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Provisional chapter

Nature and Consequences of the Systemic Inflammatory
Response Induced by Lung Inflammation

Kunihiko Hiraiwa and Stephan F. van Eeden

Additional information is available at the end of the chapter

1. Introduction

Lung inflammation is the basis for the majority of acute and chronic lung conditions. Acute
lung injury (ALI) caused by either communicable (such as infection) or non-communicable
(such as acid aspiration) diseases are characterized by a rapidly induced inflammatory
response in the lung. There are numerous causes for ALI, as the lung is exposed to external
factors either via the airways (infectious agents and environmental pollutants) or via the blood
stream (sepsis, endotoxin, fat) and, when severe, can lead to acute respiratory distress
syndrome (ARDS), a spectrum of lung diseases characterized by a severe inflammatory process
in the lung parenchyma causing diffuse alveolar damage and respiratory failure [1, 2]. This
acute inflammatory response in the lung is strongly associated with a systemic inflammatory
response that may lead to multiple organ dysfunction and is associated with high mortality [3].
Similarly, chronic inflammatory lung conditions such as chronic obstructive pulmonary
disease (COPD), asthma, bronchiectasis and interstitial lung diseases, especially those
associated with collagen vascular disease, have in recent years also been shown to be accom‐
panied by a systemic inflammatory response, albeit different in nature [4-14]. In addition, the
systemic response induced by chronic lung inflammation is also associated with downstream
adverse effects on different organ systems. This chapter will focus on defining the nature and
features of this systemic response as a consequence of lung inflammation and will focus
predominantly on chronic inflammatory lung conditions.

2. Lung conditions associated with a systemic inflammatory response

Numerous lung conditions, especially inflammatory lung conditions, are known to be
associated with a systemic inflammatory response. Although the associations and consequen‐
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ces of the systemic response in acute lung injury and inflammation have been well established
[1, 2, 15], the associations in chronic inflammatory lung conditions are less well known. This
chapter will discuss the current knowledge surrounding inflammatory lung conditions and
their associations with a systemic response.

2.1. Acute lung inflammation

The most recognized causes of acute lung inflammation are those induced either by infection
or by direct or indirect ALI: for example, infections beginning in the lungs frequently transition
into systemic events with hemodynamic effects (shock) and remote organ dysfunction such as
acute kidney injury, which, when severe, may lead to death. Traditionally, the transition of
infection from a localized event to one that is systemic in scope has been termed sepsis and is
characterized by fever, tachycardia, tachypnea and a constellation of other signs and symp‐
toms indicating that the pathogen and the humoral events that accompany the infectious
process, are now systemically distributed. Furthermore, a number of publications suggest that
clinical events such as severe tissue injury and ischemia-reperfusion injury may also activate
the systemic response of the host in a similar manner to sepsis [16, 17]. The recognition of this
common pathophysiologic phenotype of the sepsis syndrome led to the term ‘‘systemic
inflammatory response syndrome’’ or SIRS, characterized by global activation of the inflam‐
matory cascade, with an increase in circulating proinflammatory mediators leading to adverse
downstream effects on numerous organ systems (so called multi-organ dysfunction). As
mentioned, SIRS is an inflammatory response resulting from either local or systemic inflam‐
matory events which may be initiated by either infectious or non-infectious insults [18, 19].

The local acute inflammatory response in the lung is complex and involves activation of the
innate immune response via binding of microbial products or cell injury-associated endoge‐
nous molecules (danger-associated molecular patterns [DAMPs]) to pattern recognition
receptors such as the toll-like receptors on the lung epithelium and alveolar macrophages [20].
Complex autocrine and paracrine inter-relationships exist between cytokines and other
proinflammatory mediators such as endothelial adhesion molecules that both initiate and
amplify the inflammatory response. This is augmented further by the margination and
migration of polymorphonuclear neutrophils (PMNs) and other humoral responses, both
dependent or independent of the cells, such as lipid mediators, proteases, oxidants, growth
factors (such as transforming growth factors [TGFs]), nitric oxide and neuropeptides [21].
Increased permeability of microvascular barriers results in extravascular accumulation of
protein-rich edema fluid in airspaces, a cardinal feature of acute inflammation and a central
pathophysiologic mechanism in ALI/ARDS.

The local inflammatory insult in the lung may exceed the efficiency of the inflammatory
response to effectively contain it, resulting in inflammatory elements of either bacterial cell
products and toxins or cellular alarmins, pathogen-associated molecular patterns (PAMPs)
and other inflammatory elements of the local response to gain systemic access in sufficient
quantity to activate the systemic inflammatory response.

The magnitude of the insult is not the sole determining factor for host failure to contain the
inflammatory response: in some instances, defects in the hosts’ responses may contribute
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significantly. Host defects may be attributed to prior corticosteroid treatment, protein-calorie
malnutrition or even genetic make-up, for example. The systemic response is characterized by
activation of the coagulation cascade, complement proteins and the acute phase response.

Activation of cellular elements of blood such as platelets, granulocytes and mast cells cause
degranulation and release of potent proinflammatory contents systemically, resulting in the
systemic unleashing of otherwise beneficial local effects, leading to significant adverse effects
on multiple extra-pulmonary organs.

2.2. Chronic lung inflammation

Since the 1970’s and 1980’s, the importance and consequences of the systemic response
following acute lung inflammation have been recognized and well described, however, the
systemic inflammatory response in chronic inflammatory lung conditions has only been
recognized within the last ten years. The consequences and significance of this “lower grade”
systemic response has only recently been more clearly defined. The chronic systemic inflam‐
matory response in the lung is characterized by mobilization and activation of inflammatory
cells into the circulation, the production of acute phase proteins and an increase in circulating
inflammatory mediators. Of all the chronic inflammatory lung conditions, the systemic
responses and consequences have been best characterized in COPD.

An integral  component  of  the  systemic  inflammatory response is  the  stimulation of  the
hematopoietic  system,  specifically  the  bone  marrow,  which  results  in  the  release  of
leukocytes and platelets into the circulation. Large population-based studies have shown
that the magnitude of the leukocytic response is a predictor of total mortality, independ‐
ent of smoking [22-24].

Chronic cigarette smoking increases circulating leukocyte numbers [25, 26], including imma‐
ture neutrophils, and results in high levels of myeloperoxidase and α1-antitrypsin, the latter a
natural inhibitor of serine proteases and responsible for alveolar wall damage [27, 28],
suggesting that the systemic response feeds back to the lung and perpetuates the lung
inflammatory response.

The acute phase response is an early and key part of the systemic component of the innate
immune response and C-reactive protein (CRP) is a robust marker of this response. Subjects
with severe airflow obstruction are more likely to have elevated CRP-levels and, in addition,
high CRP levels have been related directly to severity of COPD and the associated systemic
inflammation, independent of cigarette smoking and coronary artery disease [29-32].

Local anti-inflammatory therapy (inhaled corticosteroids) reduces circulating CRP whereas
withdrawal of inhaled corticosteroids results in a significant increase in CRP levels [33],
suggesting that lung inflammation drives the CRP levels in the blood of subjects with COPD.
Moreover, CRP levels increase further during COPD exacerbations when lung inflammation
flares up [33]. The increased circulating levels of CRP in COPD are associated with other
mediators such as IL-6, which is the predominant cytokine regulator of CRP production by
hepatocytes.

Nature and Consequences of the Systemic Inflammatory Response Induced by Lung Inflammation 3



Lastly, subjects with COPD have higher levels of several circulating proinflammatory medi‐
ators such as tumor necrosis factor (TNF)-α and its receptors (TNFR-55 and -75), which are
associated with leukocyte activation and the concomitant weight loss in these subjects [34-39].
Levels of the proinflammatory mediators IL-6 and IL-8 have also been shown to increase
systemically during acute exacerbations of COPD [40, 41] suggesting that exacerbation of lung
inflammation fuels the systemic response.

Chronic obstructive pulmonary disease is predominantly caused when the lung is exposed to
noxious particulate matter and gases from cigarette smoke. Lung inflammation induced by
inhalation of other air pollutants such as particulate matter or PM10, nitric dioxide or ozone
also causes a low grade inflammatory response in the lung. Experimental animal models
exposed to ambient air pollutants [42, 43] and studies in humans [44, 45] have both shown that
the inflammatory response in the lung induced by air pollutants is also associated with
systemic inflammation, suggesting that the systemic response is not specific for cigarette
smoke exposure (Figure 1).

Figure 1. Cytokines in the blood of subject during the Southeast Asia forest fires of 1997. The black bars represent the
concentrations of cytokines in the serum during the haze period and the white bars after the haze cleared. Cytokine
levels were higher during haze compared with after haze. Values are mean ± SEM of all samples with values within the
detection limit of the assay (n = 30 per group).

Similar to lung inflammation caused by inhalation exposure, the systemic response has also
been well documented in other inflammatory lung conditions such as asthma [4-7], suppura‐
tive lung conditions such as bronchiectasis [8, 9], interstitial lung disease (ILD), in particular,
ILD associated with collagen vascular diseases such as lupus erythematosus, rheumatoid
arthritis and scleroderma [10-14]. As stated previously, these chronic inflammatory lung
conditions are associated with increased levels of acute phase proteins such as CRP, stimula‐
tion of the bone marrow with altered circulating leukocyte and platelets and increased
circulating proinflammatory mediators. Extensive studies have been undertaken to identify
potential biomarkers capable of predicting disease severity and prognosis, implying that the

4



systemic response to lung inflammation is an integral part of the disease and has important
implications for disease pathogenesis and prognosis.

3. Lung cells contribute to the systemic inflammatory response induced by
lung inflammation

The cells lining the airways are mainly epithelial cells but also include alveolar macrophages
and both cell types are exposed to the external environment. They are the first responders in
the lung when the lung is exposed to external factors such as cigarette smoke, air pollutants
or infectious agents. These cells are critically important in the processing and neutralization
of inhaled environmental contaminants which include airborne particulate matter (PM),
cigarette smoke, bacteria and viruses, shown in Figure 2. Alveolar macrophages are one of the
most potent producers of inflammatory mediators in the lung. It is known that human alveolar
macrophages exposed to PM10 (EHC-93) [46] are able to phagocytose these particles in vivo [43]
and in vitro [45] and produce, in a dose-dependent manner, an array of mediators such as
IL-1β, IL-6 and TNF-α that are part of the innate immune response. To test the contribution of
the mediators produced by alveolar macrophages to the systemic response, supernatants from
alveolar macrophages, incubated ex vivo with urban PM, were instilled into the lungs of rabbits.
The supernatants produced a systemic bone-marrow stimulation response similar to that
produced by direct deposition of urban PM into the rabbit lung [42, 43]. Analysis of the
supernatants showed that the proinflammatory mediators IL-1β and IL-6, the chemokine
macrophage inflammatory protein (MIP)-1α and granulocyte macrophage colony-stimulating
factor (GM-CSF) are elevated when macrophages are incubated with urban PM [45]. Studies
showing a strong relationship between the quantity of particles phagocytosed by macrophages
in lung tissue and the magnitude of the systemic response, after urban PM exposure (Figure
3), support the notion that the production of inflammatory mediators by alveolar macrophages
is important and suggests that alveolar macrophages are significant contributors to the innate
component of the systemic response following an inflammatory stimulus in the lung

Similar experiments using bronchial epithelial cells showed that, when exposed to urban PM,
cells produce excess GM-CSF, IL-1β, IL-6, TNF-α, IL-8 and leukemia inhibitory factor (LIF) in
a dose-dependent manner [47-49]. Some overlap was evident when comparing mediators
produced by alveolar macrophages with those produced by bronchial epithelial cells after
exposure to similar doses of urban PM, however, some distinct differences in the type and the
magnitude of cytokine production was observed (Figure 4). The relative contributions of
macrophages and epithelial cells in the production of mediators responsible for the systemic
inflammatory response need to be determined. Alveolar macrophages are professional
phagocytes and the magnitude of their cytokine production is significantly higher than
bronchial epithelial cells, after the same level of exposure (Figure 4). These studies suggest that
alveolar macrophages are key effector cells, responsible, at least, for generating the systemic
inflammatory response associated with exposure to air pollution. However, although the
macrophages are more potent producers of proinflammatory mediators expressed per cell
basis, the airspace epithelial cells out-number the alveolar macrophages approximately ten
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PM10 particles
DC PM10 particles

Figure 2. Photomicrographs of ambient particles phagocytosed by alveolar macrophages (A and D) and bronchial epi‐
thelial cells (B and C). A and B: Ambient particles (EHC-93] in alveolar macrophages (A) and both type I and type II
epithelial cells (B) in rabbits exposed to 5 mg EHC-93 twice a week for 4 wks. C: Particles in primary cultures of human
bronchial epithelial cells exposed to EHC-93 [100 µg/ml) for 24h. D: Particles in alveolar macrophages exposed to
EHC-93 [100 µg/ml) for 24 h. The bar represents 10 µm [162].
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Figure 3. Relationship between the fraction of alveolar macrophages (AMs) that phagocytosed PM10 particles and the
transit time of PMNs though the bone marrow. Rabbits were exposed to 5 mg PM10 (EHC-93) twice a week for 4
weeks, and AMs with particles in their cytoplasm were enumerated using quantitative histological methods. Dividing
PMNs in the marrow were labeled with 5-bromo-2-deoxyuridine and the transit time of PMNs through the bone mar‐
row was measured. Faster transit times of PMNs through the marrow were associated with an increased percentage
of AMs with phagocytosed particles (R2 = 0.46, p < 0.05) [162].
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times. Furthermore, the interaction between macrophages and epithelial cells has a synergistic
effect on the production and release of mediators involved in the systemic inflammatory
response [50], therefore alveolar macrophages and airspace epithelial cells both play central
roles in the activation of the innate immune response and the production of inflammatory
mediators involved in the systemic response to lung inflammation.

Figure 4. Cytokines produced by human AMs and bronchial epithelial cells (HBECs) when exposed to 100 µg/mL of
PM10 (EHC-93] for 24 h. Differences between two groups were compared by Mann–Whitney U test. Alveolar macro‐
phages produced significantly more IL-6, IL-1β and GM-CSF than bronchial epithelial cells when exposed to the same
amount of PM10 [162].

The roles of other lung cells such as connective tissue cells (fibroblast, smooth muscle cells),
immune cells (lymphocytes and dendritic cells) and vascular cells (endothelium) in the
systemic response to lung inflammation are less clear. Several studies have documented
increased levels of endothelial specific markers (soluble P, E and L-selectin, intercellular
adhesion molecule [ICAM]-1, vascular cell adhesion molecule [VCAM]-1 and endothelin-1)
present in the circulation during lung inflammation [51-53] but whether these mediators come
directly from the lung or are released secondary to the initial circulating proinflammatory
mediators such as IL-1β and TNF-α, is unclear. Mediators released from connective tissue cells
and immune cells of the adaptive immune responses tend to be more localized in cellular niches
with less of a systemic consequence.

4. Mediators of the systemic inflammatory response induced by lung
inflammation

Lung inflammation has been associated with an array of different circulating cellular or non-
cellular mediators that may differ significantly depending on the type and the character of the
inflammatory response in the lung.

Nature and Consequences of the Systemic Inflammatory Response Induced by Lung Inflammation 7



4.1. Cellular components of the systemic response to lung inflammation

Increased circulating leukocyte counts, specifically granulocyte counts, have been used for
decades as biomarkers of local inflammatory or infectious processes, including lung inflam‐
mation. Large population-based studies showing leukocytosis as a predictor of total mortality,
independent of other risk factors such as cigarette smoking, underline the importance of
increases in circulating leukocytes [23, 54, 55]. Therefore, an integral component of the systemic
response to lung inflammation is the stimulation of the hematopoietic system, specifically the
bone marrow, which results in an increase in circulating leukocytes. In humans, leukocyte
increases caused by bone marrow stimulation can be identified and quantified by an increase
in circulating immature granulocytes (band cells and metamyelocytes) [42], in contrast to
increases in leukocyte counts induced by exercise or other cathecholamine stress that results
largely in demargination of existing intravascular leukocytes [56]. When associated with lung
inflammation, an increase in circulating band cells signifies that signals from the lung have
activated and stimulated the bone marrow to release immature leukocytes. In humans both
acute lung inflammation such as pneumonia [57] and chronic lung inflammation such as
exposure to cigarette smoke or other air pollutants [44] have been shown to increase circulating
band cells counts, implicating a systemic response that stimulates the bone marrow. In
contrast, two separate studies of healthy subjects residing in regions with low particulate air
pollution (such as the South Pole) for prolonged periods, showed that the circulating white
blood cell (WBC) count fell below the normal range shortly after the subjects entered this
pristine environment, remained low for the entire period that they were in this environment,
and then returned to normal levels when they returned to the either the US [58] or Japan [59].
The Japanese study also showed that the fall in circulating leukocytes was associated with a
fall in the number of circulating band cells, indicating a reduction in bone marrow output [59].
These studies suggest that the reductions in circulating WBC and band cell counts are the result
of a reduction in bone marrow stimulation initiated by signals generated in the lung. To more
accurately quantify the bone marrow response to lung inflammation, one group has developed
a method to label precursor cells in the marrow with the thymidine analogue 5’bromo-2-
deoxyuridine (BrdU) [60-62], allowing accurate identification of newly released leukocytes
from the bone marrow and simplifying functional studies. Using this method they demon‐
strated that acute lung inflammation caused by a focal infection [61], as well as chronic lung
inflammation induced by either cigarette smoke or urban air pollutants [27, 42, 63, 64],
stimulate the bone marrow and accelerates the transit times of granulocytes and monocytes
through the marrow, releasing them into the circulating pool of leukocytes. The ability to
follow these labeled cells in the circulation allowed study of cell behavior and functional
capability whereby this group was able to show preferential sequestration of younger PMNs
in the gravity independent lung regions of animals exposed to cigarette smoke [63] and less
efficient migration into inflammatory sites, compared to more mature cells [65, 66]. In vitro
studies support these findings, showing that younger PMNs released from the bone marrow
are less deformable and less chemotactic than mature PMNs already in the circulation [67].

Collectively, these studies have established that the circulating blood contains granulocytes
such as neutrophils of varying ages and functional capabilities and that lung inflammation-
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induced bone marrow stimulation increases the population of younger PMN with a greater
potential to damage tissue (Figure 5). This knowledge may be relevant to the pathogenesis of
acute lung inflammation-induced adverse organ dysfunction in conditions such as sepsis, or
the systemic adverse effects associated with chronic inflammatory lung conditions such as
COPD. The immature leukocytes also tend to preferentially sequester in lung capillaries [65,
67] where they may further damage the lung and fuel lung inflammation, causing a vicious
cycle of lung inflammation leading to systemic inflammation that feeds back, resulting in
further lung inflammation (Figure 5). It is possible that the bone marrow stimulation associated
with both acute and chronic inflammatory lung conditions contributes to the development of
acute lung injury such as in ARDS as well as chronic lung injury promoting centrilobular
emphysema in susceptible subjects.

Bacteria   
PM10

Smoke

IL-8 
TNF    

IL-6 

GM-CSF/G-SCF

IL-8

BONE MARROW

CD18

Alveolar macrophage

Alveolar space

Recruitment

Phagocytosis

Release of cytokines

PMN

Blood vessel

Figure 5. Lung injury induced by immature PMNs. Alveolar macrophages and epithelial cells phagocytose bacteria,
particulate matter or cigarette smoke and induce cytokine production. These cytokines spill over into the circulation
and stimulate the bone marrow to recruit leukocytes. The newly recruited immature PMNs tend to preferentially se‐
quester in lung capillaries where they may be activated and degranulate, further damaging the lung. Lung damage
leads to excess cytokine production which further fuels the systemic inflammation.

4.2. Non-cellular components of systemic response to lung inflammation

Common to  nearly  all  inflammatory  lung  conditions  are  the  production  and  release  of
mediators  of  the  innate  immune  response.  These  circulating  mediators,  specifically  the
“acute response” cytokines IL-1β, IL-6 and TNF-α, activate the acute-phase response [68],
by stimulating the liver to produce acute phase proteins, such as fibrinogen, that increas‐
es  blood  coagulability,  which  is  a  major  risk  factor  for  acute  cardiovascular  events  in
susceptible individuals [69]. Another acute-phase protein, CRP, is strongly associated with
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inflammation in general but, in epidemiological studies, has also been correlated with the
extent  of  atherosclerosis  and  heart  disease  [29,  70].  C-reactive  protein  has  become  the
hallmark biomarker indicative of the extent and severity of cardiovascular disease [71-73]
as well as many other systemic inflammatory conditions, for example auto-immune collagen
vascular diseases such as rheumatoid arthritis and lupus erythematosus. The acute response
is a specific, well-orchestrated sequence of events, characterized by an early release of the
“alarm” cytokines IL-1β and TNF-α, followed by a second wave of cytokines (IL-8, IL-6,
monocyte  chemotactic  protein  [MCP]-1  and  MIP-1α  )  and  growth  factors  such  as  GM-
CSF  and  G-CSF.  The  second  wave  of  cytokines  produced  in  the  lung  is  of  particular
importance  in  inducing  the  systemic  inflammatory  response.  Granulocyte  macrophage
colony-stimulating factor is a hematopoietic growth factor that stimulates granulocyte and
monocyte differentiation and release from the bone marrow, activates  circulating leuko‐
cytes such as neutrophils  and prolongs leukocyte survival  in the circulation and tissues
[74].  In addition,  GM-CSF has also recently been identified as an important granulocyte
deganulation factor that may enhance tissue damage induced by granulocytes [75]. One of
the “acute response” cytokines that induces cytokine production by many cells  is  IL-1β,
which is  known to stimulate  hematopoiesis,  activate  endothelial  cells,  induce the acute-
phase  response  and is  pyrogenic  [76].  Similarly,  IL-6  stimulates  hepatocytes  to  produce
acute phase proteins, including CRP, fibrinogen and antiproteases [77], stimulates hemato‐
poiesis, specifically the production of platelets and has a broad stimulating effect on B- and
T-cells. In addition, IL-6 activates the bone marrow, accelerates the transit time of granulo‐
cytes through the bone marrow promotes their release into the circulation and increases
their sequestration in microvascular beds [78]. All the acute-phase response cytokines are
proinflammatory  in  nature  and suppress  the  production  of  anti-inflammatory  cytokines
such as IL-10, in fact, low circulating levels of this cytokine have been associated with a
poor outcome in sepsis [79, 80]. Collectively, the acute response cytokines have the ability
to  elicit  a  systemic  inflammatory  response  in  response  to  lung  inflammation  that  is
characterized by an increase in circulating leukocytes, platelets and pro-inflammatory and
prothrombotic mediators. In addition, cytokines also have the ability to activate circulat‐
ing  leukocytes  and  platelets,  as  well  as  vascular  endothelium,  to  promote  leukocyte–
endothelial adhesion and migration into tissues.

Part of the lung injury or initial stress insult in the lung is the formation and release of
microparticles  (MP),  which  are  small  vesicles  (0.1–1  mm  in  diameter)  containing  cell
membrane, that are released by a variety of cells types following either activation or an
insult such as oxidative stress [81]. Platelets, endothelial cells, leukocytes, erythrocytes and
tumor  cells  are  cell  types  prone  to  MP  shedding.  Microparticles  are  composed  of  cell
membranes, with receptors, enclosing cytosolic components, including enzymes, transcrip‐
tion factors, mRNA and microRNA, all derived from the parent cell. Microparticles contain
signaling elements that may activate receptors on target cells and may also bind to target
cells and transfer part of their contents [82]. Moreover, because MPs circulate, they not only
act on their local environment but also on sites far from their origin, thereby serving as a
cell-to-cell  communication  network.  Microparticles  are  known  to  affect  inflammation,
coagulation,  endothelial  function,  cell  survival,  and  intercellular  communication  [81].

10



Moreover,  they  have  been  documented  at  sites  of  inflammation  [83,  84]  and  increased
numbers of circulating MPs have been reported in systemic diseases such as autoimmune
collagen  vascular  disorders,  atherosclerosis,  hypercoagulability  states,  disseminating
malignancies  and  infection,  among  others  [85,  86].  Circulating  endothelial  MPs  are
associated  with  activated,  damaged  or  stressed  endothelial  cells  and  are  biomarkers  of
vascular injury. Microparticles may also remotely induce endothelial dysfunction by altering
the intracellular production of vasorelaxing molecules such as nitric oxide and contribu‐
ting to the recruitment of leukocytes at the remote site [81, 87, 88]. Recently, MPs have been
shown to increase during inflammatory lung conditions such as COPD [89] and increase
further  during  acute  COPD  exacerbations  [90].  Furthermore,  subjects  with  autoimmune
collagen  vascular  disorders  with  lung  involvement  have  increased  levels  of  circulating
endothelial MPs [91], suggesting that MPs are not just useful biomarkers of lung inflamma‐
tion, but may play a critically important role in the pathogenesis of the downstream adverse
effects that lung inflammation appears to have on distant organs.

5. Mechanisms of lung inflammation-induced systemic inflammation

Several mechanisms have been postulated to explain the association of lung inflammation
with  the  systemic  inflammatory  response  (Figure  6).  The  hypothesis  with  the  most
supporting experimental evidence postulates that inflammatory mediators generated in lung
tissue translocate into the circulation. As the lung receives substantial cardiac output, it is
reasonable to suppose that small molecules may translocate from lung tissue to the blood
stream,  following a  natural  gradient,  a  process  that  may be  augmented by increases  in
capillary permeability which often accompanies the lung inflammatory process. It has been
suggested that a gradient of the acute proinflammatory mediator, elastase, and its natural
inhibitor, α1-anti-trypsin, forms across the lung during acute neutrophilic lung inflamma‐
tion [92] and “spills over” into the systemic circulation. Recent studies from another group
has confirmed these findings in experimental models of acute (lipopolysaccharides [LPS]-
induced)  and chronic  (air  pollution-induced)  lung inflammation [93,  94],  supporting the
hypothesis that the lung per se  contribute directly to the systemic inflammatory response
associated with lung inflammation.

There is also some evidence indicating that triggers of lung inflammation, such as ultrafine
particulate matter, LPS and other bacterial toxins, translocate from the airspaces to the
bloodstream [84, 95-97], either directly contributing to the systemic response or stimulating
circulating immune cells such as monocytes to produce proinflammatory mediators that
contribute to the systemic response. Collectively, there is ample evidence that small molecules
or particles have the ability to directly translocate from the lung into the blood stream,
generating a systemic inflammatory response. This is a particularly important mechanism if
vascular permeability is compromised during the lung inflammatory response because it will
accelerate the systemic inflammatory response caused by lung inflammation.

Nature and Consequences of the Systemic Inflammatory Response Induced by Lung Inflammation 11



5.1. Feedback of downstream effects of the systemic response to acute lung inflammation

Bacterial or viral lung infections are common causes of acute lung inflammation that lead to
ALI/ARDS [1]. During the past decade, novel and highly virulent respiratory viruses such as
the Severe Acute Respiratory Syndrome Coronavirus (SARS CoV) and highly pathogenic
strains of influenza viruses have emerged as important causes of excessive lung damage in
infected humans. Acute lung injury and associated inflammation frequently have systemic
manifestations, coined the “systemic inflammatory response syndrome (SIRS)”. Many patients
with refractory ALI/ARDS succumb to multiple organ failure (MOF) rather than respiratory
failure, underlining the importance of the systemic response to lung injury. Many studies have
been undertaken to investigate the cellular or molecular mechanisms of acute lung injury-
induced systemic manifestations [1, 2, 15]. The deterioration from ALI/ARDS to MOF involves
many steps, including the activation of multiple inflammatory pathways, increased expression
of chemoattractants which results in endothelial changes and the release of proinflammatory
cytokines such as IL-1β, IL-6 and TNF-α, margination and migration of neutrophils as well as
systemic activation of monocytes, all contributing to diffuse microvascular injury which is
thought to lead to multi-organ injury and eventual failure [98]. Currently it is thought that the
pivotal injury occurs to the vascular endothelium, leading to increased vascular permeability,
which is then followed by translocation of inflammatory mediators and activated leukocytes
into organ tissue resulting in organ inflammation and, finally, dysfunction. Organs particular

Figure 6. Impact of pulmonary inflammation on distant organ systems. Inflammatory mediators generated in the lung
“spill over” into the circulation, activating the liver to release acute-phase proteins and the bone marrow to release
leukocytes and platelets. Together, these circulating effector proteins and cells promote vascular disease and may pre‐
cipitate acute vascular events. Systemic inflammation also enhances lung inflammation by promoting the recruitment
of immune cells into lung tissues.

12



vulnerable to microvascular dysfunction are the kidney, liver, brain and the gastrointestinal
system. Containing the lung inflammatory response is critically important in order to inhibit
progression to a systemic inflammatory response fueled by the vicious cycle of increased
cytokine production and cellular damage, underlining the importance of lung inflammation
as the primary “driver” for the downstream multiple organ dysfunction.

5.2. Chronic lung inflammation and vascular dysfunction

Circulating cytokines produced in the lung activate the vascular endothelium and this
activation is associated with increased expression of several adhesion proteins such as ICAM-1,
VCAM-1 and E-selectin. Both soluble ICAM-1 and VCAM-1 are upregulated in circulating
blood during chronic inflammation and are correlated with increased disease in coronary and
carotid arteries in humans. Support of these observations comes from animal models that have
shown instillation of atmospheric particles into the lungs of rabbits [99] and mice [100] results
in development of atherosclerosis, followed by rapid progression of the atherosclerotic process
over the surface of the aorta with concomitant destabilization of existing atherosclerotic
plaques (Figure 7). Furthermore, particulate deposition in murine lungs is associated with
upregulation of both ICAM-1 and VCAM-1 on the endothelium overlying the atherosclerotic
plaques [101]. In addition, the number of particle-phagocytosing alveolar macrophages shows
a strong positive association with the extent of atherosclerosis (Figure 8), as well as with
markers of systemic inflammation such as CRP [102]. These studies demonstrate that lung
inflammation stimulates alveolar macrophages, increases circulating markers of inflamma‐
tion, increases endothelial activation and dysfunction and suggests a cause and effect rela‐
tionship between lung inflammation and the development and progression of vascular
diseases such as atherosclerosis.
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Figure 7. The severity of atherosclerotic lesions in the aorta. Results shown in rabbits exposed to PM10 for four weeks
(n = 10) or saline (controls; n = 6). The classification is based on the guidelines of the American Heart Association
(AHA) [163, 164]. PM10 exposure was associated with progression to more advanced phenotypes of atherosclerosis
compared with the control group.
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5.3. Systemic inflammation in COPD

Numerous studies have established that COPD is associated with a low-grade systemic
inflammatory response, which has been implicated in the pathogenesis of the majority of the
systemic effects associated with COPD, including muscle weakness, weight loss, cardiovas‐
cular disease, depression, diabetes and osteoporosis [103]. Patients with stable COPD have
increased numbers of circulating leukocytes, increased levels of acute phase response proteins
(CRP and fibrinogen) and increased cytokine levels (IL-6 and TNF-α) [104] that increase further
with acute exacerbations [105, 106].

Chronic obstructive pulmonary disease is a chronic inflammatory condition of the airways
and lung parenchyma caused predominantly by the inhalation of toxic particles and noxious
gasses, with cigarette smoking contributing to the bulk of the disease burden. There is a strong
association between cardiovascular disease and COPD morbidity and mortality. Cardiovas‐
cular events are the predominant reason for hospitalizations (morbidity) and a leading cause
of mortality in subjects with mild and moderate COPD [107]. Furthermore, epidemiological
studies have shown that compromised lung function (FEV1) in subjects with COPD is
associated with cardiovascular morbidity and mortality, even after controlling for smoking
history [107], suggesting that the inflammatory response in the lung which causes the reduced
lung function also impacts the vasculature. The mechanisms of COPD-induced cardiovascular
disease are still unclear, however, animals models of cigarette exposure or exposure to ambient
particulate matter suggest that the systemic response induced by these inhalation stimuli
causes vascular dysfunction that may promote the development and progression of athero‐
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Figure 8. The correlation between the percentage of alveolar macrophages that phagocytosed particles in the lung
and the vol/vol (volume fraction) of atherosclerotic lesions in the left main coronary artery (LMCA) and right coronary
artery (RCA). Results shown in rabbits exposed to PM10 for four weeks (solid circles; n = 10) or saline (controls; open
circles; n = 6). The volume fraction (vol/vol) of atherosclerosis was determined by point counting the sections. The cor‐
relation between variables were examined by the Spearman rank correlation test (r = 0.53, p < 0.05) [99].
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sclerotic vascular disease [99-102]. Activation of coronary vasculature by the systemic response
to COPD lung inflammation also impacts other vascular beds such as the cerebral vascular
bed. Circulating inflammatory mediators such as IL-1β, IL-6, TNF-α, α1-antichymotrypsin and
TNFR1 are associated with cognitive decline, either through a direct neurotoxic effect or
through cerebral atherosclerosis effects [108, 109]. Figure 9 highlights potential pathways of
blood vessel activation due to systemic inflammation in COPD that results in endothelial
dysfunction and destabilization of atherosclerotic plaques, possibly leading to vascular events
such as acute coronary syndrome and stroke.

Figure 9. Impact of lung injury on blood vessels. Circulating mediators such as IL-6 induce the release of CRP and fibri‐
nogen from the liver. In addition, IL-6 and GM-CSF stimulate the bone marrow to release leukocytes and platelets,
while TNF-α and IL-1β activate vascular endothelial cells and upregulate endothelial ICAM-1 and VCAM-1, thereby
promoting the recruitment of monocytes into blood vessel walls. Activation of endothelial cells also increases endo‐
thelial permeability, promotes uptake of oxidized low-density lipoproteins (oxLDL) into vessel walls, promotes the re‐
lease of endothelin-1 (ET-1) and decreases availability of nitric oxide (NO). Together, these changes in blood vessel
walls lead to endothelial dysfunction and promote vulnerability of atherosclerotic plaques to rupture, possibly leading
to acute cardiac events or strokes.

Cachexia and muscle wasting are hallmarks of COPD, especially in subjects with severe disease
and, currently, the mechanisms underlying these downstream effects of COPD are a topic of
active investigation. In COPD subjects, skeletal muscle shows increased apoptosis, increased
oxidative stress and increased inflammatory cell infiltration [110, 111], suggesting that
inflammatory processes play a role in the physiologic changes seen in skeletal muscles of
COPD subjects. Furthermore, the underlying inflammatory and oxidative processes in the
lungs, in addition to the downstream proinflammatory systemic responses, shifts the hormo‐
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nal balance towards catabolism, reducing testosterone levels and increasing catecholamine
synthesis, especially in the severe stages of the disease (FEV1<30%) [112]. It is reasonable to
postulate that the systemic inflammatory response associated with COPD lung inflammation
contributes to the skeletal muscle inflammation and concomitant muscle wasting seen in
COPD.

Both diabetes mellitus type2 and osteoporosis are associated with COPD, especially in subjects
with greater disease severity [113-115]. The mechanisms underlying the former two diseases
are complex but a postulated mechanisms linking them with COPD is the presence of elevated
circulating levels of proinflammatory mediators such as IL-1β, IL-6 and TNF-α. Therefore it
seems reasonable to postulate that the systemic response in COPD may either aggravate or
enhance the development of osteoporosis and diabetes, to a certain extent.

5.4. Systemic inflammation in other inflammatory lung conditions

Asthma is predominantly an inflammatory condition of the airways, however a systemic
inflammatory response has also been well documented, evidenced by an increase in circulating
proinflammatory cytokines such as IL-6 and TNF-α that stimulate hepatic production of acute-
phase proteins such as CRP, as well as an increase in immune cells such as neutrophils and
eosinophils [4, 116]. Circulating TNF-α and IL-6 levels are further elevated during asthma
exacerbation [117, 118]. Downstream consequences of this systemic response are less well
studied and are insufficiently understood, therefore require further investigation. Similarly,
interstitial lung disease and fibrosis are a large group of inflammatory lung conditions that
include chronic hypersensitivity pneumonitis, sarcoidosis, drug-induced lung disease, lung
disease associated with collagen vascular disease, idiopathic pulmonary fibrosis (IPF) and
more. Many of these lung conditions are associated with increased circulating levels of pro-
inflammatory mediators such as IL-1β, IL-6, TNF-α, TGF-β and platelet-derived growth factor
(PDGF) [119, 120]. In conditions that exclusively involve the lung such as hypersensitivity
pneumonitis and IPF, translocation of these mediators from the lung into the circulation may
be responsible for the measured systemic response, however the effect of these mediators on
other organ systems are unclear and require further study.

5.5. Effect of the systemic inflammatory response on lung inflammation

It is well known that non-pulmonary disorders (for example sepsis, trauma, massive transfu‐
sion, drug overdose, pancreatitis) cause lung injury and inflammation. “Crosstalk” between
lungs and distal organs is an emerging, interesting and clinically relevant field [121, 122]. A
complex network of cytokines, as well as proinflammatory chemokines such as CXCL1, from
distant organs can initiate and amplify the lung injury [123, 124]. Many of the mediators
involved in the systemic response have the ability to both damage lungs directly and stimulate
the bone marrow to release leukocytes into the circulation. In addition, leukocytes that may
have been sequestered in the lung could be released, potentially causing additional lung injury
[125, 126]. These newly released leukocytes, specifically granulocytes such as neutrophils, have
been shown to be preferentially sequestered in the pulmonary capillary bed where, if activated,
they may contribute to further lung injury and damage [65, 66].
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Patients afflicted with lung injury more commonly than not encounter more than ‘one-hit’
modulating the immunological response to injury by increasing duration and amplitude of
the inflammatory response [127]. In animal models, the traditional “single-hit” model is no
longer considered a good approximation of human ALI/ARDS, whereas a “two-hit” model
has been shown to increase the inflammatory response in the lung [127-130]. This “priming”
phenomenon may be pivotal in subjects with chronic lung inflammation, such as COPD, where
the systemic inflammatory response induced by the chronic lung inflammation may feed-back,
aggravating the lung inflammatory response. This vicious cycle of inflammation promoting
further inflammation may be the reason why subjects with COPD still have active lung
inflammation many years after they have stopped smoking [131]. This phenomenon is also
seen in patients with asthma, where, even years after cessation of exposure, patients with
Western red cedar-initiated asthma have persistent airflow obstruction [132]. In this study,
higher impairment was associated with serum IFN-γ (Figure 10), which supports the hypoth‐
esis of a vicious cycle of inflammation with crosstalk between the lung and systemic inflam‐
matory responses.
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Figure 10. Serum interferon-gamma, stratified by higher (2/3) versus lower (0/1) respiratory impairment (IC  =  impair‐
ment class). The blood samples were collected from 40 non-smoking male at a mean interval of 25 years from cedar
asthma diagnosis and 17 years from last cedar exposure. The respiratory impairment class was defined by ATS guide‐
lines [165]. Asthma-related respiratory impairment was associated with higher interferon-gamma levels in serum
(average 1.32 pg/ml for IC2/3 versus average 0.62 pg/ml for IC0/1; p = 0.04) [132].
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6. Therapeutic alterations of lung inflammation-induced systemic
responses

The mediators of systemic responses to lung inflammation are clinically useful tools with which
to grade the severity of lung inflammation or to use as biomarkers for following the progres‐
sion of the disease. Neutralization of these mediators using effector molecules termed “immu‐
noresolvents” may prove useful in attenuating the downstream consequences of the systemic
inflammatory response. Potential advantages of immunoresolvents lie in the possibilities of
both attenuating leukocyte activation and decreasing recruitment into tissues, thereby reducing
organ damage. However, in a study with more than 10,000 patients with sepsis, anti-inflamma‐
tory agents designed to inhibit specific host mediators, for example anti-TNF antibodies and
IL-1 receptor antagonists, failed to show benefit, despite promising preclinical testing [133].
Similarly, another multicenter, randomized, double-blind study in patients with moderate to
severe COPD showed that infliximab (anti-TNF-α monoclonal antibody) had no therapeutic
benefit  in reducing acute exacerbation of  COPD [134].  Although many proinflammatory
neutralizing therapies have the potential to be useful, they also evoke some unwanted effects,
for example, TNF-specific antibody therapy reduces TNF-α concentrations but is also associat‐
ed with increased susceptibility to infections and malignancies [134]. Clearly, immunosuppres‐
sion is a critical drawback to some treatments and new therapeutics targeting resolution of
inflammation would be required to circumvent this side effect.

The anti-inflammatory cytokine IL-10 balances the proinflammatory response and serves to
limit and terminate the cascade of proinflammatory cytokines. Research shows that treatment
with IL-10 reduces neutrophil and leukocyte recruitment and decreases proinflammatory
cytokine-production in lung inflammation [135-138], underlining the importance of balancing
the acute inflammatory response and suggesting that treatment using a combination of
different therapeutic agents to alter outcome in the systemic inflammatory milieu may be more
successful.

Recently several classes of pro-resolving mediators have been identified, including resolvins,
protectins and maresins [139]. These specialized lipid mediators are derived via enzymatic
processing from dietary omega-3 polyunsaturated fatty acids and have anti-inflammatory
activity in lung inflammation [140, 141].

Originally designed to lower cholesterol, the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase class of drugs, also called “statins”, are recognized as anti-inflammatory agents
[142]. Experimental observations suggest that these agents have pleiotropic anti-inflammatory
properties in vitro including the inhibition of isoprenoid synthesis, which leads to the inhibition
of small proinflammatory signaling GTPases such as Rho, Rac and Cdc42 [143, 144]. Animal
studies have demonstrated that statins attenuate lung injury in ischemia-reperfusion, perito‐
nitis and aerosolized LPS models [145-147]. In addition, statins downregulate the PM10-
induced overactive bone marrow by attenuating systemic inflammatory responses such as the
recruitment and activation of alveolar macrophages and polymorphonuclear leukocytes, as
well as reducing local proinflammatory cytokine production and promoting the clearance of
PM10 particles from lung tissues to regional lymph nodes [148, 149].
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Several observational studies suggest that statins may represent a useful therapeutic adjunc‐
tive modality for ALI/ARDS: a benefit of prior statin use was found in patients with pneumonia
[150-152]. Similarly, other studies showed a reduction in the frequency of COPD exacerbations,
hospitalization, and mortality after statin therapy, which may be a result of a direct effect on
lung inflammation, an impact on the systemic consequences of COPD, or both [153-161]. These
studies indicate that statins are effective in decreasing lung and systemic inflammation in
humans in vivo.

7. Conclusion

A systemic response is a hallmark of both acute and chronic lung inflammatory conditions.
The nature and magnitude of this systemic response differs depending on the nature and
magnitude of the inflammatory response in the lung. Mediators generated in the lung as part
of the lung inflammatory response, translocate to the systemic circulation, contributing to the
systemic response. This systemic response has significant downstream adverse consequences
on distant organs suggesting it is as an important therapeutic target. Therapeutic tools to
modify and alter the systemic response induced by lung conditions, are still lacking and need
further study.
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