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We prove a necessary condition for a dynamic integrodifferential equation to be an Euler-Lagrange equation. New and interesting
results for the discrete and quantum calculus are obtained as particular cases. An example of a second order dynamic equation,
which is not an Euler-Lagrange equation on an arbitrary time scale, is given.

1. Introduction

The time-scale calculus is a unification of the theories of
difference and differential equations, unifying integral and
differential calculus with the calculus of finite differences and
offering a formalism for studying hybrid discrete-continuous
dynamical systems [1, 2]. It has applications in any field that
requires simultaneous modeling of discrete and continuous
data [3–5].

The study of optimal control problems on arbitrary time
scales is a subject under strong current research [6, 7]. This
is particularly true for the particular, but rich, case of the cal-
culus of variations on time scales [8–10]. Compared with the
direct problem, that establishes dynamic equations of Euler-
Lagrange type to the time-scale variational problems, the
inverse problem has not yet been studied in the framework
of time scales. It turns out that there is a simple explanation
for the absence of such an inverse general theory for the
time-scale variational calculus: the classical approach relies
on the use of the chain rule, which is not valid in the general
context of time scales [2]. To address the problem, a different
approach to the subject is needed.

In this paper we introduce a completely different
approach to the inverse problem of the calculus of varia-
tions, using an integral perspective instead of the classical
differential point of view [11, 12]. The differential form of

equations is often related to dynamics via the time derivative.
The integral form has proved to be successful for proving
the existence and uniqueness of solutions, to study analytical
properties of solutions, and to prove coherence of variational
embeddings [13]. Here we show its usefulness with respect to
the inverse problem of the calculus of variations. We prove
a necessary condition for an integrodifferential equation on
an arbitrary time scale T to be an Euler-Lagrange equation,
related to a property of self-adjointness (Definition 12) of the
equation of variation (Definition 13) of the given dynamic
integrodifferential equation.

The text is organized as follows. Section 2 provides all
the necessary definitions and results of the delta calculus
on time scales, which will be used throughout the text. The
main results are proved in Section 3. We present a suffi- cient
condition of self-adjointness for an integrodifferential equa-
tion (Lemma 15). Using this property, we prove a necessary
condition for a general (nonclassical) inverse problem of the
calculus of variations on an arbitrary time scale (Theorem 16).
As a result, we obtain a useful tool to identify integrodif-
ferential equations which are not Euler-Lagrange equations
(Remark 17). To illustrate the method, we give a second order
dynamic equation on time scales which is not an Euler-
Lagrange equation (Example 19). Next we apply Theorem 16
to the particular cases of time scales T ∈ {R, ℎZ, 𝑞Z}, ℎ > 0,
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𝑞 > 1 (Corollaries 20, 21, and 22). In Section 4 some final
remarks are presented. We begin by proving the equivalence
between an integrodifferential equation and a second order
dynamic equation (Proposition 23). Then we show that, due
to lack of a chain rule on an arbitrary time scale, it is
impossible to obtain an equivalence between equations of
variation in integral and differential forms.This is in contrast
with the classical case T = R, where such equivalence holds
(Proposition 24).

2. Preliminaries

In this section we introduce basic definitions and theorems
that will be useful in the sequel. For more results concerning
the theory of time scales we refer the reader to the books [2,
4].

Definition 1 (e.g., Section 2.1 of [14]). A time scale T is an
arbitrary nonempty closed subset of R. Given a time scale
T , the forward jump operator 𝜎 : T → T is defined by
𝜎(𝑡) := inf{𝑠 ∈ T : 𝑠 > 𝑡} for 𝑡 ̸= sup T and 𝜎(sup T) :=

sup T if sup T < +∞. Similarly, the backward jump operator
𝜌 : T → T is defined by 𝜌(𝑡) := sup{𝑠 ∈ T : 𝑠 < 𝑡} for
𝑡 ̸= inf T and 𝜌(inf T) = inf T if inf T > −∞.

A point 𝑡 ∈ T is called right-dense, right-scattered, left-
dense, or left-scattered if 𝜎(𝑡) = 𝑡, 𝜎(𝑡) > 𝑡, 𝜌(𝑡) = 𝑡, and
𝜌(𝑡) < 𝑡, respectively. The forward graininess function 𝜇 :

T → [0,∞) is defined by 𝜇(𝑡) := 𝜎(𝑡) − 𝑡. To simplify the
notation, one usually uses 𝑓𝜎(𝑡) := 𝑓(𝜎(𝑡)).

The delta derivative is defined for points from the set

T
𝜅

:= {

T \ {sup T} if 𝜌 (sup T) < sup T < ∞,

T otherwise.
(1)

Definition 2 (Section 1.1 of [2]). Let 𝑓 : T → R and 𝑡 ∈ T𝜅.
One defines 𝑓Δ(𝑡) to be the number (provided it exists) with
the property that, given any 𝜀 > 0, there is a neighborhood𝑈

of 𝑡 such that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝜎

(𝑡) − 𝑓 (𝑠) − 𝑓
Δ

(𝑡) (𝜎 (𝑡) − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜀 |𝜎 (𝑡) − 𝑠| ∀𝑠 ∈ 𝑈.

(2)

We call 𝑓Δ(𝑡) the delta derivative of 𝑓 at 𝑡. Function𝑓 is delta
differentiable on T𝜅 provided𝑓Δ(𝑡) exists for all 𝑡 ∈ T𝜅.Then,
𝑓
Δ

: T𝜅 → R is called the delta derivative of 𝑓 on T𝜅.

Theorem 3 (Theorem 1.16 of [2]). Let 𝑓 : T → R and 𝑡 ∈ T𝜅.
If 𝑓 is continuous at 𝑡 and 𝑡 is right-scattered, then 𝑓 is delta
differentiable at 𝑡 with

𝑓
Δ

(𝑡) =

𝑓
𝜎

(𝑡) − 𝑓 (𝑡)

𝜇 (𝑡)

. (3)

Theorem 4 (Theorem 1.20 of [2]). Let 𝑓, 𝑔 : T → R be delta
differentiable at 𝑡 ∈ T𝜅. Then,

(1) the sum 𝑓+𝑔 : T → R is delta differentiable at 𝑡 with

(𝑓 + 𝑔)
Δ

(𝑡) = 𝑓
Δ

(𝑡) + 𝑔
Δ

(𝑡) ; (4)

(2) for any real constant 𝛼, 𝛼𝑓 : T → R is delta diff-
erentiable at 𝑡 with

(𝛼𝑓)
Δ

(𝑡) = 𝛼𝑓
Δ

(𝑡) ; (5)

(3) the product𝑓𝑔 : T → R is delta differentiable at 𝑡with

(𝑓𝑔)
Δ

(𝑡) = 𝑓
Δ

(𝑡) 𝑔 (𝑡) + 𝑓
𝜎

(𝑡) 𝑔
Δ

(𝑡)

= 𝑓 (𝑡) 𝑔
Δ

(𝑡) + 𝑓
Δ

(𝑡) 𝑔
𝜎

(𝑡) .

(6)

Theorem 5 (Theorem 1.16 of [2]). If𝑓 : T → R is a delta diff-
erentiable function at 𝑡, 𝑡 ∈ T𝜅, then

𝑓
𝜎

(𝑡) = 𝑓 (𝑡) + 𝜇 (𝑡) 𝑓
Δ

(𝑡) . (7)

Definition 6 (Definition 1.58 of [2]). A function𝑓 : T → R is
called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at all left-
dense points in T .

The set of all rd-continuous functions 𝑓 : T → R is
denoted by 𝐶rd = 𝐶rd(T) = 𝐶rd(T ,R). The set of functions
𝑓 : T → R that are delta differentiable and whose derivative
is rd-continuous is denoted by 𝐶1rd = 𝐶

1

rd(T) = 𝐶
1

rd(T ,R).

Definition 7 (Definition 1.71 of [2]). A function 𝐹 : T → R is
called an antiderivative of 𝑓 : T → R provided 𝐹

Δ

(𝑡) = 𝑓(𝑡)

for all 𝑡 ∈ T𝜅.

Definition 8. Let T be a time scale and 𝑎, 𝑏 ∈ T . If 𝑓 :

T𝜅 → R is a rd-continuous function and 𝐹 : T → R is
an antiderivative of 𝑓, then the delta integral is defined by

∫

𝑏

𝑎

𝑓 (𝑡) Δ𝑡 := 𝐹 (𝑏) − 𝐹 (𝑎) . (8)

Theorem 9 (Theorem 1.74 of [2]). Every rd-continuous func-
tion 𝑓 has an antiderivative 𝐹. In particular, if 𝑡

0
∈ T , then 𝐹

defined by

𝐹 (𝑡) := ∫

𝑡

𝑡0

𝑓 (𝜏) Δ𝜏, 𝑡 ∈ T , (9)

is an antiderivative of 𝑓.

Example 10. Let 𝑎, 𝑏 ∈ T and 𝑓 : T → R be rd-continuous.
If T = R, then

∫

𝑏

𝑎

𝑓 (𝑡) Δ𝑡 = ∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡, (10)

where the integral on the right side is the usual Riemann
integral. If T = ℎZ, ℎ > 0, then

∫

𝑏

𝑎

𝑓 (𝑡) Δ𝑡 =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

(𝑏/ℎ)−1

∑

𝑘=𝑎/ℎ

𝑓 (𝑘ℎ) ℎ, if 𝑎 < 𝑏,

0, if 𝑎 = 𝑏,

−

(𝑎/ℎ)−1

∑

𝑘=(𝑏/ℎ)

𝑓 (𝑘ℎ) ℎ, if 𝑎 > 𝑏.

(11)
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If T = 𝑞
Z, 𝑞 > 1, and 𝑎 < 𝑏, then

∫

𝑏

𝑎

𝑓 (𝑡) Δ𝑡 = (𝑞 − 1) ∑

𝑡∈[𝑎,𝑏)∩T

𝑡𝑓 (𝑡) . (12)

Theorem 11 (Theorem 1.77 of [2]). If 𝑎, 𝑏, 𝑐 ∈ T , 𝛼 ∈ R, and
𝑓, 𝑔 ∈ 𝐶

𝑟𝑑
(T), then

(1) ∫𝑏
𝑎

[𝑓(𝑡) + 𝑔(𝑡)]Δ𝑡 = ∫

𝑏

𝑎

𝑓(𝑡)Δ𝑡 + ∫

𝑏

𝑎

𝑔(𝑡)Δ𝑡;

(2) ∫𝑏
𝑎

(𝛼𝑓)(𝑡)Δ𝑡 = 𝛼 ∫

𝑏

𝑎

𝑓(𝑡)Δ𝑡;

(3) ∫𝑏
𝑎

𝑓(𝑡)𝑔
Δ

(𝑡)Δ𝑡 = (𝑓𝑔)(𝑏)−(𝑓𝑔)(𝑎)−∫

𝑏

𝑎

𝑓
Δ

(𝑡)𝑔
𝜎

(𝑡)Δ𝑡;

(4) ∫𝑏
𝑎

𝑓
𝜎

(𝑡)𝑔
Δ

(𝑡)Δ𝑡 = (𝑓𝑔)(𝑏)−(𝑓𝑔)(𝑎)−∫

𝑏

𝑎

𝑓
Δ

(𝑡)𝑔(𝑡)Δ𝑡.

For more properties of the delta derivative and delta
integral we refer the reader to [2, 4].

3. Main Results

Ourmain result (Theorem 16) provides a necessary condition
for an integrodifferential equation on an arbitrary time scale
to be an Euler-Lagrange equation. For that the notions of
self-adjointness (Definition 12) and equation of variation
(Definition 13) are essential. These definitions, in integrodif-
ferential form, are new (cf. the notion of self-adjointness for
a dynamic time-scale equation of second order in [2, Section
4.1] and the notion of equation of variation for a second order
differential equation in [12]).

Definition 12 (first order self-adjoint integrodifferential equa-
tion). A first order integrodifferential dynamic equation is
said to be self-adjoint if it has the form

𝐿𝑢 (𝑡) = const,

where 𝐿𝑢 (𝑡) = 𝑝 (𝑡) 𝑢
Δ

(𝑡) + ∫

𝑡

𝑡0

[𝑞 (𝑠) 𝑢
𝜎

(𝑠)] Δ𝑠,

(13)

with 𝑝, 𝑞 ∈ 𝐶rd, 𝑝 ̸= 0 for all 𝑡 ∈ T , and 𝑡
0
∈ T .

Let D be the set of all functions 𝑦 : T → R such that
𝑦
Δ

: T𝜅 → R is continuous. A function 𝑦 ∈ D is said to be
a solution of (13) provided 𝐿𝑦(𝑡) = const holds for all 𝑡 ∈ T𝜅.
Along the text we use the operators [⋅]T and ⟨⋅⟩T defined by

[𝑦]
T
(𝑡) := (𝑡, 𝑦

𝜎

(𝑡) , 𝑦
Δ

(𝑡)) ,

⟨𝑦⟩
T
(𝑡) := (𝑡, 𝑦

𝜎

(𝑡) , 𝑦
Δ

(𝑡) , 𝑦
ΔΔ

(𝑡)) .

(14)

Definition 13 (equation of variation). Let

𝐻[𝑦]
T
(𝑡) + ∫

𝑡

𝑡0

𝐺[𝑦]
T
(𝑠) Δ𝑠 = const (15)

be an integrodifferential equation on time scales with 𝜕
3
𝐻 ̸= 0

and 𝑡 → 𝜕
2
𝐹[𝑦]T (𝑡), 𝑡 → 𝜕

3
F[𝑦]T (𝑡) ∈ 𝐶rd along every curve

𝑦, where𝐹 ∈ {𝐺,𝐻}.The equation of variation associatedwith
(15) is given by

𝜕
2
𝐻[𝑢]T (𝑡) 𝑢

𝜎

(𝑡) + 𝜕
3
𝐻[𝑢]T (𝑡) 𝑢

Δ

(𝑡)

+ ∫

𝑡

𝑡0

𝜕
2
𝐺[𝑢]T (𝑠) 𝑢

𝜎

(𝑠) + 𝜕
3
𝐺[𝑢]T (𝑠) 𝑢

Δ

(𝑠) Δ𝑠 = 0.

(16)

Remark 14. The equation of variation (16) can be interpreted
in the following way. Assuming 𝑦 = 𝑦(𝑡, 𝑏), 𝑏 ∈ R, is a one-
parameter solution of a given integrodifferential equation
(15), then

𝐻(𝑡, 𝑦
𝜎

(𝑡, 𝑏) , 𝑦
Δ

(𝑡, 𝑏))

+ ∫

𝑡

𝑡0

𝐺(𝑠, 𝑦
𝜎

(𝑠, 𝑏) , 𝑦
Δ

(𝑠, 𝑏)) Δ𝑠 = const.
(17)

Let 𝑢(𝑡) be a particular solution; that is, 𝑢(𝑡) = 𝑦(𝑡, 𝑏) for a
certain 𝑏. Differentiating (17) with respect to the parameter 𝑏
and then putting 𝑏 = 𝑏, we obtain (16).

Lemma 15 (sufficient condition of self-adjointness). Let (15)
be a given integrodifferential equation. If

𝜕
2
𝐻[𝑦]

T
(𝑡) + 𝜕

3
𝐺[𝑦]

T
(𝑡) = 0, (18)

then its equation of variation (16) is self-adjoint.

Proof. Let us consider a given equation of variation (16).
Using Theorem 5 and third item of Theorem 11, we expand
the two components of the given equation:

𝜕
2
𝐻[𝑢]T (𝑡) 𝑢

𝜎

(𝑡) = 𝜕
2
𝐻[𝑢]T (𝑡) (𝑢 (𝑡) + 𝜇 (𝑡) 𝑢

Δ

(𝑡)) ,

∫

𝑡

𝑡0

𝜕
3
𝐺[𝑢]T (𝑠) 𝑢

Δ

(𝑠) Δ𝑠

= 𝜕
3
𝐺[𝑢]T (𝑡) 𝑢 (𝑡) − 𝜕

3
𝐺[𝑢]T (𝑡0) 𝑢 (𝑡0)

− ∫

𝑡

𝑡0

[𝜕
3
𝐺[𝑢]T (𝑠)]

Δ

𝑢
𝜎

(𝑠) Δ𝑠.

(19)

Hence, equation of variation (16) can be written in the form

𝜕
3
𝐺[𝑢]T (𝑡0) 𝑢 (𝑡0)

= 𝑢
Δ

(𝑡) [𝜇 (𝑡) 𝜕
2
𝐻[𝑢]T (𝑡) + 𝜕

3
𝐻[𝑢]T (𝑡)]

+ ∫

𝑡

𝑡0

𝑢
𝜎

(𝑠) [𝜕
2
𝐺[𝑢]T (𝑠) − (𝜕

3
𝐺[𝑢]T (𝑠))

Δ

] Δ𝑠

+ 𝑢 (𝑡) (𝜕
2
𝐻[𝑢]T (𝑡) + 𝜕

3
𝐺[𝑢]T (𝑡)) .

(20)

If (18) holds, then (20) is a particular case of (13) with

𝑝 (𝑡) = 𝜇 (𝑡) 𝜕
2
𝐻[𝑢]T (𝑡) + 𝜕

3
𝐻[𝑢]T (𝑡) ,

𝑞 (𝑠) = 𝜕
2
𝐺[𝑢]T (𝑠) − (𝜕

3
𝐺[𝑢]T (𝑠))

Δ

,

𝜕
3
𝐺[𝑢]T (𝑡0) 𝑢 (𝑡0) = const.

(21)

This concludes the proof.
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Theorem 16 (necessary condition for an Euler-Lagrange
equation in integral form). Let T be an arbitrary time scale
and let

𝐻(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) + ∫

𝑡

𝑡0

𝐺(𝑠, 𝑦
𝜎

(s) , 𝑦Δ (𝑠)) Δ𝑠 = 𝑐𝑜𝑛𝑠𝑡

(22)

be a given integrodifferential equation. If (22) is to be an Euler-
Lagrange equation, then its equation of variation (16) is self-
adjoint, in the sense of Definition 12.

Proof. Assume (22) is the Euler-Lagrange equation of the
variational functional

I (𝑦) = ∫

𝑡1

𝑡0

𝐿 (𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) Δ𝑡, (23)

where 𝐿 ∈ 𝐶
2. Since the Euler-Lagrange equation in integral

form of (23) is given by

𝜕
3
𝐿[𝑦]

T
(𝑡) + ∫

𝑡

𝑡0

−𝜕
2
𝐿[𝑦]

T
(𝑠) Δ𝑠 = const (24)

(cf. [13, 15, 16]), we conclude that𝐻[𝑦]T (𝑡) = 𝜕
3
𝐿[𝑦]T (𝑡) and

𝐺[𝑦]T (𝑠) = −𝜕
2
𝐿[𝑦]T (𝑠). Having in mind that

(i) 𝜕
2
𝐻 = 𝜕

2
(𝜕
3
𝐿), 𝜕
3
𝐻 = 𝜕

3
(𝜕
3
𝐿) = 𝜕

2

3
𝐿,

(ii) 𝜕
2
𝐺 = 𝜕

2
(−𝜕
2
𝐿) = −𝜕

2

2
𝐿, 𝜕
3
𝐺 = 𝜕

3
(−𝜕
2
𝐿) = −𝜕

3
𝜕
2
𝐿,

it follows from Schwarz’s theorem, 𝜕
2
𝜕
3
𝐿 = 𝜕
3
𝜕
2
𝐿, that

𝜕
2
𝐻[𝑦]

T
(𝑡) + 𝜕

3
𝐺[𝑦]

T
(𝑡) = 0. (25)

We conclude from Lemma 15 that the equation of variation
(22) is self-adjoint.

Remark 17. In practical terms, Theorem 16 is useful to iden-
tify equations which are not Euler-Lagrange equations: if the
equation of variation (16) of a given dynamic equation (15) is
not self-adjoint, then we conclude that (15) is not an Euler-
Lagrange equation.

Remark 18 (self-adjointness for a second order differential
equation). Let 𝑝 be delta differentiable in Definition 12 and
𝑢 ∈ 𝐶

2

rd. Then, by differentiating (13), one obtains a second
order self-adjoint dynamic equation

𝑝
𝜎

(𝑡) 𝑢
ΔΔ

(𝑡) + 𝑝
Δ

(𝑡) 𝑢
Δ

(𝑡) + 𝑞 (𝑡) 𝑢
𝜎

(𝑡) = 0 (26)

or

𝑝 (𝑡) 𝑢
ΔΔ

(𝑡) + 𝑝
Δ

(𝑡) 𝑢
Δ𝜎

(𝑡) + 𝑞 (𝑡) 𝑢
𝜎

(𝑡) = 0 (27)

with 𝑞 ∈ 𝐶rd and 𝑝 ∈ 𝐶
1

rd and 𝑝 ̸= 0 for all 𝑡 ∈ T .
Now we present an example of a second order differential

equation on time scales which is not an Euler-Lagrange
equation.

Example 19. Let us consider the following second order
dynamic equation on an arbitrary time scale T :

𝑦
ΔΔ

(𝑡) + 𝑦
Δ

(𝑡) − 𝑡 = 0. (28)

We may write (28) in integrodifferential form (15):

𝑦
Δ

(𝑡) + ∫

𝑡

𝑡0

(𝑦
Δ

(𝑠) − 𝑠) Δ𝑠 = const, (29)

where𝐻[𝑦]T (𝑡) = 𝑦
Δ

(𝑡) and 𝐺[𝑦]T (𝑡) = 𝑦
Δ

(𝑡) − 𝑡. Because

𝜕
2
𝐻[𝑦]

T
(𝑡) = 𝜕

2
𝐺[𝑦]

T
(𝑡) = 0,

𝜕
3
𝐻[𝑦]

T
(𝑡) = 𝜕

3
𝐺[𝑦]

T
(𝑡) = 1,

(30)

the equation of variation associated with (29) is given by

𝑢
Δ

(𝑡) + ∫

𝑡

𝑡0

𝑢
Δ

(𝑠) Δ𝑠 = 0 ⇐⇒ 𝑢
Δ

(𝑡) + 𝑢 (𝑡) = 𝑢 (𝑡
0
) . (31)

We may notice that equation (31) cannot be written in form
(13); hence, it is not self-adjoint. Indeed, notice that (31)
is a first order dynamic equation while from Remark 18
one obtains a second order dynamic equation. Following
Theorem 16 (see Remark 17), we conclude that (28) is not an
Euler-Lagrange equation.

Now we consider the particular case ofTheorem 16 when
T = R and 𝑦 ∈ 𝐶

2

([𝑡
0
, 𝑡
1
];R). In this case our operator [⋅]T

of (14) has the form [𝑦]R(𝑡) = (𝑡, 𝑦(𝑡), 𝑦
󸀠

(𝑡)), while condition
(13) can be written as

𝑝 (𝑡) 𝑢
󸀠

(𝑡) + ∫

𝑡

𝑡0

𝑞 (𝑠) 𝑢 (𝑠) 𝑑𝑠 = const. (32)

Corollary 20. If a given integrodifferential equation

𝐻(𝑡, 𝑦 (𝑡) , 𝑦
󸀠

(𝑡)) + ∫

𝑡

𝑡0

𝐺(𝑠, 𝑦 (𝑠) , 𝑦
󸀠

(𝑠)) 𝑑𝑠 = 𝑐𝑜𝑛𝑠𝑡 (33)

is to be the Euler-Lagrange equation of a variational problem

I (𝑦) = ∫

𝑡1

𝑡0

𝐿 (𝑡, 𝑦 (𝑡) , 𝑦
󸀠

(𝑡)) 𝑑𝑡 (34)

(cf., e.g., [17]), then its equation of variation

𝜕
2
𝐻[𝑢]R (𝑡) 𝑢 (𝑡) + 𝜕

3
𝐻[𝑢]R (𝑡) 𝑢

󸀠

(𝑡)

+ ∫

𝑡

𝑡0

𝜕
2
𝐺[𝑢]R (𝑠) 𝑢 (𝑠) + 𝜕

3
𝐺[𝑢]R (𝑠) 𝑢

󸀠

(𝑠) 𝑑𝑠 = 0

(35)

must be self-adjoint, in the sense of Definition 12 with (13) given
by (32).

Proof. The proof follows fromTheorem 16 with T = R.

Now we consider the particular case ofTheorem 16 when
T = ℎZ, ℎ > 0. In this case our operator [⋅]T of (14) has the
form

[𝑦]
ℎZ

(𝑡) = (𝑡, 𝑦 (𝑡 + ℎ) , Δ
ℎ
𝑦 (𝑡)) =: [𝑦]

ℎ
(𝑡) , (36)
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where

Δ
ℎ
𝑦 (𝑡) =

𝑦 (𝑡 + ℎ) − 𝑦 (𝑡)

ℎ

. (37)

For T = ℎZ, ℎ > 0, condition (13) can be written as

𝑝 (𝑡) Δ
ℎ
𝑢 (𝑡) +

(𝑡/ℎ)−1

∑

𝑘=(𝑡0/ℎ)

ℎ𝑞 (𝑘ℎ) 𝑢 (𝑘ℎ + ℎ) = const. (38)

Corollary 21. If a given difference equation

𝐻(𝑡, 𝑦 (𝑡 + ℎ) , Δ
ℎ
𝑦 (𝑡))

+

(𝑡/ℎ)−1

∑

𝑘=(𝑡0/ℎ)

ℎ𝐺 (𝑘ℎ, 𝑦 (𝑘ℎ + ℎ) , Δ
ℎ
𝑦 (𝑘ℎ)) = 𝑐𝑜𝑛𝑠𝑡

(39)

is to be the Euler-Lagrange equation of a discrete variational
problem

I (𝑦) =

(𝑡1/ℎ)−1

∑

𝑘=(𝑡0/ℎ)

ℎ𝐿 (𝑘ℎ, 𝑦 (𝑘ℎ + ℎ) , Δ
ℎ
𝑦 (𝑘ℎ)) (40)

(cf., e.g., [18]), then its equation of variation

𝜕
2
𝐻[𝑢]
ℎ
(𝑡) 𝑢 (𝑡 + ℎ) + 𝜕

3
𝐻[𝑢]
ℎ
(𝑡) Δ
ℎ
𝑢 (𝑡)

+ ℎ

(𝑡/ℎ)−1

∑

𝑘=(𝑡0/ℎ)

(𝜕
2
𝐺[𝑢]
ℎ
(𝑘ℎ) 𝑢 (𝑘ℎ + ℎ)

+𝜕
3
𝐺[𝑢]
ℎ
(𝑘ℎ) Δ

ℎ
𝑢 (𝑘ℎ)) = 0

(41)

is self-adjoint, in the sense of Definition 12 with (13) given by
(38).

Proof. The proof follows fromTheorem 16 with T = ℎZ.

Finally, let us consider the particular case of Theorem 16
when T = 𝑞

Z
= 𝑞

Z
∪ {0}, where 𝑞

Z
= {𝑞
𝑘

: 𝑘 ∈ Z, 𝑞 >

1}. In this case operator [⋅]T of (14) has the form [𝑦]
𝑞
Z(𝑡) =

(𝑡, 𝑦(𝑞𝑡), Δ
𝑞
𝑦(𝑡)) =: [𝑦]

𝑞
(𝑡), where

Δ
𝑞
𝑦 (𝑡) =

𝑦 (𝑞𝑡) − 𝑦 (𝑡)

(𝑞 − 1) 𝑡

. (42)

For T = 𝑞
Z, 𝑞 > 1, condition (13) can be written as

𝑝 (𝑡) Δ
𝑞
𝑢 (𝑡) + (𝑞 − 1) ∑

𝑠∈[𝑡0 ,𝑡)∩T

𝑠𝑟 (𝑠) 𝑢 (𝑞𝑠) = const (43)

(cf., e.g., [19]), where we use notation 𝑟(𝑡) instead of 𝑞(𝑡) in
order to avoid confusion between the 𝑞 = const that defines
the time scale and function 𝑞(𝑡) of (13).

Corollary 22. If a given 𝑞-equation

𝐻(𝑡, 𝑦 (𝑞𝑡) , Δ
𝑞
𝑦 (𝑡))

+ (𝑞 − 1) ∑

𝑠∈[𝑡0 ,𝑡)∩T

𝑠𝐺 (𝑠, 𝑦 (𝑞𝑠) , Δ
𝑞
𝑦 (𝑠)) = 𝑐𝑜𝑛𝑠𝑡,

(44)

𝑞 > 1, is to be the Euler-Lagrange equation of a variational
problem

I (𝑦) = (𝑞 − 1) ∑

𝑡∈[𝑡0 ,𝑡1)∩T

𝑡𝐿 (𝑡, 𝑦 (𝑞𝑡) , Δ
𝑞
𝑦 (𝑡)) , (45)

𝑡
0
, 𝑡
1
∈ 𝑞

Z, then its equation of variation

𝜕
2
𝐻[𝑢]
𝑞
(𝑡) 𝑢 (𝑞𝑡) + 𝜕

3
𝐻[𝑢]
𝑞
(𝑡) Δ
𝑞
𝑢 (𝑡)

+ (𝑞 − 1) ∑

𝑠∈[𝑡0 ,𝑡)∩T

𝑠 (𝜕
2
𝐺[𝑢]
𝑞
(𝑠) 𝑢 (𝑞𝑠)

+ 𝜕
3
𝐺[𝑢]
𝑞
(𝑠) Δ
𝑞
𝑢 (𝑠)) = 0

(46)

is self-adjoint, in the sense of Definition 12 with (13) given by
(43).

Proof. Choose T = 𝑞
Z in Theorem 16.

The reader interested in the study of Euler-Lagrange
equations for problems of the 𝑞-variational calculus is
referred to [16, 20, 21] and references therein.

4. Discussion

On an arbitrary time scale T , it is easy to show equivalence
between the integrodifferential equation (15) and the second
order differential equation (47) below (Proposition 23). How-
ever, when we consider equations of variations of them, we
notice that it is impossible to prove an equivalence between
them on an arbitrary time scale. This impossibility is true
even in the discrete time scale Z. The main reason is the lack
of chain rule on time scales ([2], Example 1.85). However, in
T = R we can present this equivalence (Proposition 24).

Proposition 23. The integrodifferential equation (15) is equiv-
alent to a second order delta differential equation

𝑊(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡) , 𝑦
ΔΔ

(𝑡)) = 0. (47)

Proof. Let (47) be a given second order differential equation.
We may write it as a sum of two components

𝑊⟨𝑦⟩
T
(𝑡) = 𝐹⟨𝑦⟩

T
(𝑡) + 𝐺[𝑦]

T
(𝑡) = 0. (48)

Let 𝐹⟨𝑦⟩T = 𝐻
Δ

[𝑦]T . Then,

𝐻
Δ

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) + 𝐺 (𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) = 0. (49)

Integrating both sides of (49) from 𝑡
0
to 𝑡, we obtain the

integrodifferential equation (15).

Let T be a time scale such that 𝜇 is delta differentiable.The
equation of variation of a second order differential equation
(47) is given by

𝜕
4
𝑊⟨𝑢⟩T (𝑡) 𝑢

ΔΔ

(𝑡) + 𝜕
3
𝑊⟨𝑢⟩T (𝑡) 𝑢

Δ

(𝑡)

+ 𝜕
2
𝑊⟨𝑢⟩T (𝑡) 𝑢

𝜎

(𝑡) = 0.

(50)
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Equation (50) is obtained by using the method presented in
Remark 14.

On an arbitrary time scale it is impossible to prove the
equivalence between the equation of variation (16) and (50).
Indeed, after differentiating both sides of (16) and using the
product rule given by Theorem 4, we have

𝜕
2
𝐻[𝑢]T (𝑡) 𝑢

𝜎Δ

(𝑡) + 𝜕
2
𝐻
Δ

[𝑢]T (𝑡) 𝑢
𝜎𝜎

(𝑡)

+ 𝜕
3
𝐻[𝑢]T (𝑡) 𝑢

ΔΔ

(𝑡) + 𝜕
3
𝐻
Δ

[𝑢]T (𝑡) 𝑢
Δ𝜎

(𝑡)

+ 𝜕
2
𝐺[𝑢]T (𝑡) 𝑢

𝜎

(𝑡) + 𝜕
3
𝐺[𝑢]T (𝑡) 𝑢

Δ

(𝑡) = 0.

(51)

The direct calculations
(i) 𝜕
2
𝐻[𝑢]T (𝑡)𝑢

𝜎Δ

(𝑡) = 𝜕
2
𝐻[𝑢]T (𝑡)(𝑢

Δ

(𝑡) + 𝜇
Δ

(𝑡)𝑢
Δ

(𝑡) +

𝜇
𝜎

(𝑡)𝑢
ΔΔ

(𝑡)),
(ii) 𝜕
2
𝐻
Δ

[𝑢]T (𝑡)𝑢
𝜎𝜎

(𝑡) = 𝜕
2
𝐻
Δ

[𝑢]T (𝑡)(𝑢
𝜎

(𝑡) +

𝜇
𝜎

(𝑡)𝑢
Δ

(𝑡) + 𝜇(𝑡)𝜇
𝜎

(𝑡)𝑢
ΔΔ

(𝑡)),
(iii) 𝜕

3
𝐻
Δ

[𝑢]T (𝑡)𝑢
Δ𝜎

(𝑡) = 𝜕
3
𝐻
Δ

[𝑢]T (𝑡)(𝑢
Δ

(𝑡)+𝜇(𝑡)𝑢
ΔΔ

(𝑡))

allow us to write (51) in form

[𝜇
𝜎

(𝑡) 𝜕
2
𝐻[𝑢]T (𝑡) + 𝜇 (𝑡) 𝜇

𝜎

(𝑡) 𝜕
2
𝐻
Δ

[𝑢]T (𝑡)

+ 𝜕
3
𝐻[𝑢]T (𝑡) + 𝜇 (𝑡) 𝜕

3
𝐻
Δ

[𝑢]T (𝑡)] 𝑢
ΔΔ

(𝑡)

+ [𝜕
2
𝐻[𝑢]T (𝑡) + (𝜇(𝑡)𝜕

2
𝐻[𝑢]T (𝑡))

Δ

+ 𝜕
3
𝐻
Δ

[𝑢]T (𝑡) + 𝜕
3
𝐺[𝑢]T (𝑡)] 𝑢

Δ

(𝑡)

+ [𝜕
2
𝐻
Δ

[𝑢]T (𝑡) + 𝜕
2
𝐺[𝑢]T] 𝑢

𝜎

(𝑡) = 0;

(52)

that is, usingTheorem 5,

𝑢
ΔΔ

(𝑡) [𝜇 (𝑡) 𝜕
2
𝐻[𝑢]T (𝑡) + 𝜕

3
𝐻[𝑢]T (𝑡)]

𝜎

+ 𝑢
Δ

(𝑡) [𝜕
2
𝐻[𝑢]T (𝑡) + (𝜇 (𝑡) 𝜕

2
𝐻[𝑢]T (𝑡))

Δ

+ 𝜕
3
𝐻
Δ

[𝑢]T (𝑡) + 𝜕
3
𝐺[𝑢]T (𝑡) ]

+ 𝑢
𝜎

(𝑡) [𝜕
2
𝐻
Δ

[𝑢]T (𝑡) + 𝜕
2
𝐺[𝑢]T (𝑡)] = 0.

(53)

We are not able to prove that the coefficients of (53) are the
same as in (50), respectively. This is due to the fact that we
cannot find the partial derivatives of (47), that is, 𝜕

4
𝑊⟨𝑢⟩T (𝑡),

𝜕
3
𝑊⟨𝑢⟩T (𝑡), and 𝜕

2
𝑊⟨𝑢⟩T (𝑡), from (49) because of lack

of chain rule on an arbitrary time scale. The equivalence,
however, is true for T = R.

Proposition 24. The equation of variation

𝜕
2
𝐻[𝑢]R (𝑡) 𝑢 (𝑡) + 𝜕

3
𝐻[𝑢]R (𝑡) 𝑢

󸀠

(𝑡)

+ ∫

𝑡

𝑡0

𝜕
2
𝐺[𝑢]R (𝑠) 𝑢 (𝑠) + 𝜕

3
𝐺[𝑢]R (𝑠) 𝑢

󸀠

(𝑠) 𝑑𝑠 = 0

(54)

is equivalent to the second order differential equation

𝜕
4
𝑊⟨𝑢⟩R (𝑡) 𝑢

󸀠󸀠

(𝑡) + 𝜕
3
𝑊⟨𝑢⟩R (𝑡) 𝑢

󸀠

(𝑡)

+ 𝜕
2
𝑊⟨𝑢⟩R (𝑡) 𝑢 (𝑡) = 0.

(55)

Proof. Weshow that coefficients of (54) and (55) are the same,
respectively. Let T = R. From (48) and relation 𝐹⟨𝑢⟩R =

(𝑑/𝑑𝑡)𝐻[𝑢]R we have

𝑊(𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡) , 𝑢
󸀠󸀠

(𝑡)) =

𝑑

𝑑𝑡

𝐻 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡))

+ 𝐺 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) .

(56)

Using notation (14) and chain rule (which is only valid for
T = R) we can calculate the following partial derivatives:

(i) 𝜕
2
𝑊⟨𝑢⟩R(𝑡) = (𝑑/𝑑𝑡)𝜕

2
𝐻[𝑢]R(𝑡) + 𝜕

2
𝐺[𝑢]R(𝑡),

(ii) 𝜕
3
𝑊⟨𝑢⟩R(𝑡) = 𝜕

2
𝐻[𝑢]R(𝑡) + (𝑑/𝑑𝑡)𝜕

3
𝐻[𝑢]R(𝑡) +

𝜕
3
𝐺[𝑢]R(𝑡),

(iii) 𝜕
4
𝑊⟨𝑢⟩R(𝑡) = 𝜕

3
𝐻[𝑢]R(𝑡).

After differentiation of both sides of (54) we obtain

𝜕
3
𝐻[𝑢]R (𝑡) 𝑢

󸀠󸀠

(𝑡)

+ (𝜕
2
𝐻[𝑢]R (𝑡) +

𝑑

𝑑𝑡

𝜕
3
𝐻[𝑢]R (𝑡) + 𝜕

3
𝐺[𝑢]R (𝑡)) 𝑢

󸀠

(𝑡)

+ (

𝑑

𝑑𝑡

𝜕
2
𝐻[𝑢]R (𝑡) + 𝜕

2
𝐺[𝑢]R (𝑡)) 𝑢 (𝑡) = 0.

(57)

Hence, the intended equivalence is proved.

Proposition 24 allows us to obtain the classical result of
[12,Theorem II] as a corollary of ourTheorem 16.The absence
of a chain rule on time scales (even for T = Z) implies
that the classical approach of [12] fails on time scales. This
is the reason why here we introduced a completely different
approach to the subject based on the integrodifferential form.
The case T = Z was recently investigated in [11]. However,
similar to [12], the approach of [11] is based on the differential
form and cannot be extended to general time scales.
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