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1. Introduction

The sensors in remote sensing systems are looking through a layer of atmosphere separating
the sensors from the Earth's surface being observed. It is essential to understand the effects of
atmosphere on the electromagnetic radiation travelling from the Earth to the sensor through
the atmosphere. The atmospheric constituents cause wavelength dependent absorption and
scattering of radiation due to environment interactions, emissions and so on (fig. 1) [6]. The
atmosphere between radiating surface and sensor can be understood as communication
channel (CC). The technical conditions of CC during operation should be considered for the
effective communications. Changes during data transfer can decrease the rate of data trans‐
mission in digital CC up to stop of transmission. In analog CC it can be cause distortions and
noise of the transmitted signals. Some of the atmospheric effects can be corrected before the
sensing data is subjected to further analysis and interpretation. These effects degrade the
adequateness of received data. The new methods and supporting tools are developed to
automate the measurement and consideration of the characteristics of the CC. It helps to build
the information and mathematical models of nonlinear dynamic object such as the CC [3, 19,
20], i.e. to solve the identification problem.

Building Volterra models and using them for visualization for such complex nature effects as
waves of sea surface were well studied in [8-10]. This methodic allows building linear and
nonlinear models for different systems. Modern continuous CCs are nonlinear stochastic
inertial systems. The model in the form of integral Volterra series used to identify them [3, 4].
The nonlinear and dynamic properties of such system are completely characterized by a
sequence of multidimensional weighting functions – Volterra kernels).

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Building a model of nonlinear dynamic system in the form of a Volterra series lies in the choice
of the test actions form. Also it uses the developed algorithm that allows determining the
Volterra kernels and their Fourier-images for the measured responses (multidimensional
amplitude–frequency characteristics (AFC) and phase-frequency characteristics (PFC)) to
simulate the CC in the time or frequency domain, respectively [16-18, 23].

The additional research of new method of nonlinear dynamical systems identification, based
on the Volterra model in the frequency domain is proposed. This method lies in n–fold
differentiation of responses of the identifiable system by the amplitude of the test polyhar‐
monic signals. The developed identification toolkit is used to build information model of
the test nonlinear dynamic system in the form of the first, second and third order model.
[12, 13, 15, 20, 21]

The aim of this work is to identify the continuous CC using Volterra model in the frequency
domain, i.e. the determination of its multi-frequency characteristics on the basis of the data of
the input-output experiment, using test polyharmonic signals and interpolation method to
obtain model coefficients [14, 16-19, 21].

2. Volterra models and identification of dynamical systems in the
frequency domain

Generally, “input–output” type ratio for nonlinear dynamical system can be presented by
Volterra series [19].

Figure 1. Environment effects in remote sensing systems
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where the n–th partial component of response of the system is

yn x(t) = ∫
0

∞

...
n times

∫
0

∞

wn(τ1, ..., τn)∏
i=1

n
x(t −τi)dτi

x(t) and y(t) are input and output signals of system respectively; wn(τ1, τ2, …, τn)– weight
function or n-order Volterra kernel; yn[x(t)] – n–th partial component of system’s response;
w0(t) – denotes free component of the series (for zero initial conditions w0(t)=0); t – current time.

Commonly, the Volterra series are replaced by a polynomial, with only taking several first
terms of series (1) into consideration. Nonlinear dynamical system identification in a form of
Volterra series consists in n-dimensional weighting functions determination wn(τ1,…,τn) for
time domain or it’s Fourier transforms Wn(jω1,…,jωn) – n–dimensional transfer functions for
frequency domain.

Multidimensional Fourier transform for n-order Volterra kernel (1) is written in a form:

Wn( jω1, ..., jωn)= Fn wn(τ1, ..., τn) = ∫
0

∞

...∫
0

∞

wn(τ1, ..., τn)exp(− j∑
i=1

n
ωiτi)∏

i=1

n
dτi,

where Fn  – n–dimensional Fourier transform; j= −1. Then the model of nonlinear system
based on Volterra model in frequency domain can be represented as:

y x(t) =∑
n=1

∞
Fn
−1 Wn( jω1, ..., jωn)∏

i=1

n
X ( jωi) t1 = ... = tn = t ,

where Fn−1  – inverse n–dimensional Fourier transform; X ( jωi)– Fourier transform of input
signal.

Identification of nonlinear system in frequency domain consists in determination of absolute
value and phase of multidimensional transfer function at given frequencies – multidimen‐
sional AFC |Wn(jω1,jω2,…,jωn)| and PFC arg Wn(jω1,jω2,…,jωn) which are defined by formulas:

|Wn( jω1, …, jωn)| = Re(Wn( jω1,…, jωn)) 2 + Im(Wn( jω1, …, jωn)) 2, (2)

argWn( jω1, …, jωn)=arctg
Im Wn( jω1, …, jωn)
Re Wn( jω1, …, jωn) , (3)
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where Re and Im – accordingly real and imaginary parts of a complex function of n variables
respectively.

An approximation method of identification of the nonlinear dynamical system based on
Volterra series is offered [11, 14, 16-19]. During the identification of a Volterra kernel of m−th
order significant effect on accuracy is rendered adjacent terms of a Volterra series. Therefore,
it is necessary to apply the special methods, allowing minimizing this effect. The idea of such
method lays in construction such expression of system responses to N (1≤m≤ N) test input
signals with the given amplitudes that with certain accuracy (accurate within to the thrown
terms of order N+1 and above) would be equal to m−th term Volterra series:

( ) ( )1
1 1 1 10

[ ( )] [ ( )] ,......
nN N

n
m j j j j n n i i

j n j i
y x t c y a x t c a w x t dt t t t

¥¥

= = = =

æ ö
ç ÷= = -
ç ÷
è ø

å å å Õòò (4)

where aj – amplitudes of test signals, random nonzero and pairwise different numbers; сj – real
coefficients which are chosen in such way that in a right part of (4) all first N terms are equal
to 0, except m–th, and the multiplier at a m–multiple integral became equal to 1. This condition
leads to a solution of the linear algebraic equations system concerning coefficients c1, …, cN :

1 1 2 2

1 1 2 2

1 1 2 2

... 0
...

... 1
...
... 0.

N N

m m m
N N

N N N
N N

c a c a c a

c a c a c a

c a c a c a

+ + + =

+ + + =

+ + + =

(5)

This system (5) always has a solution, and the unique one, as the system determinant differs
from Vandermonde determinant with only a multiplier a1a2…aN. Thus, with any real numbers
aj, that different from zero and pairwise different, it is possible to find such numbers cj at which
the linear combination (4) of system responses is equal to m–th term of a Volterra series accurate
within to the thrown terms of series.

It is possible to build numberless assemblage of modes for expressions (4), by taking various
numbers a1,…, aN and defining (5) coefficients с1, …, сN by them.

The choice of amplitudes aj should provide the convergence of series (1) and an minimum error
Δ during extraction of a partial component ym[x(t)] according to (4) defined by reminder of
series (1) – terms of degree N+1 and above

∑
j=1

N
cj y aj x(t) = ∫

0

∞

...
m times

∫
0

∞

wm(τ1, ..., τm)∏
i=1

m
x(t −τi)dτi +∑

j=1

N
сj ∑

n=N +1

∞
yn aj x(t) = ym x(t) + Δ (6)
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If x(t) – is a test effect with maximum admissible amplitude at which a series (1) converges,
amplitudes aj should be no more than 1 by their absolute values: |aj|≤1 for ∀j=1, 2,..., N.

The amplitudes of the test signals aNj
(m) and the corresponding coefficients cNj

(m) for responses
are shown in table 1, where m – order of the estimated Volterra kernel; j – number of the
experiment; N – approximation order, i.e. quantity of identification experiments.

N m aNj
(m) cNj

(m) Δ

2
1 -1 1 -0,5 0,5 1

2 -1 1 0,5 0,5 1

4

1 -1 1 -0,5 0,5 0,167 0,167 1,333 1,333 3

2 -1 1 -0,644 0,644 -0,354 -0,354 2,061 2,061 4,8

3 -1 1 0,5 -0,5 -0,667 0,667 -1,333 1,333 4

6

1 -0,8 1 -1 -0,3 0,3 0,8 0,28 0,09 -0,09 -2,13 2,13 0,28 5

2 0,9 -1 0,9 0,4 -0,4 1 -0,8 0,41 -0,8 4,64 4,64 0,41 11,7

3 0,3 1 0,8 -0,8 -1 -0,3 -5,46 -1,11 3,44 -3,44 1,11 5,46 20

Table 1. Numerical values of identification accuracy using approximation method

An interpolation method of identification of the nonlinear dynamical system based on
Volterra series is offered [12, 13, 15, 20, 21]. It is used n-fold differentiation of a target signal
on parameter-amplitude a of test actions to separate the response of the nonlinear dynamical
system on partial components yn[x(t)].

Affirmation 1. Let at input of system test signal of ax(t) kind is given, where x(t) – is arbitrary
function and a – is scale coefficient (amplitude of signal), where 0<|a|≤1, then for the selection
of a partial component of the n-th order ŷn(t) from measurement of the response nonlinear
system y ax(t)  in the form of Volterra series, it is necessary to determine n-th partial derivative
of the total response amplitude a where a=0

ŷn(t)= ∫
0

∞

...
n

times

∫
0

∞

wn(τ1, ... , τn)∏
i=1

n
x(t −τi)d τi =

1
n !

∂n y a x(t)
∂ a n |

a=0
(7)

We use the method of extracting the partial components with the help of n-fold differentiation
of the response y ax(t)  with respect to parameter–amplitude a and the use of the derivative
value at a=0.

Injecting an input signal ax(t) where a is the scaling factor (signal amplitude), one has the
following response of the nonlinear system:
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y a ⋅ x(t) =a∫
0

t

w(τ)⋅ x(t −τ)dτ + a 2∫
0

t

∫
0

t

w2(τ1, τ2)x(t −τ1)x(t −τ2)dτ1dτ2 +

+a n∫
0

t

...
n time
∫
0

t

wn(τ1, ..., τn)∏
r=1

n
x(t −τr)dτr + ...

(8)

To distinguish the partial component of the n-th order, differentiate the system response n
times with respect to the amplitude:

∂n y a ⋅ x(t)
∂a n =n ! ∫

0

t

...
n times

∫
0

t

wn(τ1, ..., τn)∏
r=1

n
x(t −τr)dτr +

(n + 1) ! ⋅a∫
0

t

...
n+1 times

∫
0

t

wn+1(τ1, ..., τn+1)∏
r=1

n+1
x(t −τr)dτr + ...

(9)

Taking the value of the derivative at a=0, we finally obtain the expression for the partial
component (7).

Formulas for numerical differentiation. Partial derivative should be substituted by form of finite
difference for calculation. Differentiation of function, which was set in discrete points, could
be accomplished by means of numerical computing after preliminary smoothing of measured
results. Various formulas for the numerical differentiation are known, which differ from each
other by means of error.

Let's use universal reception which allows to substitute a derivative of any n order for
differential ratio so that the error from such replacement for function y(a) was any beforehand
set order of p approximation concerning a step of h=Δa of computational mesh on amplitude.
Method of undetermined coefficient for equality

2

1

1( ) ( ) ( ),
rn

p
n n r r

d y a c y a rh O hrda h =-
= + +å (10)

where the coefficients сr  are taken not depending on h,
r = − r1, − r1 + 1, ..., −1, 0, 1, …, r2−1, r2, so that equality (10) was fair. Limits of summa‐

tion r1≥0 and r2≥0 could be arbitrary, but so that the differential relation h −n∑ cr y(a + rh ) of
r1 + r2 order have to satisfy to inequality r1 + r2≥n + p −1.

To define the сr  it is necessary to solve the following set of equations
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If r1 + r2 =n + p −1, then inscribed in n + p equality forms linear system concerning the same
number of сr  unknown. The determiner of this system is Vandermonde's determiner and
differs from zero. Thus, there is only one set of n coefficients, satisfying the system.

If r1 + r2≥n + p, then there are many such sets of coefficients сr .

On the basis of (10) in [20] the formulas of derivative calculation of the first, second and third
orders are received at a=0 with use of the central differences for equidistant nodes of the
computational grid.

In work formulas for numerical differentiation with use of the central differences for equidis‐
tant assembly are used. Volterra kernel of the first order is determined by formulas as the first
derivative at r1 = r2 =1, r1 = r2 =2 or r1 = r2 =3 respectively

0 1 1

0 2 1 1 2

0 3 2 1 1 2 3

1 ( ),
2

1 ( 8 8 ),
12

1 ( 9 45 45 9 ).
60

y y y
h

y y y y y
h

y y y y y y y
h

-

- -

- - -

¢ = - +

¢ = - + -

¢ = - + - + - +

(12)

Volterra kernel of the first order is determined by formulas as the first derivative at r1 = r2 =1,
r1 = r2 =2 or r1 = r2 =3 respectively

0 1 0 12

0 2 1 0 1 22

0 3 2 1 0 1 2 32

1 ( 2 ),

1 ( 16 30 16 ),
12

1 (2 27 270 490 270 27 2 ).
180

y y y y
h

y y y y y y
h

y y y y y y y y
h

-

- -

- - -

¢¢ = - +

¢¢ = - + - + -

¢¢ = - + - + - +

(13)
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Volterra kernel of the first order is determined by formulas as the first derivative at r1 = r2 =2
or r1 = r2 =3 respectively

0 2 1 1 23

0 3 2 1 1 2 33

1 ( 2 2 ),
2

1 ( 8 13 13 8 ).
8

y y y y y
h

y y y y y y y
h

- -

- - -

¢¢¢ = - + - +

¢¢¢ = - + - + -
(14)

In the formulas written above, we use the following notations

y ′
0 = y ′(0), y ″

0 = y ″(0), y ‴
0 = y ‴(0); yr = y(rh ), r = 0, ± 1, ± 2; ± 3

where we put y0=0, since identification nonlinear systems is implemented with zero initial
conditions.The test polyharmonic effects for identification in the frequency domain represent‐
ing by signals of such type:

x(t)=∑
k=1

n
Akcos(ωk t + φk ), (15)

where n – the order of transfer function being estimated; Ak, ωk and φk – accordingly amplitude,
frequency and a phase of k-th harmonics. In research, it is supposed every amplitude of Ak to
be equal, and phases φk equal to zero.

For identification in the frequency domain the test polyharmonic signals are used. We prove:

Statement. If test polyharmonic signal is used in form

x(t)= A∑
k=1

n
cosωk t =

A
2 ∑k=1

n (e jωk t + e − jωk t) (16)

then the n–th partial component of the response of test system can be written in form:

yn(t)=
A n

2n−1 ∑
m=0

E (n/2)
Cn

m∑
k1=1

n
...∑

kn=1

n

| Wn(− jωk1
, ...− jωkm

, jωkm+1
, ... jωkn

) | ×

×cos((−∑
l=0

m
ωkl

+ ∑
l=m+1

n
ωkl

)t + argWn(− jωk1
, ...− jωkm

, jωkm+1
, ... jωkn

)),
(17)

where E(n/2) – function used to obtain the of integer part of the value.

The component with frequency ω1+…+ωn is extracted from the response to test signal (15):
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A n |Wn( jω1, …, jωn)|cos (ω1 + … + ωn)t + argWn( jω1, …, jωn) . (18)

Certain  limitations  should  be  imposed  while  choosing  of  frequency  polyharmonic  test
signals in a process determining multidimensional AFC and PFC. This is the reason why
the values of AFC and PFC in this unallowable points of multidimensional frequency space
can be calculated using interpolation only. In practical realization of nonlinear dynamical
systems identification it  is  needed to minimize number of  such undefined points  at  the
range of multidimensional frequency characteristics determination. This was performed to
provide a minimum of restrictions on choice of frequency of the test signal.  It  is shown
that  existed  limitation  can  be  weakened.  New  limitations  on  choice  of  frequency  are
reducing number of undefined points.

After analyzing the (18) it  is defined: to obtain Volterra kernels for nonlinear dynamical
system in frequency domain the limitations on choice of frequencies of test polyharmonic
signals have to be restricted. These restrictions provide inequality of combination frequen‐
cies in the test signal harmonics. The theorem about choice of test signals frequencies is
proven.

The theorem about choice of test signals frequencies. For the definite filtering of a response of the
harmonics with combination frequencies ω1+ω2+…+ωn within the n-th partial component it is
necessary and sufficient to keep the frequency from being equal to another combination
frequencies of type k1ω1+…+knωn, where the coefficients {ki|i=1, 2, …, n} must satisfy the
conditions:

• number K of negative value coefficients (ki<0) is in 0≤K ≤E (n / 2) (where E – function used
to obtain the of integer part of the value);

• ∑
i=1

n
|ki | ≤n;

• ∑
i=1

n
|ki | ≡n (mod 2),n −∑

i=1

n
|ki |  =2l ,  l∈Ν.

It was shown that during determination of multidimensional transfer functions of nonlin‐
ear  systems  it  is  necessary  to  consider  the  imposed  constraints  on  choice  of  the  test
polyharmonic signal  frequencies.  This  provides inequality of  combination frequencies  in
output signal harmonics: ω1≠0, ω2≠0 and ω1≠ω2  for the second order identification proce‐
dure, and ω1≠0, ω2≠0, ω3≠0, ω1≠ω2, ω1≠ω3, ω2≠ω3, 2ω1≠ω2+ω3, 2ω2≠ω1+ω3, 2ω3≠ω1+ω2, 2ω1≠ω2–
ω3,  2ω2≠ω1–ω3,  2ω3≠ω1–ω2,  2ω1≠–ω2+ω3,  2ω2≠–ω1+ω3  and  2ω3≠–ω1+ω2  for  the  third  order
identification procedure.

The amplitudes of the test signals ai
(n) and the corresponding coefficients ci

(n) for responses are
shown in Table 2, where n – order of the estimated Volterra kernel; i – number of the experiment
(i=1, 2,…, N), where N=r1+r2, i.e. number of interpolation knots (number of experiments).
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n N а1
(n) а2

(n) а3
(n) а4

(n) а5
(n) а6

(n) c1
(n) c2

(n) c3
(n) c4

(n) c5
(n) c6

(n)

1

2 -1 1 -0,5 0,5

4 -1 -0,5 0,5 1 0,0833 -0,6667 0,6667 -0,0833

6 -1 -0.67 -0,33 0,33 0,67 1 -0,0167 0,15 -0,75 0,75 -0,15 0,0167

2

2 -1 1 1 1

4 -1 -0,5 0,5 1 -0,0833 1,3333 1,3333 -0,0833

6 -1 -0.67 -0,33 0,33 0,67 1 0,0111 -0,15 1,5 1,5 -0,15 0,0111

3

4 -1 -0,5 0,5 1 -0,5 1 -1 0,5

6 -1 -0.67 -0,33 0,33 0,67 1 0,125 -1 1,625 -1,625 1 -0,125

Table 2. Amplitudes and corresponding coefficients of the interpolation method

3. The techniques of test system identification

Described method was tested using nonlinear test system (fig. 2) represented by Riccati
equation

2( ) α ( ) β ( ) ( ).dy t y t y t u t
dt

+ + = (19)

Figure 2. Simulink–model of the test system
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Analytical expressions of AFC and PFC for the first, second and third order model were
received:

|W1( jω)| =
1

α2 + ω2
, argW1( jω)= −arctg

ω
α ;

|W2( jω1, jω2)| =
β

(α2 + ω1
2)(α2 + ω2

2) α2 + (ω1 + ω2)2
,

argW2( jω1, jω2)= −arctg
(2α2−ω1ω2)(ω1 + ω2)

α(α2−ω1ω2)−α(ω1 + ω2)2 ;

|W3( jω1, jω2, jω3)| = Re( W3( jω1, jω2, jω3)) 2 + Im( W3( jω1, jω2, jω3)) 2 =

=
2β2

3
1

α2 + (ω1 + ω2 + ω3)2 (α2 + ω1
2)(α2 + ω2

2)(α2 + ω3
2)

×

×
3α2− (ω1 + ω3)(ω1 + ω2)− (ω1 + ω2) (ω2 + ω3)− (ω1 + ω3)(ω2 + ω3)

2 + 16α2(ω1 + ω2 + ω3)2

α2 + (ω1 + ω2)2 α2 + (ω1 + ω3)2 α2 + (ω2 + ω3)2
,

argW3( jω1, jω2, jω3)=arctg
ImW3( jω1, jω2, jω3)
ReW3( jω1, jω2, jω3)

= −arctg
DA−CB
AB + CD ,

where

u =α3- αω1ω3 - αω2ω3 - α(ω1+ ω2+ ω3);

v=(ω1+ ω2+ ω3)(2α2- ω1ω3 - ω2ω3);

w=(α2 - ω1ω2 - ω2ω3)(α
2 - ω1ω2 - ω1ω3) - α2(ω1 + ω2 + ω3)2;

x=α(ω1+ω2+ ω3)(2α2 - 2ω1ω2 - ω1ω3 - ω2ω3).

The main purpose was to identify the multi–frequency performances characterizing nonlinear
and dynamical properties of nonlinear test system [11–21]. Volterra model in the form of the
1st, 2nd and 3rd order polynomial is used. Thus, test system properties are characterized by
transfer functions of W1(jω), W2(jω1, jω2), W3(jω1, jω2, jω3) − by Fourier-images of weight
functions w1(t), w2(t1, t2) and w3(t1, t2, t3).

Structure charts of identification procedure – determinations of the 1th, 2nd and 3rd order AFC
of CC are presented accordingly in figs. 3–5.

The weighted sum is formed from received signals – responses of each group from figs. 3–5.
As a result the partial components of CC responses y1(t), y2(t) and y3(t) are got. For each partial
component of response the Fourier transform (the FFT is used) is calculated, and from received
spectrum only an informative harmonics (which amplitudes represent values of required
characteristics of the first, second and third orders AFC) are taken.
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Figure 3. The structure chart of identification using 1st order Volterra model in frequency domain, number of experi‐
ments N=4: a1=-2h, a2=-h, a3=h, a4=2h; c1=-1/12, c2=-2/3, c3=2/3, c4=1/12

Figure 4. The structure chart of identification using 2nd order Volterra model in frequency domain, number of experi‐
ments N=4: a1=-2h, a2=-h, a3=h, a4=2h; c1=-1/12, c2=4/3, c3=4/3, c4=-1/12

The first order AFC |W1(jω)| and PFC argW1(jω) is received by extracting the harmonics with
frequency ω from the spectrum of the CC partial response y1(t) to the test signal x(t)=(A/2)cosωt.

The second order AFC |W2(jω, j(ω+Ω1))| and PFC argW2(jω, j(ω+Ω1)) having ω1=ω and ω2=ω
+Ω1 were received by extracting the harmonics with summary frequency ω1+ω2 from the
spectrum of the CC partial response y2(t) to the test signal x(t)=(A/2)(cosω1t+cosω2t).

The third order AFC |W3(jω, j(ω+Ω1), j(ω+Ω2))| and PFC argW3(jω, j(ω+Ω1), j(ω+Ω2)) having
ω1=ω, ω2=ω+Ω1 and ω3=ω+Ω2, were received by extracting the harmonics with summary
frequency ω1+ω2+ω3 from the spectrum of the CC partial response y3(t) to the test signal
x(t)=(A/2)(cosω1t+cosω2t+cosω3t).

The results (first, second and third order AFC and PFC which had been received after proce‐
dure of identification) are represented in figs. 6–8.
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Figure 6. First order AFC and PFC of the test system: analytically calculated values (1), section estimation values with
number of experiments for the model N=4 (2)

Figure 5. The structure chart of identification using 3rd order Volterra model in frequency domain, number of experi‐
ments N=6: a1=-3h, a2=-2h, a3=-h, a4=h, a5=2h, a6=3h; c1=-1/8, c2=-1, c3=13/8, c4=-13/8, c5=1, c6=1/8
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Figure 7. Second order AFC and PFC of the test system: analytically calculated values (1), sub–diagonal cross-section
values with number of experiments for the model N=4 (2), Ω1=0,01 rad/s

Figure 8. Third order AFC and PFC of the test system: analytically calculated values (1), sub–diagonal cross-section val‐
ues with number of experiments for the model N=6 (2), Ω1=0,01 rad/s, Ω2=0,1 rad/s

The second and third order surfaces for AFC and PFC received after procedure of the test

system identification are shown in fig. 9 and fig. 10 respectively.
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Figure 9. Surface of the test system AFC (left) and PFC (right) built of the second order subdiagonal cross-sections re‐
ceived for N=4

Figure 10. Surface of the test system AFC (left) and PFC (right) built of the third order subdiagonal cross-sections re‐
ceived for N=6, ω3=0,1 rad/s

Presented surfaces are built from sub–diagonal cross-sections which were received separately.
Ω1 was used as growing parameter of identification with different value for each cross–section
in second order characteristics. Fixed value of Ω2 and growing value of Ω1 were used as
parameters of identification to obtain different value for each cross-section in third order
characteristics.

Numerical values of identification accuracy using interpolation method for the test system are
represented in table 3, where: n – order of the estimated Volterra kernel, N – approximation
order/number of interpolation knots (number of experiments).
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n N AFC relative error, % PFC relative error, %

1

2 2.1359 2.5420

4 0.3468 2.0618

6 0.2957 1.9311

2

2 30.2842 76.8221

4 2.0452 3.7603

6 89.2099 5.9438

3
4 10.981 1.628

6 10.7642 1.5522

Table 3. Numerical values of identification accuracy using interpolation method

Comparison of the numerical values for identification accuracy using interpolation method
[17-18] and approximation one [13-16] for the test system is presented in table 4.

n N
AFC relative error, % PFC relative error, %

approximation interpolation approximation interpolation

1

2 3.6429 2.1359 3.3451 2.5420

4 1.1086 0.3468 3.1531 2.0618

6 0.8679 0.2957 3.1032 1.9311

2

2 26.0092 30.2842 30.2842 76.8221

4 3.4447 2.0452 2.0452 3.7603

6 7.3030 89.2099 4.6408 5.9438

3
4 72.4950 10.981 10.9810 1.628

6 74.4204 10.7642 10.7642 1.5522

Table 4. Identification accuracy using approximation and interpolation methods

4. The study of noise immunity of the identification method

Experimental researches of the noise immunity of the identification method were made. The
main purpose was the studying of the noise impact (noise means the inexactness of the
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measurements) to the characteristics of the test system model using interpolation method in
frequency domain.

The first step was the measurement of the level of useful signal (harmonic cosine test signal
shown in fig. 11a) after test system (Out2 in fig. 12). The amplitude of this signal was defined
as the 100% of the signal power.

After that procedure the Random Noise signal (with the form shown in fig. 11b) where added
to the test system output signal. This steps where performed to simulate inexactness of the
measurements in the model. The sum of these two signals for the linear test model signal is
shown in fig. 13.

Figure 11. a) Test signal and b) random noise with 50% amplitude of test signal

Figure 12. The Simulink model of the test system with noise generator and osillosopes

The simulations with the test model were performed. Different noise levels were defined for
different order of the Volterra model.

The adaptive wavelet denoising was used to reduce the noise impact on final characteristics
of the test system. The Daubechie wavelet of the 2 and 3 level was chosen (fig. 14) and used
for the AFC and PFC denoising respectively [2, 5, 7].
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Figure 14. The Daubechies 2nd level scaling (1) and wavelet (2) functions

The first order (linear) model was tested with the level of noise 50% and 10% and showed
excellent level of noise immunity. The noised (fig. 15a) and de-noised (filtered) (fig. 15b)
characteristics (AFC and PFC) with level of noise 50% are presented.

The second order (nonlinear) model was tested with the level of noise 10% and 1% and showed
good level of noise immunity. The noised (fig. 16a) and de-noised (filtered) (fig. 16b) charac‐
teristics (AFC and PFC) with level of noise 10% are presented.

Figure 13. The “noised” signal of the test system, level of noise is 50% of source signal
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Figure 15. Noised (a) and denoised (b) characteristics (AFC – top, PFC – bottom) of the 1st order model of the test
system with level of noise 50%

Figure 16. Noised (a) and denoised (b) characteristics (AFC – top, PFC – bottom) of the 2nd order model of the test
system with level of noise 10%
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The third order (nonlinear) model was tested with the level of noise 10% and 1% and showed
good level of noise immunity. The noised (fig. 17a) and de-noised (filtered) (fig. 17b) charac‐
teristics (AFC and PFC) with level of noise 1% are presented.

Figure 17. Noised (a) and denoised (b) characteristics (AFC – top, PFC – bottom) of the 3rd order model of the test
system with level of noise 1%

The numerical values of standard deviation (SD) of the identification accuracy before and after
wavelet denoising procedure are presented in Table 5.

n N

Noise level = 10% Noise level = 1% Improvement

SD for AFC SD for PFC SD for AFC SD for PFC
for AFC,

times
for PFC, times

(without / with denoising)

1

2
0.000097 /

0.000063

0.09031 /

0.07541
– – 1,540 1,198

4
0.000271 /

0.000181

0.07804 /

0.06433
– – 1,497 1,213

6
0.000312 /

0.000223

0.12913 /

0.09889
– – 1,399 1,306

2 2
0.000920 /

0.000670

0.52063 /

0.51465
– – 1,373 1,012
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n N

Noise level = 10% Noise level = 1% Improvement

SD for AFC SD for PFC SD for AFC SD for PFC
for AFC,

times
for PFC, times

4
0.001972 /

0.001663

0.28004 /

0.06877
– – 1,186 4,072

6
0.004165 /

0.003908

0.39260 /

0.19237
– – 1,066 2,041

3

4 – –
0.000288 /

0.000288

0.89857 /

0.61251
1,003 1,467

6 – –
0.000461 /

0.000352

0.84868 /

0.59319
1,310 1,431

Table 5. Standard deviation for interpolation method with noise impact (bold font shows the best values)

The diagrams showing the improvement of standard deviation for identification accuracy
using the adaptive wavelet denoising of the received characteristics (AFC and PFC) are shown
in fig. 18 and fig. 19 respectively.

Figure 18. Standard deviation changing for AFC using adaptive Wavelet-denoising
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Figure 19. Standard deviation changing for PFC using adaptive Wavelet-denoising

5. The technique and hardware-software tools of radiofrequency CC
identification

Experimental research of the Ultra High Frequency range CC were done. The main purpose
was the identification of multi-frequency characteristics that characterize nonlinear and
dynamical properties of the CC. Volterra model in the form of the second order polynomial is
used. Thus physical CC properties are characterized by transfer functions of W1(j2πf),
W2(j2πf1,j2πf2) and W3(j2πf1,j2πf2,j2πf3) − by the Fourier-images of weighting functions w1(t),
w2(t1, t2) and w3(t1, t2, t3).

Implementation of identification method on the IBM PC computer basis has been carried
out using the developed software in Matlab software. The software allows automating the
process of  the test  signals  forming with the given parameters  (amplitudes and frequen‐
cies). Also this software allows transmitting and receiving signals through an output and
input section of PC soundcard, to produce segmentation of a file with the responses to the
fragments, corresponding to the CC responses being researched on test polyharmonic effects
with different amplitudes.

In experimental research two identical marine transceivers S.P.RADIO A/S SAILOR RT2048
VHF (the range of operational frequencies is 154,4−163,75 MHz) and IBM PC with Creative
Audigy 4 soundcards were used. Sequentially AFC of the first and second orders were defined.
The method of identification with number of experiments N=4 was applied. Structure charts
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of identification procedure – determinations of the 1st, 2nd and 3rd order AFC of CC are presented
accordingly in figs. 3–5. The general scheme of a hardware–software complex of the CC
identification, based on the data of input–output type experiment is presented in fig. 20.

The CC received responses y ai x(t)  to the test signals ai x(t), compose a group of the signals,
which amount is equal to the used number of experiments N (N=4), shown in fig. 21. In each
following group the signals frequency increases by magnitude of chosen step. А cross-
correlation was used to define the beginning of each received response.

Figure 20. The general scheme of the experiment

Maximum allowed amplitude in described experiment with use of sound card was A=0,25V
(defined experimentally). The range of frequencies was defined by the sound card pass band
(20…20000 Hz), and frequencies of the test signals has been chosen from this range, taking into
account restrictions specified above. Such parameters were chosen for the experiment: start
frequency fs=125 Hz; final frequency fe=3125 Hz; a frequency change step F=125 Hz; to define
AFC of the second order determination, an offset on frequency F1=f2-f1 was increasingly
growing from 201 to 3401 Hz with step 100 Hz.

The weighed sum is formed from received signals – responses of each group (figs. 3–5). As a
result we get partial components of the response of the CC y1(t) and y2(t). For each partial
component of the response a Fourier transform (the Fast Fourier Transform is used) is
calculated. Only informative harmonics (which amplitudes represents values of required
characteristics of the first, second and third order AFC) are taken from received spectrum.

The first order amplitude-frequency characteristic |W1(j2πf)| is received by extracting the
harmonics with frequency f from the spectrum of the partial response of the CC y1(t) to the test
signal x(t)=(A/2)cos2πft.
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The second order AFC |W2(j2πf1, j2πf2)|, where f1=f and f2=f+F1 was received by extracting the
harmonics with summary frequency f1+f2 from the spectrum of the partial response of the CC
y2(t) to the test signal x(t)=(A/2)(cos2πf1t+cos2πf2t).

The third order AFC |W3(j2πf1, j2πf2, j2πf3)|, where f1=f, f2=f+F1 and f3=127,5 Hz were received
by extracting the harmonics with summary frequency f1+f2+f3 from the spectrum of the partial
response of the CC y3(t) to the test signal x(t)=(A/2)(cos2πf1t+cos2πf2t+cos2πf3t).

The wavelet noise-suppression was used to smooth the output data of the experiment [9]. The
results received after digital data processing of the data of experiments (wavelet “Coiflet”
denoising) for the first, second and third order AFC are presented in fig. 22–25.

The surfaces shown in fig. 24-25 are built from sub-diagonal sections that are received
separately. We used F1 as growing parameter of identification with different value for each
section.

Figure 21. The group of signals received from CC with amplitudes:-1 (1);-1/2 (2); 1/2 (3); 1 (4); N=4
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Figure 22. AFC of the first order after wavelet “Coiflet” 2nd level noise-suppression

Figure 23. Subdiagonal sections of AFCs of the second order after wavelet “Coiflet” 2nd level noise-suppression at dif‐
ferent frequencies F1: 201 (1), 401 (2), 601 (3), 801 (4), 1001 (5), 1401 (6) Hz
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Figure 24. Surface built of AFCs of the second order after wavelet “Coiflet” 3rd level noise-suppression

Figure 25. Surface built of AFCs of the third order after wavelet “Coiflet” 3rd level noise-suppression, where f3=127,5 Hz
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6. Conclusion

Communication channel as a media for remote sensing systems functioning is analyzed.
Nonlinear effects of the environments have great impact on result data received in experi‐
ments. The method based on Volterra model using polyharmonic test signals for identification
nonlinear dynamical systems is analyzed. To differentiate the responses of system for partial
components we use the method based on linear combination of responses on test signals with
different amplitudes.

New values of test signals amplitudes were defined and they are greatly raising the accuracy
of identification compared to amplitudes and coefficients written in [1]. The accuracy of
identification of nonlinear part of the test system growth 2 times and the standard deviation
in this case is about 5%.

The interpolation method of identification using the hardware methodology written in [5] is
applied for construction of informational Volterra model as an APC of the first and second
order for UHF band radio channel.

Received results reveal essential nonlinearity of the CC that leads to distortions of signals in
radio broadcasting devices, reduces the important indicators of the TCS: accuracy of signals
reproduction, throughput, noise immunity.

The noise immunity is very high for the linear model, high enough for the second order
nonlinear model and has moderate noise immunity for the third order model. The wavelet
denoising is very effective and gives the possibility to improve the quality of identification of
the noisy measurements up to 1,54 and 4,07 times for the AFC and PFC respectively.

Final characteristics of the CC have to be used to maintain sensor systems to improve the
adequateness of received data.
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