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1. Introduction

Proteins are biological entities made of a chain of amino acids bound to one another in a specific
order, called the primary structure or the amino acid sequence of the protein. Based on the
sequence and the environment, the protein acquires a tridimensional shape called tertiary
structure (3D-structure), conformation or fold, suitable for its biological function. The func-
tional shape is the native structure of the protein. The set of reactions leading to the native
structure is the folding of the protein. The vast majority of proteins are oligomers which
function only after the association of several copies of their chains. Homo-oligomers have
chains with identical sequences and hetero-oligomers have chains with different sequences.
The number of associated chains defines the quaternary structure of the oligomer, or its
stoichiometry [1]. According to the Protein Database (PDB) where all known 3D structures of
proteins are stored, the most observed quaternary structure in all taxa is the dimer (Fig. 1A).
A taxon is a set of living organisms grouped because of some shared characteristics. Besides
dimers, there exists a large variety of assemblies in terms of quaternary structures and point
group symmetries (Fig. 1). In forming a protein oligomer, subunit association has to be
considered in addition to folding.

Folding involves the formation of interactions/bonds between atoms of the amino acids of a
single chain. These are intramolecular (within a single molecule) amino acid interactions (Fig.
2A). Chain association involves the formation of interactions/bonds between atoms of the
amino acids provided by at least two individual chains. These are intermolecular (between
two molecules) amino acid interactions (Fig. 2B). Here the protein chain is considered as the
molecule.

The twenty natural amino acids share four atoms called the backbone atoms and are distin-
guished by a set of atoms called the side chain atoms. These atoms can make different types
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Figure 1. Protein oligomer features. The data in A and B are obtained by screening the PDB. A. Distribution of taxa
according to quaternary structures. B. Distribution of taxa according to point group symmetries. C. Protein oligomers
belong to three different point group symmetries. Cn, cyclic with n rotational axes. One ferritin is given as an example
for a C3 symmetry (PDB 2F7N). Dn, dihedral with n rotational axes plus 2-fold perpendicular axes. One ferritin is given
as an example for a D2 symmetry (PDB 2RBD). Cubic. T, tetrahedral with four 3-fold axes and six 2-fold axes. Ferritin is
given as an example (PDB 1DPS) [2]. O, octoahedral, octahedron or hexahedron with six 4-fold axes, eight 3-fold axes
and twelve 2-fold axes. One ferritin is given as an example (PDB 1LB3). |, icosahedral with twelve 5-fold axes, twenty 3-
fold axes and thirty 2-fold axes. Ferritin is given as an example (PDB 1K4R). Icosahedral is not a cubic point group sym-
metry but has been conflated to the cubic point group symmetry in chemistry [3].

of chemical bonds. First, the amino acids are linked to one another by a covalent bond involving
two backbone atoms and called the peptide bond. The covalent bonds are thus used to make
a chain of amino acids arranged in a specific order, the primary sequence of the protein.
Cysteine and methionine amino acids are the only amino acids that can make a supplementary
covalent bond, called a disulfide bond, using the sulfur atom of their side chains. There can be
intramolecular disulfide bonds (between two cysteines of one chain) or intermolecular
disulfide bonds (between two cysteines, each one produced by a distinct chain), the latter
making a covalent oligomer. Some collagen trimers are stabilized by inter-chain disulfide
bonds [4]. The collagen oligomers have been reviewed recently [5, 6]. Some other examples of
covalent oligomers can be found in the chapter on protein oligomerization by Giovanni Gotte
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Figure 2. Interactions in proteins.A.Protein monomer. Monomeric proteins perform their biological function with a
single chain. The formation and the stability of their native 3D structure involve only intramolecular atomic interac-
tions (interaction within a chain). B. Protein oligomer. Oligomeric proteins need to assemble several copies of their
chain to perform their biological function. The formation and the stability of their native structure involve intramolec-
ular atomic interactions (interaction within one chain) to acquire their fold and intermolecular atomic interactions (in-
teraction between chains) to acquire their quaternary structure. The pictures are generated with Rasmol. The protein
chains are shown in ribbons of different colors. For a few amino acids, all atoms are indicated in balls and sticks to
highlight intra and inter atomic interactions. C. Recognition modes. A protein interface is made of two set of atoms,
one per chain, spatially organized to yield a chemical and geometrical complementarity. Two simple cases are present-
ed. On the left are two interacting a-helices and on the right are two interacting B-strands. Because of the geometry,
the interacting amino acids produced particular sequence motifs/pattern abcdefg with a and d residues interacting in
the a-helical interface and abcdabdcd, with a and c residues interacting in the B-strands.

and Massimo Libonati. Disulfide bonds can significantly increase the stability of a chain or of
an oligomer, but it is not necessarily true and that needs to be measured case by case [7].
Covalent bonds are strong interactions as it takes a large amount of energy to break them
(110-50 kcal/mol). In living organisms, an enzyme (protease) is necessary to cut a covalent
bond.

Second, the tertiary and quaternary structures of protein as well as the folding and the chain
association involve mostly non-covalent bonds between the atoms of the amino acids, called
weak bonds because it takes a small amount of energy to break them (1-7 kcal/mol). These are
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hydrogen bonds, hydrophobic bonds, electrostatic bonds (between charges), polar bonds
(between dipoles) and van der Waals interactions. Under physiological conditions, the weak
bonds continuously form and break. The secondary structures of proteins, a-helices and 3-
sheets (intramolecular (3-strand interactions) are stabilized by hydrogen bonds between atoms
of the backbone of the amino acids. Likewise for intermolecular 3-sheets but the hydrogen
bonds are between atoms of the backbone of amino acids located on different chains. At last,
but not least, worth noted amino acids in terms of folding and association is the proline. Its
side chain geometry is particular and can adopt two positions named cis and trans, affecting
the relative position of its neighboring amino acids accordingly. The consequence is the
existence of two different local tridimensional states. The transition between the cis and trans
conformation is called a cis-trans isomerization and is known to slow down the folding of a
protein, and to also affect the association of chains indirectly [8-11].

The zone of contact between two associated chains is called the protein interface. The protein
interface is made of intermolecular amino acid interactions. Every chain provides a domain
that recognizes another domain, or the same domain, on another chain and associates with it.
The association is based on the chemical and geometrical complementarities of the two
domains. These complementarities are constructed on the spatial layout of the intermolecular
amino acid interactions (Fig. 2C). These layouts are referred to as recognition modes and have
been extensively studied [12-20]. Yet the rules that would enable us to predict recognition
modes from sequences still remain elusive.

Understanding and predicting the modes of recognition of protein interfaces is essential for
several reasons. First, because oligomers are involved in many cellular activities and when
default interactions occur there are numerous consequences among which certain diseases.
Second, because it is important to distinguish biologically significant interfaces from non-
specific interfaces observed in protein crystals in order to properly assess biological assemblies
in x-ray structures [21-24]. Along the same line, it is still not trivial to determine experimentally
whether a protein is an oligomer and if so its quaternary structure, so any predictive quaternary
structure tool is helpful. Third, because the knowledge on protein interfaces is used in synthetic
biology to engineer artificial oligomers for several purposes from drug delivery devices to the
development of new material [25-29]. As an example, one can read the chapter by Keqin Zhang
on silkworm and spider protein fibers and their potential use in the fabric industry.

2. Overview of protein assembly

2.1. Intermolecular amino acid interactions

Protein interfaces have been extensively investigated [14, 30-35]. But because protein interfaces
are large and rather flat in nature, they lack the spatial constraints achieved by a limited
number of sequences. Thus the sequences of protein interfaces rarely share trivial profiles or
patterns, in contrast to protein-small molecule interfaces or residues involved in enzymatic
active sites [36, 37].
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Thus, it has been clear very early on that looking at the 3D structures of protein interfaces was
anecessary alternative to sequence analysis [34, 38-43]. The increasing number of 3D-structures
available for oligomeric proteins has also favored such investigations and the development of
computational methods to identify and study the amino acids at protein interfaces on large
scale datasets. In the chapter, we essentially review these computational advances but discuss
little experimental progress. One can read the chapter on protein oligomerization by Giovanni
Gotte and Massimo Libonati for information on experimental approaches or read information
provided in the following publication [44].

The first benefit of computational approaches is the facility in discriminating intermolecular
amino acid interactions from intramolecular amino acid interactions systematically and
efficiently by relatively simple algorithms.

2.1.1. Identification of the intermolecular contacts at protein interfaces

Many algorithms are available to identify the amino acids involved in intermolecular interac-
tions from the x-ray coordinates of the 3D-structure of a protein oligomer (reviewed in [13, 21,
45]). The coordinates are accessible at the protein database (PDB, http://www.rcsb.org/pdb/
home/home.do)[46]. There are databases were interfaces have been classified according to their
3D organization, residue conservation and residue types [47]. Some databases are used to
complement cellular networks (interactomes) with structural information on the binding
modes between cellular partners [12, 18-20, 48].

The classical algorithms are based on three different measures: (i) accessibility surface area,
(ii) voronoi cells and (iii) arithmetic distances. More novel algorithms use graph theory
measures such as centrality and coefficient clustering.

Accessible surface area (ASA). The first method calculates the solvent accessible surface area
by rolling a probe of a given radius around the Van der Waal's surface of the protein atoms
whose centre is the accessible surface [49]. Typically, the probe has the same radius as water
(1.4 A) and hence the surface described is referred to as the solvent accessible surface. The ASA
are calculated for the monomer and for the oligomer and the interface residues are obtained
by the difference in their ASA. ASA is currently used to discriminate biological contacts (large
ASA, 1600 + 400 A?)) from crystal ones (small ASA <400 A?) [50, 51]. The PDB entries are now
processed accordingly and provide both biological assembly and asymmetric unit coordinates.
The biological assembly entry includes a remark to explain whether the oligomeric state is
"author provided" (experimentally shown to be an oligomer) or "software determined" or both.
Alternatively, the biological assembly can be downloaded directly from the Structure Server
PQS (Protein Quaternary structure) at EBI (http://pgs.ebi.ac.uk) [50]. ASA can be calculated
from different servers and programs such as PISA (Protein, Interfaces, Structures and Assem-
blies, http://www.ebi.ac.uk/msd-srv/prot_int/) or Naccess (http://www.bioinf.manches-
ter.ac.uk/naccess/), both essentially implemented from the Lee & Richards method [52].

Voronoi cells. The second method selects interfacial residues based on the Voronoi diagram
or its closely related power diagram [53-55]. The Voronoi diagram associates to each atom its
Voronoi cell, namely the convex polyhedron that contains all points of space closer to that atom
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than to any other atom. Instead of the Euclidean distance |ax| between a point x and an atom
centered in 4, this diagram use the power distance p(x) of x with respect to the ball of radius r
that represents the atom,p(x)=Iax|2-r*. The Voronoi cell of an atom then comprises all points
of space that have a power distance to that atom less than to any other atom. Its facets belong
to the radical plane, which contains the intersection of the spheres if they do intersect. The
Voronoi (or power) diagram offers a natural definition of contacts: two atoms are in contact if
and only if their Voronoi cells share a facet. The use of Voronoi diagrams has been extended
for assessing the reconstruction of protein assembly with the impressive example of the
Nuclear Pore Complex [56].

Arithmetic distances. The third method also requires the 3D-structure (available in the PDB)
and calculates Euclidian distances between atoms of the amino acids of different chains to
detect only intermolecular atomicinteractions [23-25]. The selection is the pairs of atoms which
are within a cut-off distance from each other classically around 5.0 A such that any type of
chemical bonds between the atoms are considered (H-bonds, electrostatic interactions, van der
Waals forces, salt bridges and hydrophobic attractions). The pairs of atoms selected as part of
the interface, depend on the choice of the cut off distance. This is a serious issue because a
distance cannot fully describe a spatial arrangement and there is a chance that the geometry
of the interface is not faithfully represented by the set of selected pairs [57]. The need to use a
cut off distance for the selection prevents from having a natural read of the geometry of the
interface. Better alternatives select pairs of atoms in interactions as the nearest neighbor atoms
instead of using a cut-off [40, 58-60]. This measure is more capable of reading the whole
geometry of the interface and therefore supplies a more accurate set of pairs of the intermo-
lecular contacts. Differences in the set of atoms selected according to distances are illustrated
in figure 3.

In addition, residue conservation or spatial chemical conservation can be implemented to yield
a set of intermolecular amino acid interactions based on structural and sequence information
[47]. The method requires the PDBs and a multiple sequence alignment as input data. Indi-
vidual residues are represented in terms of regional alignments that reflect both their structural
environment and their evolutionary variation, as defined by the alignment of homologous
sequences. Multiple alignments use either the Shannon or the Von Neumann entropy [61].
Conservation scores are also efficient in discriminating genuine biological assemblies from
crystal contacts [22, 24]. There exist several algorithms, the most efficient are mapping
conservation score to the 3D-structures such as Evolutionary Trace [62-65].

Hotspots-In the mid-nineties, the specific energetic contribution of the side chain atoms to
protein interfaces was investigated using Alanine Scanning Mutagenesis because the mutation
by alanine reduced the interactions to backbone atoms [66]. It was found that only a small sub-
set of interfacial residues were sensitive to an alanine mutation indicating that the energetic
contribution of the interfacial residues was not distributed uniformly. Some key “hot spot’
residues contributed dominantly to the binding free energy. Thorn and Bogan deposited hot
spots from alanine scanning mutagenesis experiments in the ASEdb database (http://
nic.ucsf.edu/asedb/) [67]. BID (The Binding Interface Database) is another database of experi-
mental hot spots, which collects all available experimental data related to hot spots in protein
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Figure 3. Selection of the amino acids in interactions at interfaces. A. Schematic of an interface between chain
1 and chain 2. Each chain is symbolized by a line and the chain respective atoms are indicated by black dot and letters
with indices corresponding to the chain. Distances and so potential interactions between atoms are indicated by dot-
ted lines. Only few interactions are indicated for the sake of clarity. B. Selection of atoms in interactions at the in-
terface. The same schematic is reproduced after selection of the atoms in interaction at the interface. The top
schematic is a selection based on mutually closest atoms, the middle one is a selection of all closest atoms and the
bottom one is a selection of atoms at distances shorter than a cut-off of 5 A. C. Coarse-grained graphs of the inter-
face. Based on the selected atoms, a graph of the interactions between amino acid is drawn. The top, middle and
bottom graphs correspond to the top, middle and bottom selections illustrated in B, respectively.

interfaces(http://tsailab.chem.pacific.edu/wikiBID/index.php/Main_Page)[68]. In parallel,
there have been several experimental evidences not based on ala-scanning mutagenesis but
on kinetics of assembly that showed the role of only some amino acids of the interfaces in
regulating the chain association [69, 70]. Now hotspot (or hot spot) is a colloquial term that
distinguishes a residue relevant for interface formation from others.

There exist several predictors of hotspots combined or not with evolution conservation based
on ASA, voronoi and distances, some reviewed in [21, 47].

Algorithms based on graph theory-More recently, methods based on graph theory have also
been proposed to identify hotspots. A graph or a network is a mathematical representation of
pairwise relation between objects. A graph is made of vertices (or nodes) and lines, called edges
(or links) that connect them. Proteins have been described as networks, with the amino acids
of a protein chain considered as the nodes and the interactions between amino acids as the
links. These networks, referred to as protein structure networks or amino acid networks,
describe the entire protein and are used to infer global characteristics of the protein. Likewise,
protein interfaces have been described as networks of hot spots in interactions with the hot
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spots as nodes and the interactions between hot spots as links. Now, it is important to realize
that protein interfaces are not networks but sub-networks (sub graph) as they describe local
properties of the protein, namely the interfaces. A good overview of network measures can be
found in [71].

The sub-graphs are built of pairs of amino acids in intermolecular interactions (Fig. 3C). As for
the previous methods, the 3D-structures of the protein oligomer are used to build the graph
and different measures are used to infer the amino acid in interactions. Basically, the atoms
are considered as points in space, each chain of a protein oligomer constituting a distinct set
of points. All distances between atoms of the different set are calculated and any two atoms
within a given cut off distance or closest atoms are considered linked. A coarse-grain graph is
built by replacing the interacting atoms by their respective interacting amino acids.

The measure of path length and centrality is used (Central nodes). In graphs, the notion of links
between amino acids goes beyond chemical/physical bonds which are based on arithmetic
distances. In a graph, any two amino acids are connected by a geodesic distance which is the
shortest distance between them, measured as the minimum number of links that need to be
crossed to connect them by the shortest path. This distance is called the path length and is
symbolized by the letter /. The mean path length, <>, represents the average over the shortest
paths between all pairs of nodes and offers a measure of the network’s overall navigability.
This introduces the notion of contacts through communication routes in addition to the more
classical notion of geometrical/chemical contacts. This novel notion will have vast applications
in the field of protein structure and protein dynamics. It has been already used for investigating
protein allosteric mechanisms as discussed later [72-77].

Several measures of the centrality of a graph (closeness, betweenness) are associated with
geodesic distances. Basically the numbers of shortcut paths going through every node are
calculated and the most central nodes are those with the highest numbers of shortcut paths
going through them. In other words, the centrality is finding nodes at the crossroad of
communication routes. Centrality measures have been used to identify residues important for
the function and for the fold of proteins [78-80]. It has also been used to identify hot spot
residues in protein interfaces [81, 82]. One has to be careful to keep in mind that a central node
needs not to be at the center of the protein or at the center of the interface, but it is necessarily
at a crossroad of many paths.

The measure of degree and clustering coefficient is used. The number of links a node has, in the
context, the number of interactions an amino acid has with other amino acids (number of
contact amino acids), is called the degree and is symbolized by the letter k. The mean degree
<k> represents the average degree over all the nodes of the network. The degree distribution
of networks is informative on the characteristics of the network [71]. Networks with a power
law degree distribution are called scale-free, a name that is rooted in statistical physics
literature. It indicates the absence of a typical degree for the nodes in the network (one that
could be used to characterize the rest of the nodes). This is in strong contrast to random
networks, which have Poisson degree distributions, and for which the degree of all nodes is
in the vicinity of the average degree <k> which can be considered typical. There are also
exponential degree distributions which are single-scale networks. Scale free networks are
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made of many nodes with few links and few nodes with many links, called hubs. Hubs are
absent in random and single scale networks. Hubs are communication devices that allow most
nodes of the networks to be connected with others. This has noticeable consequences in terms
of the vulnerability of the networks to changes on the hubs or elsewhere [83]. This is discussed
later in the chapter. Proteins are essentially random networks or single-scale networks [84].

The clustering coefficient, called C, is based on the degree of the nodes and it measures the
probability that a node A which is connected to B, itself connected to C, has to be connected
to C as well. Calculated over all nodes of the networks, it identifies clusters of nodes highly
connected to one another and hence it discriminates different clusters as distinct communities.
The calculation of clustering coefficient is detailed in [71]. In protein oligomers, the protein
interface is made of many bonds between two adjacent chains and few bonds between non-
adjacent chains. Hence the interface makes a cluster in terms of graph and hotspots have been
successfully identified by clustering coefficient [85].

Protein interfaces are either analyzed based on all interfacial residues or on hotspots only.

2.2. Features of the intermolecular contacts at protein interfaces

To infer the features of protein interfaces, the method is simple: a dataset of protein oligomers/
protein interfaces is built, an algorithm is applied to each one of the interfaces to identify
intermolecular contacts and the features of the intermolecular contacts are analyzed using
statistics. Classically the parameters to describe a protein interface are: (i) interface size,
expressed either in number of amino acids or in ASA, (ii) the number of regions of interfaces
over the full-length chain, (iii) the chemical properties of the amino acids (amino acid fre-
quency, the interface propensity, namely the frequency of a residue g, in the protein interface
divided by its frequency in a reference set, generally the full-length chain). The size of protein
interfaces is an important parameter because it may vary depending on the strength of the
association [86].

Evolutionary conservation, protein folds, secondary structures, quaternary structures or
crystallographic B-factors can also be considered depending on the question and the criteria
used to build the dataset. The idea is to find enough specific features to distinguish the residues
of protein interfaces from the rest of the residues.

2.2.1. Dataset based on features of the full-length protein

Many dataset are built on proteins sharing properties at the level of their full-length chains
(function, organism, superfamily, folds, and quaternary structures) but without necessarily
sharing features at the level of their interfaces [39, 87-89]. In particular, the geometries of the
interfaces are not necessarily looked at and therefore interfaces with different geometries are
often compared. But it is generally assumed that proteins related in terms of folds or functions
associate in similar ways. However, a screen over a large dataset of dimers, performed by
Keskin et al. has shown that a non-negligible amount of protein oligomers have interfaces
sharing features although they have different folds and functions [90]. This set is referred in
the paper as “type II”, following the term “type I” used for protein interfaces sharing features
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and derived from protein oligomers having similar fold and/or functions. To establish the
determinants of the construction of an interface it is simpler to look at type Il interfaces because
the pressure of evolution over the fold and the function of the protein chain is alleviated
compared to type I interfaces.

Globally, the results of studies on protein interface dataset (mainly type I) revealed the
importance of hydrophobic interactions in the formation of protein interfaces, greater residue
conservation and chemical property similar to surface residues but packing like core residues
[34, 38]. The two latter properties are coherent with the fate of a protein interface. The topology
of a soluble protein is defined by surface residues which are accessible to the solvent and core
residues which are, on the contrary, buried and inaccessible to the solvent. The amino acids of
a protein interface have the solubility requirement of surface residues because the domains of
the interface are initially accessible to the solvent to allow binding. To have stable binding, the
domains need to minimize void and maximize packing as for the core residues.

If the role of hydrophobic residues is consistent over any dataset, the importance of polar and
charged residues in interfaces varies very much between datasets. Altogether this indicates
that hydrophobic residues are involved in promiscuous interactions while polar and charged
residues yield alternative recognition modes and hence provide each type of interfaces its
specificity.

Up to date, there is no single property sufficiently unambiguous to identify the protein
interface from the rest of the protein, and considerable disagreement exists on which properties
are actually useful. Conservation is an excellent example of a property both widely used and
widely debated. De Vries and Bonvin as well as Neuvirth raise the matter of having so many
algorithms and the absence of consensus on the parameters truly relevant to the formation of
a protein interface [45, 91]. This may well explain the contradictory results on protein interface
properties.

Most studies are performed on the features of individual hot spots. Yet protein interfaces result
from intermolecular pairwise interactions and are likely encoded at the pair’slevel. Supporting
this view, the few studies investigating the features of pairs of hotspots show sufficient
specificity of the residue pair preferences for accurate prediction [40, 58, 92, 93].

2.2.2. Dataset based on features of the interfaces

To investigate properties responsible for interface formation, an alternative is to build a dataset
based on the features of the interfaces and not on the features of the full-length chain. For
instance, one can build a dataset of proteins sharing the same geometry of interface.

2.2.2.1. B-strand geometry

Interfaces made of two interacting [-strands (intermolecular 3-strands) have been largely
studied because it is present in many conformational diseases such as Alzheimer’s disease,
Parkinson’s disease or serpinopathies [94-98]. Supporting the view of comparing interfaces
with identical geometries, the proteins involve in conformational diseases share no functions,
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fold, and quaternary structures yet they have a common local fold involved in the intermo-
lecular contacts that lead to fiber formation. Their pathological form, whether a fiber or an
oligomer, involves interactions between two {-strands, each provided by a different chain
(intermolecular 3-strands). These intermolecular -strands share several structural properties.
They are recognized by the same antibody A11 [99]. Their formation depends on interactions
between atoms of the backbone, result which has led to the proposal that aggregation is a
generic property of the polypeptide chain [100, 101]. They adopt a cross {3 structure which can
be predicted from sequences by the PIRA (Parallel ‘In Register’ Arrangement) model, a
network made of single pairs of residues [102-107]. Different predictors of the aggregation-
prone sequences involved in the fiber formation are now available [96, 98, 108-111].

We have studied a dataset of 1056 interfaces present in 755 protein oligomers not known to be
involved in conformational diseases [59]. As others, we found no specificity at the level of
individual hot spots. The chemical properties of the individual hot spots and their distribution
on the sequence characterize only the secondary structure and the solubility of the [3-strands.
In contrast the interaction pairs provide the interface some specificity. Interestingly, the
interfaces are best described by two sets of interaction pairs, pairs involving backbone atoms
made essentially of hydrophobic and/or small residues and pairs involving at least one atom
of the side chain, preferentially made of charged, polar, long and medium residues. The
backbone pairs have properties common to intramolecular 3-strand interactions and intermo-
lecular (-strands involved in fiber formation in terms of amino acid preferences. Thus
hydrophobic amino acids whether in pairs or as individual are not giving any specificity to
interfaces. That explains that they always appear in any dataset. On the other hand the side
chain pairs have particular geometrical characteristic in terms of number of atoms, branching
and length. They also show preferred chemical pairing different from those measured for 3-
fibers [98]. However this result is only based on comparison with the literature and it could
be due to differences in the datasets and/or the algorithms.

The geometry of the side chains has been so far neglected when it appears in our study as a
key parameter. Using Steiner Minimal Tree approach (SMT), MacGregor Smith et al proposed
an elegant geometrical representation of the amino acids that was successfully applied to the
problem of protein folding [112]. It will be interesting to extend this approach onto protein
interfaces to see if the specificity of protein interfaces may be provided by the geometry of the
amino acids rather than their sole chemistry. Similar double layer of interactions, has been
observed at the interfaces between colicins and their cognate immunity proteins [113]. One set
of the intermolecular residues was common to all colicin-immunity members and produced a
low binding affinity between the colicin and its cognate immunity protein while the other set
was made of variable residues providing high affinity and specificity to the colicin for a
particular cognate. Double layer of interactions has also been reported in monomeric proteins
(intramolecular networks) [84].

As mentioned earlier, proteins and protein interfaces are now described as networks of amino
acids in interaction or as sub-networks of hot spots in interactions, respectively. This relatively
new concept offers the possibility of looking at the layout of interactions in addition to the
amino acid properties. It is clear now that the network of interactions is as much important as
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the components of the network in providing the protein its properties in terms of folding,
function, evolution and interface formation [59, 78, 84, 114-117].

We have observed in our 1056 (3-strand interface dataset that the side chain pairs also have
specific network features. The side chain hot spot sub-networks have nodes with more contacts
than the backbone or the PIRA (Parallel In Register Alignment) networks, used to predict fiber
sequences [98]. Yet the (3-strand interfaces have no hubs and maintain a low interconnectedness
(little communication between residues of the interface), probably a mechanism to resist the
effect of mutation by secluding the nodes of the networks (Fig. 7). Simultaneously, the side
chain residues make less than three contacts avoiding stringency on the choice of amino acids
capable of making an interface and providing the (3-strand interface high sequence plasticity.
Robustness and plasticity of networks are well explored by graph theory and there are several
very inspiring papers on that topic [83, 118-120]. This point is discussed in more details later
in the chapter.

2.2.2.2. a-coiled interfaces

To date the only interfaces accurately predicted from sequences are a-coiled interfaces
[121-124]. Intermolecular residues follow a so-called knobs-into-holes regular packing
producing the a-coiled coil helix-helix assembly [125]. In the simplest case (dimer), the a-coiled
coil sequence displays a repeat pattern of seven amino acids so-called heptad repeat, labeled
abcdefg, with hydrophobic residues at the a and d positions (Fig. 2C). These hydrophobic
intermolecular contacts constitute the seam of the core of the knobs-into-holes interface. The
repeats can be shorter than 20 residues or span many hundreds of amino acids.

There are obvious reasons to why it has been possible to understand a-coiled coil interfaces
when other geometries still elude us. First, a-helices are geometrically more constraint than
-strands and second backbone interactions do not participate in a-helix interfaces because
the hydrogen bond networks are made intra-molecularly. Hence, there is no “backbone noise”
information that interferes with the side chain information.

2.2.3. Interfaces and quaternary structures

The quaternary structures of the protein oligomers and the features of their interfaces are
related and different methods are currently developed aimed at understanding such relations
[126, 127].

In some cases such relation is more or less understood. For example, in higher-order a-coiled
coil oligomers (above dimer) additional (peripheral) knobs-into-holes take place and broaden
the helical contacts [128]. Such multiple repeats lead to multi-faceted helices, which combine
repeats of different amino acid compositions to accommodate quaternary structures accord-
ingly [129, 130]. Thus, it is possible by analyzing amino acid sequences to predict the quater-
nary structures of a-coiled coil oligomers [129-132].

The relation between the interfaces features and the quaternary structure is less understood
in B-strand interfaces with few exception as the legume lectin family (81-82). Combining
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clustering algorithms with sequence alignments, motifs of sequentially and structurally
conserved residues are detected at the 3-strand interfaces of lectins. The different motifs are
built on a subset of residues at the interface that provide a specific 3D-orientation of the {3-
strands. Consensus patterns at the interfaces have been found for the different quaternary
structures of the lectins. Briefly, there are nine different kinds of quaternary structures in
legume lectins including Canonical, ECorL-type, GS4-type, DBL-type, ConAtype, PNA-type,
GS1-type, DB58-type, and Arcelin-5-type (monomeric). Seven different consensus is observed
including types II (canonical), X1 (DB58-type), X2 (noncanonical interface of ConA), X3
(ECorL-type, handshake), X4 GS54-type, back to back), and the unusual interfaces of PNA and
GSl1.

For a long time, there are experimental evidences of sequences that are responsible for the
quaternary structure of protein. These sequences, called registration sequence, are located
upstream the interface region and promote oligomerization of monomeric protein when
genetically added [133]. Proline and histidine residues located upstream of interfaces have also
been shown to regulate the association between chains [8, 11, 134-136]. Collagen a-fibers and
silkworm/spider [-fibers contain several repeats composed of proline residues which also
participate in the quaternary structures. Whether these residues belong to the interfaces or are
systematically located outside the interface regions has not yet been established.

In summary, residues located within the interfaces and outside are participating in the
quaternary structures and the chain assembly. This implies that protein assembly is regulated
at two levels, at the level of intramolecular interactions (residues outside interfaces) and at the
level of intermolecular interactions (residues in interfaces). Thus it is necessary to also
investigate the residues involved in intramolecular interactions to discriminate those partici-
pating in folding reactions from those participating in both folding and interface formation.
The latter residues are probably coordinating the whole assembly process by regulating
communication between folding and association steps.

3. Intermolecular and intramolecular amino acid interactions: The
mechanism of protein assembly

As mentioned at the beginning, protein assembly or protein oligomerization entails folding
and association reactions. Thus, to have a full picture of the mechanism of assembly, besides
studying intermolecular amino acid interactions, it is necessary to investigate intramolecular
amino acid interactions and to apprehend how both types of interactions are coordinated.
Different models of assembly have been recently reviewed [137, 138].

First, let’s consider the simple case of the formation of a dimer. There are two routes to a dimer.
One is through the three states model where unfolded monomers U (state 1) fold into mono-
mers M (state 2) which subsequently associate into dimers D (state 3). The alternative route is
through the two states model in which unfolded monomers U (state 1) associate into folded
dimers D (state 2). Intramolecular and intermolecular interactions occur sequentially in the
three states model but concomitantly in the two states model. One can anticipate that folding
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and association are going to be related but independent in the three states model but concerted
in the two states model. In terms of networks, one can speculate that the three states model
suggests a protein organized in two sub-graphs remotely connected, one governing the
intramolecular interactions and the other the intermolecular reactions. On the contrary the two
states model suggests two connected sub-graphs.

Discriminating the route of assembly is crucial in term of drug design strategy. In the three
states model, it is likely that the interface in the folded monomer and in the folded dimer is
similarly organized. Thus, it is consistent to use the x-ray structure of the native protein
oligomer as a template to design assembly inhibitors. In contrast, in the two states model the
interface in the unfolded monomer is different from the interface in the folded dimer so
assembly inhibitors designed on the native structure of the protein oligomer are unlikely to
recognize the unfolded monomer and block the assembly at the monomeric stage (or at early
stage). This is one illustration on why it is important to anticipate the mechanism of assembly.

3.1. Can the mechanism of assembly be predicted by investigating evolutionary
relationship?

D’ Alesio offers good historical reviews on this question [139, 140]. The interfaces of dimers
assembling by a two states model are found to share patterns with intramolecular interactions
observed in monomers. It is proposed that such dimers have evolved from mutations in an
existing monomer that led to its unfolding, followed by further mutations that yielded a viable
dimer with intermolecular interactions similar to the intramolecular interactions present in the
initial monomer. This mechanism is reminiscent of the domain swapping mechanism which
is well presented in the chapter by Giovanni Gotte and Massimo Libonati or reviewed in [141].
In such a situation the evolution to the dimer depends initially on the evolution of a viable
monomer towards unfolding induced by random mutation. There wouldn’t be any folded
monomer in the assembly route because it wouldn’t bear the mutations in a folded state. The
evolutionary route between the dimer and the monomer suggests the presence of epistatic
mutations (mutations that have different effects in combination and individually). Here the
fold and association steps are related and dependent on one another, in term of evolution and
mechanism of assembly. In contrast, dimers assembling through a three states model were not
found to share motifs with monomers. The folding of the monomer might then be a natural
route towards association, and folding and association would appear evolutionary and
mechanistically related but independent.

Next, let’s look beyond the simple case of dimers. Possible relations between evolution and
assembly mechanism have been further exploited by looking at protein oligomers sharing the
same functions (superfamily) but adopting different quaternary structures. In one study the
authors exploit the symmetry of oligomers to establish a relationship between evolution and
assembly mechanisms [142]. From an initial screen of 5375 PDB structures, they found
tetramers with D, symmetry having homologous dimers with C, point group symmetry and
hexamers with D; point group symmetry homologous dimers with C, symmetry or homologue
trimers with C; point group symmetry. In total 49 protein oligomers with a symmetry relation
from C, to D, are reported. They found evolutionary links between the C, and D,, counterparts
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and isolated experimentally the in vitro disassembly C, intermediates for ten of the D,
oligomers. In addition, for five cases, the C, intermediates were also shown to be formed during
in vitro reassemblies. They concluded that the evolutionary and assembly pathways were
related and that assembly intermediates could be predicted solely from the atomic structure.

But this conclusion might be over optimistic because based on very little cases (49/5375) and
because protein structure evolution and protein assembly are plastic in terms of mechanisms
such that to date it remains difficult to establish either route.

For example a single mutation has been found responsible for a transition from Cn to Dn point
group symmetry, it is not obvious how such global change could have been anticipated by
simply considering the full-length 3D-structure of the wild-type protein [143]. On the other
hand it tells that the protein assembly is regulated by local properties since a single mutation
is enough to alter the global assembly. This strongly suggests that the solution lies in under-
standing the local properties and how they propagate information to regulate the global shape.

Hemoglobin is another complex example of a protein sharing a function but distinct quater-
nary structures and for which evolutionary and assembly routes are not easily drawn even if
the structures are available (Fig. 4).

The Synechocystis cyanoglobin produces a monomeric hemoglobin (PDB 1569) with a C; point
group symmetry, the human hemoglobin is tetrameric (PDB 2HHB) with a C, point group
symmetry, the Oligobrachia mashikoi produces a 12-mer hemoglobin (PDB 2Z51) with a D, point
group symmetry while the giant earthworm hemoglobin contains 144 chains (PDB 2GTL) with
a D, point group symmetry. In such case, the different hemoglobin point group symmetries
and quaternary structures may result from coding constraints of their respective organisms
rather than from a relation in terms of evolution or assembly intermediates. As described by
Crick in the early 60s, symmetric assemblies require fewer distinct kinds of specific interaction
interfaces compared to asymmetric assemblies [144]. Likewise, higher symmetries require
fewer distinct interfaces compared to lower symmetries and thus, the smaller a genome the
more often its protein structural complexity may rely on high symmetry. This is consistent
with the large occurrences of proteins with icosahedral symmetry in viruses while most
eukaryotic molecular machines have C1 symmetry (Fig. 1B). Now, some high point group
symmetry oligomers have been also discovered in eukaryotes, bacteria and archea with the
vault proteins assembling 78 copies (2zuo, 2zv4, 2zv5), the encapsulin (3dkt) and the vault
from Pyrococcus furiosus (2E0Z). Clearly one has to be cautious in interpreting data and statistics
derived from the PDB.

In addition, hemoglobin is also an interesting example of how a unique function is provided
by a combinatory of assemblies using the same protein fold. There are many other examples
(e.g. ferritin, rubisco) but probably a-coiled coil oligomers offer the largest combinatory of
assemblies. It was recently shown that they formed before LUCA (last universal common
ancestor), by independent routes and most likely as the result of all possible geometric
solutions to packing helices in a stable way [145]. Again, that illustrates how diverse evolution
routes are.
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1569 2HHB 2251 2GTL PDB
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Synechocystis cyanoglobin

Hemoglobin from
Homo sapiens

Hemoglobin from
Oligobrachia mashikoi

Giant earthworm hemoglobin
(144 chains: 4x3x6x2)

Figure 4. Plasticity of quaternary structures fulfilling a single biological function: the hemoglobin example. The
hemoglobin chain exists as a single fold which is copied and assembled with different stoichiometries (number of
chains) and different symmetries across species to maintain the same biological function. Few cases are represented
from a hemoglobin monomer to a 144-mer assembly. The structures are shown in ribbons except when spacefill is
better to illustrate the symmetry of the assembly. The pictures are generated with Rasmol. The PDB codes and the

symmetries of the hemoglobins are indicated above their respective structures.

The relation between evolution and assembly routes assumes that an oligomer evolves/
assembles from a monomeric entity. But reverse situation exists as for the native tachylectin-2
monomer which has been proposed to have evolved from a pentameric ancestor through short,
functional gene segments that, at later stages, duplicated, fused, and rearranged [146]. The
authors propose that new folds evolved through the structural plasticity of assembly inter-

mediates.

This last example illustrates quite ironically that protein folds and quaternary structures still
hold surprises and a direct relation between the evolution of protein oligomers and the
mechanism of their assembly is not readily systematic. Both evolution and assembly certainly

involve multiple parameters making their prediction rather challenging.

3.2. Can the mechanism of assembly be predicted by experimental approaches?

The two and the three state models are depicted in the figure 5A.
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Figure 5. Mechanisms of assembly. Two mechanisms of assembly have been described and experimentally ob-
served. The protein chain folds before association in the lock and key mechanism, also called the three states model
because the protein can be observed in three states, unfolded monomer, folded monomer and native oligomer (top
route). The protein chains associate in a more or less partially folded state, and only subsequently acquire native fold-
ed conformation, in the fly-casting mechanism also referred to as the two states model because because the protein
exist only in two states in a dimer, unfolded monomer or native dimer. These two models are illustrated with the as-
semblies of the two related ABs toxins, the heat labile enterotoxin B pentamer (LTB;) and the cholera toxin B pentam-
er (CtxBs). The two toxins share 94 % sequence identity and almost superimposable atomic structures but nevertheless
assemble through two different mechanisms.

The three states model is the oldest and most classical mechanism observed, it is generally
referred to as the lock and key mechanism. There are plenty of experimental evidences of both
the two and three states mechanisms. Non-native oligomers, namely oligomers with native
quaternary structures but not native folds have been isolated experimentally for a long time
and are common intermediates of assemblies [69, 70, 133, 134, 147-153]. Such intermediates are
typical border line cases as they might be produced by a lock and key mechanism or by a fly-
casting mechanism. There are clear examples of protein associating by a fly-casting assembly
with unfolded monomers able to associate [8, 134, 151, 154, 155]. The RING domain protein
family of scaffolding oligomers presents an interesting case of the formation of a stable partially
folded assembly tetramer along the oligomerization route to a native 24-mer [156-158]. The
C, symmetry tetramer populates because of its fast formation from monomers and its slow
disappearance into a D, 24-mer (6 x 4). The transition to the D4 symmetry 24-mer is rate-
limiting, because of the slow folding Proline cis/trans isomerization that regulates the associ-
ation of two monomers via the ligation of Zn sites. Likewise dimer, trimer and tetramer
assembly intermediates are isolated along the route to the native cholera toxin B pentamer
(CtxBs) because the formation of one of the toxin interface is regulated by a cis-trans Proline
isomerization [8]. The CtxB assembly intermediates acquire some of their native secondary
structure along with association because their main interface involves the formation of an
intermolecular 3-sheet, this folding/association step is regulated by histidine residues [134].

Proline and histidine residues are rare at interfaces but are often found upstream the region
of interfaces and are indirectly acting on their formation, as mentioned at the beginning of the
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chapter (see introduction). Registration sequences that control the quaternary structure of
protein oligomers are also located outside interfaces. In fact, several cases of residues located
outside interfaces have been shown to be involved indirectly in the chain association and a
variety of small amino acid modules have been proposed to act upon assembly by different
processes. Basically they introduce the flexibility required to modulate the 3D position of
interface domains so to increase the chance of successful encounters [138, 159].

3.3. Can the mechanism of assembly be predicted by computational approaches?

The two states model was revisited by Wolynes’ laboratory showing that an unfolded protein
has a greater capture radius for a specific binding site than the folded state with its restricted
conformational freedom [160]. In this scenario of binding, the unfolded state binds weakly at
a relatively large distance followed by folding as the protein approaches the binding site: the
“fly-casting mechanism” (Fig. 5A). In 2004, Wolynes introduces the notion that certain
characteristics of the atomic structure like the interface size and hydrophobicity, the ratio of
the number of interfacial contacts to the number of intramonomeric contacts enabled to
determine whether ahomodimer assembled into a fly casting or lock and key mechanism [161].
A large ratio of interfacial to monomeric contacts is typical of a two-state model and of the fly-
casting mechanism.

Computational approaches also provide evidences supporting the lock and key mechanism,
the fly-casting mechanism and a series of in-between mechanisms attesting of back and forth
between folding and association reactions and whose idea lies on an “induced-fit” principle
during which intermolecular contacts “catalyze” folding (allostery, conformational gating,
induced fit) [162-165].

Recently, molecular dynamic (MD) simulations have been combined to network analysis to
provide detail understanding of the route of assembly. For example, coarse-grained transition
networks (CGTNSs) can be derived from MD simulation to show the transition between
oligomers of different sizes [166, 167]. In a recent report, the role of the sequences in the
aggregation kinetics and assembly mechanisms was described in great details [168]. Briefly,
MD is performed and the state of each conformation/state observed in the MD is defined by a
set of digit. Based on the MD, a transition matrix N x N is built with N states and with the
matrix elements defined by the occurrences of any transition between two states. The matrix
transition is converted into a graph called KTN (Kinetic Transition Network) with the nodes
corresponding to the states and the edges to the transitions. Such graphs provide measures of
the population of different states and the probability of transition between them. Energy
barriers are associated to the transitions and disconnectivity graphs are constructed to evaluate
the energy barrier to go from one conformation to another with min-cut algorithms. The
dynamics of aggregation was also evaluated using FPTD (First Passage Time Distribution)
which informs on the most populated states and kinetics. Although such approach has not yet
been applied to a protein assembly on a full-length protein, there is no doubt that such
combination of molecular dynamics with graph theory would provide new directions in
predicting protein assembly mechanisms.
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In fact, graph theory is the ideal tool to investigate the residues involved in intramolecular
interactions, the residues involved in intermolecular interactions and their cross-talk commu-
nications. Basically sub-graphs or clusters are produced and allosteric communication between
the different clusters is investigated. This has been used in enzyme/ligand intermolecular
interactions and in interfaces [74]. It appears that the intramolecular networks maintained the
robustness of the structure while the interface residues are more plastic to accommodate the
flexible motion required for association.

Obviously folding and association reactions intertwine to orchestrate the protein assembly.
This means that the key factors for protein assembly is the balance between intra and inter
molecular interactions.

4. Local key contacts regulate global conformations

There are cases of proteins sharing functions, high sequence identities, folds and quaternary
structures but following distinct assembly mechanisms. For example the two related AB;
toxins, heat labile enterotoxin (LTBs) and cholera toxin (CtxB;) have 94 % sequence identity,
almost superimposable 3D structures, and identical quaternary structures but nevertheless
assemble through different mechanisms under identical experimental conditions (Fig. 5A).
LTB; follows a lock and key mechanism whereas CtxB; assembles through a fly-casting
mechanism [8, 134, 135]. Out of 103 amino acids, 11 are different among which only two in the
interface. The cpn10 heptamers are another of such example [70].

The role of only few residues in controlling an assembly or a disassembly mechanism is also
evidenced in diseases called conformational diseases where a single amino acid mutation is
enough to redirect the protein native conformation to an aberrant conformation such as a fiber,
through unfolding/refolding steps [169-175]. Consequently the protein loses its function
leading to the disease.

This tends to show that the assembly of a protein is in fact regulated by only few amino acids,
indicating that little differences are enough to go from a fly-casting to an induced-fit mecha-
nism. This is in good agreement with allosteric mechanisms and the MWC (Monod, Wyman,
Changeux) theory that unifies fly-casting and an induced-fit routes into a single mechanism
[176]. Accordingly, protein assembly can be expressed as a single scheme with transitions
between the fly-casting and the induced-fit mechanisms depending on thermodynamic
equilibrium and kinetic rates (Fig. 6).

There exist several evidences of such transitions in biology, some of which are illustrated on
tfigure 7. For example, in the course of evolution proteins may change their folding and/or
assembly routes upon random mutations. Or proteins very similar in sequences and structures
may favor different routes because of small amino acid differences in their sequence and/ or
environmental factors. This illustrates the plasticity of proteins in terms of mechanism of
formation and in terms of quaternary structures but also supports the fact that it is the local
characteristics (few amino acids) that impact on the global structure of a protein.

345
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Figure 6. Kinetic scheme of protein assembly. A protein monomer may exist in an unfolded state U and folds into a
folded state M. A protein oligomer may assemble from (top reactions) unfolded monomers U which associate in “par-
tially"folded states Ui with i going from 2 to n, n being the number chains; until they assemble into a non-native oligo-
meric state Un which finally folds into a native folded oligomer On. Alternatively, a protein oligomer may assemble
from (bottom reactions) unfolded monomers U which fold and associate into dimers D, trimers T, etc until they reach
the native oligomeric state On. Each of the conformational state exists in equilibrium and may go from one state to
another according to k,, and k.4 rates of the reaction. Only the formation of the native state are considered irreversi-
ble. The population of every species and the transition species depend on kinetic parameters.

How to identify few amino acids as key determinant for a protein fold or an assembly and
what properties they must have to affect the mechanism of assembly and/or its final output?
Graph theory is at present probably one of the most suitable approach to investigate such
questions. For example, the effects of the mutations involved in conformational diseases have
been considered in terms of network. Recently, a novel approach using graph-based signatures
has shown that the impact of a mutation correlated with the atomic-distance patterns sur-
rounding an amino acid residue [177]. They showed that the signatures can be used to predict
stability changes of a wide range of mutations occurring in the tumor suppressor protein p53.

We have also investigated the effects of mutation on graph features and the possible conse-
quences in terms of the disease mechanism [59]. As briefly mentioned earlier, we have seen
that the networks of the 1056 intermolecular 3-strands present in “healthy” protein oligomers,
avoid hubs (highly connected residues) to be robust to mutation. The intermolecular (3-strands
are essentially disconnected graphs so any mutation would not spread damages far in the
network. We compared these “healthy” networks with the (-strand interface of the p53
tetramer, which has known familial mutations related to dissociation of the tetramer, fiber
formation, and associated with cancer [169]. The p53 network has a higher interconnectedness
because its nodes have higher degrees (ie more contacts) than those in the “healthy” networks,
with the consequences that a single node modification (ie a mutation) is enough to reorganize
the interactions in the entire network. Thus the higher connectivity of the p53 network leads
to a greater sensitivity to rewiring (rearrangement of links upon node modification) than the
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Figure 7. Evidences of transitions between different states and different reaction paths. The kinetic scheme de-
scribed in figure 6 is reported here at the center of the figure. The transitions between different protein conforma-
tions or different reaction paths are indicated by green arrows. The x-ray structures of protein cases undergoing such
transition are shown as illustration of these transitions. The transition can take place during evolution and because of
mutation (e.g. tachylectin-2, two states model). It can take place because of mutation and lead to conformational dis-
eases as for the p53 tumor suppressor p53. The main route may depend on a difference of few amino acids as for the
two related toxins CtxBs and LTBs. Or else, the protein as the pore-forming toxin aerolysin may adopt different quater-
nary structures and go from one to another because of environmental factors (e.g. pH, proteolyic cleavage, cell recep-
tor etc...).

disconnected graph observed in healthy proteins. In some cases, such ample rewiring probably
promotes chain dissociation, first step to fiber formation. We have now started to investigate
why the p53 network has a higher interconnectedness than the “healthy” networks. The p53
tetramer has a D, point group symmetry and its interfaces adopt a local central symmetry
because the two interacting domains have identical sequences and the residues are paired in
an anti-parallel manner. In contrast 60 % of the protein interfaces of “healthy” proteins have
domains made of different sequences and their 3-interfaces have no local symmetry.
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Let’s consider three intermolecular networks, one with different amino acid sequences and no
local symmetry, a second with identical sequence arranged in a parallel manner (horizontal
axe symmetry) and a third with identical sequence arranged in an anti-parallel manner

(rotational axe symmetry) (Fig. 8).

A
Identical sequence . Identical sequence
Parallel arrangement Different sequence Anti Parallel arrangement
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1 2 53 52 1
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Figure 8. Effect of local symmetry on network features.A. Protein interfaces may be formed by association of do-
mains with identical sequences (left and right pannels) or different sequences (middle pannel). In the former cases,
the two domains maybe aligned in a parallel or antiparallel manner (in register or out register arrangement). The iden-
tical sequences will have an intrinsic symmetry in their amino acid pairing, namely if the residue 1 is in interaction with
the residue 2 then the residue 2 is in interaction with the residue 1. Such symmetrical constraint will produce some
motifs in the network which are not necessarily present in “asymmetrical” interfaces made of domains with two differ-
ent sequences. This is illustrated on a simple network. B. Connected components. Considering a slightly more com-
plex network one can see that the motifs results from the elements of symmetry, a horizontal axial or a rotational axe-
symmetry for a parallel or antiparallel arrangement, respectively. The dotted boxes indicated the connected
components, namely the residues which are connected to each other. One can see the effect of the symmetry on the
total number of connected component. C. Propagation of changes. The effect of a single node modification on the
network, indicated by a M for mutation, is considered. Assuming there is an effect as long as there is a link between
two nodes, the symmetry enables the changes (red link) to propagate within the network. D. The average degree <k>
of the nodes is given for each of the networks.
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Let's now look at the consequences on the network features. The first consequence is a
multiplicity of the number of interactions in interfaces with local symmetry and when the
sequences are identical and therefore an intrinsic increase of the network interconnectedness
(Fig. 8B). As observed for the p53 case, such increase would lead to network sensitivity to
rewiring which in terms of protein may introduce a vulnerability to chain dissociation or chain
reorganization. The second consequence is the decrease of the number of distinct connected
components (Fig. 8B). This again would increase the propagation of changes within the
network upon mutation because the amino acids are not secluded from one another. It is
interesting that local symmetry is enough to improve the communication within the network
without altering significantly the average degree <k>. This means that even without hubs the
protein interfaces become highly connected by long paths. This preliminary analysis suggests
that interfaces made of domains with different sequences might be more resistant to fold
plasticity because of an absence of sequence symmetry. Protein oligomers which undergo a
transition to pathological assemblies (fiber or oligomers) probably have global and local
properties that make them amenable to fold plasticity. How the local properties alter the global
properties remain to be explored.

5. Conclusion

The novel results obtained by graph theory are that the layout of the interactions, called the
network topology, is extremely important for understanding the formation of an interface and
the plasticity of fold and quaternary changes. It is also important to understand that the keys
are not in any hot spot features but are in the residues whose local properties spread enough
global effects to regulate/affect the full-length chain structure. In other words, the formation
of interfaces and the quaternary plasticity lay on the residues that control allosteric transitions,
mechanisms now revisited using propagation measures in networks. This local to global
transition is also investigated by mathematical concepts in the chapter by Laurent Vuillon and
Claire Lesieur.

The take home message of the chapter is to exhibit the usefulness of computational approaches
to efficiently complement experimental approaches and gain insight in protein assembly.
Obviously, future challenges are on understanding how intramolecular and intermolecular
interactions are coordinated and the determinants of allosteric transitions. Graph theory and
networks approaches open new venues to explore such problems and are certainly going to
provide important breakthrough. Briefly, graph theory can help in identifying intramolecular
and intermolecular key interactions as well as in investigating their communication means by
analyzing the topology of the networks, isolating appropriate clusters and determining
propagation route (allostery).

Now, it may be yet too early to grasp what are the network measures most relevant to the
problem of protein assembly and how they can be interpreted in terms of protein’s needs. For
example, proteins and protein interfaces have been described as random networks with
Poisson degree distributions centered to a characteristic average <k> degree [178]. This means
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allnodeshave on average the same number of links (or contacts) and there are no hubs. Proteins
have also been described as single-scale network with exponential degree distribution and no
hubs again [59, 84]. In some case, the random network is attributed to the backbone interactions
while the single-scale network is attributed to the side chain interactions. A network made of
a minimum number of contacts seems rather coherent as proteins probably minimize the
number of links (bonds) per amino acid to reduce the “building” cost in terms of bonds and
the sequence stringency.

Simultaneously, proteins are described as small world because they have small average path
length <I>. Small </> generally indicates that most nodes, namely amino acids, of the network
are within the reach of each other. Such node accessibility would suggest that a single
modification anywhere in the network (ie any mutation in a protein) would easily spread
changes in the whole network, a hazardous situation for a protein and in contradiction with
the fact that protein folds and functions resist most mutations. Small world networks generally
have hubs, highly connected nodes that govern the network communication routes. But
proteins are random or single-scale networks and as such are not expected to have hubs, at
least not hubs with many more links than other nodes. The absence of hubs is good as it reduces
the protein vulnerability to mutation. We have measured <I> from 10 to 19 in protein interfaces
for networks made of about 300 nodes (unpublished). For comparison the world wide web
has similar </>=19, but 800 million nodes. Maybe it just happens that some worlds are smaller
than other.

It is therefore not so simple to deconvoluate the topology of a network with a small average
<I> depending if it is a random, single scale or scale-free (power law degree distribution)
network. Theoretical developments aiming at this understanding are proposed and allow
considering distribution of connected components, distribution of clustering coefficient and
approximation of <I>. Such work will help analyzing the network measures obtained for amino
acid networks [179].

One problem of network is the number of interactions and nodes generated to describe a
protein network and how to discriminate a hierarchy within these set of interactions to
understand the determinant ones. To this goal, one elegant strategy is to experimentally
measure kinetics and affinity to prioritize interactions in networks [180]. Such approaches
would complement MD simulations and help discriminating the good from the bad.
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