 259, 273]. It is clear then, that the molecular
mechanisms capable of inducing and/or inhibiting neurogenesis in the CNS of MS patients
under defined spatiotemporal conditions warrant further investigation.

3.3. Effects of spinal cord injury on CNS neurogenic processes/niches

SCI is often induced by trauma and subsequently leads to both motor and sensory deficiencies
[274]. Typically, such injuries manifest clinically in presentations of pain, anesthesia/pares‐
thesia, fasciculations, and/or weakness [275]. In severe cases, SCI can lead to complete paralysis
and/or result immediately in life threatening impairments to respiration, heart rate, and blood
pressure [107, 108]. SCI pathophysiology is marked by a pathophysiology with a complex
temporospatial profile, and is characterized by three phases: acute (seconds to minutes after
injury), subacute (hours to weeks post-injury), and chronic (weeks to years post-injury) [276,
277]. During these phases the injured environment undergoes distinct biochemical and
anatomical alterations, involving a diverse group of molecules and cells (i.e. nervous, immune,
vascular) [276]. The acute phase is initiated by mechanical disruption which results in such
insults as ischemia, edema, vasospasm, ionic/neurotransmitter imbalance and ultimately cell
death [276]. Factors released during the acute phase result in secondary inflammatory
degeneration, the hallmark of the subacute phase. During the subacute period, progressive
neurodegeneration occurs as a result of the pro-inflammatory neurotoxic environment (driven
by neutrophils, monocytes, microglia, T-cells) and results in the continued demyelination/
Wallerian degeneration of damaged axons [276, 278-281]. Over the course of the same period,
astrocytes become reactive in a process called astrogliosis which ultimately facilitates the
formation of glial scar. This scar tissue poses a physical and chemical barrier to axonal re-
growth, thus inhibiting regeneration [282-284]. On the other hand, this scar tissue aids in
regeneration and repair by regulating the immune response, preventing the spread of
neurotoxic factors, enabling partial reestablishment of homeostasis, and by providing neuro‐
trophic support through enrichment of IGF, nerve growth factor (NGF), BDNF and neurotro‐
phins (NT-3) [282-295]. The provision of these neuroprotective, neurogenic and regenerative
cues (and others) is continued during the chronic phase in an effort to repair damaged axons.
This effect is however limited, due to an inhibitory microenvironment created by the glial scar
and the persistence of other secondary degeneration mechanisms referenced earlier [281, 296].
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Interestingly, ependymal stem cells which are quiescent under physiological conditions
become activated following SCI [39]. Evidence suggests a proliferative and pathotrophic NSC
response. Such mitotic activation has also been observed in vitro through enhancement of
neurosphere-formation capabilities post-injury[13, 114, 119, 152]. These proliferating ependy‐
mal cells show a transient increase in GFAP, S100b, nestin, and Pax6 expression [16, 297, 298].
The lineage potential of these transiently activated progenitors in vivo seems to be predomi‐
nantly restricted to glial cells, namely astrocytes and oligodendrocytes [114, 119, 121]. As
mentioned before, pericytes are another source of astrocytes during spinal cord injury [125].
Newly produced astrocytes function mainly in aiding the establishment of the glial scar [114,
119, 121]. Parenchymal NG2+ OPC are also activated and lead to oligodendrocyte differentia‐
tion. Newly produced oligodendrocytes participate in attempts to remyelinate injured axons
[114]. Unfortunately, neuronal production has not yet been reported, and may be explained
by the host of powerful pro-glial cues that emanate from the spinal cord [114, 119, 121, 299];
as a result functional recovery post-injury is modest at best.

4. Molecular characteristics of neural stem cell niches

“Look deep into nature, and then you will understand everything better.” – Albert Einstein

A wealth of molecular signals have been shown to influence NSC maintenance and neuro‐
genesis via control of survival, self-renewal, activation of quiescent NSC and regulation of
their proliferative expansion/differentiation. Cues that influence the behavior of NSC within
the niche include autocrine, paracrine and endocrine factors, as well as direct cell-cell and cell-
ECM contact [10, 300, 301]. A summarized overview of molecular signaling influencing NSC
maintenance and neurogenesis is given in Table 1.

4.1. Growth factors

4.1.1. Fibroblast Growth Factors (bFGF) and Epidermal Growth Factors (EGF)

EGF and bFGF are factors necessary for in vitro growth and expansion of NSC [40]. They are
produced by cells in the SVZ and induce proliferation in cells that reside in the subependymal
layer lining the lateral ventricles of the forebrain [302, 303].

4.1.2. Hepatocyte Growth Factor (HGF)

HGF is also expressed in SVZ cells and has been shown to function as a survival factor for
neuroblasts and cortical neurons while also increasing proliferation of SVZ cells [304, 305].
Furthermore, it has been shown that HGF has neuroprotective properties as it can reduce
apoptosis in stress conditions, probably mediated by PI3K/Akt signaling [306, 307].
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4.1.3. Vascular Endothelial Growth Factor (VEGF)

VEGF is important for angiogenesis and hematopoiesis [308-310]. However, VEGF receptors
have also been found in the subependymal zone of the SVZ, the SGZ, and on NSC [311, 312].
It is secreted by endothelial cells, NSC, and astrocytes [313]. VEGF exerts indirect effects on
NSC and neurogenesis by inducing angiogenesis thereby providing structural and trophic
support [313]. It also operates directly via the promotion of proliferation and maintenance of
NSC and neurogenesis [314, 315]. Furthermore, VEGF has been shown to be neuroprotective
during disease and injury [316, 317].

4.1.4. Insulin-like Growth Factors (IGF)

IGF activate  the  PI3K/Akt  signaling  pathway,  activating  the  target  of  rapamycin  (TOR)
kinase and FoxO transcription factors [318]. IGF-1 is expressed in various areas of the CNS,
including  hippocampus,  olfactory  bulbs,  and  cerebellum  [319,  320].  Multiple  knockout
studies  have  indicated  that  IGF-1  is  needed for  maintaining  proliferation  and stem cell
characteristics [321, 322].

4.1.5. Pigment-Epithelium Derived Growth Factor (PEGF)

PEGF was first identified as a factor that induces differentiation of retinoblastoma cells into a
neuronal phenotype [323, 324]. It has been found to be expressed by retinal cells, adipocytes
and hepatocytes, and also endothelial and ependymal cells in the adult brain [325]. Although
NSC do not express these factors themselves, they are responsive to them. It has no effect on
survival, but increases NSC self-renewal and activates quiescent subependymal cells [325]. It
is believed that PEGF function is dependent on Notch signaling and keeps cells undifferenti‐
ated through upregulation of Hes1, Hes5, and Sox2 [325, 326].

4.1.6. Platelet-Derived Growth Factors (PDGF)

PDGF is produced by endothelial cells and binds PDGF receptor α (PDGFRα) on NSC whereby
it regulates neurogenesis [327]. PDGF receptor β (PDGFRβ) is expressed in brain pericytes,
neurons and astrocytes and is implicated in neuroprotection after ischemic stroke [328].

4.2. Developmental factors and morphogens

4.2.1. Wingless-related integration site (Wnt) signaling

Wnt signaling pathways are major regulators of stem cell activity in the developing and adult
brain, where it functions in both NSC maintenance and neurogenesis [300, 329-333]. These
diverse and opposing functions are enabled by heterogeneous group of Wnt proteins that
modulate canonical (involving β-catentin) and non-canonical signaling pathways with further
regulation by a wide range of interaction partners and regulators [300, 334, 335]. Wnt3, for
instance, is secreted by astrocytes and induces NSC proliferation and neurogenesis [333].
Wbt7b is regulated by retinoic acid and can expand the number of proliferating cells [336,
337]. The canonical pathway normally allows for an increase in cytoplasmic β-catentin, which
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induces proliferation and inhibits differentiation. However, when factors such as homeodo‐
main interacting protein kinase 1 (HipK1) are upregulated in the SVZ, the same pathway can
induce differentiation [338]. Furthermore, in pathological conditions such as stroke and
hypoxia, Wnt signaling has been shown to drive neurogenesis through NSC proliferation and
differentiation. Interestingly, these activated cells divide symmetrically leading to NSC
expansion, as opposed to the asymmetrical division that normally takes place in the suben‐
dymal zone [303, 339].

4.2.2. Bone Morphogenic Proteins (BMP)

BMP and their receptors are expressed by cells adjacent to the SVZ. They inhibit proliferation
of neuroblasts while blocking neurogenesis and favoring gliogenesis [340]. Noggin is secreted
by ependymal cells of the SVZ and SGZ and opposes the effect of BMP by binding and
inactivating them thereby maintaining cell proliferation [340-342].

4.2.3. Sonic Hedgehog (Shh)

Activation of the Shh can increase proliferation of NSC. Shh receptors (Patched (Ptc)) can for
instance be found in hippocampal regions such as the hilus and pyramidal cells in CA1-CA3
[343]. Shh also plays a role in maintenance of NSC pools in telencephalic niches [344].

4.3. Hormones

4.3.1. Erythropoietin (EPO)

Although mainly produced by the kidney, EPO and its receptor were found to be expressed
in adult neurogenic regions, such as the SVZ and SGZ [210, 345]. Under hypoxic stress EPO
expression is upregulated in the adult brain [346]. EPO affects NSC by increasing proliferation,
increasing neurogenesis, and enhancing survival [202, 347-352]. Conditional knockouts of EPO
have shown that it is a critical factor for proliferation [202]. Its promotion of survival operates
by reducing apoptosis of NSC and their progeny [350, 352].

4.3.2. Insulin

Insulin is produced by beta cells of the pancreas. Controversial evidence now suggests that it
is also produced by cultured neuronal and glial cells and in the hippocampus [353]. In general,
it allows for survival, self-renewal and proliferation of NSC [353-357]. Insulin is able to replace
EGF and bFGF in vitro, allowing for self-renewal and long-term passaging [354].

4.3.3. Adipocyte-derived leptin and adiponectin

Leptin and adiponectin enhance the survival of NSC in vivo and in vitro [358-362]. They activate
the glycogen synthase kinase β (GSKβ) signaling pathway in hippocampal NSC, allowing for
accumulation of β-catenin and consequent promotion of proliferation of NSC [358, 359].
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4.4. Cytokines

4.4.1. Leukemia Inhibitory Factor (LIF)

LIF is highly expressed in the adult injured brain, mediating inflammation and inducing NSC
proliferation [363, 364]. LIF leads to an expansion of astrocytes while depleting neurons.
Furthermore, it promotes NSC self-renewal rather than the generation of committed progen‐
itors [364, 365]. Treatment of neurospheres with LIF in vitro increases the generation of
secondary neurospheres [364].

4.4.2. Ciliary Neurotrophic Factor (CNTF)

CNTF  receptor  (CNTFR)  expression  is  restricted  to  periventricular  regions  [365].  CNTF
binding activates  the  LIF  receptor/gp130 complex,  enhancing maintenance,  survival  and
self-renewal  of  NSC,  while  restricting  differentiation  of  the  glial  lineage  [366,  367].
Endogenous CNTF expression is upregulated after stroke and leads to increased prolifera‐
tion of SVZ cells [204].

4.4.3. Stem Cell-Derived Neural Stem/Progenitor Cell Supporting Factor (SDNSF)

SDNSF is expressed in the DG of the hippocampus and is upregulated after ischemia. It has
been shown to allow NSC to survive in vitro when bFGF is removed. Although cells maintain
their self-renewal and differentiation potential, SDNSF alone does not promote proliferation
[368].

4.4.4. C-X-C Motif Chemokine 12 (CXCL12)/Stromal Cell-Derived Factor 1 (SDF-1)

SDF-1 also known as CXCL12 is a chemokine produced by endothelial cells. It binds C-X-C
motif receptor 4 (CXCR4) on NSC. It favors neurogenesis by driving survival and migration
of neuronal and oligodendrocytic progenitors [369, 370]. After stroke, SDF-1 promotes
migration and integration of new neurons, participating in functional recovery [371].

4.4.5. Macrophage Migration Inhibitory Factor (MIF)

Dendritic cells secrete MIF which mediates NSC expansion through the MIF receptor CD74,
both in vivo and in vitro [372, 373].

4.4.6. Interleukin 1 (IL-1)

IL-1α and IL-1β have both been found to positively regulate neurogenesis [374, 375]. Interest‐
ingly, the effect of IL-1β depends on its concentration. Under physiological conditions, it
increases differentiation of neural progenitors, whereas it inhibits neurogenesis under high
inflammatory concentrations [376-378].
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4.4.7. Interleukin 6 (IL-6)

At low concentrations, IL-6 promotes differentiation of NSC to neurons, astrocytes and
oligodendrocytes [379-381]. However, at high concentrations IL-6 has been shown to reduce
neurogenesis [161].

4.4.8. Cytokines during inflammation

Inflammatory  cytokines  (pro/anti)  are  produced  by  activated  immune  cells  (including
leukocytes,  lymphocytes,  astrocytes,  microglia,  and endothelial  cells) after disturbance of
homeostasis  or  during  pathology.  These  cytokines  influences  NSC  maintenance  and
neurogenesis in a very heterogeneous and context dependent manner, summarized in Table
2 [382, 383].

4.5. Neurotransmitters

4.5.1. Glutamate

Glutamate acts on NSC through metabotropic glutamate receptors (mGluR). Although
excitotoxic for neurons, high levels of glutamate have been shown to promote survival and
proliferation of NSC in the SVZ and DG [384-389].

4.5.2. Gamma-aminobutyric acid (GABA)

GABA is non-synaptically released by neuroblasts after spontaneous depolarization. It has
been shown to reduce proliferation of GFAP+ NSC, suggestive of a feedback system regulating
the NSC population [390, 391].

4.5.3. Serotonin

Serotonin has been shown to positively influence survival, proliferation, and neurogenesis
[392-396]. Serotonin receptors have been found in the SVZ and the DG [392]. Their activation
increases neurogenesis and affects symmetric division of a specific population of NSC [395].

4.5.4. Dopamine

Adult NSC in the SVZ and the DG have receptors for dopamine. Activation of certain dopa‐
mine receptors can indirectly promote NSC survival and differentiation due to the activation
of A-disintegrin and metalloproteinases (ADAM) and consequent release of membrane bound
EGF [397, 398]. By contrast, activation of the dopamine D2 receptor on NSC inhibits their
proliferation and neurogenesis in a CNTF-dependent manner [399, 400].

4.5.5. D-Serine

Although mainly produced by astrocytes, D-Serine has recently found to be expressed by
neurons and NSC [401-408]. Although it does not enhance NSC expansion and neurogenesis,
D-Serine is associated with NSC self-renewal and maintenance [409, 410].
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4.5.6. Nitric oxide (NO)

NO is produced by neurons and inflammatory cells, but not NSC. Conflicting evidence exists
on whether they stimulate or reduce SVZ and hippocampal NSC proliferation. It has been
postulated that high NO concentrations promote proliferation, whereas low NO concentra‐
tions inhibit proliferation [411-413].

4.6. Extracellular matrix (ECM) components

Chondroitin sulfate proteoglycans (CSPG) are major constituents of the NSC niche ECM and
play pivotal roles in the development, regeneration and plasticity of neuronal networks
[414-416]. Enzymatic degradation of CSPG reduces self-renewal of NSC in the SVZ, as well as
of neurospheres in vitro [417]. In other studies, however, degradation of CSPG resulted in
increased NSC proliferation, differentiation and migration via an integrin-dependent mecha‐
nism [418]. These different outcomes may be the result of differences in the cell types being
analyzed and further studies are needed to unravel the exact role of CSPG on adult NSC [418].
Heparan sulfate proteoglycans (HSPG) have also been implicated in the survival and prolif‐
eration of NSC, probably by interaction with bFGF [419, 420]. Sulfotransferases are expressed
in adult neurogenic regions and in neurospheres and have been shown to be important for
preserving the functional activity of CSPG and HSPG in NSC survival [421].

Laminins are other ECM components that can be found in NSC niches such as those in the SVZ
[422]. Laminin receptors such as integrins, syndecans and dystroglycans can all be found
expressed on NSC [423]. Notably, α6β1 integrins are expressed in high levels on proliferating
NSC and progenitors [65, 424, 425]. Quiescent NSC do not express β1 integrins; activation of
NSC through daughter cell depletion or administration of CXCL12/SDF-1, however, leads to
upregulation of β1 integrins, showing the pivotal role of β1 integrins in neurogenesis and NSC
proliferation [425].

4.7. Direct cell-to-cell signals

4.7.1. Notch signaling

Notch is a membrane bound developmental factor and its signaling is of major importance in
maintaining and expanding embryonic and adult NSC [426, 427]. Notch ligands such as Jagged
and delta like ligand 4 (Dll4) are also membrane bound and regulate neurogenesis by stimu‐
lating NSC proliferation [428, 429]. Interestingly, NSC but not fate-restricted progenitors
express Notch, a characteristic which has been used to distinguish between both populations
[430, 431]. Progenitors communicate with NSC through Notch-epidermal growth factor
receptor (EGFR) interactions, whereby regulating the balance between both cell populations
in the SVZ. Enhanced EGFR signaling results in the expansion of the progenitor pool and
reduces NSC numbers and their self-renewal [431]. Recent work also suggests that there is a
strong interplay between Notch and Shh in regulating neurogenesis [432].
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4.7.2. Ephrin signaling

Ephrin ligands and receptors are also membrane bound developmental factors. Ephrin A and
B ligands and their receptors are expressed by NSC in the SVZ [433]. Ephrin signaling has been
implicated in both proliferative and anti-proliferative effects on NSC [433-437]. They have been
linked to NSC maintenance, survival, and inhibition of differentiation [438-441].

4.8. Neurotrophic Factors (NTF)

The NTF family includes BDNF, NGF, GDNF and NT-3, NT-4. They are important for
differentiation, survival, and functioning of neurons in both the developing and adult brain
[300]. NTF and their tropomyosin-related kinase (Trk) receptors are expressed in NSC. They
have been shown to protect NSC against excitotoxicity and apoptosis during injury and to
promote NSC differentiation [442-445].

4.9. Other factors

4.9.1. Apolipoprotein E (ApoE)

ApoE is a constituent of plasma lipoprotein particles. It has been found to be secreted by
astrocytes in vivo and by neurospheres in vitro, contributing to neuritogenesis and maintenance
of NSC in the DG [446-450].

Signaling factors Source Effect on NSC References

Growth factors

FGF EC, A, CSF Renewal, proliferation, differentiation, migration [40, 302, 303]

EGF EC, A, CSF Renewal, proliferation, differentiation, migration [40, 302, 303]

HGF NSC Survival, proliferation [304-307]

VEGF EC, NSC, A Survival, renewal, migration [308-317]

IGF CSF Renewal [318-322]

PEGF EC, NSC Renewal [323-326]

PDGF EC Survival, renewal [327, 328]

Developmental factors

Wnt signaling A Renewal, proliferation, differentiation* [329-331, 333,
338, 339]

BMP EC, A, CSF Differentiation [340-342]

Noggin NSC Renewal, proliferation [340-342]

Shh A, CSF Renewal, proliferation, migration [343, 344]

Hormones

EPO B, A, N Survival, proliferation [347-349, 351,
352,

Insulin B Survival, renewal, proliferation 451, 452]

Leptin/adiponectin B Proliferation [353-357]
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Signaling factors Source Effect on NSC References

[358-362]

Cytokines

LIF IC Renewal, differentiation [363, 364]

CNTF IC Survival, renewal, differentiation [204, 366, 367]

SDNSF IC Survival, renewal [368]

SDF-1 IC, EC, NSC Survival, migration [369-371]

MIF IC Proliferation [372, 373]

IL-1 IC Differentiation [374-378]

IL-6 IC Differentiation [161, 379, 380]

Neurotransmitters

Glutamate N Survival, proliferation, differentiation [384, 385,
387-389]

GABA N, NB Proliferation**, differentiation, migration [391, 453]

Serotonin N Survival, proliferation [392-396]

Dopamine N Survival, proliferation, differentiation [397, 399, 400]

D-Serine A, N, NSC Renewal [401-405, 407,
410]

NO N, IC Proliferation* [411-413]

Extracellular matrix

CSPG Survival, renewal [415-418, 454,
455]

HSPG Survival, renewal [419, 420]

Laminins Survival, proliferation* [65, 424, 425]

Direct cell-to-cell signals

Notch NSC Renewal*, proliferation* [426, 429-432]

Ephrin NSC Renewal*, proliferation* [433-439, 441]

Neurotrophic factors

BDNF, NGF, GDNF, NT-3, NT-4 NSC, A, EC Survival, renewal, proliferation differentiation [442-444]

Others

ApoE A Renewal, differentiation [446, 447, 449,
450]

Abbreviations: bFGF, basic fibroblast growth factor; EGF, epidermal growth factor; HGF, hepatocyte growth factor; VEGF,
vascular endothelial growth factor; IGF, insulin-like growth factor; PEGF, pigment-epitheliun derived growth factor;
PDGF, platelet-derived growth factors; Wnt, wingless-related integration site; BMP, bone morphogenic proteinss; Shh,
sonic hedgehog; EPO, erythropoietin; LIF, leukemia inhibitory factor; CNTF, ciliary neurotrophic factor; SDNSF, stem cell-
derived neural stem/progenitor cell supporting factor; SDF-1, stromal cell-derived factor 1; MIF, macrophage migration
inhibitory factor; IL-1, interleukin 1; IL-6, interleukin 6; TNF-α, tumor necrosis factor α; GABA, gamma-Aminobutyric acid;
NO, nitric oxide; CSPG, chondroitin sulfate proteoglycans; HSPG, heparan sulfate proteoglycans; NTF, neurotrophic
factors.; BDNF, bone-derived neurotrophic factor; NGF, nerve growth factor; GDNF, glial cell-line derived neurotrophic
factor; NT, neurotrophin; A, astrocytes; B, blood; CSF, cerebrospinal fluid; EC, endothelial cells; IC, immune cells; N,
neurons; NB, neuroblasts; NSC: neuronal stem cells. * context dependent; ** of progenitors, not stem cells.

Table 1. Molecular Components of the Niche Environment
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Soluble factors Role in NSC

biology

Cell sources Pathological models Ref

CCL5 NSC proliferation↑ Reactive astrocytes,

activated lymphocytes,

microglia/macrophages

Entorhinodentate lesions; axonal

degeneration (in vivo).

[456-458]

CXCL12/SDF1α NSC migration↑ Reactivated astrocytes,

activated endothelial cells,

meningeal cells

Hypoxic–Ischemic (HI) Cerebral

Injury; multiple sclerosis; stroke

[459-462]

CX3CL1 NSC proliferation↑ Reactivated astrocytes,

activated lymphocytes,

microglia/macrophages

Neurospheres, hippocampal slice

cultures (in vitro)

[458]

CCL11 NSC proliferation↓

differentiation ↓

Reactivated astrocytes,

activated lymphocytes,

microglia/macrophages

Aging model [463]

IFN-α NSC proliferation↓ Plasmacytoid dendritic cells,

activated macrophages,

endothelial cells, neurons

Young and old Cr2(-/-) mice [464]

IL-1β Neuronal fate

(dopaminergic

neurons)

Reactivated astrocytes,

activated lymphocytes,

microglia/macrophages

Tyrosine hydroxylase (TH)-induced

immunoreactivity (in vitro)

[465-467]

IFN-γ NSC proliferation↓ T cells (Th1), natural killer

cells

Experimental allergic

encephalomyelitis (EAE)

[468, 469]

IL-6 family of

neurotrophic

cytokines (LIF, CNTF,

CT-1)

(Astro)glial

differentiation

Reactivated astrocytes,

activated lymphocytes,

microglia/macrophages

Cortical precursor culture (in vitro) [465, 470]

IL-4 NSC migration↑

differentiation↑

T cells (Th2), through effect

on microglia/macrophages

EAE related chemokines treatment

(in vitro)

[471, 472]

IL-10 NSC migration↑ Reactivated astrocytes,

activated lymphocytes,

microglia/macrophages

EAE related chemokines treatment

(in vitro)

[472]

IL-15 NSC proliferation↑ Activated microglia IL-15−/− mice [473]

TNF-α NSC proliferation↓ Activated microglia/

macrophages

EAE; TNF-R1(-/-),TNF-R2(-/-) and

TNF-R1/R2(-/-) mice.

Lipopolysaccaride (LPS)-stimulation

(in vitro).

[468, 474,

475]

Abbreviations: CC/CXC, chemokines; SDF1α, stromal cell-derived factor 1α; IFN, interferon; IL, interleukin; CNTF, ciliary
neurotrophic factor; CT-1, cardiotrophin-1; LIF, leukaemia inhibitory factor; TNF-α, tumor necrosis factor α.

Table 2. The Influence of Inflammatory Mediators on NSC [382, 383]
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5. Therapeutic modulation of the neural stem cell niche

Due to the indispensable role of the niche microenvironment in regulating NSC (e.g. control
of the maintenance, expansion and differentiation), different molecular strategies have been
investigated in an effort to modulate the NSC response and in so doing enhance neurogenesis.
Such work has the potential to benefit a myriad of degenerative neurological disorders by
facilitating repair and aiding in functional recovery. Most prominent are approaches using
novel pharmacological targets within NSC niches [50]. Rational engineering of the niche must
also be considered as an approach for CNS homeostasis and repair [476]. This section will
therefore focus both on selected drugs that have been shown capable of modulating the niche
and on current efforts geared toward the engineering of microenvironments to support
enhanced/sustained niche homeostasis.

5.1. Molecular therapies

Various endogenous regulators of NSC have been investigated for their therapeutic value with
regard to neurogenesis. Intraventricular administration of exogenous EGF, PEDF, HGF and
CNTF in mice has been shown to enhance NSC proliferation [305, 325, 366, 477]. Additionally,
the peripheral administration of human recombinant EPO (hrEPO) has been shown to enhance
neurogenesis and improve functional outcome in models of both ischemic stroke and traumatic
injury. It is unlikely, however, that such effects can be solely attributed to the enhancement of
neurogenesis, being that hrEPO has also been demonstrated to suppress inflammation and
induce angiogenesis [478]. Administration of other factors such as RA, bFGF, EGF, BDNF and
VEGF have also been shown to enhance neurogenesis in similar disease models ultimately
leading to enhanced recovery [177, 213, 311, 479-483]. Despite the plethora of positive effects
demonstrated in animal models, many of these endogenous factors have been difficult to
translate into clinical use due to invasive routes of administration, off target physiologic effects,
cost of recombinant factors, etc.

5.2. FDA approved small molecules

Certain small molecules have been shown to exert similar effects via the direct or indirect
modification of endogenous cues. Briefly, certain antidepressants have been shown capable of
increasing the neurogenic response [484, 485]. As an example, Fluoxetine (a selective serotonin
reuptake inhibitor) has been shown to give rise to maturation of immature neurons and
enhanced neurogenesis [486]. Whether this function is mediated through an increase in 5-HT
receptor activation on NSC remains unclear [395]. However, it is prudent to note that the
clinical benefits of such typical antidepressant drugs are only partly dependent on neurogen‐
esis [487]. Antipsychotic drugs have also been associated with neurogenesis, yet the precise
mechanisms of action remain unclear. The antipsychotic drug Haloperidol (D2 receptor
antagonist) has been shown to reverse dopamine-induced inhibition of NSC proliferation
[399]. Similar effects have also been observed for other antipsychotics including Clonazepam
and Risperidone [409, 488-490]. GABA has been observed to have a negative influence on NSC
proliferation and migration [491-493] and so it should not be surprising that GABA-based
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treatments, such as Phenobarbital and Clonazepam have been shown to inhibit cell proliferation
in the DG of the hippocampus [494, 495]. In contrast, pharmacological inhibition of GABA
receptors via such agents as Bicuculline (i.e. GABA antagonists) can enhance NSC proliferation
and differentiation, thereby positively influencing neurogenesis [489, 490].

As discussed above, behavior of NSC is largely regulated by signals from the niche under
physiological and pathological conditions. Small molecules capable of altering NSC niche
function may provide a tool for modulation of NSC and neurogenesis in disease states and
concurrently open up novel experimental routes for the investigation of mechanisms of niche
activation.

5.3. Therapeutic stem cell transplantation in CNS diseases and the development of atypical
neural stem cell niches

The therapeutic benefits of stem cell transplantation in modulating CNS disease processes have
been supported by a multitude of reports. Yet, the therapeutic efficacy appears to be most
pronounced in disorders that display key components of inflammation (i.e. multiple sclerosis,
stroke and spinal cord injury) [87, 301, 496]. It is relevant to note that this effect is not limited
to direct delivery (i.e. focal), but has also been reported after systemic or subcutaneous injection
of stem cells [87, 496, 497]. While NSC have the potential to integrate into the host system and
may contribute to replacement of damaged cells, other somatic stem cells such as hemato‐
poietic stem cells (HSC), mesenchymal stem cells (MSC), and umbilical cord cells also allow
for functional recovery in mouse models of inflammatory degeneration [87, 496, 498-502]. This
suggests that the therapeutic effect of stem cells goes beyond mere cell integration, differen‐
tiation, and replacement and involves a “shared stemness-related” functional signature.

Transplanted NSC migrate toward well-defined areas in the inflamed perivascular microen‐
vironment [503, 504]. This leads to the establishment of ectopic stem cell niches, also called
atypical niches, which are molecularly reminiscent of prototypical germinal niches and
regulate the long-term survival and the behavior of NSC [503, 505, 506]. The term “therapeutic
plasticity” has been suggested to describe the remarkable inherent flexibility of NSC to migrate
to inflamed CNS areas and establish atypical ectopic stem cell niches through which they
modulate their environment in support of a therapeutically beneficial outcome [496, 507]. This
modulatory capacity is exerted through regulated cross-talk of NSC with other components
of the atypical niche, including endothelial cells, blood-born inflammatory cells, activated
macrophages and microglia, and reactive astrocytes [301, 496]. A myriad of cell-to-cell
signaling pathways allows for this NSC-driven pathophysiologic modulation and enhanced
clinical recovery [301, 496, 499, 508, 509].

The preferential migration of NSC toward CNS lesions is referred to as pathotropism. During
an insult (e.g. hypoxia or injury) cytokines cause a subsequent activation of microglia,
astrocytes and endothelial cells [46, 510]. As a result, reactive astrocytes and activated endo‐
thelial cells produce chemokines such as SDF-1, MCP-1, and VEGF that function collectively
as a homing beacon, not only for inflammatory cells, but also for NSC [301, 510-514]. Much
like leukocytes, NSC express adhesion molecules (CD44), integrins (α4 β1) and chemokine
receptors (CCR1, CCR2, CCR5, CXCR3, CXCR4). This enables NSC to follow the concentration
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gradient of these chemokines toward the inflamed parenchyma and extravasate in a process
of tethering, rolling and adhering to endothelial cells followed by transendothelial migration
[183, 503, 515-517]. Factors such as bFGF and IGF-1 are also produced by activated astrocytes
and support NSC proliferation, survival and differentiation [510, 511, 518]. Conversely,
hypertrophic GFAP-enriched astrocytes of the glial scar produce factors such as slit homologue
2 (SLIT2), TNF-α and hyaluronan that repel NSC and limit the regenerative potential of their
progeny [510, 511, 519, 520].

Once an atypical niche is established, undifferentiated NSC survive in the perilesional region
in close proximity to activated microglia (expressing ionized calcium-binding adapter
molecule 1 (IBA)) and to blood vessels [502, 521, 522]. The mechanisms by which transplanted
NSC remodel the injured nervous system is irrespective of the experimental disease charac‐
teristics (e.g. focal vs. multifocal) and only a small number of cells undergo final differentiation
[522-524]. When migrating to the lesional parenchyma, NSC contribute to cell replacement,
mainly by differentiating into astrocytes, but also into neurons [522, 525, 526]. More striking,
however, are the “bystander” capacities of undifferentiated NSC, which include the provision
of trophic support and the modulation of the immune response. These beneficial effects lead
to the establishment of a homeostatic environment [382, 496, 497, 524, 527]. In models for MS
and stroke this has been shown to mediate efficient myelin repair and axon rescue [515, 525,
526, 528-531].

Trophic and neuroprotective effects are exerted by providing neurotrophins, growth factors,
developmental stem cell regulators, and immune modulators through modulation of the
microenvironment [301, 382, 496]. In models for MS, systemically administered NSC have
shown to stimulate OPC proliferation and differentiation, and consequent remyelination
through secretion of PDGF-A and bFGF [515, 528]. In models for stroke, focally injected NSC
have been shown to enhance expression of BDNF, GDNF, CNTF, bFGF, VEGF, HGF, and IGF
in the perilesional region [525, 526]. Finally, focal grafting of NSC in SCI models has been
shown to support growth of motor and sensory axons due to upregulation of NGF, BDNF, and
GDNF [532].

Transplantation of stem cells enables the switch to a more conservative and anti-inflammatory
lesional environment [87, 301, 498]. In models for MS, NSC drive the reduction of perivascular
infiltrates and CD3+ T-cells and the increase of regulatory CD25+ or CD25+/CD62L+ T-cells,
accompanied by a downregulation of inflammatory markers, intercellular adhesion molecule
1 (ICAM-1), and lymphocyte function-associated antigen 1 (LFA-1) [503, 533]. In vitro studies
have shown that NSC can 1) induce apoptosis of Th1 and Th17, but not Th2 lymphocytes
through Fas ligand (FasL), TNF-related apoptosis-inducing ligand (TRAIL) and Apo-3 ligand
(APO3L), 2) reduce T-cell proliferation through nitric oxide and prostaglandin E2 (PGE2), 3)
reduce T-cell receptor (TCR) dependent T-cell activation, 4) inhibit interleukin 2 (IL-2) (T-cell)
and IL-6 (B-cell) signaling, and 5) reduce local populations of monocytes and macrophages
through cytotoxic TNF-α secretion [503, 505, 506, 533-539]. Immune-modulating capabilities
have also been shown in models for stroke, and include an increase of VEGF, SDF-1 and TGF-
β, as well as a reduced expression of pro-inflammatory genes lfng, TNF-α, ll1b and Lepr [502,
529]. Furthermore, NSC-induced increases in activated microglia (CD11b+) have been shown
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to lead to IGF-1, VEGF, TGF-β, and BDNF production, yielding better motor function and
axonal sprouting, highlighting the beneficial role of microglia [529-531]. However, other
studies have shown that NSC transplantation reduced microglia/macrophage presence with
improvement of both neuronal survival and locomotor functions [502, 540]. Models for SCI
also show a skewing of microglia/macrophage infiltrates. Here, focally transplanted NSC have
been shown to make cellular junctions (Connexin 43) with phagocytic cells and astrocytes, and
to reduce the presence of classically-activated pro-inflammatory M1 macrophages [522].

Grafted stem cells do not only home to the the inflamed CNS, but also to the secondary
lymphoid organs where they modulate inflammation [505, 506, 540, 541]. NSC hinder the
activation of myeloid dendritic cells (DC), limiting the expansion of antigen-specific encepha‐
logenic T-cells. DC maturation is hindered, partially due to secretion of BMP-4. Furthermore,
induced secretion of BMP-4/7, Shh and Noggin by transplanted NSC and immune cells,
promoted survival of endogenous NSC [505, 506, 541]. An increase in the presence of LIF leads
to a reduction of Th17 differentiation, further ameliorating the functional outcome of MS. In
stroke models, a reduction of both neutrophil infiltration and activation of macrophages in
lymphoid organs can be observed after NSC transplantation [540].

In an effort to translate these therapeutic approaches to clinic, human embryonic stem cells
(hESCs) and induced pluripotent stem cells (iPSC) created from human fibroblasts have been
studied for their neurogenic and neuroprotective properties after MS, stroke and SCI. Al‐
though some differences can be observed, e.g. higher cytotoxic potential against monocytes
and lower cytotoxic potential against T-cells, human-derived cell functions are largely similar
to those of animal-derived cells and they also increase clinical recovery. The therapeutic use
of these cells is however limited by ethical constraints, genetic instability, and tumorgenicity
[505, 538, 539, 542-545].

The therapeutic value of stem cell grafts, especially NSC, in inflammatory neurodegenerative
disorders has become increasingly evident. Transplanted stem cells are able to home to the
lesion areas where they take part in the establishment of an atypical perivascular niche,
allowing stem cells to survive undifferentiated and to provide neurotropic support, modulate
the inflammation, and allow for further migration into the lesional parenchyma to take part
in neuronal differentiation and cell replacement. This has been shown to modulate the
pathophysiology of disease, enhancing axonal conservation and regeneration, leading to
increased functional recovery in animal models of MS, stroke and SCI.

5.4. Engineering the NSC niche

Approaches for niche engineering are centered around efforts to mimic multiple aspects of the
niche microenvironment, which include architectural, mechanical, bioactive and growth factor
cues [476]. ECM mimicking scaffolds support the survival and differentiation of transplanted
NSC [546, 547]. Clearly, an understanding of ECM architecture is important in the designing
of these scaffolds and to this extent studies have shown a correlation between scaffold fiber
diameter and NSC behavior. For example, fibers with a 283nm diameter promote proliferation
and differentiation to oligodendrocytes while fibers within 749-1452nm diameter range
promote neuronal differentiation [548]. Apart from the 3D structure, the mechanical properties
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of scaffolds have been shown to modulate morphology, proliferation, and differentiation of
stem cells [549]. Polyethylene glycol (PEG) – poly-L-lysine (PLL) hydrogels allow for good
NSC migration when their elastic modulus mimics that of brain tissue. Gels with a higher
elastic modulus, on the other hand, limit migration [550]. Other studies have demonstrated
that softer substrates promote neuronal differentiation whereas more rigid substrates induce
glial differentiation [551]. Bioactive polymers such as those made from the laminin-1-derived
IKVAV peptide further promote neuronal differentiation [552]. When seeded with NSC and
transplanted into animal models of spinal cord injury, these structures have stimulated a
marked enhancement in functional recovery [553]. Bioactive polymers which include tripep‐
tide Arg-Gly-Asp (RGD) motifs showed promotion of cell attachment, self-renewal and
differentiation [554]. Additionally, incorporation of signaling molecules relevant to NSC
regulation can also positively influence the behavior of cells within these scaffolds [555]. Wnt
and Notch ligands keep cells in a proliferative, undifferentiated state while the addition of
BMP-4 enhances glial and neuronal differentiation [551]. Altogether, niche engineering
represents a promising approach for regenerative medicine, as it enables control over the
behavior of transplanted NSC, and may soon come to have vast therapeutic value.

6. Concluding remarks and future directions

“As long as our brain is a mystery, the universe, the reflection of the structure of the brain will also be
a mystery.”-Santiago Ramón y Cajal

The presence of neural stem cells/neurogenic niches in the adult mammalian central nervous
system has been clearly established by a body of rigorous scientific work. The functional
significance of adult neurogenesis continues to grow as new studies describe its critical roles
in states of both health and disease. Despite this growing body of information and improve‐
ments in our understanding of NSC and niche functions in both the physiologic/pathologic
conditions, several critical questions remain. Chief among them is the relevance of the basic
biology that has so far been described in animal models to the ultimate goal of translating adult
neurogenesis into clinical trials. Further work with regard to the definitive nature/location of
NSC needs also to be carried out. Finally the definitive molecular mechanisms that influence
endogenous stem cell migration/pathotropism will also be key in helping to develop suitable
treatments and strategies to prevent, mitigate, and treat varied CNS injuries and disease.

Abbreviations

SVZ-subventricular zone

SGZ-subgranular zone

NSC – neural stem/precursor cells

CNS – central nervous system

Typical and Atypical Stem Cell Niches of the Adult Nervous System in Health and…
http://dx.doi.org/10.5772/58599

239



NPC – neural progenitor cells

OPC-Ooigodendrocyte precursor cells

GFAP – glial fibrillary acidic protein

Sox2 – SRY (sex determining regionY) – box2

Oct4 – octamer-binding transcription factor 4

FoxO – Forkhead box

BrdU – bromodeoxyuridine

DCX – doublecortin

PSA-NCAM-polysialylated-neural adhesion molecule

SCs – stem cells

CC – central canal

CVO-circumventricular organs

ECM-extracellular matrix

DG-dentate gyrus

RMS-rostral migratory stream

5-HT – 5-hydroxytryptamine

GCL-granule cell layer

RGL-glial-like cells

IML-inner molecular layer

Shh-Sonic hedgehog signaling

VEGF-vascular endothelial growth factor

IGF-insulin-like growth factor

BDNF-brain-derived neurotrophic factor

CA – cornu ammonis region

CSF – cerebrospinal fluid

BLBP-brain lipid-binding protein

NeuN – neuronal nuclear antigen

Olig2+-oligodendrocytes

CD133 – prominin 1

ALDH1L1-aldehyde dehydrogenase 1 family member, L1

Adult Stem Cell Niches240



GLAST-glutamate aspartate transporter

RC2-radial glial cell marker-2

NG2-neuron-glial antigen 2

A2B5 – A2B5 antigen

PDGFR-platelet-derived growth factor receptor

GABA-gamma-aminobutyric acid

RA-retinoic acid

bFGF – basic fibroblast growth factor

CXCL12 –chemokine (C-X-C motif) ligand 2

MIP2-alpha – macrophage inflammatory protein 2-alpha
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EGFR – epidermal growth factor receptor

NTF – neurotrophic factor

NT – neurotrophin
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hrEPO – human recombinant erythropoietin

HSC-hematopoietic stem cells

MSC – mesenchymal stem cells

CCR, CXCR – chemokine receptor

SLIT2-slit homologue 2

IBA-ionized calcium-binding adapter molecule 1

PDGF-A – platelet derived growth factor-A

ICAM-1 – intercellular adhesion molecule 1

LFA-1 – lymphocyte function-associated antigen 1
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TRAIL – tumor necrosis factor related apoptosis inducing ligand
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PGE2 – prostaglandin E2
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RGD – tripeptide-Arg-Gly-Asp
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