
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322423785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 4

Dual Heuristic Neural Programming Controller for
Synchronous Generator

Mato Miskovic, Ivan Miskovic and Marija Mirosevic

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/58377

1. Introduction

This chapter describes the development of voltage control system of a synchronous generator
based on neural networks. Recurrent (dynamic) neural networks (RNN) are used, as a type
that has great capabilities in approximation of dynamic systems [1]. Two algorithms are used
for training – Dual Heuristic Programming (DHP) and Globalized Dual Heuristic Program‐
ming (GDHP). The algorithms have been developed for the optimal control of nonlinear
systems using dynamic programming principles.

Neural voltage controller is developed in MATLAB and Simulink environment. For training
purposes a mathematical model of synchronous generator is designed and applied in Simu‐
link. DHP and GDHP algorithms are designed in Simulink, with matrix calculations in S-
functions. Algorithms are used for offline training of neural networks (NN). In the second part,
the same functions are redesigned as real time controllers, based on the Real Time Windows
Target Toolbox.

DHP or GDHP algorithms provide a significant improvement over conventional PI controller
with, in some cases, power system stabilizer (PSS). Conventional linear controller can only
provide optimal control in single operating point. Algorithms described in the chapter provide
significantly better control over the whole operating range by minimization of the user defined
cost function during the training of the neural network.

Digital voltage controller is implemented on real system in two basic steps. First step is neural
network design and training in Matlab environment on desktop computer. Second step
consists of transfer of controller with computed coefficients to the digital control system
hardware.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

For the controller to have optimal performance in all real operating conditions, neural
networks must be trained for the whole working range of the plant. Procedure described in
the chapter can be applied on standard voltage control systems by replacing the PI controller
with the offline-trained neural network. Most modern digital control systems have sufficient
hardware and software support for neural network implementation.

2. Recurrent neural networks

Neural networks are computational models capable of machine learning and pattern recog‐
nition. They can also be used as universal approximators of continuous real functions. Typical
dynamic neural network is shown in Figure 1.

1
()u t

2
()u t

1
()Y t()x t

(1)
ij

x t w−

ΣΣ ϕ

ΣΣ ϕ

ΣΣ ϕ

ΣΣ ϕ

ijwh
ij

wo

ij

w
h

Figure 1. Recurrent neural network structure

Neural network is formed from interconnected layers of neurons. Output of each neuron is
calculated from:

()
0

j
æ ö
ç ÷= +å
ç ÷=è ø

m
y w x bk kj kj

j
(1)

MATLAB Applications for the Practical Engineer104

where

φ is activation function,

wkj and xkj are weights and outputs from previous layer and b is bias.

Typical activation function maps input values u(t)∈ −∞, ∞ to output y(t)∈ 0, 1 or
y(t)∈ −1, 1 . Activation function must be derivable over the whole range. Among typically
used nonlinear activation functions are logsig, tansig and Gaussian.

Dynamic behavior is added by introducing a memory element (step delay) that stores neuron
output and reintroduces it as input to all neurons in the same layer in next time step.

This type of network is named recurrent or dynamic neural network. An example of tansig

(Hyperbolic Tangent Sigmoid Transfer Function) activation function, ϕ(u)=
2

1 + e −2u −1, and its

derivative ϕ(u)′ =1−ϕ(u)2 is shown in Figure 2.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.5

0

0.5

1

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

() 2

2 1
1 uu
e

 =
+

()

() ()

2

2 2

2

4'
(1)

' 1

u

u

eu
e

u u

=
+

=

()u

()' u

u

u

Hyperbolic tangent sigmoid
transfer derivative function

Hyperbolic tangent sigmoid
transfer function

Figure 2. Tansig activation function and its derivative

Input values are in range of u∈ −∞, ∞ , with output values in range φ(u)∈ −1, 1 .

Use of function with simple derivative significantly improves calculation times of numerical
procedures.

Dynamic (recurrent) neural networks provide good approximation of time-dependent
functions. However, training of recurrent neural networks is more complex than training static
networks.

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

105

2.1. Recurrent neural networks training

There are many methods for training neural networks, and most of them rely on some form
of backpropagation – calculation of partial derivative of system output over network weight

coefficients (∂ y
∂w). Partial derivatives are determined using chain rule, by finding derivatives

of weight coefficients in output layer, using intermediate results to calculate next layer, with
respect to network structure. Calculation is repeated until all layers are processed.

Described procedure is valid for static neural networks, but is of no use in recurrent networks,
as each neuron has inputs from previous time step from the same layer. Two procedures are
often used in calculation of partial derivatives: Backpropagation Through Time (BPTT) and Real
Time Recurrent Learning (RTRL).

In BPTT recurrent neuron inputs are replaced with the same neural network delayed by one
time step. Process is iterated N times. Thus, recurrent network is approximated by N feedfor‐
ward networks with delayed outputs. Network weight coefficients, recurrent inputs and

outputs must be preserved for past N time steps. Obtained derivative (∂ y(t)
∂w(t)) is used to

determine new weight coefficients. One advantage of BPTT is that all methods used for training
feedforward networks can be utilized in training recurrent networks.

This chapter will describe use of RTRL procedure in training dynamic networks. Output of
recurrent network with one hidden and one output layer has the following form:

()() tanh 1 1
() ()2

= ×

= ×

x t W p

y t W x t
(2)

where

p1– hidden layer input, p1 = u(t) ; x(t −1) ; 1 ,

x(t)– hidden layer output,

y(t) – network output,

W1– hidden layer weight coefficients,

W2– output layer weight coefficients, p2 = x(t) ; 1

Equation (2) can easily be expanded for multi layer recurrent networks. Partial derivative of
network output over output layer weight coefficients is

2
() ()
()

¶
=

¶ o
ij

y t p t
w t (3)

MATLAB Applications for the Practical Engineer106

For hidden layer, partial derivatives are

2 2

() () ()
() () ()

¶ ¶ ¶
=

¶ ¶ ¶h

y t y t x t
w t w t w t (4)

Partial derivative of hidden layer output over weight coefficients is

[]
1

,
, ,1

() (1)() ' () ()
() (1)

d +
=

æ ö¶ ¶
= +ç ÷ç ÷¶ ¶ è ø

å
W

in

N
l k

i j li l N k
i j i jk

x t x tf x t p t w t
w t w t (5)

where

NW 1– number of neurons in hidden layer,

N in– number of neurons in input layer.

Value of
∂ xl(t)
∂wi , j

 is calculated using four nested loops (Appendix A).

Matrix of output derivatives over weight coefficients is of the form
NW 1, NW 1⋅ (N in + NW 1 + 1) .

2.2. Neural network training algorithms

2.2.1. Gradient descent

Gradient descent is the most commonly used method in neural networks training. Difference
between real and desired network output can be expressed as

ˆ() () ()= e t y t y t (6)

Differentiation of (5) provides update values of weight coefficients:

ˆ()() (1)
()

b ¶
=

¶ij ij
ij

y tw t w t
w t (7)

Parameter β defines learning rate and must be in range 0<β <1.

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

107

2.2.2. Kalman filter based training

Kalman filter [5] was developed as a recursive procedure of optimal filtering of linear dynamic
state-space systems. For RNN training extended Kalman filter (EKF) is used. It is also appli‐
cable to nonlinear systems using linearization around operating point. The algorithm is used
as a predictive-corrective procedure.

Kalman filter based recurrent network training is described in [6] and [7].

Training is performed in two steps. The first step is calculation of prediction values of weight
coefficients. Second step is correction of predicted variables based on measured state space.

Algorithm is defined by the following relations:

()() () () () () () ()h= + TK t P t H t t I H t P t H t (8)

() (1) () ()e= +W t W t K t t (9)

(1) () () () () ()+ = +TP t P t K t H t P t Q t (10)

where

K (t)– Kalman gain matrix, determined form network output derivatives over weight coeffi‐

cients H (t)=
∂ y(t)
∂w . System linearization is accomplished by calculating H (t).

P(t)– Error covariance matrix, calculated in every iteration

To escape local minima during training, a diagonal matrix Q(t) is added to covariance matrix
P(t) in each time step.

Updates to weight coefficients are determined from (9), as a product of Kalman gain and ε(t)
in current step.

Training based on Kalman filter is fast, has good rate of convergence and is often the only
practical solution for recurrent networks training. However, the procedure is demanding in
terms of computational power and memory requirements.

3. System identification

Nonlinear dynamic systems are identified as input-output system model, or as a state space
system. For the selected process, identification is performed by minimization of the cost
function

MATLAB Applications for the Practical Engineer108

[] []1 ˆ ˆ() () () () ()
2

= × × TE t y t y t y t y t (11)

where y(t)− ŷ(t) is the difference of the measured system outputs and output values of the
model.

Selected cost function represents squared error of the identified model.

Dynamic system identification can be performed according to [9], using either series-parallel
or parallel structure.

Non linear dynamic
system

Neural Networks

1z

-Erro
r

1z

()u t ()y t
Non linear dynamic

system

Neural Networks

1z

-Erro
r

1z

()u t ()y t

Series- parallel Identification
Parallel Identification

ˆ()y t

ˆ()y t

Figure 3. Nonlinear dynamic system identification

In series-parallel structure Figure 3, model neural network input vector is expanded with
system outputs from previous steps. In parallel structure Figure 3, network output from
previous states is added to input vector. Series-parallel identification provides estimated
system output for next time step only, while parallel identification can predict multiple future
iterations. However, parallel structure is harder to train and is susceptible to state drifting.

To verify the validity of the RTRL algorithm, neural networks were trained on several discrete
mathematical functions. Supervised training has been used, with control value expressed as
difference between desired and actual network output.

A parallel identification structure was used on dynamic SISO system

y(t + 1)=
y(t)

1 + y(t)2 + u(t)3. Training has been performed on Recurrent Neural Network with

four neurons in hidden layer, and one neuron in linear output layer. Identification results are
shown in Figure 4.

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

109

0 20 40 60 80 100 120 140 160 180 200

-60

-40

-20

0

20

40

60

k

u(
t)

y(
t)

0 20 40 60 80 100 120 140 160 180 200
-100

-50

0

50

100

k

u(
t)

y(
t)

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

250

300

k

E
(t

)

u(t)
y(u)
y(u) RNN

u(t)

y(t)
y(t) RNN

(c)

(b)

(a)

Figure 4. Identification of dynamic function 1

Figure 4a compares initial response of model output y(t) and network output ŷ(t). Figure 4b
represents the same values with trained network. There is a perfect match between function
output values and output of the trained NN. Figure 4c displays training rate as error square
(y(t)− ŷ(t))2. Training was completed in 20000 steps.

Input signal used for training and verification is u(t)=sin(
2π
50) + sin(

2π
12), with sample time

(TD =1s).

In second test, a system with one input, two state variables and one output has been identified:

x1(t + 1)=0.5x2⋅ (t) + 0.2⋅ x1(t)⋅ x2(t)
x2(t + 1)= −0.3⋅ x1(t) + 0.8⋅ x2(t) + u(t)

y(t + 1)= (x1(t) + x2(t))2

System was identified using series-parallel structure with RNN with 5 neurons in hidden layer,
and one linear neuron in output layer. Identification results are shown in Figure 5.

MATLAB Applications for the Practical Engineer110

0 50 100 150 200 250

0

20

40

60

80

100

120

k

u(
t)

y(
t)

0 50 100 150 200 250

0

20

40

60

80

100

120

k

u(
t)

k(
t)

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

250

300

350

k

E
(t

)

u(t)

y(t)
y(t) RNN

u(t)

y(t)
y(t) RNN

(a)

(b)

(c)

Figure 5. Identification of dynamic function 2

Input signal used for training and verification is the same as in previous example:

u(t)=sin(
2π
50 kTD) + sin(

2π
22 kTD), where (TD =1s).

Both examples were designed in Matlab and Simulink. Neural network was trained using c-
language S-function (Appendix B). Although the training took 10000 steps, all important
system dynamics were visible on trained network after 2000 steps.

3.1. Determination of partial derivatives of functions using neural networks

One of the most important features of neural network modeling is the possibility to determine

system output derivatives over inputs (∂ yi(t)
∂uj(t)). After finding output derivatives, various

optimization algorithms can be used.

Partial derivative is calculated from (2)

()
1

, ,
1 1

() '()
() = =

æ ö¶
= ç × × ÷

ç ÷¶ è ø
å å

pW NN
i

i j k k j
j j k

y t W f x W
u t (12)

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

111

where Np = NW 1 + N in + 1 is number of hidden layer inputs. Partial derivative (∂ yi(t)
∂uj(t)) is

obtained from network backpropagation.

For nonlinear function y(t)=u(t −1)2 + 6⋅u(t −1)3, partial derivative
∂ y(t)
∂u(t) was first calculated

analytically, and then obtained from model network using (12). Results are compared in Figure
6a and 6b.

3 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.1

x 10
4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

k

u(
k)

Y
(k

)

3 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.1

x 10
4

-1

0

1

2

3

4

5

6

7

8

9

k

dY
/d

u

dY/du

 dY/du RNN

u(k)

Y(k)
y(k) NN

(a)

(b)

Figure 6. Identification of nonlinear function and calculation of partial derivatives using neural networks

Results from Figure 6b show good match between calculated function derivatives and values
obtained from neural network of identified model.

In S-function for training RNN (Appendix B) a procedure is shown for online calculation of

partial derivatives of (∂ yi(t)
∂uj(t)), using (12).

4. Adaptive critic design

Adaptive critic design (ACD) is a set of optimal control procedures of nonlinear systems. It is
based on dynamic programming and neural networks. Optimal control is achieved by training

MATLAB Applications for the Practical Engineer112

neural networks and using them in the structure according to the selected ACD algorithm.
ACD algorithms are implemented using a heuristic approach – system state space variables,
control values and cost function are selected based on process characteristics. This text focuses
on the Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP) and
General Dual Heuristic Programming (GDHP) [1,2].

4.1. Heuristic dynamic programming

Heuristic dynamic programming (HDP) is the simplest (by structure) ACD algorithm. The
basis of all HDP algorithms is minimization of Bellman dynamic programming function J (t):

0
() ()g

¥

=

= +å k

k
J t U t k (13)

where

γ represents discount factor with value in range 0<γ <1, ensuring the convergence of Bellman
sum J (t) and cancellation of old values,

U (t + 1) is user defined utility function based on system state space variables.

Control signal that minimizes Bellman sum is generated using one of the Adaptive Critic
algorithms. In practical control systems, HDP optimization is realized with three neural
networks with a structure as shown in Figure 7.

Model neural network in 7a is used for model identification. Network inputs are control signal
u(t) and output state in the previous time step y(t −1). Network output represents estimated
model output in the current time step ŷ(t). Only systems outputs used in utility function need
to be estimated. Model NN is structured according to the selected process model, where the
control value is input to the NN, and NN output represents predicted system output. The same
NN output values are used to calculate the cost function.

Model neural network is trained to minimize the quadratic criterion:

() ()= ×å M

T
M M

t
E E t E t (14)

where:

ˆ() ()= ME y t y t (15)

For adaptive control systems, model NN is trained continuously, allowing for adaptation to
change of system parameters, and optimal control. Model neural network is trained simulta‐
neously with other networks over time.

Critic neural network in 7b is used for identification of Bellman sum J (t).

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

113

Training is used to minimize

() ()= ×å T
C C C

t
E E t E t (16)

where:

[]() () (1) ()g= × + +CE t J t J t U t (17)

Critic neural network training is performed with a copy of the same network which is fed with

predicted future system outputs ŷ(t + 1), thus approximating J (t + 1).

Action neural network training is based on model and critic network outputs, by minimizing

criterion:

() ()= ×å T
A A A

t
E E t E t (18)

ˆ()y t

ˆ() ()y t y t− ()y t

MODEL

NETWORK

[]() (1) ()J t J t U tγ− ⋅ + +

CRITIC

(1)J t +

CRITIC

()J t

y(t)

ACTION

ˆ()u tˆ()y tMODEL

NETWORK

CRITIC

()J t

(a) (b)

ˆ(1)y t +

ˆ()y t

(1)y t −

()u t

(1)y t −

()u t

()y t

()

()

y t

u t

∂

∂

()

()

J t

y t

∂

∂

X

TD

TD

TD

TD

TD

TD

TD

TD

TD

TD

TD

TD

TD

TD

TD

TD

Figure 7. HDP Control structure

MATLAB Applications for the Practical Engineer114

where:

() ()()
() ()

¶ ¶
= ×
¶ ¶A
y t J tE t
u t y t (19)

Partial derivatives
∂ y(t)
∂u(t) and

∂ J (t)
∂ y(t) are determined from model network using backpropa‐

gation in the manner described in section 2.5.

Minimization of scalar product EA in (18) by training of action network results in minimi‐

zation of Bellman sum in J (t) in (13). Minimum of J (t) is achieved when
∂ J (t)
∂ y(t) ≈0, as action

network training criterion approaches zero, thus ensuring end of training process.

Action neural network is trained from the output network (unsupervised algorithms). Training
of neural networks is carried out using (19) with the training concept shown in Figure 7c.

4.2. Dual heuristic programming

Dual Heuristic Programming optimal control algorithm is developed with a goal of increasing
procedure efficiency by increasing training speed.

Model network training is the same as in HDP procedure. The improvement is in the direct

calculation of the Bellman sum partial derivative over state space variables
∂ J (t + 1)
∂ y(t) as output

of critic network.

Structure of DHP control system is shown in Figure 8.

Training of critic neural network minimizes scalar product:

() ()= ×å T
C C C

t
E E t E t (20)

with

[] [] []ˆ ˆ() (1) ()
()

ˆ() () ()
g

¶ ¶ + ¶
=

¶ ¶ ¶C
J y t J y t U y t

E t
y t y t y t

(21)

where
∂ J ŷ(t)
∂ ŷ(t) represents partial derivative of Bellman sum over state space variables, and

is estimated from critic network. The second part of (21) is determined by deriving

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

115

()
() () ()

() () ()
()

()
()1 1 1

ˆ ˆ ˆ1 1 1 1
1 1

ˆ ˆ ˆ ˆ
l l

= = =

¶ + ¶ + ¶ + ¶ +
= + + +

¶ ¶ ¶ ¶å åå
n m n

i i k
i i

j j k ji k i

J t y t y t u t
t t

y t y t u t y t (22)

where

λ̂(t + 1)=
∂ J ŷ(t + 1)
∂ ŷ(t + 1) ,

n is size of model network output vector ŷ(t),

m is size of control vector û(t).

TD

TD

TD

TD

ˆ()y tMODEL

NETWORK

TD

TD

CRITIC

(1)tλ +

TD

TD

CRITIC

()tλ
TD

TD

ACTION

ˆ()u t

(a)

ˆ(1)y t +

ˆ()y t

(1)y t −

()u t

()y t

(1)
(1)

()

y t
t

y t
λ

∂ +
+ ⋅

∂

(1) (1)
(1)

() ()

y t u t
t

y t y t
λ

∂ + ∂ +
+ ⋅ ⋅

∂ ∂

() ()

() ()

U t u t

u t y t

∂ ∂
⋅

∂ ∂

()

()

U t

u t

∂

∂

+

-

-

-

TD

TD

TD

TD

ˆ()y tMODEL

NETWORK

TD

TD

CRITIC

(1)tλ +

TD

TD

ACTION

ˆ(1)y t +

(1)y t −

()u t

()y t

(1)
(1)

()

y t
t

u t
λ γ

∂ +
+ ⋅ ⋅

∂

()

()

U t

u t

∂

∂

+

+

(b)

Figure 8. DHP structure, (a) Critic NN training, (b) action NN training

MATLAB Applications for the Practical Engineer116

Third part of equation (22) is determined from deriving

()
()

()
()

()
()1

1

=

¶ ¶ ¶ +
=

¶ ¶ ¶å
m

k

k jk

U t U t u t
Y t u t y t (23)

Somewhat simplified structure of DHP is shown in Figure 8a. Partial derivatives
∂ ŷ i(t + 1)
∂ ŷ j(t) ,

∂ ŷ i(t + 1)
∂ ûk (t) ,

∂U (t)
∂uk (t) are determined from model network, and partial derivatives

∂ ûk (t + 1)
∂ ŷ j(t)

from action network. Prediction of states ŷ(t + 1) and λ(t + 1) is determined from model
network.

Action neural network is trained to minimize Bellman sum, min J (t) , from the criterion
∂ J ŷ(t)
∂ ŷ(t) ≈0.

Thus, equation (22) can be transformed to

[] []ˆ(1) ()
0

() ()
g
¶ + ¶

+ =
¶ ¶

J y t U y t
y t y t

(24)

Training of Action Network minimizes scalar product:

() ()= ×å T
A A A

t
E E t E t (25)

with

[] []ˆ(1) ()
()

() ()
g
¶ + ¶

= +
¶ ¶A

J y t U y t
E t

y t y t
(26)

Simplified training procedure of action NN is shown in Figure 8a.

Cross training of critic and action networks results in slower approximation. In order to reduce
training time, it is recommended to begin the procedure with action network pre-trained as
linear controller.

4.3. Global dual heuristic programming

Globalized Dual heuristic optimal control algorithm uses both algorithms described.

Critic neural network provides approximation of Bellman sum J (t) and derivative
∂ J (t + 1)
∂ y(t)

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

117

Action network is trained using the same procedure as described for HDP and DHP.

5. Neural networks based control of excitation voltage

Main elements of electric power system are generators, transmission and distribution network
and consumers. Transmission and distribution network form a power grid, which is usually
very large in geographic terms. Grid control is implemented on both local and global level,
mostly on the power generation side of the grid. Specific to power grid control is large number
of closed control loops governing the power and voltage of synchronous generators. Trans‐
mission network is governed by setting voltage on transformers in order to minimize trans‐
mission losses. Governing of generator power and voltage achieves balance of power as well
as reactive power flow on the transmission system. Voltage control also has a large impact on
the dynamic system behavior.

Generator power output is governed on the generator unit. For water and steam turbine
generators, it defines local power transmission to the grid, while also influencing system
frequency. Considering the inertness of the generator systems, power output is not difficult to
govern. Voltage control manages the balance between generator and grid voltage, and
determines reactive power flow. A change in generator voltage setpoint has impact on system
state variables and parameters. Disregarding system transients, a change of generator voltage
causes a change on generator busbars, generator current and reactive power.

If we also consider system dynamics, generator voltage change also changes system parame‐
ters influencing system damping. Synchronous generator connected to the power grid is
dominantly nonlinear in characteristics. Generator output power is proportional to generator
and grid voltage, while the relation to angle between generator and grid voltage is a sinus

function. Maximum theoretical output power is realized with a load angle being δ =
π
2 .

Exceeding of maximum value of load angle causes large disturbances and disconnection from
power grid.

Operating point of generator connected to the grid is determined by steady state excitation
current. Excitation voltage and current values dictate generator voltage, reactive power and
load angle.

Frequent small disturbances expected and part of normal operating conditions, resulting in
oscillations of generator electromechanical variables. Especially pronounced is the swinging
of generator power, reaching several percents of nominal value, with a frequency around 1Hz.
It is caused by low system damping and outer disturbances on the grid. Also present on the
grid are oscillations caused by the system characteristic frequencies, usually around 0.1Hz.

Power grid can be represented as a single machine connected to an infinite bus system. For
each operating point a characteristic frequency and damping can be determined.

In case of small disturbances with a synchronous generator working around predefined
operating point, system can be considered linear, but only if it returns to the same operating

MATLAB Applications for the Practical Engineer118

point after each disturbance. For those conditions, power system stabilizer (PSS) is added to
AVR. Based on change of output power and load angle, it modifies voltage regulator setpoint
and increases system damping. PSS is configured using linear control theory, and is presently
a standard part of automatic voltage regulator systems [10].

Large disturbances occur after short circuits on the power grid, transmission and generator
outages, and connection and disconnection of large loads.

Electromechanical oscillations occurring as a consequence of disturbances cause damped
oscillations of all electrical and mechanical values (generator voltages and currents, active and
reactive power, speed and load angle). Oscillations are also propagated by AVR to excitation
system values.

Large system disturbances can cause significant changes to local parameters relevant for
generator stability. Due to the linear nature of the voltage regulator system, a change in grid
voltage or configuration leads to generator working in non optimal state. Even if the system
returns to the same operating conditions, passing through nonlinear states during disturbance
causes non optimal control, diminishing the stabilizing effects of the voltage regulator on the
system. This can in turn cause another disturbance or, in case of larger units, disruption of the
whole power grid. Limitations of the use of linear control systems call for an improved system
which can provide optimal control of generator excitation system [13]- [15].

There is a lot of research effort directed toward design of excitation control system based on
neural networks. However, very few of the demonstrated solutions have been implemented
on real plants.

The goal of the chapter is to develop a practical-to-use system. This is mainly achieved by
separating the design on preparation and implementation phase. Almost all algorithm steps
are executed in off-line mode, up to the final step of digital voltage regulator implementation.

To implement the voltage regulator described in the chapter following equipment is needed:

• data acquisition hardware and software

• personal computer with Matlab and Simulink environment

• automatic voltage regulator with neural network support (no training support is needed)

Described controller is not adaptive. Adaptive critic design (ACD) algorithm is used for
optimal control.

Classic voltage regulators (AVR) equipped with PSS can be very effective in voltage control
and power system stabilization if it is used in well configured transmission grid. In such
conditions the generator stays in the linear operating range and the controller maintains
optimal configuration on change of active and reactive power. Voltage regulator accuracy,
balance of reactive power, stabilizing effect during large disturbances and active stabilization
in normal operating conditions are achieved.

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

119

If the generator is connected to relatively weak transmission grid, with possible configuration
changes during operation, use of neural network based control of excitation voltage leads to
better results.

5.1. HDP algorithm implementation

In order to achieve optimal control of synchronous generator connected to the power grid, it
is necessary to select a minimum of two system variables – generator voltage and either output
power or angular velocity. Selected variables must reflect system oscillations during distur‐
bances. It is also necessary to choose cost function that is minimized during training. System
optimization is achieved by minimization of squared generator voltage governing error
ΔU (t)=UG REF

−UG and minimization of output power change ΔP obtained from:

()
()

2
1 2 3

2
1 1 1

() () (1) (2)

() (1) (2)

= × D + × D + × D +

× D + × D + × D

u G u G u G

P P P

U t K U t K U t K U t

K P t K P t K P t
(27)

It is important to notice that the two demands are in conflict. Increase in gain in main control
loop reduces static control error, but also reduces system damping and increases power output
deviation ΔP . Use of cost function (27) ensures training process that increases system damping
without sacrificing controller responsiveness.

System identification is carried by training model neural network. Figure 8 shows training
process of model neural network. Identification of nonlinear system is made by series-parallel
structure.

For ACD algorithm optimal control two output state space variables are chosen – generator
voltage and output power, y = ΔUG;ΔP . Vector y is used to form the cost function. Input
vector is

[]() () (1) (2) (1) (2) (3)= T
r r ru t y t y t y t y t y t y t (28)

where

yr =UGREF represents generator voltage setpoint,

uf – exciter control signal,

y = ΔUG ΔP T is system output.

Model NN has 9 inputs and 2 outputs.

Figure 9 shows simulation block diagram of identification procedure, implemented in Matlab
and Simulink environment.

MATLAB Applications for the Practical Engineer120

1/z

1/z

Model o f
Synchronous

generator
tm

TD

V

u(t)

Evaulation

RNN Model

[Pg]

[Ug]

[Ug]

[Pg]

[Ug]

[Pg]

[Ug]

[Pg]

[Ug]

[Pg]

Figure 9. Model identification block diagram

A third order nonlinear mathematical model was used as a synchronous generator [20].
Synchronous generator is modeled as a single machine connected to an infinite bus. Although
the model ignores initial magnetic flows, it proves to be a good approximation of an actual
generator. A predictor-corrector method is used to solve differential equations.

Selected mathematical model, used with well conditioned state space variables and described
methods, achieves good numerical stability during simulation, allowing for relatively large
sample time (TD=0.02s). Described model of synchronous generator is implemented in C-
language S-function and used for further simulations.

For model identification, recurrent neural network is used, with five neurons in hidden layer
and two neurons in output layer. Hidden layer is implemented with full recursion and tansig
activation function. Output layer uses linear activation function.

Initial learning rate value η (21) is set to η =105. It was reduced during training to η =102.
Training was completed in ~10000 steps. Results are shown in Figure 10. Signals UG NN(0)
and UG NN(1) represent generator voltage at the start and at the end of RNN training. Figure
10a compares responses of control error of generator model and neural network. Voltage
setpoint is generated as a pulse signal with a magnitude of ± 10%. In figure 10b, response to
the change of generator power is shown. Figure 10c shows squared sum of RNN error during
training.

In the same experiment efficiency of the algorithm was verified. Training was stopped after
100000 steps. For the rest of the simulation, network output is calculated without the change
of weight coefficient, thus eliminating the recency effect.

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

121

0 1 2 3 4 5 6 7 8 9 10

-0.02

0

0.02

0.04

t, s

∆
U
G

[p

.u
.]

0 1 2 3 4 5 6 7 8 9 10

-0.04

-0.02

0

0.02

0.04

0.06

t, s

∆
P

[p

.u
.]

1 2 3 4 5 6 7 8 9 10 11

x 10
4

0

0.002

0.004

0.006

0.008

0.01

k

E
ro

r

∆ U
GRE

:
F

∆U
G

 NN(0) ∆ U
G

∆ U
G

 NN(1)

P NN(0)

P

P NN(1)

(a)

(b)

(c)

Figure 10. Training results of model neural network

Once the model neural network is trained, it is possible to create simulation for training critic
and action neural networks. Simulink model of the simulation is shown in Figure 11.

SG

SG

Referent

Learn

x(t)

x(t+ 1)

Learn

Ug

P

T D

UG REF

User criteria U(t)

Action learn

T D

T D

T D

e

tm

Pg

Ug

th

e

tm

Ru

Pg

Ug

th

RNiz

NN Model

NN action

NN-Critic HDP

Pref

[Ug]

[dY2du]

[dY1du]

[dUdu]

[Pg]

[Ug]

[dY2du]

[Pg]

[dY1du]

[dUdu]

[Ug]

[dY2du]

[dY1du]

[Pg]

Figure 11. Simulink model for training action and critic networks

MATLAB Applications for the Practical Engineer122

Simulation uses expressions (21), (22) and (23).

Neural network training is implemented in Matlab S-functions, written in C programming
language.

Input of the S function is formed of system signals and desired value. S-function returns RNN

output signals and partial derivatives of outputs (∂ yi(t)
∂uj(t)). Critic and action networks are

trained in parallel.

Training results are shown in Figure 12. Figure 12a compares generator voltage response using
conventional automatic voltage regulator (AVR) to neural network based controller trained
using HDP algorithm. It can be seen that voltage rate of change was not degraded as a result
of system damping. It is important to emphasize that generator voltage rate of change is key
to system stability during large disturbances.

Figure 12b compares active power output oscillation of conventional and HDP controller.

Figure 12c shows load angle, which is indicative of system stability (δ <
π
2). System damping

is significantly increased by use of neural network controller.

0 1 2 3 4 5 6 7 8 9 10

-0.06

-0.04

-0.02

0

0.02

0.04

t, s

D
U

G

[p
.u

.]

0 1 2 3 4 5 6 7 8 9 10

-0.1

-0.05

0

0.05

0.1

0.15

t, s

D
 P

[p

.u
.]

0 1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

t, s

d
[r

ad
]

RNN
AVR

D UGREF

RNN

AVR

AVR

RNN

(a)

(b)

(c)

Figure 12. Response comparison of conventional AVR and HDP controller. a) generator voltage; b) generator active
power; c) load angle

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

123

HDP algorithm is also verified on voltage control of synchronous generator from Simulink
SimPower System block library (Synchronous Machine).

Model network is designed with one hidden recursion layer with 5 neurons. Critic and action
networks use the same structure, but with four neurons in hidden layer.

HDP algorithm shown in Figure 11 is applied. Training of neural networks is performed in
two steps– in first step action NN is trained to mimic classic voltage regulator, and in second
step DHP algorithm is used to train both action and critic NN. It is important to get initial
values of action NN in first step, as DHP needs network partial derivatives in training critic
NN. Figure 13 shows training results.

Figure 13a shows comparison of classic and NN controller responses. Generator voltage rate
of change is almost the same for both controllers.

0 1 2 3 4 5 6 7 8 9 10

-0.1

-0.05

0

0.05

0.1

t, s

∆
 V
G

 [
p
.u

.]

0 1 2 3 4 5 6 7 8 9 10

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

t, s

∆
 P

[p

.u
.]

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

t, s

∆
 δ

 [
ra

d
]

0 1 2 3 4 5 6 7 8 9 10

-0.1

-0.05

0

0.05

0.1

t, s

∆
 U
G

[p

.u
.]

0 1 2 3 4 5 6 7 8 9 10

-0.2

-0.1

0

0.1

0.2

t, s

∆
 P

[p

.u
.]

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

t, s

∆

δ
 [

ra
d
]

∆ U
GREF

∆ U
G

 NN

∆ U
G

 AVR

∆ U
GREF

∆ U
G

 NN

∆ U
G

 AVR

∆U
GREF

 NN AVR

∆U
GREF

 NN

AVR

∆U
GREF

 NN P AVR

∆U
GREF

NN

AVR

(b)

(c)
(d)

(e) (f)

(a)

Figure 13. Response comparison of conventional AVR and HDP controller a), b) generator voltage; c), d) generator
active power; e), f) load angle

Figure 13c and 13e show comparison of output power and load angle change. It is obvious that
the HDP neural network controller shows significant improvement over classic regulator.

MATLAB Applications for the Practical Engineer124

Figure 13b shows comparison of voltage transient in the condition generator voltage reduced
to 90% of nominal value. Rate of change of generator voltage is maintained even during such
extreme operating conditions.

Figure 13d shows conventional automatic voltage regulator (AVR) operating on the edge of
stability, while the DHP controller is completely stable. Comparison of load angle values
demonstrates significantly better behavior of DHP controller. On large load angles DHP
controller maintains stability while conventional AVR provides low system damping, leading
to instability and possible outages.

Neural network HDP voltage controllers were developed using DHP algorithm. Experimental
results showed that DHP algorithm is more efficient than ADC algorithm. Implementation of
GDHP does not bring significant improvements over DHP.

Application of developed S-functions enables simple use of described algorithms, as well as
experimenting with different function parameters.

6. Real time windows target implementation

DHP optimal control algorithm has also been implemented using Matlab Real Time Windows
Target Toolbox (RTWT), based on [18] and [19]. Simulation hardware consists of desktop PC
equipped with National Instruments data acquisition card NI DAQ 6024.

Use of RTWT platform enables direct implementation of developed controllers on the real
system.

In Figure 14, a system consisting of synchronous generator and RTWT controller is shown.
Signal acquisition is achieved using DAQ 6062E Input, with AD conversion of the input values.
Line voltage and phase current signals are processed in “Clark” S-function, using Clarke
transformation. Transformed values of generator voltage UG and generator power P are used
as control feedbacks. Digital to analog conversion is performed by output module DAQ 6062
Output. All simulation blocks are part of a standard Simulink library except Clark transfor‐
mation and RNN S-functions.

ACD algorithm is implemented in two steps. Classic voltage controller is used in the first step
(Figure 14). In the second step it is replaced with NN controller.

During testing, generator active power and voltage were changed for a wide range of values.
A pulse signal was superimposed to the generator voltage set-point value, resulting in large
disturbances on the generator. To obtain measurement records RTWT Signal Visualization
was used, with measured data saved in Workspace Simulink block yP. Recorded data was
used to train neural network in offline mode.

A RNN was used with one hidden layer containing 5 tansig neurons. Model NN had 9 inputs
and 2 outputs. Results of NN training are displayed in Figure 15.

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

125

0 2 4 6 8 10 12 14 16 18 20
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

t, s

D
U

G

[p
.u

.]

0 2 4 6 8 10 12 14 16 18 20

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

t, s

D
P
D

U
G

[p

.u
.]

DUGREF

DP

DP NN

DUGREF

DUG

DUG NN

(a)

(b)

Figure 15. Results of Model NN training a) generator voltage; b) generator active power

Figure 14. Automatic voltage control of synchronous generator using RTWT platform

MATLAB Applications for the Practical Engineer126

Obtained model NN was used to train critic and action RNN using procedure described in 3.
The trained action NN was transferred to Simulink block (Figure 14) and prepared for use in
real time. Using RTWT module system was run in real-time mode, with trained action RNN
as a voltage controller.

0 1 2 3 4 5 6 7 8 9 10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

t, s

U
G

[p

.u
.]

0 1 2 3 4 5 6 7 8 9 10
20

25

30

35

40

45

50

55

t, s

P
 [

k
W

]

0 1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

t, s

δ
 [

°
]

U
GREF

U
G

 AVR

U
G

 NN

P AVR

P NN

δ AVR

δ NN

(b)

(c)

(a)

Figure 16. Classic controller and HDP NN controller – system responses: a) generator voltage; b) generator active pow‐
er; c) load angle

Simulation results are shown in Figure 16, comparing classic and DHP voltage controllers.
Figure 16a represents comparison between generator voltage responses and shows satisfactory
rate of generator voltage change and high control accuracy. In Figure 16b, generator active
power outputs are compared. Considerable damping was achieved using DHP controller.
Improved system stability during large disturbances is visible in Figure 16c, where the
maximum load angle deviation is significantly lower for DHP controller.

RTWT controller was implemented in sample-time mode with sample time set to
Ts =2.5⋅10−4s. Control loop sample time is TD =0.02s.

Matlab Simulink RTWT Toolbox simplifies the transfer of developed procedures to the
hardware platform.

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

127

7. Conclusion

In the chapter, a complete process of development and implementation of neural network
based controller is described. Optimal control is achieved by training neural network using
data obtained from real system. Developed algorithms were tested on voltage control of
synchronous generator connected to the power grid.

Optimal control algorithm is implemented in Matlab and Simulink environment. Neural
network training is implemented in C programming language Matlab S-function. S-function
execution time was sufficiently low to achieve real time performance.

Developed algorithm is tested using Matlab Real Time Windows Target Toolbox, using the
same models with minimal modifications.

Experiments performed on laboratory system show possibility of building optimal controller
based on special network training procedure with no need for adaptive features.

Obtained simulation results show advantages of neural networks based controller over classic
controllers. Developed procedure can relatively easily be adapted for use on real systems.

Appendices

Appendix A

Matlab function for calculating hidden layer derivatives of outputs over weight coefficients of
hidden layer.

function[dadWR,a]=dadWR(WW1,WW2,p,a_1,dadWR_1,NW1,NW2);

%function determines the partial derivative output recursive hidden%layers to

weight coefficients matrix WW1% WW1 matrix of hidden layer% WW2 matrix of out-

put layer% NW1 number of neurons in the hidden layer% NW2 length of the output

vector neural networks% Ni length of the input vector neural networks% J tar-

get output value of the neural network% a output value of hidden layer neurons

% p input vector of the hidden layer of recurrent neural network

Ni=length(p)-NW1;

a_temp=WW1*[p; 1];

a=tansig(a_temp);

Ia=ones(NW1,1)-(a.*a); %value of derivative tansig activation function of neu-

rons -

%y=WW2*a;

%J=J-y;

for l=1:NW1

 for i=1:NW1

 for j=1:Ni+NW1

 dadar_temp=0;

 for k=1:NW1;

 dadar_temp=dadar_temp+WW1(l,Ni+k)*dadWR_1(k,(i-1)*Ni+j);

MATLAB Applications for the Practical Engineer128

 end

 dadWR(l,(i-1)*(Ni+NW1)+j)=Ia(i)*((l==i)*p(j)+dadar_temp);

 end,

 end,

end,

%end function dadWR

Appendix B

S-function for RNN training with one hidden layer.

The first part defines sample time, number of inputs, outputs and neurons. Input is formed of
values used for training. Output 1 is RNN output. Output 2 is partial derivative of output over
input. Training is performed using Kalman filter.

/* File : model.c * Abstract: * For more details about S-functions, see

simulink/src/sfuntmpl_doc.c. * Copyright 1990-2002 The MathWorks, Inc. * $Re-

vision: 1.12 $ */

 /* ================model===================== * This s-

function is used for learning recurrent neural network (RNN) in programming en-

vironment Matlab Simulink * Learning RNN is implemented using the Kalman

filter * This program supports RNN with one hidden layer * In the first part

defines the time discretization, number of inputs, number of outputs and * the

number of neurons in a single hidden layer * Simultaneously with learning RNN

this function account the partial derivative of output per inputs * Port num-

ber of the s-function is equal to the number of inputs in RNN + number of out-

puts * Mato Miskovic Imotica */#define S_FUNCTION_NAME model

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#include <math.h>

#include <string.h>

#define TS 1 //sample time

#define N_ULD 3 //number of inputs

#define N_TD 1 //number of steps backwards (t-1), (t-3),(t-3), (t-N_TD)

#define NUL (N_ULD*N_TD)

#define NIZ 1 //number outputs

#define W1 5 // number of neurons in the hidden layer

#define W1_j (NUL+W1+1) //

#define W2_j (W1+1)

#define W1_ij (NUL+W1+1)*W1

#define W2_ij NIZ*W2_j

#define N_W1 0

#define N_W2 N_W1+W1_ij

#define SIZE_P (W1_ij+W2_ij)

#define N_P N_W2+W2_ij

#define NH_1 N_P+ SIZE_P*SIZE_P

#define N_dadWR NH_1+W1

#define N_OUT N_dadWR+W1*W1_ij

#define N_dnet N_OUT+NIZ

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

129

#define N_ON N_dnet+NIZ*N_ULD

#define NX N_ON+10 //

#define ETTAMI 10.0 //final value of the learning rate

#define ETTAQ .051 // Q

#define ITER_UCI 20000 //number of steps to stop learning RNN

#define NDISCSTATES NX

static

 void ttsig(real_T x, real_T *y) //tansig

{

 *y=2.0/(1.0+exp(-2.0*x))-1.0;

}

//AxB=C multiplying matrices in line form

static

 void aputab_c(real_T *aa, real_T *bb, real_T *cc, int_T

a_r, int_T a_c, int_T b_c){

 int_T i, j, k;

 real_T priv;

 for(i=0; i<a_r ;i++){

 for(j=0;j<b_c;j++){

 priv=0;

 for(k=0;k<a_c;k++) {

 priv=priv+aa[k+i*a_c]*bb[j+b_c*k];

 }

 cc[i*b_c+j]=priv;

 }

 }

}

//XxB=C multiplying matrices in line form, x from SimStruc

static

 void xputab_c_pok(SimStruct *S, real_T *bb, real_T *cc,

int_T a_r, int_T a_c, int_T b_c, int_T x_p){

 int_T i, j, k;

 real_T priv;

 real_T *x = ssGetRealDiscStates(S);

 for(i=0; i<a_r ;i++){

 for(j=0;j<b_c;j++){

 priv=0;

 for(k=0;k<a_c;k++) {

 priv=priv+x[x_p+k+i*a_c]*bb[j+b_c*k];

 }

 cc[i*b_c+j]=priv;

 }

 }

}

//AxX=C multiplying matrices in line form, x from SimStruc

static

 void aputax_c_pok(SimStruct *S, real_T *aa, real_T *cc,

int_T a_r, int_T a_c, int_T b_c, int_T x_p){

 int_T i, j, k;

 real_T priv;

 real_T *x = ssGetRealDiscStates(S);

MATLAB Applications for the Practical Engineer130

 for(i=0; i<a_r ;i++){

 for(j=0;j<b_c;j++){

 priv=0;

 for(k=0;k<a_c;k++) {

 priv=priv+aa[k+i*a_c]*x[x_p+j+b_c*k]; }

 cc[i*b_c+j]=priv;

 }

 }

}

//AxB=X multiplying matrices in line form, x to SimStruc

static

 void aputab_x_pok(SimStruct *S, real_T *aa, real_T *bb,

int_T a_r, int_T a_c, int_T b_c, int_T x_p){

 int_T i, j, k;

 real_T priv;

 real_T *x = ssGetRealDiscStates(S);

 for(i=0; i<a_r ;i++){

 for(j=0;j<b_c;j++){

 priv=0;

 for(k=0;k<a_c;k++) {

 priv=priv+aa[k+i*a_c]*bb[j+b_c*k];

 }

 x[x_p+i*b_c+j]=priv;

 }

 }

}

static

 void transp(real_T *aa, real_T *bb, int_T a_r, int_T a_c)

{ //transposed matrix

 int_T i, j;

 for(i=0; i<a_c ;i++){

 for(j=0; j<a_r ;j++){

 bb[i*a_r+j]=aa[i+j*(a_c)]; }}

}

static

 void invmatrix(real_T *aa, int_T n){ // inverse matrixin

inline form

 int_T l, m, p;

 int_T pos, p_old;

 int_T p_old2;

 for(l=0;l<n;l++){

 p_old2=l*n+l;

 aa[p_old2]=1/(aa[p_old2]);

 for(m=0;m<n;m++)

 if(m!=l){

 p_old=m*n+l;

 aa[p_old]=aa[p_old]*aa[p_old2];

 }

 for(m=0;m<n;m++){

 for(p=0;p<n;p++){

 if(m!=l){

 if(p!=l){

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

131

 pos=m*n+p;

 p_old=m*n+l;

 p_old2=l*n+p;

 aa[pos]=aa[pos]-(aa[p_old]*aa[p_old2]);

 }

 }

 }

 }

 p_old=l*n+l;

 for(p=0;p<n;p++)

 if(p!=l){

 pos=l*n+p;

 aa[pos]=-aa[p_old]*aa[pos];

 }

 }

 pos=n*n;

}

/*====================*

 * S-function methods *

 ====================/

static

 void mdlInitializeSizes(SimStruct *S) {

 ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 return; /* Parameter mismatch will be reported by Simulink */

 }

 ssSetNumContStates(S, 0);

 ssSetNumDiscStates(S, NDISCSTATES);

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, NUL+NIZ);

 if (!ssSetNumOutputPorts(S, 2)) return;

 ssSetOutputPortWidth(S, 0, NIZ);

 ssSetOutputPortWidth(S, 1, NIZ*N_ULD);

 ssSetNumSampleTimes(S, 1);

 ssSetNumRWork(S, 0);

 ssSetNumIWork(S, 0);

 ssSetNumPWork(S, 0);

 ssSetNumModes(S, 0);

 ssSetNumNonsampledZCs(S, 0);

 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

static

 void mdlInitializeSampleTimes(SimStruct *S) {

 ssSetSampleTime(S, 0, TS);

 ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_INITIALIZE_CONDITIONS

// Function: mdlInitializeConditions ==

static

 void mdlInitializeConditions(SimStruct *S) {

 real_T *x0 = ssGetRealDiscStates(S);

MATLAB Applications for the Practical Engineer132

 int_T i, j;

 real_T tempRAND[22]={0.66, 0.01, 0.42, -0.14, -0.39, -0.62, -0.61, 0.36,

-0.39, 0.08, -0.69, 0.39, -0.24, 0.72, 0.7, 0.18, -0.01, 0.79, 0.64, 0.28,

0.6359, 0.32};

 for (i=0; i<W1_ij+W2_ij; i++){

 x0[i]=.1*tempRAND[i-(i/20)*20];}

 for (i=0; i<SIZE_P; i++){

 for (j=0; j<SIZE_P; j++){

 if (i==j){

 x0[N_P + i*SIZE_P+j]=1000;

 }

 }

 }

}

// Function: mdlOutputs ===

static

 void mdlOutputs(SimStruct *S, int_T tid) {

 real_T *Y = ssGetOutputPortRealSignal(S, 0);

 real_T *DY = ssGetOutputPortRealSignal(S, 1);

 real_T *x = ssGetRealDiscStates(S);

 int_T i;

 //InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 UNUSED_ARG(tid); /* not used in single tasking mode */

 for (i=0;i<NIZ;i++)

 Y[i]=x[N_OUT+i];

 for (i=0; i<NIZ*N_ULD; i++)

 DY[i]= x[N_dnet+i];

}

#define MDL_UPDATE

//Function: mdlUpdate ==

static

 void mdlUpdate(SimStruct *S, int_T tid) {

 int_T i, j, k, priv_i;

 real_T priv;

 real_T WW1[W1][W1_j];

 real_T WW2[NIZ][W2_j];

 real_T a_pr[W1]={0};

 real_T a[W1+1]={0};

 real_T JJ[NIZ]={0};

 real_T W1R[W1*W1]={0};

 real_T oout[NIZ];

 real_T WW2pr[NIZ*W1]={0};

 real_T dadWR[W1*W1_ij];

 real_T I_a[W1];

 real_T PP[W1*W1_ij];

 real_T dYdW[NIZ*SIZE_P]={0};

 real_T dYdW_T[NIZ*(SIZE_P)];

 real_T h_WxP [NIZ*SIZE_P];

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

133

 real_T K[SIZE_P*NIZ];

 real_T Ppr[SIZE_P*SIZE_P];

 real_T Kxh_W[SIZE_P*SIZE_P];

 real_T pu[W1_j];

 real_T Apr[NIZ*NIZ]={0};

 real_T Pxh_W[SIZE_P*NIZ] ;

 real_T NNx[SIZE_P] ;

 real_T dnet[NIZ*N_ULD]={0};

 real_T etttami=0;

 int_T SIZE_PxSIZE_P=SIZE_P*SIZE_P;

 int_T W1xW1_ij=W1*W1_ij;

 real_T *x = ssGetRealDiscStates(S);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S, 0);

 x[N_ON]=x[N_ON]+TS;

 pu[NUL+W1]=1.0;

 for (i=0; i<NUL; i++){

 pu[i]=*uPtrs[i];

 }

 for (i=0; i<W1; i++){

 pu[NUL+i]=x[NH_1+i];

 }

 pu[NUL+W1]=1.0;

 for (i=0; i<NIZ; i++){

 JJ[i]=*uPtrs[NUL+i];

 }

 for (i=0; i<W1; i++) {

 for (j=0; j<W1_j; j++) {

 WW1[i][j]=x[N_W1+i*W1_j+j];

 }

 }

 for (i=0; i<NIZ; i++) {

 for (j=0; j<W2_j; j++) {

 WW2[i][j]=x[N_W2+i*W2_j+j];

 }

 }

 for (i=0; i<W1; i++) {

 for (j=0; j<W1; j++) {

 W1R[i*W1+j]=WW1[i][NUL+j];

 }

 }

 xputab_c_pok(S, pu, a_pr, W1, W1_j, 1, 0);//xputab_c_pok(S,bb, cc, a_r,

a_c, b_c, x_p)

 for (i=0; i<W1; i++) { //a

 ttsig(a_pr[i], &a[i]); // ttsig(real_T x,real_T *y)

 x[NH_1+i]=a[i];

 }

 a[W1]=1.0;

 for (i=0; i<W1; i++)

 I_a[i]=1.0-a[i]*a[i];

 xputab_c_pok(S, a, oout, NIZ, W2_j, 1, N_W2); //Y=WW2*[a;1];

 for (i=0; i<NIZ; i++){

 x[N_OUT+i]=oout[i];

MATLAB Applications for the Practical Engineer134

 JJ[i]=JJ[i]-oout[i];

 }

 for (i=0; i<W1*W1_ij; i++)

 PP[i]=0;

 for (i=0; i<W1_j; i++)

 PP[i]=pu[i];

 for (i=1; i<W1; i++){

 for (j=0; j<W1_j; j++){

 PP[i*(W1_ij+W1_j)+j]=pu[j];

 }

 }

 //dnet

 for (i=0; i<NIZ; i++){

 for (j=0; j<N_ULD; j++){

 priv=0.0;

 dnet[i*N_ULD+j]=0.0;

 for (k=0; k<W1; k++){

 priv=priv+WW2[i][k]*(1.0-(a[k]*a[k]))*WW1[k][j*N_TD];}

 x[N_dnet+i*N_ULD+j]=priv;

 }

 }

 aputax_c_pok(S, W1R, dadWR, W1, W1, W1_ij, N_dadWR);

 for (i=0; i<W1xW1_ij; i++)

 PP[i]=PP[i]+0.9*dadWR[i];

 for(i=0;i<W1;i++){

 for(j=0;j<W1_ij;j++){

 x[N_dadWR+i*W1_ij+j]=I_a[i]*PP[i*W1_ij+j];

 }

 }

 for(i=0;i<NIZ;i++){

 for(j=0;j<W1_ij;j++){

 priv=0.0;

 for(k=0;k<W1;k++){

 priv=priv+x[N_W2+i*W2_j+k]*x[N_dadWR+k*W1_ij+j];

 }

 dYdW[i*SIZE_P+j]=priv;

 }

 }

 for(i=0; i<NIZ; i++) { // dydW2

 for(j=0; j<W2_j; j++){

 dYdW[W1_ij+i*(W1_ij+W2_ij+W2_j)+j]=a[j];

 }

 }

 //Kalman

 transp(dYdW, dYdW_T, NIZ, SIZE_P); //dYdW_T=dYdW'

 aputax_c_pok(S, dYdW, h_WxP, NIZ, SIZE_P, SIZE_P, N_P);

 aputab_c(h_WxP, dYdW_T, Apr, NIZ, SIZE_P, NIZ);

 if (x[N_ON] > ITER_UCI)

 etttami=1e90*ETTAMI;

 else etttami=ETTAMI+1000*ETTAMI/(x[N_ON]+1.0);

 for (i=0; i<NIZ*NIZ; i=i+NIZ+1){

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

135

 Apr[i]=Apr[i]+etttami;

 }

 invmatrix(Apr, NIZ);

 xputab_c_pok(S, dYdW_T, Pxh_W, SIZE_P, SIZE_P, NIZ, N_P);

 aputab_c(Pxh_W, Apr, K, SIZE_P, NIZ, NIZ); //K=PM*h_WM*A;

 aputab_c(K, JJ, NNx, SIZE_P, NIZ, 1);

 for(i=0; i<SIZE_P; i++){

 x[i]=x[i] +NNx[i];

 }

 aputab_c(K, dYdW, Kxh_W, SIZE_P, NIZ, SIZE_P); //K*h_WM

 aputax_c_pok(S, Kxh_W, Ppr, SIZE_P, SIZE_P, SIZE_P, N_P);

 for (i=0; i<SIZE_P; i++){ Ppr[i*(SIZE_P+1)]=Ppr[i*(SIZE_P+1)] - ETTAQ/

(x[N_ON]+1.0);

 }

 for (i=0; i<SIZE_PxSIZE_P; i++)

 x[N_P+i]=x[N_P+i]-1*Ppr[i];

 UNUSED_ARG(tid);

}

// mdlTerminate

static

 void mdlTerminate(SimStruct *S) {

 int_T i, j;

 real_T *x = ssGetRealDiscStates(S);

 printf("\n");

 for(i=0; i<W1*W1_j+NIZ*W2_j; i++){

 printf("%f\t", x[i]);

 }

 UNUSED_ARG(S);

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Author details

Mato Miskovic1, Ivan Miskovic2 and Marija Mirosevic3

1 HEP Hydro-power Dubrovnik, Dubrovnik, Croatia

2 Brodarski Institute, Zagreb, Croatia

3 University of Dubrovnik, Dubrovnik, Croatia

MATLAB Applications for the Practical Engineer136

References

[1] P.Werbos "Aproximate dynamic programming for real-time control and neural mod‐
eling" in Handbook of Intelligent Control, White and Sofge Eds. New York: Van Nos‐
trand Reinhold, pp493-525.

[2] D. Prokhorov: "Adaptive critic design", IEEE Trans. Neural Networks, vol. 8, pp.
997-1007, Sept 1997.

[3] Wiliams, R. J. and Zisper D: "A learning agorithm for continually running fully re‐
current neural networks", Neural Copmutation, 1:270-280.

[4] Pedro DeLima: "Application of Adaptive Critic Designs for Fault Tolerant Control",
IEEE Computational intelligence Society Walter J Karplus Summer Research Grant
2004.

[5] R.E. Kalman, ‘‘A new approach to linear filtering and prediction problems,’’Transac‐
tions of the ASME, Ser. D, Journal of Basic Engineering, 82, 35–45 (1960).

[6] G.V. Puskorius and L. A. Feldkamp: "Neurocontrol of Nonlinear Dynamic Systems
with Kalman Filter Trained Recurrent Networks", IEEE Trans. on Neural Networks,
5(14), 279-297.

[7] Simon S. Haykin: “Kalman Filtering and Neural Networks”, 2001

[8] M. Cernasky, L. Benuskova:“ Simple recurrent network trained by RTRL and extend‐
ed Kalman filter algorithms“ Neural Network World 13(3) (2003) 223–234

[9] Narendra K.S., Parthasarathy K. “Identification and Control of Dynamical Systems
Using Neural Networks”, IEEE transaction on Neural Networks, 1:4-27, March 1990.

[10] IEEE recommended practice for excitation system models for power system stability
studies, : IEEE St. 421.5-2002 (Section 9).

[11] W. Mielczarski and A. M. Zajaczkowski "Nonlinear Field Voltage Control of a Syn‐
chronous Generator using Feedback Linearization", Automatica Vol 30, pp1625-1630,
1994.

[12] P. Shamsollahi, O. P. Malik, "Real time Implementation and Experimental Studies of
a Neural Adaptive Power System Stabilizer", IEEE Trans. on Energy Conversion, Vol.
14. No. 3, September 1999.

[13] G. K. Venayagamoorthy, Ronald G. Harley, and Donald Wuncsh "Implementation
off an adaptive neural network for efective control of turbogenerators” IEEE Budapest
Power Tech. Conf. 1999. paper BPT99 pp 431 – 23.

[14] T. Kobayashi and A. Yokoyama, "An Adaptive Neuro-Control System of Synchro‐
nous Generator for Power system stabilization", IEEE Trasaction on Energy Conver‐
sion, Vol. 11, No. 3, September 1996.

Dual Heuristic Neural Programming Controller for Synchronous Generator
http://dx.doi.org/10.5772/58377

137

[15] D.Flynn, S. McLonne, G. W. Irwin, M. D. Brown, E. Swidenbank, and B. W. Hogg,
"Neural control turbogeneraroe systems", Automatica, vol 33, no,11, pp. 1961 – 1973,
1997.

[16] Q.H. Wu, B.W. Hogg, G.W. Irwin " A neural network regulator for turbogenerators,"
IEEE Trans. on Neural Network, vol. 3, no. 1, pp. 95-100, Jan 1992.

[17] G. K. Venayagamoorthy, Ronald G. Harley, and Donald Wuncsh "Implementation
off an adaptive neural network for efective control of turbogenerators” IEEE Buda‐
pest Power Tech. Conf. 1999. paper BPT99 pp 431 – 23.

[18] MATLAB the Language of Technical Computing, http://www.mathworks.com/help/
rtwin/index.html

[19] MATLAB the Language of Technical Computing, http://www.mathworks.com/prod‐
ucts/matlab

[20] M.Miskovic " Extended Synchronous Generator Operation Region Using Neural Net‐
work Based Adaptive Control ", PhD thesis, FER Zagreb 2007.

[21] M. Miskovic, M.Mirosevic, G.Erceg “Load angle estimation of a synchronous generator
using dynamical neural networks“//Energija 02 (2009.) ; 174-191.

[22] Miskovic, Mato; Mirosevic, Marija; Miskovic, Ivan. On-line Identification of Synchro‐
nous Generator Mathematical Model // ICRERA 2012 Proceedings / Kurokawa, Fujio
(ur.). Nagasaki, Japan : University of Nagasaki, 2012. 1-3

[23] Matuško, Jadranko; Petrović, Ivan; Perić, Nedjeljko. Neural network based tire/road
friction force estimation. Engineering Applications of Artificial Intelligence. (2007),
15 pages

[24] Sumina, Damir; Bulic, Neven; Miskovic, Mato. Parameter tuning of power system
stabilizer using eigenvalue sensitivity. // Electric power systems research. 81 (2011),
12; 2171-2177

MATLAB Applications for the Practical Engineer138

