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1. Introduction

Induced pluripotent stem cells (iPSC) are generated by reprogramming differentiated somatic
cells to a pluripotent cell state that highly resembles embryonic stem cells (ESC) [1]. Fully
reprogrammed iPSC can differentiate into any adult cell type [2-6]. Takahashi and Yamanaka
generated the first iPSC in 2006 by transfecting fibroblasts with four defined factors: SOX2,
OCT4, KLF4, c-MYC (SOKM; also referred to as Yamanaka factors) [7]. The clinical use of iPSC
offers great potential for regenerative medicine as any cell type can be generated from true
pluripotent cells [8-10]. However, human clinical iPSC applications are currently limited by
inefficient methods of reprogramming that often generate incompletely reprogrammed
pluripotent states that harbor potentially cancerous epigenetic signatures, and possess limited
or skewed differentiation capacities [11-13]. Many standard iPSC lines do not fully resemble
pluripotent ESC, and often retain an epigenetic memory of their cell of origin [14, 15]. Such
incompletely reprogrammed iPSC also display limited differentiation potential to all three
germ layers (e.g., endoderm, ectoderm, mesoderm) [16, 17].

To avoid integrating retroviral constructs that may carry mutagenic risks, many non-viral
methods have been described for hiPSC derivation [18,  19].  For example,  one successful
approach  is  to  transiently  express  reprogramming  factors  with  EBNA1-based  episomal
vectors  [20-22].  It  was  initially  intuitive  to  reprogram skin  fibroblasts  due  to  their  easy
accessibility.  However,  standard  episomal  reprogramming  in  fibroblasts  occurs  at  even
lower  efficiencies  (<  0.001-0.1%)  than  reprogramming  with  retroviral  vectors  (0.1%–1%)
[23-25]. Subsequent studies revealed that various cell types possess differential receptive‐
ness for being reprogrammed to pluripotency [26-30]. One highly accessible human donor
source  is  blood,  which  has  been  demonstrated  to  reprogram  with  significantly  greater
efficiency than fibroblasts [4, 20, 31-33].
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The innate immune system possesses highly flexible cell types that are able to adapt quickly
to various pathogens by eliciting defense responses that protect the host [34-36]. Innate
immune cells derived from the myeloid lineage (eg, monocyte-macrophage, dendritic cells,
neutrophils) are able to reactivate some unique features of pluripotent stem cells that may give
them greater flexibility for being reprogrammed to a pluripotent cell state than other differ‐
entiated cells [37]. Additionally, the differentiation state of the cell seems to be of critical
importance for its reprogramming efficiency [38].

Our group established a reprogramming method that solves many of the technical caveats
cited above (Figure 1). We have generated high-fidelity human iPSC (hiPSC) from stromal-
primed (sp) myeloid progenitors [20]. This system can reprogram >50% of episome-expressing
myeloid cells to high-quality hiPSC characterized by minimal retention of hematopoietic-
specific epigenetic memory and a molecular signature that is indistinguishable from bona fide
human ESC (hESC). The use of bone marrow-, peripheral-or cord blood (CB)-derived myeloid
progenitor cells instead of fibroblasts, and a brief priming step on human bone marrow stromal
cells / mesenchymal stem cells (MSC) appeared to be critical for this augmented reprogram‐
ming efficiency. In this system, CD34+ - enriched cord blood cells (CB) are expanded with the
growth factors (GF) FLT3L (FMS-like tyrosine kinase 3 ligand), SCF (stem cell factor) and TPO
(thrombopoietin) for 3 days, subsequently nucleofected with non-integrating episomes
expressing the Yamanaka factors (4F, SOX2, OCT4, KLF4, c-MYC), and then co-cultured on
irradiated MSC for an additional 3 days. Cells are then harvested, and passaged onto MEF
(mouse embryonic fibroblasts), and hiPSC are generated via standard methods and culture
medium. The initial population of enriched CD34+ CB progenitors quickly differentiates to
myeloid and monocytic cells in this system, and reprogrammed cells arise from CD34- myeloid
cells. The first iPSC colonies appear around day 10, and stable mature iPSC colonies can be
established after ~21-25 days. The episomal constructs are partitioned after relatively few cell
divisions (e.g., 2-9 passages) to generate high quality non-integrated hiPSC.

Figure 1. Schema of the stromal-primed myeloid reprogramming protocol for the generation of high quality human
iPSC. 4F: four Yamanaka factors, GF: hematopoietic growth factors.
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A proteomics and bioinformatics analysis of this reprogramming system implicated significant
activation of MSC-induced inflammatory TLR-NFκB and STAT3 signaling [20]. A combination
of cell contact-dependent and soluble factors mediate these effects. A recent study similarly
implicated inflammatory TLR3 signaling as a novel trigger for enhanced fibroblast reprog‐
ramming, albeit at much lesser efficiencies than observed in our myeloid reprogramming
system. TLR3 signaling leads to epigenetic modifications that favor an open chromatin state,
which increases cell plasticity and the induction of pluripotency [39]. Lee et al. termed this
novel link between inflammatory pathways and cell reprogramming ‘Transflammation’ [40].

In this chapter we will discuss hypotheses why inflammation-activated myeloid cells may be
highly receptive to factor-mediated reprogramming. Specifically, we will explore the role of
the NFκB-STAT3 signaling axis in mediating the unique susceptibility of myeloid cells to high-
quality human iPSC derivation.

2. Overview of the canonical and non-canonical NFκB pathway

Multipotent myeloid progenitors are derived from hematopoietic stem cells and differentiate
to monocytes macrophages, dendritic cells, and granulocytes, which elicit the initial innate
immune response toward pathogens [41]. NFκB (nuclear factor kappa-light-chain-enhancer of
activated B cells) is a central transcription factor that regulates these innate immune responses
during microbial infections [42-44]. The NFκB system belongs to a group of early-acting
transcription factors that are present in the cytoplasm in an inactive state but can be quickly
activated by multiple inflammatory stimuli [45, 46].

2.1. The canonical NFκB signaling pathway

The NFκB family consists of 5 members; p65 (RelA), p50 and c-Rel are involved in canonical
signaling, and p52 and RelB are involved in non-canonical signaling. Canonical NFκB
signaling is characterized by activation of the IκB kinase complex (IKK), which contains two
kinases, IKK1/α and IKK2/β along with a non-catalytic subunit called IKKγ (NEMO) [47, 48].
Unstimulated NFκB is sequestered in the cytoplasm by IκBα protein. In contrast, activation of
the IKK complex (e.g., by TLRs) leads to IKKβ-mediated serine phosphorylation of IκBα
triggering its proteasome-mediated degradation and its dissociation from NFκB [49, 50]. This
activates the p65:p50 dimer through p65 phosphorylation and leads to NFκB translocation into
the nucleus where it induces target gene expression. Subsequent acetylation keeps p65 in the
nucleus [51]. This can be reverted by HDAC3 (histone deacetylase 3)-induced deacetylation of
p65, which increases the affinity of NFκB proteins for IκBα and nuclear export [52, 53].
Canonical NFκB signaling is a fast and transient process that regulates complex inflammatory
processes that includes the initial pro-inflammatory phase, the induction of apoptosis, and
even tumorigenesis [54]. It can be activated by toll-like receptors (TLR), which recognize
characteristic pathogenic molecules to activate innate immune responses [55-57].
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2.2. The non-canonical NFκB signaling pathway

Non-canonical NFκB signaling is stimulated via the NFκB-inducing kinase (NIK), which leads
to phosphorylation of the p100 precursor protein and generation of the p52:RelB dimer that
translocates to the nucleus to activate gene transcription. This pathway is uniquely dependent
on steady state levels of NIK expression, which are controlled under normal conditions through
TRAF3-directed ubiquitination and proteasomal degradation. Non-canonical NFκB signaling
is slow but persistent and requires de novo NIK protein synthesis and NIK stabilization [58].
It is activated by receptors that belong to the TNFR (tumor necrosis factor receptor) super‐
family like BAFF (B-cell-activating factor), CD40 or lymphotoxin β-receptor (LTβR) [59-62].

The common feature of these receptors is the possession of a TRAF-binding motif, which
recruits TRAF members (e.g., TRAF2 and TRAF3) during ligand ligation [63, 64]. Receptor
recruitment of TRAF members triggers their degradation, and leads to NIK activation and p100
processing [65]. Additionally, BAFF is an important component of pluripotency-supporting
growth media for the culture of ESC and a regulator of B-cell maturation [66]. It predominantly
activates non-canonical NFκB signaling due to its possession of an atypical TRAF-binding
sequence, which interacts only with TRAF3 but not with TRAF2 [67]. TRAF3 degradation is
sufficient to trigger non-canonical NFκB signaling, whereby activation of the canonical NFκB
pathway requires TRAF2 recruitment [68].

2.3. CD40 stimulates both NFκB pathway components

Another receptor associated with NFκB signaling is CD40, which is expressed on various cell
types including B cells and monocytes. The CD40 receptor interacts with its ligand CD40L,
which is primarily expressed on activated T cells. This signaling is majorly involved in B-cell
activation, dendritic cell maturation, antigen presentation and acts as a co-stimulatory
pathway of T-cells [69]. Upon ligation by CD40L, CD40 targets both the canonical and non-
canonical NFκB pathways via proteolysis of TRAF2 and TRAF3 [70-72]. Non-canonical NFκB
signaling regulates hematopoietic stem cell self-renewal via regulating their interactions with
the microenvironment [73]. The deregulation of non-canonical hematopoietic NFκB signaling
is associated with auto-immunity, inflammation and lymphoid malignancies [58, 74].

2.4. NFκB subunit functions

A third NFκB signaling pathway is activated following response to DNA damage that results
in IκB degradation independent of IKK. This results in dimerization of free NFκB subunits that
are mobilized similarly to canonical NFκB signaling [47]. Unlike RelA, RelB, and c-Rel, the p50
and p52 NFκB subunits do not contain transactivation domains in their C-terminus. Never‐
theless, the p50 and p52 NFκB members play critical roles in modulating the specificity of
NFκB functions and form heterodimers with RelA, RelB, or c-Rel [75]. Cell contact-dependent
signals are crucial during immune responses and can be mediated through NFκB signaling
[76]. This can be augmented by co-stimulatory signals like CD40 or CD28 that directly bind to
NFκB proteins like p65 [77-81].
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3. Functional role of NFκB signaling in stem cells

3.1. Differential roles of canonical and non-canonical NFκB signaling in embryonic stem
cells

TLR activation is not only important for mediating innate immune responses, but also for stem
cell differentiation. For example, hESC are characterized by the expression of pluripotency
genes and markers such as OCT4, NANOG, alkaline phosphatase (AP) and telomerase [82-86].
NFκB signaling has been demonstrated to be crucial for maintaining ESC pluripotency and
viability, and drives lineage-specific differentiation [87, 88]. A balance of canonical and non-
canonical NFκB signaling regulates these opposing functions; non-canonical pathway
signaling maintains hESC pluripotency, and canonical pathway signaling regulates hESC
viability and differentiation [89, 90]. For example, non-canonical NFκB signaling has to be
silenced during cell differentiation, which allows this pathway to act like a switch between
hESC self-renewal and differentiation. RelB positively regulates several key pluripotency
markers and represses lineage markers by direct binding to their regulatory units. RelB down-
regulation reduces the expression of pluripotency genes like SOX2 and induces differentiation-
associated genes like BRACHYURY (mesodermal marker), CDX2 (trophoectodermal marker)
and GATA6 (endodermal marker) [89].

3.2. Canonical NFκB signaling in hematopoietic stem cells

RelB/p52 signaling also positively regulates hematopoietic stem-progenitor cell (HSPC) self-
renewal in response to cytokines (e.g., TPO and SCF) and maintains osteoblast niches and the
bone marrow stromal cell population. It negatively regulates HSPC lineage commitment
through cytokine down-regulation in the bone marrow microenvironment, although it is able
to direct early HSC commitment to the myeloid lineage [73, 91].

Canonical p65 signaling also regulates hematopoietic stem cell functions and lineage commit‐
ment by controlling key factors involved in hematopoietic cell fate [92-94]. Canonical NFκB
signaling is positively regulated by Notch1, which facilitates nuclear retention of NFκB
proteins and promotes self-renewal [95-98]. FGF2 (fibroblast growth factor 2) is important for
hESC self-renewal and preserves the long-term repopulating ability of HSPC through NFκB
activation [99-102]. Deletion of p65, p52 and RelB dramatically decreases HSC differentiation,
function and leads to extramedullary hematopoiesis [103]. NFκB pathway components and
FGF4 are highly expressed in CD34+HSPC from cord blood, where they regulate clonogenicity.
Nuclear p65 can be detected in 90% CB-derived CD34+ cells but only in 50% BM-derived
CD34+ cells [104]. The important role of NFκB in regulating myeloid cell lineage development
has been most potently revealed via genetic deletion of IKKβ, IκBα, and RelB, which resulted
in granulocytosis, splenomegaly and impaired immune responses [73, 103].

3.3. Canonical NFκB signaling during ESC differentiation

Canonical NFκB signaling is very low in the undifferentiated pluripotent state, where it
maintains hESC viability. However, it strongly increases during lineage-specific differentia‐
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tion of pluripotent stem cells. p65 binds to the regulatory regions of similar differentiation
genes as RelB with opposing effects on their activation or silencing. It regulates cell prolifera‐
tion by direct binding to the CYCLIN D1 promoter [89]. There are different levels of inhibiting
canonical NFκB signaling: first, p65 translational repression by the microRNA cluster miR-290
to maintain low p65 protein amounts and second, the inhibition of translated p65 by physical
interaction with NANOG. Similarly, OCT4 expression is reversely correlated with canonical
NFκB signaling [105]. In contrast to most observations in mouse ESC, NFκB probably plays a
more important role in the maintenance of human ESC pluripotency [106]. Finally, active TLRs
are expressed on embryonic, hematopoietic and mesenchymal stem cells (MSC), thus impli‐
cating their roles in a variety of stem cell types [107-110].

4. Role of NFκB signaling during reprogramming to pluripotency

Undifferentiated human iPSC have elevated NFκB activities, which play important roles in
maintaining OCT4 and NANOG expression in pluripotent hiPSC [111]. Innate immune TLR
signaling was recently shown to enhance nuclear reprogramming probably through the
induction of an open chromatin state, and global changes of epigenetic modifiers [39]. This
normally increases cell plasticity in response to a pathogen, but may also enhance the induction
of pluripotency, transdifferentiation and even malignant transformation [112-116].

The EBNA (Epstein-Barr virus nuclear antigen) is a virus-derived protein that is not only a
critical component of episomal reprogramming vectors, where it mediates extra-chromosomal
self-replication, but it is also known to activate several TLRs [117-119]. These include TLR3,
which is known to augment reprogramming efficiencies through the activation of inflamma‐
tory pathways [39, 120]. TLR3 recognizes double-stranded RNA from retroviruses and signals
through TRAF6 and NFκB [121-123]. The TLR3 agonist poly I:C was shown to have the same
effect as retroviral particles in enhancing Yamanaka factor-induced iPSC production. TLR3
causes widespread changes in the expression of epigenetic modifiers and facilitates nuclear
reprogramming by inducing an open chromatin state through down-regulation of histone
deacetylases (HDACs) and H3K4 (histone H3 at lysine 4) trimethylations [38, 39, 124]. These
epigenetic modifications mark transcriptionally active genes, whereas the H3K9me3 (Histone
H3 at lysine 9) modification marks transcriptionally silenced genes [125, 126]. Histone
deacetylation is generally associated with a closed chromatin state and HDAC inhibitors were
shown to enhance nuclear reprogramming [127, 128]. Histone acetylation favors an open
chromatin state, and is maintained by proteins containing histone acetyltransferase (HAT)
domains, such as p300 and CBP [129, 130]. Interestingly, p300/CBP is able to interact with
NFκB [131, 132]. RelB directly interacts with the methyltransferase G9a to mediate gene
silencing of differentiation genes [133]. Epigenetic changes that allow an open chromatin state
are crucial for giving the Yamanaka factors access to promoter regions necessary for the
induction of pluripotency. Epigenetic chromatin modifications by TLRs are normally involved
in the expression of host defense genes during infections [134-136]. This capability can be
deployed to enable nuclear reprogramming as TLR3 was shown to change the methylation
status of the Oct4 and Sox2 promoters. Interestingly, changes in these methylation marks were
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not observed with TLR3 activation alone but only in the presence of the reprogramming
factors. Although TLR3 by itself promotes an open chromatin configuration, the reprogram‐
ming proteins are likely necessary to direct the epigenetic modifiers to the appropriate
promoter sequences [137]. Lee et al. described the potential of inflammatory pathways to
facilitate the induction of pluripotency as ‘transflammation’ [40, 138].

5. Overview of the JAK/STAT pathway

The JAK/STAT pathway (Janus kinase/signal transducer and activator of transcription)
integrates a complex network of exterior signals into the cell, and can be activated by a variety
of ligands and their receptors [139]. These receptors are associated with a JAK tyrosine kinase
at their cytoplasmic domain. The JAK family consists of the four members JAK1, JAK2, JAK3
and TYK2 [140, 141]. Many cytokines and growth factors signal through this pathway to
regulate immune responses, cell proliferation, differentiation and apoptosis [142-146]. Ligand
binding induces the multimerization of gp130 receptor subunits, which brings two JAKs close
to each other inducing trans-phosphorylation. Such activated JAKs phosphorylate their
receptor at the C-terminus and the transcription factor STAT at tyrosine residues. This allows
STAT dimerization and their nuclear translocation to induce target gene transcription. [147,
148] STAT3 acetylation is critical for stable dimer formation and DNA binding [149]. From the
7 mammalian STATs, STAT3 and STAT5 are expressed in many cell types, are activated by a
plethora of cytokines and growth factors, and integrate complex biological signals [150, 151].
The other STAT proteins mainly play specific roles in the immune response to bacterial and
viral infections. STAT3 is an acute phase protein with important functions during immediate
immune reactions [152-154]. STAT3 can be recruited by receptor tyrosine kinases that harbor
a common STAT3 binding motif in their cytoplasmic domain (e.g., GCSF (granulocyte colony-
stimulating factor), LIF (leukemia inhibitory factor), EGF (epidermal growth factor), PDGF
(platelet-derived growth factor), interferons (IFNγ) and interleukins (IL-6, IL-10)) [155-158].
Many cytokines signal through IL-10/STAT3 to achieve an immunosuppressive function or
anti-apoptotic effect [159, 160]. IL-10 is also required during terminal differentiation of
immunoglobulins [161]. STAT3 can be phosphorylated at tyrosine or serine residues. The
phosphorylation site can play distinct roles in the regulation of downstream gene transcription
[162]. Stat3-deficient mice die during early embryogenesis due to Stat3 requirement for the
self-renewal of ESC [163].

Negative feedback regulation of the JAK/STAT circuitry is mediated by the SOCS family of
target genes (suppressors of cytokine signaling) in a way that activated STAT induces SOCS
transcription [164, 165]. SOCS proteins can bind to phosphorylated JAKs as a pseudo-substrate
to inhibit JAK kinase activity and turn off the pathway [166, 167]. SOCS are negative regulators
of the immune response [168, 169]. A small peptide antagonist of SOCS1 was shown to bind
to the activation loop of JAK2 leading to constitutive STAT activation and TLR3 induction.
This boosts the immune system to exert broad antiviral activities [170]. The JAK/STAT pathway
also interacts with many other signaling pathways in a complex manner to regulate cell
homeostasis and immune reactions [149, 171].
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6. Functional role of the JAK/STAT pathway in stem cells

6.1. Stat3 maintains naïve pluripotency in mouse embryonic stem cells

ESC pluripotency is regulated by transcriptional networks that maintain self-renewal and
inhibit differentiation [172-174]. Stat3 and Myc are necessary to maintain mouse ESC (mESC)
self-renewal and bind to many ESC-enriched genes [175]. Their target genes include pluripoten‐
cy-related transcription factors, polycomb group repressive proteins, and histone modifiers
[176, 177]. The transcription factor Stat3 is a key pluripotency factor required for ESC self-
renewal [178, 179]. Mouse ESC require LIF-Stat3 (leukemia inhibitory factor) and Bmp4 (bone
morphogenic protein 4) to remain pluripotent in in vitro cultures, whereas human ESC require
FGF2/MAPK (fibroblast growth factor / mitogen-activated protein kinase) and TGFβ/Activin/
Nodal (transforming growth factor β) [180-183]. Nevertheless, the core circuitry of pluripoten‐
cy is conserved among species and includes OCT4, SOX2 and NANOG [174].

6.2. The LIF-IL6-STAT3 circuitry

LIF belongs to the IL-6 family of cytokines and acts in parallel through the Jak/Stat3 and PI3K/
Akt (Phosphatidylinositide 3-kinase) pathways to maintain Oct4, Sox2 and Nanog expression
via Kruppel-like factor 4 (Klf4) and T-box factor 3 [184, 185]. Lif and IL-6 are necessary for STAT3
phosphorylation mediated by Jak1 [186]. Stat3 phosphorylation positively regulates Klf4 and
Nanog transcripts and facilitates Lif-dependent maintenance of pluripotency in a signaling loop
[106]. Stat3 directly binds to genomic sites of Oct4 and Nanog, regulates the Oct4-Nanog circuitry
and is necessary to maintain the self-renewal and pluripotency of mESC [187-189]. Overexpres‐
sion of Stat3 maintains mESC self-renewal even in the absence of Lif [190]. Withdrawal of LIF
up-regulates the NFκB pathway and results in ESC differentiation as well as STAT3 disrup‐
tion [191-193]. The interleukin 6 (IL-6) response element (IRE) is activated by STAT3, vice versa
IL-6  stimulation leads  to  STAT3 phosphorylation and transactivation of  IRE-  containing
promoters providing a positively regulated STAT3-IL6 loop. STAT3 directly associates with c-
Jun and c-Fos in response to IL-6 [194]. c-Jun and c-Fos are DNA binding proteins and compo‐
nents of the AP-1 (activation protein-1) transcription factor complex [195]. AP-1 can be activated
by TLR2/4, IL-10 or STAT3 to regulate inflammatory responses or drive keratinocyte differen‐
tiation in interplay with STAT3 and c-MYC [196]. Tlr2 also plays an important role in the
maintenance of mESC [107]. STAT3 is important to tune appropriate amounts of AP-1 pro‐
teins required for proper differentiation. DNA binding sites for both AP-1 and STAT3 have been
found in many gene promoters [194, 197]. It is important to note that c-Jun is able to capture or
release the NuRD (nucleosome remodeling and deacetylation) repressor complex, an impor‐
tant epigenetic modulator of gene silencing [198, 199]. STAT3 is able to bind to bivalent histone
modifications enabling a quick switch between the activation of pluripotency genes during ESC
maintenance and their inhibition during cell differentiation [193].

6.3. STAT3 signaling in immune cells

STAT3 also has complex functions during hematopoietic development, immune regulation,
cell growth, and leukemic transformation [200-202]. It is critically important for the survival
and differentiation of lymphocytes and myeloid progenitors [171]. STAT3 signaling can be
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activated in a cell contact-dependent way, which is distinct from its cytokine activation. Co-
cultures of MSC (human mesenchymal stem cells) and APC (antigen-presenting cell) increase
STAT3 signaling in both cell types in a cell contact-dependent way, which mediates the
immune-modulatory effects of MSC to block APC maturation and induce T-cell tolerance
[203]. MSC are high-proliferative non-hematopoietic stem cells with the ability to differentiate
into multiple mesenchymal lineages [204-206]. They accumulate in tumor environments in
response to NFκB signaling and produce cytokines [207]. MSCs are FDA-approved for the
treatment of severe acute GVHD, due to their immunomodulatory properties [208]. STAT3
phosphorylation is induced by cell-cell contacts and inhibited in postconfluent cells that
consequently become apoptotic. Therefore, STAT3 may represent a molecular junction that
allows cell proliferation or growth arrest depending on the state of the cell. Increased STAT3
activity may promote cell survival during cell confluency [209].

6.4. Cell contact-dependent STAT3 signaling during cell transformation

Constitutive STAT3 activation can by itself result in cellular transformation [210-214]. For
example, contact-dependent STAT3 activation is known to play a promoting role in the
interactions between tumor cells and their environment [215-218]. Cell transformation and the
induction of pluripotency may share very similar signaling processes, and it is possible that
STAT3 may represent a common axis [219, 220]. During early tumor development, certain cells
have to acquire stem cell-like features that allow them to self-renew (tumor-initiating cells)
and to produce cell progeny (tumor bulk) [221-224]. These tumor-initiating cells are very
difficult to eradicate during chemotherapies and often re-establish the tumor seen as clinical
relapse [225-227]. Tumor-initiating cells display strong inflammatory gene signatures with
elevated IL6-STAT3-NFκB signaling to sustain their self-renewal [228-231]. A better under‐
standing of the mechanism by which STAT3 and NFκB regulates the acquisition of pluripo‐
tency and self-renewal might also give us crucial insight about tumor development, and may
lead to future novel therapies [171, 232].

7. The role of STAT3 signaling during reprogramming

7.1. STAT3 is a master reprogramming factor

Activation of Stat3 is a limiting factor for the induction of pluripotency, and its over-expression
eliminates the requirement for additional factors to establish pluripotency [233]. These key
properties have positioned Stat3 signaling as one of the master reprogramming factors that
dominantly instructs naïve pluripotency [175]. Elevated Stat3 activity overcomes the pre-iPSC
reprogramming block and enhances the establishment of pluripotency induced by SOKM
[234]. Stat3 and Klf4 co-occupy genomic sites of Oct4, Sox2 and Nanog. Klf4 and c-Myc are
downstream targets of Stat3 signaling and part of the transcriptional network governing
pluripotency. The Stat3 effect is combinatorial with other reprogramming factors, which
implies that additional targets of Stat3 play a pivotal role [235].
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7.2. STAT3 is an epigenetic regulator

Stat3 activation regulates major epigenetic events that induce an open-chromatin state during
late-stage reprogramming to establish pluripotency [236-238]. For example, Stat3 signaling
stimulates DNA methylations to silence lineage commitment genes and facilitates DNA
demethylations to activate pluripotency-related genes [106, 239, 240]. Other chromatin
modifications include histone acetylation and deacetylation, which are catalyzed by enzymes
with histone acetyltransferase (HAT) or histone deacetylase (HDAC) activities. Histone
acetylation is associated with an open chromatin state that allows active gene transcription.
HDAC inhibitors are known to significantly improve the efficiency of iPSC generation by
allowing promoter accessibility [128, 241, 242]. STAT3 suppresses HDAC expression and
repressive chromatin regulators to establish an open-chromatin structure giving full access to
transcriptional machineries. The key pluripotency factor Nanog cooperates with Stat3 to
maintain ESC pluripotency [173]. Interestingly, HDAC inhibitors but not NANOG over-
expression rescues complete reprogramming in the presence of STAT3 inhibition.

Finally, DNA demethylation is regulated in mammalian cells by Tet proteins (tet methylcyto‐
sine dioxygenase), which convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine
(5hmC). Tet1 suppresses ESC differentiation and Tet1 knockdown leads to defects in ESC self-
renewal. Tet1 up-regulation is positively regulated by Stat3 during the late-reprogramming
stage [243-246].

8. Interactions between NFκB and STAT3 signaling

8.1. Synergistic NFκB and STAT3 signaling

The NFκB and STAT3 pathways are closely interconnected in regulating immune responses
[247, 248]. STAT3 activation itself induces further STAT3 phosphorylation. Un-phosphorylat‐
ed STAT3 that accumulates in the cell can bind to un-phosphorylated NFκB in competition
with IκB. The resulting STAT3/NFκB dimer localizes to the nucleus to induce NFκB-dependent
gene expression [249]. STAT3 associates with the p300/CBP (CREB-binding protein) co-
activator enabling its histone acetyltranferase activity to open chromatin structures, which
allows chromatin-modifying proteins to bind the DNA and activate gene transcription. [250,
251] Tyrosine-phosphorylated and acetylated STAT3 additionally binds to the NFκB precursor
protein p100 and induces its processing to p52 by activation of IKKα. STAT3 then binds to the
DNA-binding p52 complex to assist in the activation of target genes [252]. Both, the NFκB and
STAT3 pathway synergize during terminal B-cell differentiation [253]. Phosho-p65/STAT3
dimers and phospho-STAT3/NFκB dimer complexes can bind to κB motifs. Also, phospho-
STAT3 and phosho-p50 interact with each other. Soluble CD40L rapidly activates NFκB p65
and up-regulates IL10 receptors on the cell surface. This renders STAT3 more susceptible to
IL-10 induced phosphorylation [161]. Macrophage activation is regulated by Toll-like recep‐
tors, JAK/STAT signaling and immunoreceptors that signal via ITAM motifs [254, 255]. These
pathways have low activity levels under homeostatic conditions but are strongly activated
during innate immune responses. ITAM-coupled receptors cooperate with TLRs in driving
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NFκB signaling and inflammation during infections, whereas extensive ITAM activation
inhibits JAK/STAT signaling to limit the immune reaction [256, 257]. Pleiotropic cytokines like
interferons and IL-6 regulate the balance of pro-and anti-inflammatory functions by activating
variable levels of STAT1 and STAT3 [258].

8.2. NFκB and STAT3 synergies in stem cells

NFκB and STAT3 are also part of an important stem cell pathway axis [259, 260]. A functional
link between NANOG, NFκB and LIF/STAT3 signaling was shown in the maintenance of
pluripotency [228]. Non-canonical NFκB signaling is activated by STAT3 through activation
of IKKα and p100 processing [58]. Conversely, STAT3 inhibits TLR-induced canonical NFκB
activity probably through up-regulated SOCS3. C-terminal binding of NANOG inhibits the
pro-differentiation activities of canonical NFκB signaling and directly cooperates with STAT3
to maintain ESC pluripotency. NANOG and STAT3 bind to each other and synergistically
activate STAT3-dependent promoters [106, 261].

The STAT3 pathway also interacts with many signaling pathways that are critically involved
in the reprogramming process. For example, STAT3 signaling activates the MYC transcriptome
and signals in loop with LIN28 [229]. LIN28 is expressed in undifferentiated hESC and is able
to enhance the reprogramming efficiency of fibroblasts. It is down-regulated upon ESC
differentiation [262-265]. Proto-oncogene tyrosine-protein kinase Src activation triggers an
inflammatory response mediated by NFκB that directly activates IL6 and Lin28B expression
through a binding site in the first intron. IL6-mediated activation of STAT3 transcription is
necessary for monocyte activation and tumorigenesis. IL6 itself further activates NFκB, thereby
completing a positive NFκB-STAT3-IL6 feedback loop that links inflammation to cell trans‐
formation [229]. Constitutive STAT3 signaling maintains constitutive NFκB activity in tumors
by inhibiting its nuclear export through p65 acetylation, although STAT3 signaling inhibits
NFκB activation during normal immune responses [52].

9. The role of epigenetic regulators during the induction of pluripotency

9.1. The NuRD complex

A panoply of chromatin remodelers play active, regulatory roles during the reprogramming
process [266, 267]. For example, the Mbd3/NuRD complex is an important epigenetic regulator
that restricts the expression of key pluripotency genes [268]. MBD3 (Methyl-CpG-binding
domain protein 3) is part of the NuRD (nucleosome remodeling and deacetylation) repressor
complex, which mediates chromatin remodeling through histone deacetylation via HDAC1/2
and ATPase activities [269-271]. The NuRD complex interacts with methylated DNA to
mediate heterochromatin formation and transcriptional silencing of ESC-specific genes.
Whereas MBD2 recruits NuRD to methylated DNA, MBD3 fails to bind methylated DNA as
it evolved from a methyl-CpG-binding domain to a protein–protein interaction module [272].
Mbd3 antagonizes the establishment of pluripotency and facilitates differentiation [273].

The Role of an NFκB-STAT3 Signaling Axis in Regulating the Induction and Maintenance of the Pluripotent State
http://dx.doi.org/10.5772/57602

13



9.2. MBD3 suppression is a rate-limiting step in factor-mediated reprogramming

Recent evidence suggested that efficient reprogramming may require NuRD complex down-
regulation [274]. The reprogramming factors OCT4, SOX2, KLF4 and MYC bind to MBD3, a
critical component of the NURD complex. In the absence of MBD3, SOKM over-expression
induces pluripotency with almost 100% efficiency [275]. Such reprogramming occurs within
seven days in mouse cells. Once pluripotency is established, MBD3 does not appear to
compromise its maintenance. The MBD3/NuRD repressor complex is probably the predomi‐
nant molecular block that prevents the induction of ground-state pluripotency. Several
reprogramming factors directly interact with the MBD3/NuRD complex to form a potent
negative regulatory complex that restrains pluripotency gene reactivation. Thus, chromatin
de-repression is of critical importance for the conversion of somatic cells into iPSC.

9.3. Bivalent histone modifications

Embryonic stem cells are not only able to maintain their undifferentiated state indefinitely, but
also need to retain their ability to differentiate into various cell types [276]. The co-existence
of these two features requires the combined action of signal transduction pathways, transcrip‐
tion factor networks, and epigenetic regulators [277]. Pluripotent gene expression has to be
maintained in a way that it can be rapidly silenced upon receiving differentiation signals. The
NuRD complex maintains this ESC flexibility by inducing variability in pluripotency factor
expression that results in a low-expressing subpopulation of ESCs primed for differentiation
[268, 278]. The control of gene expression by juxtaposition of antagonistic chromatin regulators
is a common regulatory strategy in ESC, called bivalent histone modification [279, 280].
Individual promoters exhibit trimethylation of two different residues of histone H3: lysine 4
(H3K4me3) and lysine 27 (H3K27me3) [281, 282]. H3K27me3 is a repressive histone modifi‐
cation, whereas H3K4me3 is an activation-associated mark [283]. Both epigenetic markers have
opposing effects and allow quick adjustments between ESC self-renewal and differentiation.
Bivalent genes are generally transcriptionally silent in ESCs but are prone for rapid activation.
MBD3 binding is enriched at bivalent genes characterized by 5hmC modifications. STAT3
binds to bivalent histone modifications and is able to switch between cellular pluripotency and
differentiation [236, 284, 285].

9.4. MBD3 may prevent completion of the reprogramming process

MBD3 plays key roles in the biology of 5-hydroxy-methylcytosine (5hmC) [286]. 5hMC is an
oxidation product of 5-methylcytosine (5mC) [287, 288]. MBD3 silences pluripotency genes
like Oct4 and Nanog through 5-hydroxy-methylation of their promoters. MBD3 binds to 5hmC
in cooperation with Tet1 to regulate 5hmC-marked genes, but does not interact with 5mC.
Mbd3 interaction with 5hmC recruits NuRD to its targets resulting in gene repression.
Knockdown of the MBD3/NuRD complex affects the expression of 5hmC-marked genes [289].
Mbd3 acts upstream of Nanog and may block the transition from partially to fully reprog‐
rammed iPSC by silencing Nanog. Nanog overexpression was dominant over Mbd3 knock‐
down in the induction of efficient reprogramming and is in general sufficient to maintain mESC
pluripotency. Mbd3 depletion facilitates the transcription of Oct4 and Nanog and leads to the
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generation of iPSC and chimeric mice even in the absence of Sox2 or c-Myc [290]. The depletion
of Mbd3/NuRD does not replace Oct4 during iPSC formation as reprogramming did not occur
with Klf4 and c-Myc alone. Mbd3-dependent silencing of pluripotency factors occurs during
ESC differentiation. This involves NuRD-dependent deacetylation of H3K27 required for the
binding of the polycomb repressive complex two. NuRD-dependent silencing of pluripotency
genes prevents the de-differentiation of somatic cells. In the absence of Mbd3, NuRD disas‐
sembles, which lowers this epigenetic barrier and allows the activation of pluripotency genes.
Drug-induced down-regulation of Mbd3/NuRD may greatly improve the efficiency and
fidelity of reprogramming [291].

9.5. STAT3-MBD3 counteractions

Stat3 promotes the expression of self-renewal transcription factors and opposes NURD-
mediated repression of several hundred target genes in ESCs. The opposing functions of Stat3
and NuRD maintain variability in the levels of key self-renewal transcription factors. Stat3,
but not NuRD, is the rate-limiting factor for pluripotency gene expression. Self-renewing ESC
face a barrier that prohibits differentiation. NuRD constrains this barrier within a range that
can be overcome when self-renewal signals are withdrawn [268, 278, 292]. Mbd3/NuRD-
mediated gene silencing is a critical determinant of lineage commitment in embryonic stem
cells and allows cells to exhibit pluripotency and self-renewal. Mbd3-deficient ESC show

Figure 2. The master reprogramming factor STAT3 may overcome an unknown reprogramming block by inducing an
open chromatin formation that facilitates the pluripotency factors SOKM to bind to ESC gene promoters. We hypothe‐
size that upstream inflammatory signals mediated by NFκB signaling may facilitate STAT3 to de-repress the NuRD
complex via c-Jun.
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persistent self-renewal even in the absence of Lif. They are able to undergo the initial steps of
differentiation, but their ability for lineage commitment is severely compromised. They fail to
downregulate undifferentiated cell markers as well as upregulate differentiation markers
[293]. Stat3 has many downstream effectors like the proto-oncogene c-Jun that is part of the
AP-1 complex [194]. The transactivation domain of un-phosphorylated c-Jun recruits Mbd3/
NuRD to AP-1 target genes to mediate gene repression. This repression is relieved by c-Jun N-
terminal phosphorylation or Mbd3 depletion. Upon JNK activation, NuRD dissociates from
c-Jun, which results in de-repression of target gene transcription. Termination of the JNK signal
induces Mbd3/NuRD re-binding to un-phosphorylated c-Jun and cessation of target gene
expression (Figure 2) [199].

10. Conclusions

In this review, we have discussed a potentially novel link between inflammatory pathways
and efficient cell reprogramming. In this context, our group reported that bone marrow
stromal-primed human myeloid cell progenitors are significantly more receptive to reprog‐
ramming stimuli than other cell types [20]. Myeloid cells harbor a unique epigenetic plasticity
that allows them to quickly respond to a plethora of pathogens. They are innately equipped
to transcriptionally and epigenetically activate key inflammatory pathways via an intercon‐
nected NFκB and STAT3 signaling machinery [294]. Both pathways act as epigenetic modifiers
during normal inflammation stimulation, and both are also known to promote ESC pluripo‐
tency by inducing an open chromatin state that allows other transcription factors to regulate
cell fates [236]. This epigenetic remodeling may prove crucial for efficient reprogramming, as
well as the generation of high quality iPSC that resemble ESC without excessive epigenetic
memory of their cell of origin [295].

Moreover, Stat3 is a master reprogramming factor that is able to dominantly instruct pluripo‐
tency, yet is also inherently interconnected with inflammatory signaling cascades (Figure 2).
It binds to bivalent histone modifications, and allows rapid transitions between pluripotency
and differentiation [193]. The NFκB pathway acts in synergy with downstream STAT3
signaling, whereby non-canonical NFκB signaling maintains pluripotency through epigenetic
silencing of differentiation genes and canonical NFκB signaling promotes cell differentiation
[296]. Finally, recent evidence suggests that strong chromatin repression by the NuRD complex
is a key rate-limiting factor during reprogramming to pluripotency. This important complex
may normally function to ensure that differentiated cells do not reactivate pluripotency genes,
which might enable tumorigenesis [268]. We propose the hypothesis that NuRD complex
silencing might be more easily achieved through the activation of inflammatory pathways in
receptive cells such as those from the myeloid lineage.

It remains to be elucidated how all these processes are inter-regulated. It will be especially
important to link reprogramming efficiency with the resulting quality of the pluripotent state
achieved in hiPSC. We hypothesize that epigenetic plasticity in inflammatory cells that
normally allows chromatin accessibility to the transcriptional machinery, could be manipu‐
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lated to facilitate a complete erasure of the donor epigenetic memory during factor-mediated
reprogramming. Additionally, preventing cancerous epigenetic patterns in iPSC via more
accurate high-fidelity reprogramming methods will be the foundation for future clinical
applications [13]. Finally, the basic understanding of pluripotency induction may also give us
a better understanding of how tumor-initiating cells arise and how they can be eradicated to
prevent tumor relapse, thus potentially opening a new era of cancer treatments.
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