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1. Introduction

This chapter describes some fundamental features of photoelectrocatalytic processes, includ‐
ing the basic concepts of the technique, the phenomena at the electrode/electrolyte interface
and the development of new materials employed in the last few years related to the specific
applications. The nanostructured materials used in the photoelectrochemical field can be called
photoanodes (n-type) when oxidation reactions take place at the interface, and photocathodes
(p-type) when the reduction is the main process [1, 2]. This chapter focuses on photoanode
materials and how their surface influences the applications of this technique.

Photoelectrocatalysis could be described as a multidisciplinary field, involving surface science,
electrochemistry, solid-state physics and optics. The basic concept is that when a semiconduc‐
tor surface is irradiated by light (hν ≥ Eg) there is generation of electron/hole pairs (e−/h+) by
the promotion of an electron from the valence band (lower energy level) to the conduction
band (higher energy level). The electrons are forwarded to the counter electrode under positive
bias potential (n-type) in order to minimize the recombination of these pairs due to the short
life-time. When immersed in electrolyte the adsorbed water molecules and/or hydroxyl ions
react with the holes on the valence band to generate hydroxyl radicals (●OH), which are a
powerful oxidizing agent (+2.80 V) [3-5].

The first findings, from 1839, found that the photoelectrochemistry field was stimulated by the
Becquerel effect [6]. They observed a photocurrent flow of electrons due to illumination of a
material connected by two electrodes immersed in solution. In 1972, the work of Fujishima
and Honda had a huge impact on this field. They studied the use of a TiO2 semiconductor on

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



the photoelectrolysis of water (water splitting) under anodic bias potential in a photoelectro‐
chemical (PEC) cell [7, 8]. Nowadays, photoelectrocatalysis is an emerging field with many
applications, such as organic compounds oxidation [9-11], inorganic ions reduction [12, 13],
disinfection [14, 15] and production of electricity and hydrogen [16-18].

The development of this technique is intimately related to a better understanding of materials’
surfaces and properties. Highly ordered nanomaterial arrays have promoted a revolution in
applications of these materials as nanotubes, nanowires, nanofibres, nanorods, nanowalls, etc.
[19]. The main applications of the technique include the degradation of unwanted environ‐
mental pollutants (organic and inorganic compounds) and converting sunlight directly into
an energy carrier [4, 19, 20].

This work presents an overview of the fundamentals of photoelectrocatalysis and the huge
contribution made by nanostructured architectures, as well as explaining the efficiency of the
technique as a treatment method for organic and inorganic compounds and for water splitting.

2. Photoelectrocatalysis: Basic concepts

Advanced oxidation processes (AOPs) have been proposed as alternative methods for the
degradation of recalcitrant organic compounds in water [21], air [22] and soil [23] in recent
years [4]. AOPs are based on the generation of hydroxyl radicals (●OH) as highly oxidant
species, which are responsible for the oxidation of the major pollutants [4, 21]. Among the
AOPs, heterogeneous photocatalysis deserves particular attention [5]. The method is based
on the use of a semiconductor (mostly TiO2) irradiated with light energy equal to or greater
than  its  band-gap  energy.  Since  1972  it  has  been  known  that  is  possible  to  promote
photoelectrolysis  of  water  (water  splitting)  under  anodic  bias  potential  [8].  Since  then,
photocatalysis has been explored to promote organics oxidation [9-11],  inorganics reduc‐
tion [12, 13], disinfection of water containing biological materials [14, 15] and production
of electricity and hydrogen [16-18].

A semiconductor material is characterized by two energy bands separated by the band-gap
energy, Eg. A semiconductor at absolute zero is insulating, because the valence band (lower
energy level) is completely occupied and the conduction band (higher energy level) totally
empty (Figure 1). To become conductive, charge carriers need to be created, usually by
photoexcitation. The basic concept is that when a semiconductor surface is irradiated by light
(hν ≥ Eg) there is generation of an electron/hole pair (e−/h+) by promotion of an electron from
the valence band (VB) to the conduction band (CB) (Equation 1) [5, 24].

The oxidizing nature of the holes (h+) in the valence band means they generate ●OH radicals
by the oxidation of H2O molecules or OH− ions adsorbed on the semiconductor surface, and
are also able to oxidize organic molecules directly. The photoexcitation of TiO2 and possible
oxidation of an organic compound (RX) are represented in Equations 1−4 [21, 25].
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Although heterogeneous photocatalysis is a well understood process, and despite its promis‐
ing results in water decontamination, its practical exploitation has been restricted by its low
photonic efficiency, which is mainly due to recombination of the e−/h+ pair, as shown in
Equation 5 [25, 26].

TiO2 -  eCB
- +  TiO2 - h VB

+ →

   
 

TiO2 + heat
(5)

Therefore, there are considerable efforts being made to obtain new processes able to separate
charge carriers and minimize their recombination rate [26, 27]. The combination of electro‐
chemical and photocatalysis processes (photoelectrocatalysis) offers the opportunity to
separate photo-generated e−/h+ pairs by gradient potential [28, 29]. Specifically, when the

Figure 1. Schematic representation of the energy band diagram in a semiconductor and the mechanism of charge
carrier generation by photoexcitation
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photocatalyst is attached to a conductive substrate (photoanode), there is the possibility to
apply an anodic bias potential to the semiconductor and to modify the substrate/electrolyte
interface. This alternative improves the efficiency of charge separation by driving the photo‐
generated electrons via the external circuit to the counter electrode [26, 28-30]. Figure 2
illustrates the mechanism of photoelectrocatalysis.

Furthermore, the great goal is to avoid the removal of photocatalyst suspensions. The immo‐
bilization of the photocatalyst particles on a solid substrate is usually applied on photoelec‐
trocatalysis and therefore the process dispense next filtration step [28, 29].

It is interesting to understand why photoelectrocatalysis is efficient in charge separation. When
a semiconductor is in contact with an electrolyte there is formation of a junction semiconductor/
electrolyte interface, which determines the electron hole separation kinetics. The junction in a
redox electrolyte causes a change in the electrochemical potential (Fermi level) due to dis‐
crepant potentials at the interface [19]. Thus, the equilibration of this interface needs the flow
of charge from one phase to another, and a band-bending is created within the semiconductor
phase. The amount of band-bending in this Schottky junction will depend on the difference of
the Fermi levels of semiconductor and electrolyte. The region where there is bending is called
the space charge layer (SCL), which is characterized by the accumulation of electrons or holes
at the surface [5, 19, 24, 31]. Figure 3 shows the behaviour of these charges in the semiconductor
before and after this equilibration when it is in contact with an electrolyte.

Figure 2. Schematic representation of the mechanism of separation and recombination of charges in the photocataly‐
sis or photoelectrocatalysis and mechanism of charge separation in a photoelectrochemical system, where a gradient
of potential is created
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Another method to control the Fermi level (and therefore the band-bending) is by applying a
bias potential [19]. For any given semiconductor and electrolyte, there is an exact potential for
which the potential drops between the surface and the bulk of the electrode is zero; in other
words, there is no space charge layer [31]. Because the band edges are flat, this potential is
called flat-band potential, Vfb (Figure 4). The application of any potential greater than the flat-
band potential will increase the band-bending at the n-type semiconductor electrode, such as
TiO2. In this case electrons are depleted and holes enriched at the surface, as we can see in
Figure 4. When TiO2 is irradiated, it is observed that the photogenerated holes have an
oxidizing power equivalent to the potential of the valence band edge, and are able to oxidize
an RED molecule, whose formal potential is more negative than the valence band. In the case
of TiO2, the H2O can be oxidized producing ●OH radicals. The electron in the conduction band
flows via an external circuit to the counter electrode, where reduction reactions may occur,
such as the reduction of H+ ions to H2 (Figure 2). It is important to note that in photo(elec‐
tro)catalysis, the greater the band-bending (and therefore the SCL) the faster the electron/hole
separation occurs, and then the recombination of charges is minimized [5, 19, 24, 31].

Figure 4. Energy band diagram for a n-type semiconductor when the applied potential (V) is equal to flat-band poten‐
tial (Vfb) and when the applied potential (V) is greater than Vfb. The last schematic shows the mechanism of charge
separation when the electrode is submitted for a potential higher than the Vfb and irradiated with λ≥Eg.

Figure 3. Energy band diagram for an n-type semiconductor before and after the equilibration of Fermi levels at the
interface semiconductor/electrolyte, and the appearance of band-bending and the space charge layer (SCL)
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Thus, considering the high oxidative power of ●OH that is easily generated by irradiation of
the TiO2 surface, an increased number of applications of photoelectrocatalysis has developed
with the aim of promoting the degradation of organic pollutants to CO2 and minerals.

3. The degradation of organic compounds on thin films

The presence of recalcitrant organic pollutants such as pesticides, hormones, pharmaceuticals,
phenols, surfactants and dyes in water and wastewater has been described in the literature as
one of the most serious problems for human beings and the environment [32, 33]. The great
concern is mainly that the genotoxic and mutagenic properties of these pollutants can cause
bioaccumulation problems and transportation that is magnified in the food chain [34]. They
have therefore received great attention since they are released into the environment through
a variety of human and industrial activities. Conventional techniques such as adsorption,
precipitation, flocculation and reverse osmosis simply transfer organic pollutants from
different phases or concentrate them in one phase, without actually removing them [33].

Different  methodologies  have  been  proposed  to  promote  the  complete  degradation  of
organic matter.  Among them, the use of  advanced oxidative processes (AOPs) has been
seen as an efficient alternative for pollutant degradation and has received a great deal of
attention from several researchers. The in situ  generation of hydroxyl radicals (HO●) has
proved  effective  in  the  oxidation  of  most  organic  substances  because  it  is  both  a  non-
selective reagent and a highly oxidizing agent [21]. However, the complete mineralization
which is the conversion of organic molecules into CO2, H2O and other small molecules, the
reaction mechanisms and the characterization of secondary products and intermediates have
not been frequently investigated [35].

Over the past decades, electrochemical methods such as electrocoagulation, electrocatalysis
oxidation and reduction, electro-Fenton, photoelectro-Fenton, photocatalysis and photoelec‐
trocatalysis (Figure 5) have been pointed out as good alternatives to promote the degradation
and mineralization of organic pollutants, since they combine the advantages of hydroxyl
radicals formation and the efficiency of electrochemistry [21, 36].

In Electrochemically Mediated Oxidative Advanced Processes (EOAPs), hydroxyl radicals can
be generated by direct electrochemistry (anodic oxidation) or indirectly through electrochem‐
ical generation of Fenton’s reagent. In photoelectrocatalytic oxidation the ●OH is generated
heterogeneously by direct water discharge on specific anodes such as DSA and BDD electrodes
[36]. During the electro-Fenton reaction the hydroxyl radicals are generated homogenously
via Fenton’s reaction [37].

Photoelectrochemical methods have been intensively investigated as promising alternative
methods not only to remove organic pollutants but also to decrease toxicity, since they degrade
substances in a short period of time. The degradation mechanism of photocatalysis can be
classified into five steps: (1) transfer of reactants in the fluid phase to the surface; (2) adsorption
of the reactants; (3) reaction in the adsorbed phase; (4) desorption of the products; and (5)
removal of products from the interface region [38].
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The key to obtaining success with photocatalytic and photoelectrocatalytic methods is the
development of novel efficient materials as working electrodes, which present good optical,
mechanical, electronic, electrochemical and catalytical properties [39]. The choice of the
synthesis method to produce the semiconductor material is of fundamental relevance, as it
will determine the efficacy of the PEC treatment. All factors related to the surface material will
influence the success of photoelectrochemical processes as morphological and structural
features (particle size, surface area), good charge separation (e−/h+), suitable photonic efficiency
and band-gap energy level [40].

3.1. Synthesis of thin film semiconductor materials

Emerging technologies providing feasible alternatives for the development of new materials
have been the subject of several studies. Titanium dioxide is the most used material and can
be prepared in the form of powder, crystals or thin films. To obtain good-quality materials
there are many methods described in the literature, based on precipitation and co-precipitation
[41, 42], solvothermal [5], sol-gel [43], microemulsion [44], electrochemical [40] and gas-phase
methods [40].

Figure 5. Treatment methods described for the degradation of organic pollutants, including conventional techniques
and advanced oxidation processes
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Heterogeneous photocatalysis started with the use of TiO2 semiconductors in a slurry system
(suspension of fine powder). The most efficient powder reported in the literature is the Degussa
P25, which is a combination of rutile and anatase allotropic phases in the ratio 3:1. There are
many advantages of using this powder: it provides high surface area showing excellent
photocatalytic activity because of the adsorptive affinity of organic compounds on the surface
of anatase [45]. However, a post-treatment filtration step is required to separate it from the
solution, which limits practical application as this is a time-consuming and costly process.
Moreover, the suspended particles tend to aggregate, especially at high concentrations, which
makes the separation more complicated and limits application in continuous flow systems [46].

Since 1993, the immobilization of TiO2 on a substrate has offered an alternative way of using
powder and started a search for thin films [28, 47]. Several researchers have anchored photo‐
catalysts onto a variety of surfaces, such as glass (ITO and FTO), silica gel, metal, ceramics,
polymer, thin films, fibres, zeolite, alumina clays, activated carbon, cellulose, reactor walls and
others [33]. To support TiO2 there must be four main criteria: strong adherence, stability of the
catalyst, high specific surface area to promote strong adsorption of the pollutant on the
electrode surface [38]. The substrate material has a great influence on the electron transfer
along the film. It is reported that conducting glasses have a relatively poor connection within
the film; on the other hand, metal substrates present a lower impedance because there is a
reduction of charge transfer resistance leading to better PEC activity [33].

The photocatalytic activity of a TiO2 system mainly depends on its intrinsic properties, such
as particle size, surface area, film thickness, crystallinity and crystal phase [33, 48]. For this
purpose, many different techniques emerge from the need for immobilization, since the
photocatalytic activity of the film is highly dependent on the preparation method [46]. For
instance, the most reported preparation routes are sol-gel [43], chemical vapour deposition
[49], electrodeposition [50], sol-spray [51], and hydrothermal [38]. Besides the preparation
routes, the coating techniques also influence the resulting material properties. Deposition
methods such as dip-coating [52], spin coating [53] and even the development of new coating
methods based on conventional dip and spin coating [54] have been shown to be simple and
able to produce stable materials.

When compared to other methods, the advantages of the sol-gel technique are easy control of
deposits, reliability and reproducibility, resulting in good-quality nanostructured thin films
[55]. In fact, successful formation of the desired crystal phase is directly related to the starting
material, composition, and deposition, as well as the annealing temperature. The crystal
morphology has a direct relation to the light absorption as incident light affects photoelectro‐
catalytic efficiency. Film thickness can affect the efficiency of both light energy conversion and
electron transfer; thick films may lower efficiency as these processes have a higher resistance
[33]. It has been also shown that the pH of the original solution can influence particle size [56].
It is known [56] that acidic conditions favour the formation of smaller particles, while at higher
pH values larger particle size is observed. The use of sol-gel methods has inspired a great
number of studies on the development of new semiconductors for the suppression of electron/
hole recombination and enhancement of the photosensitivity of titania for successful applica‐
tion [57]. Therefore, the use of nanoporous thin films for photoelectrochemical purposes has
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been widely described in studies on the removal of organic matter such as dyes [58], phenol
[59], tetracycline [60], toxic metals [61] and microorganisms [62]. Annealing temperature has
been intimately related to the crystal structure formation because phase transfer is temperature
dependent. For many uses, including photoelectrocatalysis and solar cells, the most desired
crystal structure is anatase, because this structure shows a higher charge carrier mobility than
rutile [19, 63]. However, in many cases of photocatalysis, combinations of anatase and rutile
have been used due to the higher photocatalytic activity that these display compared to pure
anatase (probably due to the smaller band-gap energy of rutile (Eg=3.0 eV vs. anatase Eg=3.2
eV) absorbing more visible light radiation).

The use of mesoporous TiO2 thin films has also been studied. According to the definition of
IUPAC, porous solids can be classified into three groups based on their pore diameter, namely
microporous (5–20 Å), mesoporous (20–500 Å), and macroporous (>500 Å) materials [64]. The
success of mesoporous materials depends on the availability of precursor materials and the
precision of control over the hydrolysis reaction, as well as the choice of an appropriate
surfactant. All these parameters interfere with the obtaining of highly organized materials. In
order to obtain mesoporous materials with good photocatalytic features it is necessary to use
an appropriate method to produce films with a large surface area, pore-wall structure and
crystallinity [65].

Other thin-film semiconductors have been used in the degradation of such organic compounds
as WO3 [66], ZnO [67] and Fe2O3 [68, 69]. The anodic growing of tungsten trioxide thin film
has been described as a good alternative to TiO2, mainly because of its intrinsic characteristics
like lower band-gap energy of Eg=2.8−3.0 eV and higher photoactivity [70]. Iron oxide (α-
Fe2O3) has the desirable property of narrowing the band gap (Eg=2.2 eV), as well as low cost,
electrochemical stability and low toxicity [68]. ZnO (Eg=3.2 eV) has good properties for use as
a photocatalyst, such as high photocatalytic efficiency, low cost and environmental friendliness
[71]. It can also be used for degradation and disinfection purposes, as it can degrade dirt and
inhibit the growth of microorganisms [67].

3.2. Operational characteristics on the PEC systems

The basic photoelectrochemical reactor setup consists of three conventional electrodes
(working, reference and counter electrode) immersed in an aqueous electrolyte contained
within a vessel for the potentiostatic mode. A two-electrode system (working and counter) can
also be used when current density is used to supply the system. The vessel containing the
aqueous electrolyte is transparent to light or fitted with an optical window, usually quartz,
that allows light to reach the photoactive electrode [72].

Besides material properties, some operational parameters such as pH, biased potential, initial
concentration of analyte and electrolyte composition have a direct influence on the degradation
of organic pollutants. The point of zero surface charge (pzc) of the TiO2 at the electrode/
electrolyte interface will determine the adsorption of the pollutant in relation to the pH and
pKa of the pollutant. In acidic conditions TiO2 is positively charged, while in basic conditions
it is negatively charged, according to the equations below [25, 33, 73]:
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TiO2 +  H + → TiOH 2
+ (6)

TiO2 +  OH - → TiO - +  H2O (7)

The influence of biased potential on the degradation rate must be optimized as a function of
the flat band potential. Generally, when the potential is increased, the degradation rate
increases as well until no more gain is observed because electrons and holes have a good
separation and recombination rate is minimized [33, 74]. Current density can be applied
instead of potential, as it requires a much simpler arrangement of two electrodes, lowering
costs and favouring the photoelectrocatalytic application on large-scale reactors [4, 43].

The initial pollutant concentration, especially for wastewaters and coloured solution, will limit
the photoanode activation by light [61]. Moreover, at high concentration the photoelectro‐
chemical efficiency is decreased and longer treatment periods will be required to achieve
complete pollutant removal. Depending on the pollutant, it is possible to promote the degra‐
dation at high concentrations [4, 25].

Recent investigations prove that light intensity and lamp irradiance are critical factors in
photoelectrochemical systems. It has been reported in the literature that the higher light
intensity achieved, the faster the degradation rate will be [33]. Zainal and colleagues [75]
demonstrated that a 100 W UV lamp was almost equivalent to a 300 W halogen lamp, probably
due to the higher intensity of the halogen lamp.

When the degradation is conducted in the presence of different electrolytes, there will be
significant change in the degradation rate. In the presence of chloride, the degradation is
improved because there will be generation of chlorine radicals, with a high oxidizing power
which is not observed in sulphate and nitrate mediums [58].

The PEC reactor also plays an important role in the efficiency of photoelectrochemical
methods. Different materials (glass, quartz and Teflon) and shapes are employed on these
systems. The photoanode irradiation can be used either externally or internally [4]. The reactor
could be rectangular or cylindrical, although the latter makes greater use of light and hence
better performance. There are single chamber reactors and double-vessel reactors, also known
as H-type [72].

4. Strategies to enhance the PEC efficiency

Several photocatalysts have been applied in photoelectrocatalysis, among them TiO2, WO3 [66],
ZnO [67], CdS, Fe2O3 [68, 69] and SnO2. Over the years considerable effort has been devoted
to the improvement of the materials used in photocatalysis. TiO2 has become one of the most
common materials used in materials science [20] as it is environmentally friendly, low cost,
has a long lifetime of electron/hole pairs, presents a compatible energy position of BV and BC,
and has good chemical and thermal stability and superior catalytic stability [20, 76]. Among
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these features, the band edge positions relative to H2O oxidation represent a very important
characteristic that improves the applicability of TiO2 in photo(electro)catalysis to decompose
H2O to H2 and O2 and also to create ●OH radicals [19]. There are many transition metal oxides
with semiconductor properties, but many of them do not have suitable electronic properties
(energy position of bands edges) for useful electron transfer reactions.

Some of the main applications of TiO2 photoelectrocatalysis have involved water-splitting [16,
77, 78] inactivation of microorganisms [14, 79] and degradation of contaminants in water [10,
33, 39, 78, 80]. Although it is the most suitable material for such applications, titanium dioxide
has some limitations that hinder its use in technological applications. For example, it is
activated only under ultraviolet irradiation (λ ≤ 387 nm), and thus the use of sunlight is limited
because it provides up to 5% of UV light; it also presents recombination of electron/hole pairs.
In order to obtain a better utilization of the photocatalytic properties of TiO2 and to achieve
more responsiveness to the visible wavelengths, the preparation of nanostructured materials
and their surface modification or doping (band-gap engineering) has emerged as a potential
method.

Thus, in order to increase the efficiency of photoelectrocatalysis, organized nanostructured
materials, especially those involving electrochemical methods of preparation, have attracted
attention. The main advantages are discussed below.

4.1. Nanostructured morphologies

Nanostructured materials represent an important challenge of current science, and the new
materials have presented special physical and chemical properties. Recently, one-dimensional
(1D) nanostructures such as rods, belts, wires and tubes have become a focus of intensive
research, mainly due to their high surface area (ideal for catalysis as it facilitates reaction/
interaction between the devices and the interacting media) and other exceptional properties
such as electrical properties: charge carrier transfer is mainly governed by the quantum
confinement phenomenon [81].

The discovery of carbon nanotubes by Iijima in 1991 [82], with their variety of interesting
properties, boosted research focused on the synthesis of tubular nanostructures of other
materials. Among the various nanotube materials, titanium dioxide nanotube arrays are of
particular interest because of their many applications, for example in photo(electro)catalysis
[10, 78, 83-87], sensors [88, 89], biosensors [90], dye-sensitized solar cells [91, 92], hydrogen
generation by water photoelectrolysis [77, 78, 93], photocatalytic reduction of CO2 [94, 95] and
biomedical-related applications [96, 97].

In recent years, a great number of investigations have focused on the photocatalytic activity
of TiO2 nanomaterials and effective ways to improve their photocatalytic efficiency. Various
nanostructures have been reported, such as nanowires [98], nanofibres [99], nanorods [100,
101], and nanowalls [101], but TiO2 nanotubes are certainly the most promising and explored
architecture.
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4.1.1. TiO2 nanotube arrays

As previously mentioned, TiO2 is a widely studied materialdue to its versatility, and in
photoelectrocatalysis it is undoubtedly the most explored semiconductor. The use of the
TiO2 nanotubes morphology has allowed advances in photo(electro)catalysis due to specific
improvement of properties and will be further discussed.

For photoelectrocatalytic applications TiO2 nanotubes (TiO2 NTs) present interesting proper‐
ties, such as large internal surface area, which can be easily filled with liquid enabling intimate
contact with electrolytes and excellent charge transport [39, 94]. Due to its high structural
organization, the nanotubes architecture exhibits excellent electron percolation pathways for
vectorial charge transfer between interfaces, thereby minimizing the recombination of charges.
Figure 6 illustrates an image of scanning electron microscopy (SEM) of TiO2 NTs prepared
under electrochemical anodization. As the TiO2 film grows on the metal surface (is not
deposited) there is a good electrical connection between the oxide and the metal. Zhu and
colleagues [102] found charge carrier recombination much slower in the TiO2 NTs films than
in the nanoparticulate TiO2 films in dye-sensitized solar cells.

Additionally, the morphological parameters of the architecture can be precisely controlled
when the material is prepared by electrochemical anodization. The control of the nanotube
dimensions is important because each application may require morphological surfaces with
particular characteristics. For example, Liu et al. [103] found that the photoelectrocatalytic
activity shows a dependence on the length of the nanotube arrays. They studied the degrada‐
tion of phenol at TiO2 NTs electrodes with different tube lengths under UV irradiation and
applied potential. It was verified that a short nanotube array shows better photoelectrocatalytic
activity than a long nanotube array, which can be explained by the reduced recombination
effects. However, the photocatalytic degradation (no applying potential) showed that longer
nanotubes were more efficient because they favour light trapping.

More information can be obtained in some excellent reviews found in the literature, dealing
with  preparation,  properties,  strategies  to  increase  the  photoactivity  and applications  of
TiO2 NTs [19, 20, 39, 81, 94, 104-107]. Titania nanotubes can be synthesized in two forms:
powder form and self-organized nanotube arrays grown on a substrate of metallic titanium.
Several  techniques for  the preparation of  TiO2  NTs have been reported,  such as  hydro/
solvothermal methods [108], sol-gel [109], template-assisted methods [110] and electrochem‐
ical anodization [39, 105, 106]. The growth of TiO2 NTs by electrochemical anodization in
a fluorinated-based electrolyte is less expensive and simpler that most of these methods
and  allows  precise  control  of  dimensions,  presenting  a  more  orderly  arrangement  of
nanotubes [105].

The first self-organized oxide obtained by anodization in electrolytes containing hydrofluoric
acid was reported by Zwilling and colleagues in 1999, where a nanoporous structure was
achieved [111]. In 2001, Gong and colleagues [112] developed the first generation of highly
ordered and vertically oriented nanotube arrays of 500 nm length. The structure was obtained
by electrochemical oxidation of titanium in a HF aqueous electrolyte. The fabrication of TiO2

NTs films was performed in a two-electrode electrochemical cell using aqueous electrolytes
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containing 0.5-3.5 wt. % HF and voltages varying from 3 to 23 V. They found that at low voltage
(3 V), porous films are obtained and at higher voltage (23 V) the nanotube structure was
destroyed. The ideal conditions were 0.5 wt. % HF electrolyte applying 20 V for 20 min.

In 2005, Cai and colleagues [113] developed the second synthesis generation of titania nano‐
tubes. They found that adequate control of the electrolyte pH can decrease the oxide chemical
dissolution rate; thus, the tube length is enhanced using aqueous buffer electrolyte. The pH of
a KF-containing electrolyte is adjusted to 4.5 using additives such as sulphuric acid, sodium
hydroxide, sodium hydrogen sulphate, and/or citric acid. This usually obtains TiO2 NTs of 4.4
μm in length.

The third synthesis generation of titania nanotube arrays, initially reported by Ruan and
colleagues [114] in 2005, involves improvements in nanotube-array length using non-aqueous
electrolytes or polar organic solvents such as formamide, N-methylformamide, dimethyl
sulphoxide, and ethylene glycol mixed with HF, NH4F or KF to provide fluoride ions [112,
115-117]. Ruan and colleagues [114] also studied the anodization of titanium in polar organic
solvent using mixtures of dimethyl sulphoxide (DMSO) and hydrofluoric acid. TiO2 nanotube
arrays of 2.3 μm length were obtained in DMSO+4.0% HF electrolyte applying 20 V for 70 h.

The fourth synthesis generation of TiO2 NTs was developed by Richter and colleagues [118]
and Allam et al. [119], and is characterized by the fabrication of nanotube arrays by Ti
anodization using fluoride-free HCl aqueous electrolytes. The mechanism of TiO2 NTs
formation on Ti substrate is well studied in the literature [94, 105, 106].

4.1.1.1. Mechanism of formation of nanotubes by electrochemical anodization

The production of oxide films on metal surfaces by oxidation in an electrolytic process can be
called electrochemical anodization. In practice, a metallic electrode compatible with oxide
growth is connected to the positive pole (anode) of a dc power supply and the cathode, usually
a platinum piece (or another material, such as carbon for example) is connected to the negative
pole (Figure 7). The electrodes are placed in an electrolytic solution and when a potential is
applied in the system the metal reacts with oxygen ions from the electrolyte, growing an oxide
film on the surface. The electrons resulting from the oxidation travel through the external

Figure 6. TiO2 nanotubes scanning electronic microscopy (SEM) images, top view (in different magnifications) and
cross section. The TiO2 NTs were grown by electrochemical anodization of Ti foil in 1 M NaH2PO3+0.3 wt.% HF. The
TiO2 NTs presented a diameter of 110 nm, wall thickness of 13 nm and length of 900 nm on average
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circuit to reach the cathode, where they can react with H+ ions and generate bubbles of H2 [94].
The key point that determines the form of the oxide is the composition of the electrolyte. The
TiO2 NTs, in this case, can be achieved in electrolytes containing fluoride ions, with adjust‐
ments of applied potential and anodization time.

Figure 7. Scheme representing an electrochemical cell used to produce TiO2 films by anodization of Ti

The growth of self-organized TiO2 NTs (as well as porous structures of other metals such as
Zr, Nb, W, Ta, and Hf) by electrochemical anodization in fluoride-containing electrolyte is
governed by competition between steps that occur simultaneously.

First, there is the formation of oxide on the metal surface. In this step, there is a field-assisted
oxidation of Ti metal to form Ti4+ species which will react with O2

- (from H2O). After the
formation of an initial oxide layer, further oxide growth is controlled by field-assisted ion
transport, where O2

- anions migrate through the oxide layer until they reach the metal/oxide
interface, where they react with the metal [94, 106, 120].

Ti + 2H2O  →TiO2 + 4H + + 4e - (8)

In another step, Ti4+ ions migrate from the metal through the oxide by field-assisted transport
until they reach the oxide/electrolyte interface. Then, small pits are formed due to the localized
dissolution of the oxide by the high electrical field, which act as pore-forming centres.

The key step is the chemical dissolution of oxide by fluoride ions at the as-formed pits, forming
soluble fluoride complexes. The Ti4+ ions field transported at the oxide/electrolyte interface are
also complexed [94, 106, 120].

TiO2 + 6F -→
H+

 TiF6
2-

+ H2O
(9)

Ti4+ + 6F - → TiF6
2-

(10)
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If the chemical dissolution is too high or too low, there is no formation of nanotubes. The
dissolution rate can be adjusted by varying the concentration of F− and pH (more acidic pH
and higher concentrations of F− increases the chemical dissolution) [94]. This was the principle
used to obtain longer and smoother nanotubes, leading to the second and third generations of
TiO2 NTs.

When the rate of pore growth at the metal–oxide interface becomes identical to the rate of oxide
dissolution at the pore–bottom–electrolyte interface, the thickness of the barrier layer remains
unchanged, although it moves further into the metal, making the pore deeper [94, 106, 120].
Commonly, the wall thickness of TiO2 NTs varies from 5 to 30 nm and the pore size from 20
to 350 nm (tube diameter is reported to be linearly dependent on the applied anodic potential
during growth [106, 121]). The length often varies from 0.2 to 1000 μm; the aspect ratio, defined
as the ratio between length and diameter of the tube, can be controlled from about 10 to
approximately 20,000 by selection of appropriate anodization variables [94].

4.1.2. Nanostructured arrays of other semiconductors

Nanostructured architectures are also fabricated by electrochemical anodization for other
semiconductors of interest in photoelectrocatalysis, such as ZnO, WO3 and Fe2O3.

Prakasam and colleagues [69] prepared nanoporous film of Fe2O3 by submitting a Fe foil to
electrochemical anodization in electrolyte composed of 1% HF+0.5% ammonium fluoride
+0.2% 0.1 M nitric acid (HNO3) in glycerol (pH 3) at 10°C. LaTempa and colleagues [122]
produced α-Fe2O3 (hematite) nanotubes by potentiostatic anodization of iron foil in an ethylene
glycol electrolyte containing NH4F and deionized water. Hematite has a band gap of ≈2.2 eV
(indirect) and can absorb light at λ ≤ 560 nm; it can therefore be activated in a large part of the
solar spectrum.

Lai et al. [123] prepared WO3 nanotubes by electrochemical anodization of W foil in electrolyte
composed of 1 M of sodium sulphate+0.5 wt.% of ammonium fluoride at 40 V. The WO3 is
photoactive when irradiated by visible light due to its small band-gap energy (2.4 eV to 2.8
eV) and has attracted scientific interest in photo(electro)catalysis. Some reviews [29, 70] have
explored the use of WO3 photoanodes mainly in photoelectrochemical water splitting.

Park and colleagues [124] reported a synthesis of ZnO nanowires by electrochemical anodi‐
zation on a Zn foil using as electrolyte 5 mM KHCO3 aqueous solution. ZnO has a similar band
gap and band positions of TiO2 (Eg about 3.2 eV), but higher quantum efficiency than TiO2. On
the other hand it has limited applications due to its photocorrosion in acidic medium [71].

4.2. Band-gap engineering

Despite all the improvements made to TiO2 as a photoactive catalyst, the material still presents
problems, such as activation with UV irradiation (λ≤387 nm), due to its wide band gap (Eg=3.2
eV). Thus, the use of solar energy is limited since the activation of TiO2 occurs only from UV
light, which corresponds to a small fraction (≈5%) of the sun’s energy compared to visible light
(45%) [39]. In this sense, efforts have been directed at shifting the optical response of titanium
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dioxide from the UV to the visible spectral range, which would be of great utility in pho‐
to(electro)catalysis and other applications of TiO2. This modification of optical properties of
semiconductors has been called band-gap engineering [19, 39, 94, 107].

Modification of TiO2 properties has been achieved mainly by (i) doping with different
transition metal ions (such as Cr [125], Co [126], W [127], Zr [128] and Fe [129]) and with
different anions (such as N [130], F [131], S [132], B [133], C [93]) that replace oxygen in the
crystal lattice, and (ii) by surface decoration, which includes coupling with other semiconduc‐
tors and deposition of particles of noble metals [14, 84, 134-137].

However, these arrangements frequently increase only the absorption and do not properly
improve material properties such as the stability of the semiconductor under illumination,
efficiency of the photocatalytic process, and the wavelength range response. One example is
the CdS, which absorbs a good portion of the visible radiation but is usually unstable and
photodegrades with time [138].

Dopant/Modifier Strategies References

N Anodization of Ti–N alloy*

Anodization in nitrogen-containing electrolyte*

Electrodeposition in nitrogen-containing electrolyte

[130], [139], [140], [141], [142],

[143], [144], [145]

C Anodization in carbon containing electrolyte* [146], [147]

F Anodization in containing electrolytes* [143]

B Anodization in boron-containing electrolyte*

Electrodeposition in boron-containing electrolyte

[133], [148], [149] [150]

W Anodization of Ti–W alloy*

Anodization in tungsten-containing electrolyte*

[127], [151], [152]

Zr Anodization in zirconium-containing electrolytes*

Electrodeposition in zirconium-containing electrolyte

[128], [153], [145]

La Electrodeposition in lanthanum-containing electrolyte [154]

Si Anodization in silicon-containing electrolyte* [152]

Nb Anodization of Ti–Nb alloy* [144]

Ag Electrodeposition in silver-containing electrolyte [155], [156]

Pt Electrodeposition in platinum-containing electrolyte [157], [158]

Pd Electrodeposition in palladium-containing electrolyte [159], [160]

CdS Electrodeposition in Cd and S-containing electrolyte [135], [161]

CdTe Electrodeposition in Cd and Te-containing electrolyte [162]

Cu2O Electrodeposition in Cu-containing electrolyte [163]

*one-step synthesis

Table 1. Electrochemically doped/surface modified TiO2 nanotube arrays

In order to make materials more photoactive under visible light and more stable under certain
conditions, and to have lower band-gap energy, the doping of TiO2 with several metals and
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non-metal compounds has also been explored: Table 1 shows a summary of the electrochemical
methods adopted to promote doping/surface modification of TiO2 nanotubes,with the related
references.

4.2.1. Doped TiO2 nanomaterials

Asahi et al. [164], in a 2001 study, developed a method for TiO2 visible light activation through
doping of C, N, F, P, or S for O in the anatase TiO2 crystal using calculated densities of states
(DOSs). They found that the substitutional doping of N was the most effective method because
nitrogen p states contribute to band gap narrowing by mixing with O 2p states. Nitrogen can
be easily introduced into the TiO2 structure, due to its comparable atomic size with oxygen,
small ionization energy and high stability.

There are two main ways to perform anion doping in TiO2 by electrochemical techniques: (i)
electrodeposition and (ii) adding a precursor of the element into the electrolyte during
electrochemical anodization to oxide formation. It should be noted that for this the TiO2 film
must be immobilized on a conductive substrate, as in the case of TiO2 NTs grown on metallic
titanium.

In 2006, Shankar and colleagues [139] described a simple way to introduce N atoms into TiO2.
N-doped thin films were fabricated by anodic oxidation of a pure titanium sheet in electrolyte
composed of 0.07 M HF, NH4NO3 (from 0.2 to 2.5 M) and NH4OH to adjust the pH to 3.5. The
material showed optical absorption in the visible wavelength range from 400 to 530 nm. The
XPS data confirmed that all the incorporated nitrogen is substitutional on the oxygen site, and
the proportions of N atoms in TiO2−xNx were x=0.23, x=0.09 and x=0.02. The N-doped samples
exhibited a shift in absorption toward the visible spectra from 400 to 510 nm. Antony and
colleagues [140] prepared N-doped TiO2 NTs by anodizing Ti foils in ethylene glycol+NH4F
+water mixture containing urea as a nitrogen source. They used various concentrations of urea
and achieved different N concentrations in TiO2 film, determined by X-ray photoelectron
spectroscopy (XPS). There was nitrogen incorporation in TiO2lattice mainly in substitutional
form (substitution of O2

− ions by N3− ions). The doped samples showed visible light response,
and the calculated optical band gaps were 3.27, 3.21, 2.75 and 2.77 eV for pristine TiO2,
TiO1.85N0.115, TiO1.813N0.14and TiO1.84N0.121, respectively. Zhou et al. [141] fabricated N-doped
using the same methodology, via anodic oxidation of Ti in electrolyte composed of ammonium
fluoride (NH4F) and triethylamine (C6H15N). Nitrogen was successfully introduced into the
TiO2 lattice replacing oxygen atoms, and as a result there was a shift of TiO2 band edge from
380 nm to 405 nm in N-doped TiO2.

Kim et al. [142] produced N-doped TiO2NTs by anodization of a high-purity TiN alloy with
approximately 5 at.% of N in a glycerol+water (50:50 vol%)+0.27 M NH4F electrolyte. XPS data
of the sample surfaces indicated 2−3 at.% of N atoms present as Ti–O–N in the nanotubes. They
found that the nanostructured layer grown on TiN alloy showed decreased UV response
compared with pure TiO2 NTs film, but showed a strongly increased photoresponse in visible
light spectra.
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Li and colleagues [165] used an electrochemical technique to dope TiO2 with nitrogen atoms,
in two steps. N-doped TiO2 NTs were prepared by electrochemical anodization in glycerol
electrolyte, followed by electrochemical deposition in NH4Cl solution. The optimal conditions
in electrodeposition were: voltage of 3 V, reaction time 2 h, and NH4Cl concentration of 0.5 M.
Both the photoelectrochemical properties and photocatalytic activity under visible light
irradiation were enhanced after N doping into TiO2 nanotube arrays.

By using the aforementioned electrochemical techniques for the nitrogen, it is also possible to
perform doping with other non-metals, such as C and B, for example. Milad and colleagues
[146] achieved carbon-doped titanium oxide nanotubular arrays via anodic oxidation of
titanium foil at 20 V in acidic (0.5 M H3PO4+0.14 M NaF) and organic media (ethylene glycol
+0.3 wt% NH4F) with 0.5 and 1 wt% carbon source (polyvinyl alcohol). Approximately 2.75%
and 8.45% carbon was incorporated into the TNT in the acidic and organic electrolyte,
respectively. The highest photocurrent density was observed for the sample with the higher
amount of carbon atoms incorporated. Krengvirat et al. [147] produced carbon-incorporated
TiO2 by anodic oxidation in EG containing 0.5 wt% NH4F+1 wt% water. The interstitial carbon
arising from the pyrogenation of ethylene glycol electrolytes induced a new C 2p occupied
state at the bottom of the TiO2 conduction band, decreasing band-gap energy to 2.3 eV and
consequently making the material visible-light active. Lu and colleagues [133] fabricated
boron-doped TiO2 NTs by electrochemical anodization in an electrolyte containing different
concentrations of NaBF4 as a boron source. XPS data showed that the boron atoms were
incorporated into the TiO2 lattice, forming a Ti–B–O bond. All the samples presented red shift
(photoresponse under visible light) and higher photocurrents under visible light than the bare
TiO2 NTs. Li and colleagues [148] fabricated TiO2 NTs by electrochemical anodization of Ti in
1 M (NH4)2SO4 + 0.5 wt% NH4F electrolyte, and accomplished boron doping by electrodepo‐
sition in 0.1 M H3BO3 electrolyte (using current densities of 10 μA/cm2 for 27 min). Using XPS
data, B atoms were incorporated into TiO2 matrix, and the B-doped samples exhibited red shift
in absorption (380–510 nm) due to the excitation of electrons from the impurity energy levels
located above the valence-band edge (provided by the B atoms), to the conduction band edge.
The proposed mechanism is consistent with those reported for doping with carbon and
nitrogen.

Besides anion doping, there are numerous papers that investigate the effect of doping with
metal ions in the TiO2 lattice. The metal ions can occupy two different positions in the TiO2

matrix, which are substitutional and interstitial, depending on the ionic radius of the metal.
The dopant occupies the interstitial sites if the dopant radius is much smaller than the matrix
cation, in this case, titanium. If the dopant has similar ionic radius of Ti, the substitutional
mode is adopted [7]. In metal-doped TiO2, new energy states can be formed either within or
beyond the VB and CB, decreasing band-gap energy. However, transition metals may also act
as recombination sites and may cause thermal instability in the anatase phase of TiO2 [7, 27].

Tungsten-doped TiO2 NTs were prepared by Gong et al. [127] in glycerol/fluoride electrolyte
containing sodium tungstate via the electrochemical oxidation of a Ti substrate. XPS data
showed that the W6+ ions were loaded into TiO2 lattice by displacing Ti4+ ions and forming W–
O–Ti bonding. Thus, the UV−Vis spectra of W-doped samples show red shift and decrease the
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band-gap energy from 3.18 eV (bare TiO2 NTs) to 2.97 eV (W-doped TiO2 NTs). These findings
can be attributed to the fact that the conduction band of the W-doped samples was reformed
in the presence of W6+ ions. Das and colleagues [151] prepared tungsten-doped TiO2 NTs by
electrochemical anodization of Ti–W alloys. The sample containing 9% W presented band-gap
energy of 2.83 eV and higher visible photocurrents than undoped samples.

Liu and colleagues [153] produced Zr-doped TiO2 NTs. They prepared TiO2 NTs by electro‐
chemical anodization in 0.14 M NaF and 0.5 M H3PO4 electrolyte, and made the zirconium
doping by electrodeposition in 0.1 M Zr(NO3)4 electrolyte, varying the applied potential. When
the amount of zirconium in TiO2 was small (lower potentials of deposition) zirconium entered
into the lattice of TiO2, acting as defect positions, improving separation of charges. At higher
Zr amounts, zirconium atoms were partially unable to enter into the TiO2 lattice, acting as
recombination sites on the TiO2 surface, decreasing the photocatalytic efficiency. Using a
similar approach, Nie and colleagues [154] produced lanthanum-doped (La-doped) TiO2 NTs.
After the preparation of TiO2 NTs, they executed a cathodic electrochemical process using
lanthanum nitrate solution as the La source. The material became visible photoactive, and the
band gap was decreased from 3.32 eV (undoped) to 3.03 eV (La-doped NTs).

Another approach reported in the literature focuses on the incorporation of more than one
anion (or an anion and a cation) in the structure of TiO2, which is called codoping. Su et al.
[143] prepared N-F-codoped TiO2 NTs by electrochemical anodization of Ti in oxalic acid
+NH4F electrolyte. N-doping into TiO2 resulted in the creation of surface oxygen vacancies,
and F-doping produced several beneficial effects, such as the creation of surface oxygen
vacancies, which enhance the surface acidity, and creation of Ti3+ ions, which reduce electron/
hole recombination. Zhou and colleagues [149] produced B,N-codoped TiO2 nanotube arrays.
Sun et al. [152] produced Si–W codoped TiO2 NTs using a one-step anodization process with
the presence of silicotungstic acid in the electrolyte, and the doped samples presented visible
photocurrent 2.5 times larger than bare TiO2 NTs. Xua and colleagues [144] produced passi‐
vated n–p co-doping of niobium and nitrogen into TiO2 lattice by anodizing Ti–Nb alloys and
posterior N-doping. Liu et al. [145] produced N/Zr-codoped TiO2nanotube arrays in a two-
step process. Firstly they prepared the TiO2 NTs by electrochemical anodization and then
accomplished doping using electrochemical deposition in Zr(NO3)4 and NH4Cl electrolyte. The
doped materials presented increased photoactivity under UV and visible light; the visible light
sensitivity was caused by N-doping, and Zr-doping was responsible for enhancing the charge
separation.

Although several mechanisms have been proposed for doping from experimental and
theoretical data, it is not possible to clearly understand the role of dopants and therefore there
is no consensus in the scientific community [7, 166]. Table 1 shows a summary of the electro‐
chemical strategies fordopingTiO2 nanotubes, with the related references.

4.2.2. Composite semiconductor as photocatalysts

The coupling of two semiconductors with appropriate energy CB and CV can reduce the
recombination of e-/h+ pairs due to the transfer of carriers from one semiconductor to the other,
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as can be seen in Figure 8. Furthermore, depending on the band-gap energy of the semicon‐
ductor used, the composite can be activated in the visible region [7].

There are few papers that report on the coupling of semiconductors by electrochemical
techniques. In this case, the composite is produced by a two-step process. CdS is the most used
semiconductor to coupling with TiO2 due to its small band-gap energy (Eg=2.4 eV). Li and
colleagues [135] produced CdS nanoparticles-modified TiO2 nanotube arrays by electrodepo‐
sition via direct current. In the electrodeposition step, they used as electrolyte a mixed solution
of 0.01 M CdCl2 in dimethyl sulphoxide (DMSO) with saturated elemental sulphur. CdS was
cathodically electrodeposited at the optimum constant DC density of 0.5 mA cm−2 for 5–15 min.
They found that the photocurrents of CdS/TiO2 NTs were much larger than those of pure
TiO2 NTs. Under UV−Vis irradiation, both semiconductors are excited and as the conduction
band of TiO2 is more anodic than that of the CdS there is efficient electron transfer between
the CdS and TiO2. Thus, the photogenerated electrons are injected from the conduction band
(CB) of CdS to the CB of TiO2; at the same time, the holes transfer from the valence band (VB)
of TiO2 to the VB of CdS. In heterojunctions such as CdS/TiO2 there are less electron/hole
recombinations and enhanced light absorption, both UV and visible. Zhang et al. [161]
prepared water-soluble CdS quantum dots (QDs) and deposited on highly ordered TiO2NTs
by various methods, including cyclic voltammetric (CV) electrodeposition. The QDs were
prepared using 0.01 mol L−1 cadmium nitrate and 0.01 mol L−1 sodium sulphide dissolved in 6
× 10−5 mol L−1 N-cetyl-N,N,N-trimethyl ammonium bromide aqueous solution. The CV
electrodeposition was carried out in a conventional three-electrode system with TiO2 NTs as
the working electrode under applied voltage sweeps from −0.8 to 0.2 V versus SCE and a scan
rate of 30 mV s−1. The yielding composites of CdS/TiO2 NTs prepared by CV showed excellent
photoelectrical behaviour and superior visible-light photocatalytic activity due to the solid
binding and effective coupling between the QDs and the TiO2 NTs.

Feng and colleagues [162] prepared a heterojunction of CdTe/TiO2 NTs. CdTe is a direct band-
gap semiconductor with Eg=1.5 eV, absorbing almost across the visible spectrum. After the
preparation of TiO2 NTs, CdTe nanoparticles were pulse electrodeposited in a conventional
three-electrode system (with the TiO2 NTs as working electrode) in electrolyte solution
containing 0.08 mol L−1 CdSO4 and 0.05 mol L−1 NaTeO3. The pulse on–off time ratio was 0.2:1,
with a running voltage of −1 V. A red shift of 50 nm was observed in CdS/TiO2 NTs composite
and the calculated optical band gap was 1.5 eV. The positions of CB and VB in relation to the
TiO2were similar to the CdS; there was electron injection from the photoexcited CdTe to
TiO2 CB, and the photogenerated holes moved from the TiO2 VB to the CdTe VB, preventing
the recombination of charges.

Tsui and colleagues [163] studied the modification of TiO2 NTs with Cu2O by electrodeposition.
Cu2O is a p-type semiconductor with a direct band gap of 1.95–2.2 eV. The junction between
p-type Cu2O and n-type TiO2 in principle enhances the separation of electron/hole pairs; the
Cu2O is also visible-light responsive. Electrodeposition of Cu2O was performed using the as-
prepared TiO2 NTs with working electrode using a three-step pulse plating method (−0.5 V for
5 ms, −0.3 V for 0.5 ms, and 0 V for 5 s) from a solution containing 0.02 M Cu(CH3COO)2 and
0.1 M NaCH3COO (pH 5.7). The Cu2O/TiO2 composite presented visible light absorption and
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the band gap values obtained were 3.27 eV for TiO2 and 2.21 eV for Cu2O/TiO2 heterojunction.
However, Cu2O on TiO2 NTs dissolves under intense light, limiting the use of Cu2O in
photoelectrochemical devices.

4.2.3. Metal deposition

The decoration of TiO2 by dopants of nanoparticles of noble metals (such as Ag, Au, Pt, and
Pd) has attracted attention in order to enhance the photoactivity of the material. Due to
different Fermi levels of TiO2 and the metal nanoparticles, a Schottky barrier can be formed in
the new material. Therefore, there is a rectification of the charge carrier transfer where the
energetic difference at the semiconductor/metal interface drives the e− from the CB of the
TiO2 into the metal nanoparticles. In other words, the metal acts as an electron trap, promoting
interfacial charge transfer and therefore minimizing recombination of the e-/h+ pairs, as shown
in Figure 9 [7].

Xie and colleagues [155] produced Ag-loaded TiO2 NTs using pulse current deposition
technique in 0.01 M AgNO3 and 0.1 M NaNO3 electrolyte, using the as-prepared TiO2 NTs as
working electrode. They applied −15 mA cm−2 of pulse current with 0.1 s on-time and 0.3 s off-
time. Highly dispersed Ag nanoparticles of 10–40 nm were deposited on TiO2. TiO2 NTs and
Ag/TiO2 NTs showed a similar maximum photocurrent density λ (imax 330 nm), but Ag/TiO2

NTs displayed much more intensive photocurrent response, which can be explained by the
Schottky barrier formation separating the charge carriers more efficiently. Zhang and collea‐
gues [156] prepared N-doped TiO2 NTs and loaded Ag nanoparticles on the TiO2 surface by

Figure 8. Schematic representation of the mechanism of charges separation in a photoelectrochemical system opera‐
tedby coupling a visible active semiconductor to a TiO2 electrode
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electrochemical deposition using 0.2 g L-1 AgNO3 in 2.5 g L-1 EDTA solution applying −0.1 V
for 1−20 s.

Xing et al. [157] produced Pt-nanoparticles-decorated TiO2 NTs by cyclic voltammetry
electrodeposition in 19.3 mM H2PtCl6 solution from −0.4 to 0.5 V at a scan rate of 10 mV s−1

(controlling the number of cycles). Yin and colleagues [158] also prepared Pt/TiO2 NTs using
an electrochemical approach, but using AC electrodeposition at 2–4 V for 5−30 min in solution
containing 1 mmol L–1 of H2PtCl6.

In the paper of Qin and colleagues [159] Pd particles were deposited onto the TiO2 NTs
electrode by a pulse electrodeposition technique in PdCl2 (2 g L−1) electrolyte solution (pH 1.5).
Cheng et al. [160] prepared Pd/TiO2 NTs through an electrochemical deposition method at a
constant potential of −0.8 V using PdCl2 solution (1 mM) in 0.5 mol L−1 NaCl electrolyte. The
Pd/TNTs sample displayed absorption between 540 nm and 700 nm and presented transient
photocurrent density of about 0.094 mA cm−2, higher than that of TNTs (0.067 mA m−2) under
xenon lamp irradiation, indicating that decoration with Pd improves the charge separation,
according to the Schottky barrier formation mechanism.

All these materials have been demonstrated to massively improve photoelectrocatalytic
oxidation processes. Works dealing with water contaminated by a wide range of compounds
are discussed below and summarized in Table 2.

5. Application of nanostructured materials in photoelectrocatalysis

As  the  complexity  of  contaminants  increases,  the  efficiency  of  photoelectrocatalytic
treatment methods needs to be enhanced by the use of different strategies, as they pose a

Figure 9. Metal coupling on TiO2 surface and the mechanism of charge separation in a photoelectrochemical system
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potential  risk  to  the  environment.  Most  reported  work  tackles  the  oxidation  of  organic
pollutants,  such as  dyes  of  different  classes  and industry  uses,  hormones,  pharmaceuti‐
cals,  pesticides,  etc.  Oxidation of biological  microorganisms such as bacteria and fungus
has  also  been  investigated.  In  all  these  studies,  oxidation  is  promoted  by  ●OH  action
generated at the interface photoanode/electrolyte. As discussed previously, these hydrox‐
yl radicals are generated on n-type semiconductors when the holes (h+)  on the electrode
surface react with water and/or hydroxyl ions.

The  reduction  of  inorganic  contaminants  has  been  studied  as  well.  The  main  contami‐
nants described have been bromide, nitrate, nitrite and CO2. In this case, the reduction takes
place at a p-type semiconductor [12]. The reduction of toxic metals (Cr6+ to Cr3+) has also
been  described  [61]  in  a  photoelectrocatalytic  process  where  the  cathode  is  Pt  but  is
conjugated  in  a  system  where  the  organic  molecules  are  oxidized  simultaneously  in  a
photocathode such as  Ti/TiO2  and the  electrons are  forwarded to  the  counter  electrode,
where the reduction of Cr (VI) takes place [167]. Solar conversion of CO2 to hydrocarbon
fuels seems promising to reduce global warming for improved sustainability. Solar fuels
include hydrogen, carbon monoxide, methane and methanol [168].

More  recently,  the  application  of  semiconductor  materials  has  received  a  great  deal  of
attention in a re-emerging field: the generation of hydrogen as a clean energy carrier. Studies
have  described the  direct  water  splitting  process  and the  degradation of  organic  pollu‐
tants in order to obtain hydrogen [16]. For this purpose, the use of n and p-type semicon‐
ductor materials using the photoelectrocatalysis method was investigated. The choice of the
semiconductor  material  for  hydrogen  generation  purposes  depends  on  the  valence  and
conduction-band energy levels, which are pH dependent (Figure 10).

The lower edge of the conduction band needs to be greater than the energy level for H2

evolution (according to Equation 11). For water-splitting purposes (Figure 10), the upper
edge of the valence band needs to have enough energy to promote the H2O/O2  reaction
(Equation 12), while for simultaneous organic-pollutant removal the energy level must be
more  electropositive  than the  OH−/●OH level  for  hydroxyl  radical  formation (Equations
11,12):

2H + +  2e- →  H2 (11)

2H 2O →  O2 +  4e- +  4H + (12)

The use of solar light for hydrogen generation purposes has been desirable for the same reasons
as for PEC purposes. Hence, the development of photoanodes that absorb light in the visible
region (λ>400 nm) is necessary, and could be achieved by lowering the photoanode band-gap
energy.
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Figure 10. Schematic representation of Eg values (in eV) and position of CB and VB for the main semiconductors

5.1. TiO2 nanomaterials applied to water treatment

The use of TiO2-nanostructured materials in the removal of contaminants is undoubtedly a
successful system in the treatment of wastewater. The use of nanotubes obtained from different
routes has been described as an efficient alternative method to promote higher discoloration
and partial mineralization of main organic pollutants, as they have a high and homogenous
surface area and suitable photocurrent values.

The degradation of organochlorinated compounds [169, 170], pesticides [171, 172], aromatic
amines [10], biological microorganisms [14, 15], hormones (endocrine disrupters) [173, 174],
flameretardants [175] and mainly dyes [176] has been reported with high efficiency shown by
nanotube materials acting as photoanodes in photoelectrocatalytic treatment.

TiO2 NTs have proved to be more photoactive and to improve the efficiency of PEC degrada‐
tion of pentachlorophenol under biased potential, with sodium sulphate as electrolyte (0.01
mol L−1) and low pH of the original solution. The photoelectrocatalytic processes have been
shown to be more efficient than electrocatalytic, photolytic and photocatalytic techniques [169].
Quan and colleagues [170] also observed the synergistic effect of photoelectrocatalysis
compared to photocatalytic and electrochemical processes aiming at the degradation of
pentachlorophenol in aqueous solution. They also reported that TiO2 NTs under UV irradiation
promoted higher mineralization than a conventional sol-gel film electrode.

The photoelectrocatalytic degradation of pesticides has been performed by TiO2 thin films.
Philippidis and colleagues achieved 82% of degradation of the pharmaceutical compound
imidacloprid using Ti/TiO2 electrodes prepared by the immobilization of P25 powder onto Ti
substrate. The degradation efficiency increased with increased applied potential, following the
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first-order kinetics model after three hours of treatment. The method was proved to be more
efficient than photocatalysis (63% removal) and photolysis (5% removal) operating under UV
irradiation [171]. The pesticide Dipterex has been removed by using TiO2 as a photoanode,
prepared by a sol-gel method depositing over a nickel net. The method promoted a chemical
oxygen demand (COD) removal and organophosphorous conversion of up to 82.6% and 83.5%,
respectively, after 2 h of treatment under UV light [172].

The incomplete reduction of azo dyes and nitroaromatic compounds can usually promote
aromatic amine formation, which can be released into the environment as potential carcino‐
gens. This has been reported in drinking water treatment plants [177]. The use of TiO2 NTs as
photoanodes was proposed by Cardoso and colleagues. The method is efficient since it
promotes the complete degradation and mineralization of 4,4-oxydianiline after 2 h of
photoelectrocatalytic treatment under UV irradiation [10].

The PEC degradation of 4,4‘-dibromobiphenyl used in flame retardants in the textile, and
electronic industries, and in additives in plastics, has been performed using TiO2 NTs as
photoanodes. This class of compounds is described as toxic to human health and the environ‐
ment. The photoelectrocatalytic process was more efficient than the photocatalytic and
electrolytic process alone. Different anodes were compared: TiO2, Zr/TiO2 and Zr,N/TiO2 NTs.
The photoelectrocatalytic efficiency was significantly affected by the properties of the catalysts
and the best performance was observed with TiO2 doped with nitrogen and zirconium, as it
had a higher photocurrent under UV irradiation by a 125 W mercury lamp [175].

Biological  microorganisms can cause  the  contamination of  water  by  spreading potential
pathogens.  TiO2  nanotube  arrays  and  Ag-loaded  TiO2  NTs  have  been  employed  in  the
disinfection  of  water  containing  Mycobacterium  smegmatis.  Under  UV  irradiation  the
photoelectrochemical treatment promoted 100% inactivation after 3 min. The effect of Ag
on TiO2  NTs has been observed in TOC removal,  which reached 98% and 90% for  Ag/
TiO2 and TiO2, respectively, after 4 h of treatment [14]. The inactivation of Mycobacterium
kansasii  and  Mycobacterium  avium  has  also  been  conducted  on  TiO2  and  Ag/TiO2  NTs
electrodes  by photoelectrocatalytic  oxidation.  The  inactivation of  both  bacteriawas  100%
after 3−5 minutes of treatment, faster than photocatalytic and photolytic treatment meth‐
ods, indicating that the bias potential of the photoanode potentializes the treatment [15].
Egerton and colleagues described the PEC inactivation of  wastewater  containing E.  Coli
using  TiO2  irradiated  by  UV  light.  The  method  is  also  efficient  for  the  removal  of  4-
nitrophenol and humic acid contaminants [178].

Endocrine disrupters have been reported as a class of compounds which can mimic or inhibit
the natural actions of the endocrine system in animals and humans, such as synthesis,
secretion, transport and binding. They can be either natural or synthetic compounds that come
from different sources, such as pharmaceutical compounds, personal care products, disinfec‐
tionproducts and surfactants [173]. The literature [11] reports the removal of Bisphenol A from
wastewater using TiO2 NTs in a photoelectrocatalytic oxidation process under UV light and
applied potential of +1.2 V. The removal was confirmed by HPLC/DAD analysis. The degra‐
dation of carbamazepine has been conducted with Ti/TiO2 electrodes prepared by pulsed laser
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deposition. After 120 min of treatment, 73.5% pollutant removal was achieved, and 21.2%
mineralization. Although complete degradation was not achieved the by-products were not
toxic in the presence of Vibrio Fisheri [174]. The removal of these compounds is better than that
achieved by other methods, such as photocatalysis [179], activated sludge [180] and biological
treatment [181].

Different activities in the textile, paper, pharmaceutical, leather and food industries, among
others, release a huge amount of dyes in effluents that can reach drinking water treatment
plants if they are not appropriately treated. There are serious concerns over these compounds
– many are potential carcinogens, or have xenobiotic or toxic properties that can harm the
environment and living organisms [176].

The PEC oxidation of methyl orange [182], methylene blue [183] and rhodamine B [184] dyes
has been reported. The photoelectrochemical method promoted 100% discoloration and high
reduction of the toxicity of dispersed and indigoid organic dyes [185-187].

Recently, the main target of PEC studies has been the visible light activation of materials [188].
The relevance of reactors for photoelectrocatalytic treatment has also been described. It has
been mentioned that the use of solar cells to supply the energy in PEC systems could reduce
the cost of batch reactors by making it unnecessary to purchase electricity –electricity costshave
been pointed out as the main disadvantage of this process [189].

For  hydrogen  production,  a  lot  of  photocatalysts  have  been  studied  in  the  litera‐
ture,though mainly TiO2  and modified TiO2.  Lianos described the use of TiO2  supported
on ITO and FTO and TiO2  doped with N, C and S as well  as the use of photocatalysts
combined with noble metals such as Pt, Pd and Au and the coupled semiconductors TiO2/
SnO2,  TiO2/WO3,  TiO2/RuO2,  TiO2/V2O5  in an attempt to use visible light irradiation [16].
Pure TiO2 nanotube arrays have also been described in photoelectrochemical water splitting
and simultaneous degradation of methylene blue [78]. The PEC experiments were conduct‐
ed using an artificial sunlight simulator. The higher photoconversion efficiency for hydro‐
gen generation and the degradation efficiency of MB were attributed to the better electron
transfer  process  observed  for  two-step  TiO2  NTs  over  one-step  TiO2  NTs.  CdS/TiO2

nanotubes  for  photoelectrochemical  hydrogen  production  have  also  been  described:  the
doped material presented a better performance in the H2 generation rate than the pure TiO2

NTs under solar light illumination [190].

Zhao and colleagues carried out simultaneous photoelectrochemical destruction. They
obtained contaminant and nickel recovery on the cathode. The deposition of TiO2 film was
performed by dip-coating [167]. Paschoal and colleagues promoted the photoelectrochemical
reduction of bromate under Ti/TiO2 coated as a photocathode. Photoelectrocatalytic reduction
of BrO3

− to Br− can reach 70% at neutral pH under biased potential of −0.20 V after 75 minutes
of treatment [191]. Table2 shows a summary of the selected studiesusingdopedand undoped
TiO2 photoanodes used in photoelectrocatalytic applications.
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Photoanode PEC application Reference

TiO2 NTs
Organics degradation [10], [169], [170], [11], [192], [175], [193]

Water splitting [194, 195], [196], [197]

TiO2 NTs coupled with other

semiconductors

Organics degradation [9], [198], [199], [200], [186], [201], [162]

Water splitting [202]

Anion-doped TiO2 NTs
Organics degradation [203], [143], [133], [148], [149]

Water splitting [204], [147], [93]

Cation-doped TiO2 NTs
Organics degradation [127], [154], [205]

Water splitting [128]

TiO2 NTs coupled with noble metals

Organics degradation [206], [207]

Water splitting [208], [158]

Disinfection [14], [15], [209]

TiO2 thin film

Organics degradation [171], [172], [189]

Water splitting [210], [211]

Disinfection [212], [62]

Doped TiO2 thin film Organics degradation [213], [214], [215], [205], [216]

Table 2. Photoelectrocatalytic applications of doped and undoped TiO2-based nanostructured semiconductors

5.2. Application of doped, decorated and composite of TiO2 nanomaterials PEC

N-doped TiO2 coatings prepared by radiofrequency magnetron sputtering has been employed
on the degradation of the antibiotic chlortetracycline under 0.6 A of current intensity and solar
simulator irradiation during 180 min, leading to 99% degradation. This is more efficient than
pure Ti/TiO2. This process has also shown to be efficient in the inactivation of faecal coliform,
which is an indicator pathogen [217]. Wu and Zhang [204] prepared nitrogen-doped double-
wall TiO2 NTs, which under simulated solar light presented a high photoelectrochemical water
splitting performance due to the high surface areas and absorbance in the visible light region.
Sun et al. [203] prepared N-doped TiO2 NTs, which presented better efficiency in Rhodamine
B PEC degradation.

Boron-doped TiO2 NTs have also been studied as photoanodes prepared by chemical vapour
deposition. The electrode was applied in the degradation of methyl orange dye under visible
light irradiation promoting 100% discoloration under applied potential of +2.0 V and UV
irradiation  [192].  In  the  studies  by  Lu  and  colleagues  [133]  and  Li  et  al.  [148]  boron-
doped TiO2 NTs were prepared and applied in the PEC degradation of atrazine and phenol,
respectively.

TiO2 has been doped with nickel and used as a photocatalyst in the degradation of Acid Red
88 dye. The photoanode powder was prepared by the sol-gel method and 95% COD and TOC
removal was obtained after 35 min of treatment under UV and solar irradiation. The colour
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removal was 72% for photocatalytic treatment and 97% for photoelectrocatalytic treatment
under +1.6 V [189]. Gong and colleagues prepared W-doped TiO2 NTs and applied these in
simultaneous Rhodamine B degradation and production of hydrogen [127]; tungsten-doped
TiO2 films were also applied in dodecyl-benzenesulfonate removal by PEC [213].

Arrays of porous iron-doped TiO2 as photoelectrocatalyst with controllable pore size have been
synthesized by using polystyrene spheres as templates. It was found that photoelectrochemical
hydrogen generation was favoured by a shift in the flat-band potential from −0.38V to −0.55 V
vs. SCE and an increase of photocurrent by 80% [218].

Pt-deposited TiO2 photoanodes have been prepared by a sol-gel method, where the amount
of Pt was shown to interfere with the photoelectrochemical response for glucose oxidation.
The increased Pt lowered the photocurrent but the overall oxidation efficiency of the PEC
process was better than the PC process, for both TiO2 and Pt-TiO2 films [219]. Ye et al. [208]
prepared TiO2 NTs sensitized by palladium quantum dots (Pd QDs), which exhibit highly
efficient photoelectrocatalytic hydrogen generation. Zhang and colleagues [206] prepared
TiO2 NTs loaded with Pd nanoparticles, and the PEC activity was investigated with degrada‐
tion of methylene blue and Rhodamine B.

CdS-ZnS/TiO2 composite material has been investigated in the production of electricity. The
band-gap energy can be tuned between that of ZnS (3.5 eV) and that of CdS (2.3 eV) by varying
Cd (or Zn) content. Photocatalytic and photoelectrocatalytic processes in basic electrolyte with
ethanol as a sacrificial electron donor was also investigated. The performance of CdS-ZnS, Pt/
(CdS-ZnS), Pt/(CdS-ZnS)/TiO2 and Pt/TiO2 photoanodes was compared and 75% CdS–25% ZnS
over pure TiO2 presented better electrocatalyst effect than 100% CdS over TiO2 [220]. CdS nano-
crystallites-decorated TiO2 nanotube array photoelectrodes were prepared through anodiza‐
tion and electrodeposition strategies. Enhancement of photoelectrocatalytic degradation of
Rhodamine B was achieved under Xenon light irradiation [198].

Georgieva and colleagues described the use of bicomponent anodes of TiO2/WO3 for the
photoelectrocatalytic oxidation of organic species. WO3 is a promising additive for TiO2 since
it modifies its photochemical properties in a favourable manner, both with respect to reduced
recombination and visible light activity because of the lower band-gap energy. The coupling
of semiconductor oxides leads to electron and hole transfer between the two materials in
opposite directions, thus limiting recombination of the photogenerated species in the same
material [29]. These materials have been employed in the degradation of 2,3-dichlorophenol
under visible light irradiation [199], the removal of the hair dye Basic Red 51 under UV and
visible light source [200] and the PEC oxidation of indigo carmine dye [186].

The use of heterojunctions was studied by Christensen and colleagues, who conducted the
PEC degradation of E. Coli under UV irradiation using Si/TiO2/Au as photoanode. The
experiments were performed in water and air [221]. The silicon nanowire/TiO2 heterojunction
arrays were employed on the PEC degradation of phenol under simulated solar light irradia‐
tion. The kinetic constant and total organic carbon (TOC) removal were 1.7 times and two times
as great as those of n-Si/TiO2, respectively [222].
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The PEC degradation of flame-retardants has been described under macroporous silicon/
graphene (MPSi/Gr) heterostructure. The experiments were conducted under visible light
irradiation and compared to photocatalytic degradation. The photoelectrocatalytic degrada‐
tion five times faster than PC degradation [223].

CdTe nanotubes have been produced by using ZnO as a template on an ITO surface. These
were then used with the photoelectrocatalytic degradation of the Acid Blue 80 dye. This study
provided a good strategy for the design of visible light-responsive photocatalysts that can be
recycled and possess high efficiency, extremely low mass and high chemical stability [224].

The PEC remediation of 2,4-dichlorophenol by visible-light-enhanced WO3  has also been
described. The degradation process achieved 74% pollutant removal after a period of 24
hours,  monitored  by  both  chemical  analysis  and  a  bacterial  biosensor  (Escherichia  coli)
toxicity assay [225].

For hydrogen production, photocatalysts reported in the literature apart from TiO2 include
ZnO, Fe2O3, and SrTiO3, which has the energy levels necessary to create active radical species
that could efficiently carry out photodegradation process [16]. Under visible light irradiation
some n-type materials have been described: nanoporous WO3, α-Fe2O3 or haematite and
nanocrystalline BiVO4 [18].

The Cu/Cu2O system as photocathode has been described in relation to  nitrate  removal
under UV irradiation and biased potential.  The material  was prepared by electrodeposi‐
tion and long-term stability was achieved. 93% nitrate removal was achieved after 75 min
under  the  best  experimental  conditions.  Nitrate  reduction  on  Cu/Cu2O  photoelectrodes
occurs in the cathodic compartment cell via electrons generated under UV irradiation, as
expected  for  a  p-type  electrode,  leading  to  42%  of  remaining  nitrite  and  52%  gaseous
nitrogen derived, respectively [12].

Zanoni and colleagues employed TiO2 NTs in the photoelectrocatalytic oxidation of an organic
synthetic dye (reactive black 5) and the simultaneous hydrogen generation. The photoanode
was irradiated with UV light and biased at +1.0 V. Complete dye degradation and 72%
mineralization was achieved after 2 h of treatment. The estimated overall hydrogen generation
was around 44%, which corresponds to 0.6 mL cm−2 [226].

6. Final remarks

Photoelectrocatalysis is an emerging field with many applications, such as organics oxidation,
inorganics reduction, biological materials and production of electricity and hydrogen.

The technique could be described as a multidisciplinary field, where the basic concept is the
irradiation by light (hν≥Eg) of the semiconductor surface. There is the generation of electron/
hole pairs (e−/h+) by the promotion of an electron from the valence band (lower energy level)
to the conduction band (higher energy level). The electrons are forwarded to the counter
electrode under positive anodic bias (n-type) in order to minimize the recombination of these
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pairs due to the short life-time. When immersed in electrolyte the adsorbed water molecules
and/or hydroxyl ions react with the holes on the valence band to generate hydroxyl radicals
(●OH), which are a powerful oxidizing agent.

Titanium dioxide (TiO2) is a classic example of an n-type semiconductor widely used as a
catalyst for heterogeneous photocatalysis and photoelectrochemical applications. It has
received a great deal of attention due to its good chemical and thermal stability, non-toxicity,
low cost, high photoactivity and other advantageous properties. It is a typical n-type semi‐
conductor mainly composed of anatase and rutile allotropic forms whose band-gap energy is
3.2 and 3.0 eV, respectively. The anatase phase is the desired form as it is more photoactive
than the other forms.

The degradation of organic pollutants by photoelectrocatalysis has been described in the
literature as one of the most effective treatments among advanced oxidative processes (AOPs)
in the oxidation of recalcitrant compounds, as they are harmful to the environment and human
health. The contamination of water is an increasing concern because pollutants can accumulate
in the environment and are mutagenic and genotoxic.

The architecture of nanostructures used in the electrode construction has deeply influenced
the results of PEC. Nanotube, nanowire, nanofibre, nanorod, and nanowall morphologies can
be easily obtained by electrochemical methods. These kinds of nanostructures have improved
efficiently organic contaminants degradation, especially due to their high surface area and
ability to minimize charge recombination. The use of nanotube arrays has received a great deal
of attention especially because it is the structure with the highest surface area/geometric area
ratio; moreover, it is of a highly oriented and organized nature, leading to efficient charge
transport as it has a unique and effective direct interfacial direction, decreasing the charge
recombination effect. Among all TiO2 NTs preparation routes, the electrochemical anodization
method presents the greatest advantages, since they are cheaper, simpler and allow precise
control of dimensions, presenting highly ordered nanotube arrays. The first generation of
nanotube materials applied in PEC materials were obtained in aqueous solutions with the
addition of HNO3, H2SO4 and H3PO4 to HF acid as electrolyte. The second generation of
nanotube arrays was obtained in buffered electrolytes. Aiming for better quality and perform‐
ance, the third generation was obtained in organic medium as ethylene glycol, diethylene
glycol, glycerol and NH4F. Non-fluoride-based electrolytes are classified as the fourth gener‐
ation, where HCl, H2O2 and a combination of both are used as electrolyte. Nanotube array
photoanodes have presented good results on the water decontamination of organic contami‐
nants and also water disinfection.

Recently, studies have addressed the challenge of obtaining PEC materials which can be
activated by visible light, with the aim of using solar light to promote photoactivation, not only
to reduce cost but also to establish an environmentally friendly method. For this purpose,
different strategies are discussed in the literature to improve photoactivity and shift the PEC
material absorption to the visible region, such as the use of photoanodes decorated with Ag
and Pt, or combinations of semiconductors like ZnO/TiO2, CdS/TiO2, WO3/TiO2 in order to
obtain composite and bicomponent materials; doping with metals (Fe, Mn, Cr), non-metals (B,
C, Si) and co-doping (N-F, N-C) has also been thoroughly described.
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Therefore, the use of TiO2 and other materials is of huge relevance to photoelectrocatalysis
applied to water treatment, and the success of photoanodes and photocathodes depends on
the synthesis process and a better understanding of materials’ properties.

7. Summary

The importance of photoelectrocatalysis has been discussed, with emphasis on recent advances
in TiO2-based materials and strategies of electrochemical synthesis and modification. Cur‐
rently, TiO2 nanotube arrays occupy a prominent position. These can be prepared by electro‐
chemical anodization of titanium plates in fluoride-containing electrolytes. In the search for
catalysts that can be photoactivated with visible radiation, doping or modification of these
materials can be easily performed by electrochemical techniques. The use of these photocata‐
lysts immobilized on conducting substrates employed in photoelectrochemical reactors is a
viable strategy for increasing the efficiency of water splitting or to promote efficient degrada‐
tion of organic compounds.
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