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1. Introduction

Neural tripeptide amide L-pyroglutamyl-L-histidyl-L-prolineamide (L-PHP, Thyrotropin-
releasing hormone, TRH) is a fine molecular peptide that was first identified in the Central
Nervous System (CNS) and discovered in many other regions of body later as a neuropeptide
hormone or neuromodulator [1]. L-PHP stimulates the thyroid stimulating hormone (TSH)
after it is released from the hypothalamic nerve in the median eminence. L-PHP was named
as its functional action-TRH [2]. Beyond neuronal tissue, expression of L-PHP was also found
in the pancreatic islets where it identifies to the Langerhans-insulin-producing beta cells [3].
However, L-PHP expression and production is significantly different from its production in
the nervous system; it is primarily expressed during the early developmental period in rat [4]
and human fetal pancreatic tissue [4]. L-PHP stimulates glucagon release and inhibits other
pancreatic secretion other than TSH [5]. In this review, based on evidence found in L-PHP gene
knockout animal models and its function in regulating insulin release in pancreatic tissue [6],
L-PHP may play an important role in carbohydrate metabolism and pancreatic L-PHP
disruption may lead to the development of diabetes mellitus.

Expression of L-PHP in the pancreas: L-PHP is expressed in the insulin granules of β cells in
pancreatic islets, [7] with high levels during the neonatal period but significantly decreased as
postnatal development progresses [4]. A Comparison with L-PHP expression, in the primary
transition period between E12 and E14, shows insulin secretion in both rat and mouse while
L-PHP remains unexpressed[4, 8]. During this period, insulin stained cells do not express any
Rab3A, SNAP-25 (two molecules important for the control of insulin secretion) nor Glut 2 and
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granules resemble β cells. However, at E16, L-PHP expression was found and thereafter, high
expression of molecules such as Glut2 and Pdx-1, which are necessary for insulin production,
maturation and full insulin cell function, were found in the insulin and L-PHP positive cells.
L-PHP’s significant expression coincides with factors for insulin production, maturation and
insulin cell development suggesting that L-PHP is critical for insulin cells as they become
functionally mature during early development.

2. Effects of L-PHP on pancreatic insulin secretion

Beyond regulating TSH, L-PHP is also found to be involved in the regulation of neuronal
growth [9], facilitating spinal cord injury recovery [10], appetite control [11], and alcohol
consumption [12]. The most important role of L-PHP is considered to be its regulation of blood
glucose levels in vivo, presumably via the CNS [6, 13-16]. L-PHP’s anti-hyperglycemia function
was identified by eliminating pituitary-thyroid axis by a hypophysectomy, which also
eliminated other hormones released from pituitary, and suggests its anti-hyperglycemia
function beyond its activation in CNS [17]. In another experiment, pancreatic beta cells were
destroyed by Streptozotocin and CNS administration of L-PHP failed to reverse high blood
glucose, supporting this notion of function outside of CNS activation. L-PHP regulating blood
glucose may have a direct effect in pancreatic beta cell instead of via CNS or thyroid hormone,
which was supported by application of thyroid hormone in hypothyroidism of hyperglycemic
animal but did not reverse high blood glucose. Blood glucagon and insulin level was increased
by intravenous injection of L-PHP in rabbit [18] and cultured fetal islet identified L-PHP
expression by a quantitative analysis [19] which supports the possibility of L-PHP’s direct
effect on pancreatic beta cell function.

Pancreatic L-PHP can stimulate pancreatic endocrine function and/or endocrine cell develop‐
ment. The mechanisms as to how L-PHP regulates pancreatic β-cell development have not
been identified. Gathering evidence from in vivo and in vitro, we propose that L-PHP may
modulate insulin secretion directly when glucose stimulates β-cell, which was demonstrated
in isolated perfusion of fresh islets [20] and islet cell lines (Fig. 1). The mechanisms may relate
to L-PHP regulating glucagon-containing (alpha) cell secretion resulting in eliminating
somatostatin (r-cells) and inhibiting insulin production. A clinical study in hyperparathyroid‐
ism patients showed that L-PHP application to these patients significantly elevated serum
levels of insulin and glucagon and it also had a dose-dependent inhibition of carbachol-
stimulated amylase secretion, suggesting a role for L-PHP in the paracrine regulation of
exocrine as well as endocrine pancreatic secretion.

L-PHP protects pancreatic tissue from damage and toxins like the reduction of glycodeoxy‐
cholic acid. Evidence suggests that L-PHP plays a critical role in β-cell maturation. During the
phase of pancreatic development, which includes high levels of L-PHP expression in early
pancreatic β-cell development, dexamethasone treatment eliminated the L-PHP peak and
resulted in retarded β-cell development [21]. Also, newborn rats were found to have reduced
L-PHP levels due to maternal diabetes caused by streptozotocin (STZ) injection [22]. The
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observation of ten-fold lower L-PHP in pups of diabetic rat followed by a postnatal day 5
elevation of L-PHP reducing blood glucose levels [22] suggest that L-PHP expression during
β-cell development is important and it may prevent diabetes from developing in later life.

The L-PHP receptor consists of two major sub-types (R1 and R2, recently identified third type).
Using RT-PCR, receptor R1 is identified as expressed in HIT-T15 (HIT) cells, a hamster clonal
ß-cell line [23], and mouse pancreatic islets, but expression of R2 is not found. R2 was identi‐
fied as expressed predominantly in the CNS, but not other tissue. By northern blot analysis it
was found that R1 in pancreas is of 3.7-kb size and shares 93.3% homology with that in the
pituitary. Evaluation of R1 function by receptor affinity found various kDa values in ß –cells
[23]. ß –cell intracellular calcium concentration was significantly increased by L-PHP and
removal of extracellular calcium does not change this effect [24]. Our group work has shown

(a) 

Insulin levels in βTC-6 (a mouse derived pancreatic β cell line) cell extracts and medium after exposure to L-PHP

Figure 1. Insulin levels in βTC-6 (a mouse derived pancreatic β cell line) cell extracts and medium after exposure to
TRH Cells were cultured for 24 hours with or without TRH (n=6 each group). Culture Medium was collected and har‐
vested cells were extracted by 5% TCA. Insulin content and secretion were measured by ELISA. Insulin content was
normalized relative to protein concentration (mg/ml) in the cell extracts. L-PHP treated cells contained greater levels
of insulin in cell extracts A and culture medium B vs controls. (From reference #25, with permission)
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R1 expression in rat-derived β-cell lines as well as whole pancreas that included nonislet tissue
[25]. R1 receptor was also found to associate with EGF receptor function called cross linking
[25] (Fig. 2).

 

 

 

Figure 2. In situ hybridization of L-PHP-receptor-1(R1) in rat pancreas A. and D. Dual fluorescent image of rat pan‐
creas. Red indicates insulin immuno-fluorescence; Green indicates R1 in situ hybridization. B. and E show H&E staining
for tissue morphology, C and F show dapi for nuclei staining. The large arrows indicate the yellow color, a mixture of
green and red represents colocalization of insulin and R1 in islet and the small white arrows indicate the positive stain‐
ing of R1 in epithelial A. B. and ductal D. E. (From reference #25, with permission)

3. Regulation of L-PHP in the pancreas

In vitro studies have shown that L-PHP is stimulated by glucose and suppressed by insulin
release. Cellular cAMP production regulated by somatostatin may involve glucose and insulin
regulation of L-PHP [26, 27]. We hypothesize that there is an α-β-γ integrating system, which
releases insulin-L-PHP-somatostatin coordinated in respond to glucose challenge in islet. To
support this hypothesis, it needs further study but evidence in that tissue cultures of pure β
cell do not function as well as an entire islet may be part of the support.

4. L-PHP alteration of gene expression modifys microenvironment within
the pancreas

Pancreatic microenvironment alteration by L-PHP has been reported [28]. The findings show
that multiple functional genes in rat pancreas were influenced by L-PHP in vivo. A total of 60
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genes are found to be regulated by L-PHP, 29 genes in the pancreas and 31 genes in rat derived
pancreatic β-cell line, INS-1 cells. These genes include Ca2+channel enhancers (Ca2+/calmo‐
dulin-dependent protein kinase, type I and II), G-protein coupling receptor related genes
(GPCR kinase 4 and 5, transducin-β 1 subunit,Arrestin-β1, transducin-β1), Protein kinases
(serine/threonine kinase-3,PKC β, PCTAIRE-3, v-mos), proliferation or differentiation signal
transduction related genes (MAPK3, growth factor receptor-bound protein 2, n-myc, GAP-43)
and down-regulated pro-apoptotic Bax gene. Genes relative to insulin secretion are signifi‐
cantly increased by L-PHP including N-methyl-D-aspartate receptor-2A, GABA-A receptor,
RAB2, Ras-related GTPase and ADP ribosylation factor 1 and 5. The differential gene expres‐
sion between β-cells and total pancreatic tissue in response to L-PHP shows that of the 36 genes
that are initiated and 36 genes that are turned off relative to signal transduction. In rat pancreas
6 genes were initiated and 14 genes were turned off, with one initiating the anti-apoptotic BcLX
gene. While in rat INS-1 β cell line only 4 genes were initiated and 4 genes turned off from the
34 signal transduction genes. These significant variations between pure β-cell and entire
pancreatic tissue indicate that L-PHP can regulate β-cell function by directly working on β-
cells or by indirectly altering pancreatic microenvironment to maintain and facilitate β-cell
response to glucose resulting in a balance in vivo of glucose metabolism.

5. Regulation of β-cell proliferation by signal pathways from L-PHP to
growth hormone activity in pancreatic islet

L-PHP has been reported to stimulate R1 and dissociate the GPCR complex, activating protein
kinase C [29] and mitogen-activated protein kinase (MAPK) [29] in both a PKC-dependent and
a PKC-independent manner in the neuronal cell lines [30]. These effects may involve activation
of tyrosine kinase, which leads to the activation of Ras and MAPK cascade. The signaling
pathways initiating from G-coupled L-PHP receptor in activating MAPK may overlap with
the receptor tyrosine kinases activating the Ras-MAPK cascade [31, 32]. There is evidence that
L-PHP and EGF have overlapping activities [33] leading to the stimulation of tyrosine
phosphorylation of EGF receptors in GH3 cells, a pituitary cell line [34]. L-PHP-induced EGF
receptor phosphorylation led to the recruitment of adapter protein Grb2 and Shc in GH3 cells.
The hypothesis that L-PHP would activate EGF receptors in β cells through multiple pathways
is tested, and data indicated that L-PHP trans-activates EGF receptors through several intra-
and extracellular pathways, which are distinguished from pituitary-derived cell lines. R1 can
initiate multiple signal transduction pathways to activate the epidermal growth factor (EGF)
receptor in pancreatic β cells [35]. By initiating R1 G-protein-coupled receptor (GPCR) and
dissociated αβγ complex, L-PHP (200nM) activates tyrosine residues at Tyr845, (a known
target for Src) and Tyr1068 in the EGF receptor complex in an immortalized mouse β-cell line,
βTC-6. Through manipulating the activation of Src, PKC and heparin-binding EGF-like growth
factor (HB-EGF) with corresponding individual inhibitors and activators, multiple signal
transduction pathways linking L-PHP to EGF receptors in βTC-6 cell lines have been revealed.
The pathways include the activation of Src kinase and the release of heparin-binding EGF as
a consequence of MMP3 activation. Alternatively, L-PHP inhibited PKC activity by reducing
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EGF receptor serine/threonine phosphorylation, thereby enhancing tyrosine phosphorylation.
L-PHP receptor activation of Src may have a central role in mediating the effects of L-PHP on
the EGF receptor (Fig. 3). The activation of the EGF receptor by L-PHP in multiple circum‐
stances may have important implications for pancreatic β cell biology. Since EGF receptor
expression has been found to have a high activity during the embryonic developmental period
[4, 36], the possibility exists that L-PHP activation of EGF receptors in pancreatic β cells may
play a role in β-cell development.

 

 

 

Figure 3. The scheme summarized the mechanism of L-PHP cross talk with EGF receptor in pancreatic β cells. L-PHP
binds to its receptor and dissociates GPCR αβγ complex into α and βγ units. The βγ unit activation of the Src kinase
directly results in phosphorylation of EGF receptor Tyr 845. In addition, Src indirectly stimulates Tyr 845 phosphoryla‐
tion by activation of MMP3 to release heparin-binding EGF. Meanwhile, activation of Src kinase inhibition of PKC re‐
sults in reducing serine/threonine phosphorylation which blocks off the inhibition of serine/threonine
phosphorylation on tyrosine phosphorylation and indirectly activates Tyr 1068 phosphorylation in EGF receptor. L-PHP
activation of EGF receptor phosphorylation results in the activation of cellular signal pathways such as MAPKs. The
activation of Src may have a central role in mediating the effects of L-PHP on the EGF receptor. (R=receptor; _____=ac‐
tivation;------=suppression) (From reference #35, with permission)

6. Conclusions

The small sized L-PHP neuropeptide may play a significant role in direct regulation of
pancreatic β-cell function and, through modulation of pancreatic microenvironment, support
β-cell survival. The role of L-PHP may be similar to that of the gut peptide GLP-1, that increases
β-cell regeneration, but may also have a role in inducing adult stem cell differentiation into
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functional β-cells during pancreatic tissue injury, which may be significant for diabetic
therapy.

7. Future directions

Rat islet cell function can be recovered 90-95% from a pancreatectomy after application of
glucagon-like peptide 1(GLP-1) [38]. This β-cell regeneration from damaged rat pancreas has
also been mimicked by STZ damaged rat pancreas following administration of L-PHP [39].
However, human islet β-cell regeneration may differ from rat and it may require a totally
different microenvironment. In order to initiate human islet β-cell functional recovery from
damage or loss, pancreatic stem cells or stem cells from other tissue, such as bone marrow,
must be able to in vivo differentiate into multiple types of endocrine cells (αβγ) to reconstitute
a new endocrine system in response to glucose challenge. Initiating L-PHP generation in
vivo or administration from in vitro may be a way to approach this goal. Before the application
of this peptide, a series of studies must be performed 1) to prove L-PHP can induce stem cells
in the pancreatic environment to differentiate into β-cells and 2) L-PHP can induce other islet
endocrine cells, such as α and γ cells, to support and regulate β-cell function, even β-cell
regeneration. The current evidence from in vivo animal models and in vitro is very promising
and encouraging; still multiple steps are needed before L-PHP can be applied in human
diabetic therapy.
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