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1. Introduction

In studying control systems the reader must be able to model dynamical systems in mathe‐
matical terms and analyze their dynamic characteristics. This section provides an introduction
to basic concepts and methodologies on modeling control systems. It also introduces some
fundamentals to solve realistic models used basically in mechanical, electrical, thermal,
economic, biological, and so on. A mathematical model is composed by a set of equations that
describe a real system accurately, or at least fairly well. However a mathematical model is not
unique for a given system, and the system under study can be represented in many different
ways, in the same way a mathematical model can be used to represent different systems.
Algorithms used to solve the set of equations that represent a control system require a great
amount of programming instructions. Matlab is a tool that simplifies and accelerates such
algorithms allowing to modeling a great variety of control systems in a very elegant way [1].
There are special Matlab toolbox useful to solve different control systems, in particular Control
System Toolbox (included in MATLAB Version 7.8.0.347 (R2009a)): Creating linear models,
data extraction, time-domain analysis, frequency-domain analysis, state space models, etc.
Some of these are used throughout the chapter to facilitate algorithm development.

This chapter is organized as follows; the section 1 is an introduction to modeling control
systems. In section 2, some applications using electrical circuits for series and parallel circuits
are given. Section 3, a second order analysis is presented. In section 4, control systems for
mechanical vibrations are analyzed. Optical control systems are given in section 5, given a
perspective with two basic systems: laser diode, and optical fiber. Some conclusions are
presented in section 6.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Electrical circuits

Undoubtedly, the most classic circuit in literature is the RLC circuit. Due to its great usefulness
in the study of linear systems, the model of the RLC circuit helps to understand some of the
behaviors of an electrical control system. Thus, the next subsections will address to the
modeling of series and parallel RLC circuits. Some behaviors will be analyzed using some tools
from Matlab.

Case I: RLC series circuit

Figure 1. RLC series circuit.

In Figure 1, a RLC series circuit is shown. The modeling consists in to express a number of
equations such that all kinds of moves are expressed in those equations. Thus, the input
equation is given by

vi(t)= Ri(t) + L di(t )
dt + 1

C ∫0
ti(τ)dτ. (1)

Let be  vo(t) the output in capacitor C. Then, the output equation is represented by

vo(t)= 1
C ∫0

ti(τ)dτ. (2)

In order to find a transfer function, the Laplace transform for both equations is applied
obtaining
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V i(s)= RI (s) + LsI (s) + 1
Cs I (s),   (3)

and

V o(s)= 1
Cs I (s). (4)

The transfer function becomes

V o(s)
V i(s) = 1

LCs 2 + RCs + 1  . (5)

In order to compute a general solution and to analyze the behavior of this RLC series circuit,
consider an input constant force vi(t)=V i. Then V i(s)=V i / s,   therefore the output signal in the
Laplace domain is given by

V o(s)=
V i

s(LCs 2 + RCs + 1)  , (6)

therefore, the output signal results

vo(t)=V i
(1 - e -

R
2L tcos 4L + R 2C

4L 2C t - R 2C
4L + R 2C e -

R
2L tsin 4L + R 2C

4L 2C t). (7)

Figure 2, shows the block diagram for the RLC series circuit.

Figure 2. Block diagram for the RLC series circuit.

Suppose a particular case for the block diagram with R =2kΩ, L =1mH  and C =1µF. An easy
way to obtain a step response for a RLC series circuit is to draw a block diagram in Simulink,
from Matlab, using a source Step and a Scope to observe the response as shown in Figure 3.
In Figure 4, the step response for the RLC series circuit is plotted.
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Figure 3. Block diagram using Simulink for a step response.

Figure 4. Step response for RLC series circuit using Simulink.

Case 2: RLC Parallel circuit

Figure 5. RLC parallel circuit.
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In Figure 5, a RLC parallel circuit is shown. The equation of current could be represented by

i(t)=
vR(t )

R + 1
L ∫0

tvL (τ)dτ + C
d vC (t )

dt . (8)

The output voltage through capacitor C, establishes the equalities

vo(t)=vR(t)=vL (t)=vC(t),  (9)

such that the mathematical model can be written in only one equation

i(t)=
vo(t )

R + 1
L ∫0

tvo(τ)dτ + C
d vo(t )

dt .  (10)

In order to find the transfer function, the Laplace transform is

I (s)=
V o(s)

R + 1
Ls V o(s) + CsV o(s). (11)

Then, the transfer function results

V o(s)
I (s) = RLs

RLCs 2 + Ls + R . (12)

To compute a general solution and to analyze the behavior of this RLC parallel circuit, consider
an input force of constant current i(t)= I . Then I (s)= I / s,  therefore the output signal in the
Laplace domain is given by

V o(s)= RL
RLCs 2 + Ls + R I ,  (13)

and the solution signal results

vo(t)=2IR L
4R 2C - L e -

1
2RC tsin 4R 2C - L

4R 2L C 2 t .  (14)

Figure 6, shows the corresponding block diagram for the RLC parallel circuit.

In order to analyze the stability using Matlab, consider a RLC parallel circuit with R =1kΩ,
L =1mH  and C =1µF. The aim is to obtain the transfer function, a state space representation,
the eigenvalues, and the solution to state space equation.

The coefficients of the transfer function are stored in two vectors num and den for the numerator
and denominator, respectively. The following solution uses the instructions tf, tf2ss, from
Control Systems Toolbox. Window a) shows this algorithm obtaining the transfer function
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G(s). Window b), uses the instruction tf2ss to convert from transfer function to state space,
getting arrays A, B, C and D. Window c) illustrate the stability of the system, computing the
eigenvalues from array A. Note that the eigenvalues from the system in state space is equiv‐
alent to compute the poles of transfer function G(s). Thus, the poles are placed at the negative
place of the complex plane, which means that the system is stable.

a)

>> num=[1 0];
>> den=[0.000001 0.001 
1000];
>> G=tf(num,den) 
Transfer function:
s
---------------------------
1e-006 s^2 + 0.001 s + 1000b)

>> 
[A,B,C,D]=tf2ss(num,den)
A =
1.0e+003 *
-1     -1000000

0.001       0
B =

1
0
C = 1000000           0
D = 0

c)

>> eig(A)
ans =
1.0e+004 *  
-0.0500 + 3.1619i
-0.0500 - 3.1619i

Figure 6. Block diagram for the RLC parallel circuit.
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To obtain the solution to the state space equation using Matlab, it is necessary to construct an
object S, of class 'sym', from A, using the expression S=sym(A), in order of using the instruction
ilaplace, from Symbolic Math Toolbox. It is well known that the solution to state equation is
given by

x(t)=L (sI - A)-1 x(0). (15)

Then, window d) gives a solution using symbolic mathematics and the instruction ilaplace,
with x(0)= 1 1 T .

 
 
 
 
 
 
 
 
 
 
 

d) 

>> s=sym('s'); 

>> f=ilaplace(inv(s*eye(2)-A))  

f =  

[ (cos(500*3999^(1/2)*t) - (3999^(1/2)*sin(500*3999^(1/2)*t))/3999)/exp(500*t),    

-(2000000*3999^(1/2)*sin(500*3999^(1/2)*t))/(3999*exp(500*t))] 

[                      (3999^(1/2)*sin(500*3999^(1/2)*t))/(1999500*exp(500*t)), 

(cos(500*3999^(1/2)*t) + (3999^(1/2)*sin(500*3999^(1/2)*t))/3999)/exp(500*t)] 

Note that, all solutions have a negative exponential or they are written explicitly as denomi‐
nators with positive exponential, which mean that the system is stable. This kind of results
could be useful for the next sections for mechanical vibrations and optical control systems.

3. Second order analysis

In the Nature there are many examples that can be modeled with second-degree equations.
The general form is represented by a homogeneous linear differential equation with constant
coefficients a, b and, c as shown below

a d 2x
d t 2 + b dx

dt + cx =0, (16)

Laplace transform of the second-order equation is

s 2X (s) - sx(0) - ẋ(0) + b
a sX (s) - b

a x(0) + c
a X (s)=0,  (17)

and solving for the dependent variable

X (s)=
sx(0) +

b
a x(0) + ẋ(0)

s 2 +
b
a s +

c
a

.  (18)
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The response for a unitary step input is given by the next equation

X (s)=
s 2x(0) + s

b
a x(0) + ẋ(0)

s 2 +
b
a s +

c
a

∙ 1
s  . (19)

There are four possible behaviors of equation (19) [2]: overdamped, underdamped, undamped
and critically damped. These results can be predicted by analyzing the characteristic equation,
as shown below:

b 2 - 4ac = {positive,   overdamped
negative,   underdamped
- 4ac,    undamped
zero,   critically damped

  (20)

Where the initial conditions x(0) and ẋ(0) represent the initial state and the point of conver‐
gence of the response signal, respectively. The next results uses a step signal as input signal,
with the instruction step, from Control Systems Toolbox. Thus, the graphical representation of
a second-order analysis using Matlab as shown in Figure 7, can be obtained with the next code:

clear all;

x0=0.8;

xp0=0.35;

%%%% b*b>4*a*c

a=1;b=5;c=1;

num1=[x0 x0*b/a xp0];den1=[1 b/a c/a];

signal1=step(num1,den1);

%%%% b*b<4*a*c

a=1;b=1;c=1;

num2=[x0 x0*b/a xp0];den2=[1 b/a c/a];

signal2=step(num2,den2);

%%%% b=0

a=1;b=0;c=1;

num3=[x0 x0*b/a xp0];den3=[1 b/a c/a];

signal3=step(num3,den3);

%%%% b*b=4*a*c

a=1;b=5;c=1;

num4=[x0 x0*b/a xp0];den4=[1 b/a c/a];

signal4=step(num4,den4);

subplot(2,2,1);plot(signal1);grid;title('b*b>4*a*c, overdamped');

subplot(2,2,2);plot(signal2);grid;title('b*b<4*a*c, underdamped');

subplot(2,2,3);plot(signal3);grid;title('b=0, undamped');

subplot(2,2,4);plot(signal4);grid;title('b*b=4*a*c, critically damped');
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Figure 7. Analysis of second-order system.

4. Mechanical vibrations

Structural vibrations in most cases are undesirable because they can negatively affect the
appropriate operation of mechanical systems because of the increasing stresses and energy
losses by dissipation especially at resonant frequencies. For these reasons, it is very important
the prediction of resonances in the design of mechanical elements to prevent structural failures
as fatigue after long period of time [3,4]. The main purpose of this section is to analyze and
design a simple mechanical model well known as one-degree of freedom (ODOF) system and
calculate with Matlab the frequency response to an external sinusoidal force.

In order to understand the dynamic response, in Figure 8 is illustrated the schematic of a linear
damped ODOF system subjected to a harmonic excitation input.

The system consists in a mass m connected to a spring of stiffness k. The other side of the spring
is connected to the support. In a damped ODOF system, the coefficient c is the viscous damping
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related with the loose of energy in the vibrating system. Considering a force varying harmon‐
ically as f(t)=A sin (ωt); where A is the amplitude oscillating at an angular frequency ω in rad/
sec; the equation of motion along the x direction can be written as:

 mẍ + cẋ + kx = f (t) (21)

With the initial conditions equal to zero, the steady state solution of the differential equation
can be obtained applying the Laplace transform of equation 21.

ms 2x(s) + csx(s) + kx(s)= F (s) (22)

Reordering the terms, the second order transfer function G(s) is obtained as:

G(s)= x(s)
F (s) = 1

ms 2 + cs + k   (23)

Replacing the terms  ωn = (k
m) and ξ = c

2 (mk )
, that represent the natural frequency and the

relative damping factor of the system respectively; then G(s) can be written as:

G(s)=
1
m

s 2 + 2ξωns + ωn
2  (24)

When a sinusoidal input force is applied to a linear ODOF system, the response is also
sinusoidal with the same oscillation frequency but with differences in amplitude and phase.
In order to know the frequency response, s is replaced with jω, where j = -1 is the imaginary
unit

G( jω)=
1
m

-ω2 + j2ξωnω + ωn
2 . (25)

 

k 

c m 

x f 

Figure 8. Damped ODOF system
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Defining r as the frequency ratio of the natural frequency ωn to the angular frequency of the
sinusoidal input ω and multiplying numerator and denominator by 1 / ω 2, the above equation
gives:

G( jω)=
1

mω 2

(r 2 - 1) + j2ξr
. (26)

Thus, it is clear that the frequency response of a damped ODOF represented by a complex
number depends on ω of the sinusoidal input and the damping ratio ξ. Hence, the magnitude
ratio and the phase angle of the frequency response can be expressed as:

|G( jω)|= 1 / (mω 2)
(r 2 - 1)2 + (2ξr )2

,  (27)

and

∅( jω)= -tan-1 2ξr
r 2 - 1 .  (28)

By inspection of equation 26 we can make some interpretations [5]:

• for r ≈ 0; that is, when ω << ωn; the problem can be considered as static, since the frequency
of the excitation force is very small in comparison with the natural frequency obtaining also
a very small phase shift.

• for r=1; namely ω=ωn; the system is at resonance, the amplitude of the output increases in
function of the damping and the phase shift is 90o for any value of damping.

• for r > 1; that is, ω >> ωn the amplitude of the response approaches to zero and the phase
angle to 180o.

Dynamic analysis of a cantilever

The schematic in Figure 9 is cantilever beam with a lumped mass at its free end and is used to
detect mechanical resonances; the beam is fixed perpendicular to the support of a machine that
can operate at different velocities, generating angular frequencies that move harmonically
along the x direction.

Ignoring the mass of the beam, consider the following model to calculate the amplitude and
phase angle of the dynamic displacement for angular frequencies of 0<ω<2 rad/sec.

3ẍ + 2ẋ + 3x = sin(ωt).  (29)

The following Matlab code plots the magnitude ratio and the phase angle of the frequency
response in function of the angular frequency of the sinusoidal input.
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m=3; c=2; k=3;

wn=sqrt(k/m);

w=[0:0.1:2];

zeta=c/(2*sqrt(m*k));

r=wn./w;

M=abs((1./(m*w.^2))./sqrt((r.^2-1).^2+(2*zeta*r).^2));

phase=-atan2((2*zeta*r),(r.^2-1))*180/pi;

subplot(2,1,1);plot(r,M)

subplot(2,1,2);plot(r,phase)

Figure 10. Frequency response.

Figure 9. Cantilever beam
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5. Optical control systems

5.1. Laser diode

Laser diode (LD) are perhaps one of the most used optical systems, in particular for those
applications where the high frequency modulation is involved. A LD can be described as a
device in which an electric current is converted to photons. The time dependent relation
between the input electric current and the output photons are commonly described by the
following pair of equations describing the time evolution of photon and carrier densities inside
the laser medium.

∂N e

∂ t = I
qad - A(Ne - Nom)N ph -

N e

τs
,  (30)

and

∂N ph

∂ t = A(Ne - Nom)N ph -
N ph

τph
+ β

N e

τs
,  (31)

where N ph  is the photon density. A  is a proportionality constant, Nom is the minimum electron
density required to obtain a positive gain, and β  is the fraction of the spontaneous emission
that is coupled the lasing mode, τs is the spontaneous carrier life time, τph  is the photon life
time, and Ne is the carrier density, I  is the input current, a is the diode area, d  is the thickness
of the active region, q is the electron charge. These pair of equations can be modeled using the
RCL parallel electric model proposed in [6].

Here the LD can be modeled using the parallel circuit whose elements are:

R = Rd( I th

I 0 ) (32)

L =
Rd τph

( I 0

I th
) - 1

,  (33)

C =
τs

Rd
, (34)

and

Rd = 2kT
q ( 1

Id
).  (35)

If we consider a sinusoidal modulation in small signal around the quiescent point I p in the
form I =  I p + ipsin ωt  the equations (30) and (31) can be linearized as follows:
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Z0(s)=
V 0(s)
I0(s) = RLs

RLCs 2 + Ls + R , (36)

or

Z0(s)=
V 0(s)
I0(s) =

Rd
( is

τs
+

1 + nom - n e
0

τs τ ph
)

-s 2 + i
s
τs

nph
0 + 1 +

τs

τ ph (1 + nom - ne
0) +

n ph
0 + β ne

0(1 +
1

n ph
0 ) - nom

τs τ ph

. (37)

Figure 11, shows a comparative curve for a sinusoidal input and the photon density output,

here; we observe a phase difference between the input and output.

Figure 11. Comparative curve for sinusoidal Input current vs photon density.

Figure 12, shows the photon density response for different values of input signal.
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Figure 12. Photon density response for different input values.

The code that was used to generate and plot the curves showed in Figures 11 and 12, is placed
in Appendix A.

5.2. Temperature control system for a furnace in a fiber optic drawing process.

The manufacturing process of optical fiber usually requires several control systems, for
example, the temperature control system of the furnace for melting the preform, the control
system to maintain the fiber diameter constant, the system for deposit control and ultraviolet
light curing of the fiber coating system and finally the traction control and fiber winding on
the drum (Figure 13).

The problem of modeling a furnace for drawing fiber requires the consideration of variables
such as the speed of stretching of the fiber, the rate of purge gas into the furnace, the furnace
temperature, the diameter of the preform, etcetera. Moreover, variables such as the flow of gas
within the furnace, radiative heat transport between the preform and the interior of the furnace
is actually not so simple, this problem has been analyzed for a graphite furnace [7]. However,
only for demonstration purposes, we will treat the problem for the linear case and without
considering the phenomena mentioned above.
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In the next section, we will demonstrate the use of Simulink of Matlab for modeling a simple
temperature control system for a furnace in a fiber optic drawing process.

5.3. Mathematical model

Uniform heating of the preform is due in large part to effective radiative transport inside the
furnace and the control of the changes in the temperature distribution. The above with the
purpose to achieve fiber softening and stretching at high speed.

Making a simple energy balance of the furnace, we have the variation of energy per unit of
time (∆Q H ) given by

Figure 13. Fiber drawing process system
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∆Q H =QC - QF = KT
dT i

dt (38)

Where QC  is the energy provided by the controller, QF  is the gas heat flow into the furnace,
KT  is the thermal capacity and T i is the internal temperature.

We estimate the thermal capacity KT  for a preform of 100 mm of diameter and 450 mm long.
We propose the active cavity of the furnace as a cylindrical shape with 120 mm in diameter
and 300 mm long.

Then, knowing the mass of the perform M P  and silicon specific heat CP , the heat capacity
calculated for the silicon preform is

KT =M P ×Cp =8.2313 Kg ×2.575 Joule
Kg ∙ ° C =21.19 joule

° C . (39)

Simplifying the heat flux in the furnace to

QF =
T i -T o

Req
. (40)

Where Req is the equivalent thermal resistance of the inner walls of the furnace.

The equivalent thermal resistance of the internal cylindrical wall of the furnace made of
graphite with a thickness of 5mm is calculated with

Req =5× 10-3 m
(0.476

W
m ∙ ° C ∙ 0.1131 m 2 ) =92.87×10-3 ° C

W . (41)

Then, applying the Laplace transform to Equation 38 we obtain

T i =
QC -QF

KT *s . (42)

Using as reference the Thermo demo of Simulink, the furnace temperature control is sketched
in Figure 14

To run the program Fiber_Furnace_System.mdl is necessary to preload the characteristics of
the furnace in the file Data_furnace.m (Apendix A). The graph of the system behavior is show
in Figure 15.
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Figure 15. Graph of the system behavior. Upper: Temperature around 1500oC; Lower Controller activation for each
cycle.

Figure 14. Simulink model of the perform furnace.
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6. Conclusions

In order to study and analyze physical systems, along of this chapter, several systems were
treated, and different Matlab codes were proposed to solve, analyze and, simulate those
systems. Matlab is a powerful tool, and can help to students, engineers and, scientific to
develop very simple, elegant and, powerful algorithms, that allows achieving successfully the
study and analysis of control systems.

Appendix A

The following Matlab code was used to generate and plot the curves showed in Figures 11 and
12.
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Program Data_furnace.m. The results are showed in Fig. 15.

%  DATA_furnace

% This script runs in conjunction with the%"Fiber_Furnace_System"

% Loading images

A= imread('Preforma_Furnace.bmp');

B= imread('Controller.bmp');

% -------------------------------

% Define the furnace geometry

% -------------------------------

% internal furnace height = 0.3 m

inhFurnace = 0.30;

% internal furnace radio = 0.16 m

inrFurnace = 0.16;

% internal wall area

inwallArea = 2*pi*inrFurnace*inhFurnace;

% -------------------------------

% Determine the equivalent thermal

% resistance for graphite wall

% -------------------------------

kg = 0.476;

LWall = .005;

Req = LWall/(kg*inwallArea);

% c = cp of silice = 2.575 J/Kg-C

c = 2.575;

% -------------------------------

% Temperature Set Controller = 1500 deg C = 1773 K

% -------------------------------

TSC = 1773;

% ha = enthalpy of air at 40 deg C = 311400 J/kg

ha = TSC*c;

% Air flow rate Mdot = 0.1 kg/sec

Mdot = 0.1;

% -------------------------------
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% Determine total internal glass mass = M

% -------------------------------

% Density of preforma silice glass = 2329 kg/m^3

densglass = 2329;

Mg = pi*inrFurnace*inhFurnace;
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