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1. Introduction

Operational monitoring of agricultural extent and production is part of several national and
international efforts to provide transparent, rapid and accurate information related to food
security and food markets. Initiatives such as the G20 Agricultural Market Information System
(AMIS), the European Commission’s Monitoring Agricultural Resources mission (MARS), the
Global Agricultural Monitoring (GEOGLAM) component of GEO, and the United States
Department of Agriculture’s Global Agricultural Monitoring Foreign Agricultural Service
(GLAMFAS), are just some examples of operational services that do, or will require remote-
sensing–based information on crop status in almost any part of the world.

Of the thousands of edible plants, just three—rice, wheat, and maize —provide 60% of the
global population’s food energy intake, and the top 15 crops amount to 90% [1]. Seasonal or
monthly estimates of production and availability of these staples form a part of many agri‐
cultural bulletins and agricultural outlook reports. These reports are used for decision-making
and policies on imports, exports, subsidies, and investments, which, in turn, affect prices. Food
security is fundamentally about availability and price; such reports, and the responses to these
reports, affect both. International events, such as the food price crisis of 2008, are the unin‐
tended outcome of national and international policy decisions that can detrimentally affect
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millions of people. More accurate and timely information to better inform policymakers is one
way to reduce the likelihood of similar events in the future.

Crop bulletins and other regular assessments of crop area and production are a combination
of statistics, surveys, reports from agricultural offices, Met Office forecasts, expert opinion,
and remote-sensing information on vegetation, soil moisture, and rainfall. However, there is
scope to increase the role of remote sensing in these reports if the information can be provided
at the appropriate time, scale, and, wherever possible, with a focus on specific crops. Highly
anticipated programmes such as the European Space Agency's (ESA) Sentinel constellation
can provide exactly this type of information, although the demands for sustainably acquiring,
processing, validating, and delivering the information are considerable.

This chapter provides a proof of concept for how a key staple crop can be monitored on a
national scale using existing remote-sensing (RS) products that will soon be complemented
and superseded by forthcoming sensors. Our exemplar crop is rice and our test country is
Bangladesh (Figure 1). This region is highly suitable for a demonstration because of the triple
remote-sensing challenge of pervasive cloud cover, small field size, and complex cropping
patterns, which are typical of the vast and important agricultural areas of Asia, Africa, and
Latin America. It is these areas where future gains in productivity must and will be made, not
the agricultural areas of Europe, the US, and other developed regions where crop monitoring
is substantially easier.

We first briefly describe the rice environments of Bangladesh, and then demonstrate how a
combination of hypertemporal synthetic-aperture radar (SAR) and optical RS data can be
combined to generate both baseline map information and near–real-time monitoring infor‐
mation on crop extent and crop seasonality.

2. Rice in Bangladesh

Agriculture is one of the most important sectors in Bangladesh’s economy, accounting for
approximately 20% of the gross domestic product (GDP) in 2010. It also accounts for the
employment of over 60% of the country’s population [2]. Rice is far and away the most
important crop in the agricultural sector. Almost 60% of the land area is planted to rice and it
provides food, employment, and income for much of the rural population. Bangladesh is one
of the most populous countries in Asia, with almost 150 million people, according to the 2011
census. With over 1,000 people per square kilometre, it is one of the most densely populated
countries in the world [2]. The country’s milled rice consumption per capita is the highest in
the world at 173 kg per year or almost 500 g of uncooked rice per day [1].

Rice can be cultivated in any of three seasons in Bangladesh in a myriad of cropping systems
such as rice/pulse, rice/maize, rice/wheat, rice/vegetables, rice/shrimp and double-or triple-
rice monoculture. The dry boro season, which runs from November to April, is largely
dependent on irrigation and is of growing importance to Bangladesh’s rice output. This is
followed by the aus season (sometimes referred to as early kharif), which runs from March to
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August and relies on irrigation to establish the crop and early monsoon rains during the rest
of the season. The aman season from June to December relies almost entirely on monsoon rains
and is another major source of rice production. Deepwater aman rice grown in flooded
conditions using tall varieties or floating rice starts in April or May, but is harvested in
November/December. Figure 2 shows how these seasons overlap due to the large variation in
(trans)planting and harvesting windows across the country. In general, the boro season starts
in the east and south and moves northward; whereas, the rainfed aman season starts in the
northernmost reaches of the delta and moves from north to south, although, local conditions,
cropping patterns, and other management decisions can affect this trend.

Figure 3 shows the trends in rice cropped area per season for 1999-2012 and Figure 4 shows
the reported area for each of the 64 districts in 2011 based on BBS annual reports [2-3]. Figure
3 shows the general stability in total rice area with extremes of 10.4 (2004) and 11.5 (2011)
million hectares; the recent increases are mainly due to the expansion of the area in the boro
season. Figure 4 shows the general spatial distribution of rice per season where the boro crop
is mainly in the north and east, the much smaller aus crop area is in various clusters across the
country, and the aman crop is dominant in both north and southern coastal regions.

 

Figure 1. Location of Bangladesh in Asia.
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Figure 3. Bangladesh rice area by season 1999-2012 (Source: [2-3]).

Figure 4. Bangladesh rice area per district in 2011 (l to r: boro, aus, aman) (Source: [3]).

Figure 2. Generic rice crop calendar for Bangladesh (from FAO).
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Whilst production has increased steadily over the past 10 years, this trend faces multiple
challenges. Flooding from excessive rainfall and the massive inflow from the Ganges (called
Padma in Bangladesh), Brahmaputra (called Jamuna in Bangladesh), and Meghna rivers is
estimated to severely affect 1.32 million ha and moderately affect a further 5.05 million ha.
Crop losses from such massive inundation can be enormous. At the same time, drought
brought on by a shortage of rainfall affects both the rainfed aman crop and the dry season
crops, with a total drought-affected area estimated at 3.52 million ha. Salinity and tidal surges
from cyclones affect a further 1 million ha of cultivated land, and any given area can suffer
from one or more of these stresses during the year [4]. Severe yield losses are also attributed
to pests, diseases, weeds, and other biotic yield reducers.

The possible impacts, both positive and negative, of changes in climate, society, economy and
technology are hard to quantify, but the fundamental message is that Bangladesh faces
multiple challenges to food production which are the focus of ongoing research and develop‐
ment across the country, such as stress tolerant varieties, innovative cropping systems,
investments in infrastructure, extension and training. Bangladesh has been identified as one
the countries with the highest vulnerability to anticipated climate change and there is contin‐
ued need to deliver the best possible crop status information to policy makers as a contribution
to sustainable and resilient agricultural production.

In summary, rice can be cultivated during any month and it faces different pressures in each
of the three seasons. Rice is cultivated in varying amounts in every district with differing spatial
patterns each season. Thus any RS-based monitoring requires frequent observations through‐
out the year across the entire country. For this reason, hypertemporal imagery with a large
footprint, such as MODIS and ENVISAT WS products, are good choices for baseline rice extent
mapping and rice seasonality monitoring. They also serve as a proof of concept of what can
be achieved at higher spatial and temporal resolutions with future satellite programmes in an
operational monitoring context.

3. Methods and data

3.1. Multi-temporal SAR and optical data for rice mapping and monitoring

Field conditions and crop evolution follow well understood seasonal changes, which can be
observed by multi-temporal remote-sensing data. Combined with a priori knowledge of the
crop calendar and land practices, this multi-temporal remote-sensing data can be correctly
interpreted to deliver valuable information. For rice, at the start of the season, remote-sensing
time-series can determine when and where fields are prepared and irrigated. The same time-
series information can also capture the various crop stages, starting from seeding or trans‐
planting and then through the vegetative, reproductive, and ripening stages until harvest. In
synthesis, assuming that images are regularly acquired, the key source of information about
crop presence and status is the temporal signature [5-9]. Systematic acquisitions are essential;
one image or randomly acquired scenes, even with very high resolution, are of limited use for
crop monitoring.
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SAR systems have a proven ability to detect irrigated and lowland rice through the unique
backscatter temporal signature. In the past three decades, a significant number of publications
have been dedicated to the rice signature and to its detection and monitoring [10-17]. In
summary, these studies have shown that:

• Lower frequencies (L-and C-band) penetrate deeper into the rice plant than higher frequen‐
cies, whereas higher frequencies (X-band) interact better with rice grains.

• Double bounce dominates at L-band, whereas volume scattering prevails at X-band.

• The correlation between the backscattering coefficient and rice bio-physical parameters
shows that, lower frequencies are more related to the total fresh weight, leaf area index, and
plant height; whereas higher frequencies better correlate with grain weight and grain water
content.

• The date of the maximum backscattering coefficient at X-band precedes those of C-and L-
band.

• The VV backscattering coefficient increases only during the vegetative stage; it is quite stable
at the reproductive stage, and it decreases at the ripening stage due to the canopy attenua‐
tion.

• The HH backscattering coefficient increases at the reproductive stage, and it is quite stable
at the ripening stage. The temporal trend of the HV backscattering coefficient is similar to
the HH one.

• The VV/HH polarization ratio, at C-and L-band, significantly decreases throughout the
course of the crop season, hence proving its sensitivity to rice plant age.

• The frequency ratios for HH and VV (C-VV/L-VV and C-HH/L-HH) are significantly lower
in the latter part of the rice season, when thick vegetation canopy hampers wave penetration.

High-resolution optical images in the tropics are strongly limited for crop monitoring pur‐
poses, especially rice. Most rice is grown in the rainy or monsoon season and images often
suffer from persistent and widespread cloud contamination. High-resolution images are rarely
available with high temporal frequency, so gap-filling and smoothing options are limited. On
the contrary, moderate-resolution systems with daily revisiting cycles, such as MODIS, have
the appropriate spectral bands and temporal resolution needed for crop identification and
phenological monitoring at regional scales.

Although sometimes neglected and rarely the subject of discussion in remote-sensing litera‐
ture, the impact of meteorological conditions and crop practices on rice plant growth is often
significant. Some prior knowledge of the rice variety, the crop calendar, varietal maturity, crop
management practices for water and inputs, and meteorological conditions is prerequisite for
the correct interpretation of the temporal signature and for the generation of an accurate ‘rice
map’, whatever the specific information (i.e., rice area, start of season date, etc.) in the map.
This agronomic and meteorological information must be considered in the development of a
rice detection algorithm.
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Thus, there is an opportunity to use both SAR and optical time-series information for rice crop
detection and monitoring, provided that there is sufficient a priori knowledge of the rice
system under observation. The following approach is based on specific peculiarities and
complementarities of high temporal resolution and moderate spatial resolution SAR and
optical data; however, the approach can also use higher resolution imagery if available.

Given the higher spatial resolution but limited revisiting time (ranging from 16 to 24 days),
SAR data are primarily used to estimate the spatial extent (resolution 100 m) of the rice crop.
Medium-resolution optical data with a quasi-daily revisiting cycle are used to derive the land
surface phenology as a means to identify key stages of the rice crop season. There are two
distinct processing chains to develop rice monitoring products on an operational basis: one for
the rice extent/area estimation from SAR, another for rice seasonal monitoring within that
extent/area from MODIS. The main advantages of this approach are:

• It overcomes the spatial-temporal problem, hence, assuring an appropriate temporal
repetition at an adequate scale (i.e., spatial resolution) even over large areas;

• It provides an operational monitoring system, which is based on multi-sensor data redun‐
dancy.

Figure 5 illustrates the overall approach. Depending upon data availability, rice products
based on archive and actual remote-sensing data at different spatial scales can be generated.
Here, we will discuss the use of archive ENVISAT ASAR Wide Swath data (100 m) and MODIS
(500 m), leading to a multi-year rice extent and phenological monitoring product.

Figure 5. Products and supported sensors (past, current, near future) including acquisition modes.
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3.2. Multi-year rice extent from archive ENVISAT ASAR Wide Swath data

The C-band Advanced Synthetic Aperture Radar (ASAR) on board of the ENVISAT satellite
ensured continuity of the ERS-1/2 SAR systems between 2002 and 2012. It featured enhanced
capability in terms of coverage, range of incidence angles, polarisation, and modes of opera‐
tion. There were three ASAR acquisition modes with a 35-day repeat cycle:

• Wide Swath mode-WS (400 by 400 km, 100 m resolution, HH or VV),

• Image mode – IM (100 by 100 km, 15-25 m resolution, HH or VV), and,

• Alternating Polarization – AP (100 by 100 km, 15-25 m resolution, HH/VV or HH/HV or VV/
VH).

The 10-year ENVISAT ASAR WS data archive is mainly based on background mission
acquisitions, hence, it was not specifically planned and not optimised for agricultural appli‐
cations. Nevertheless, the large archive can be exploited for rice mapping with appropriate
processing and interpretation. A fully automated processing chain has been developed to
convert the images into terrain geocoded backscattering coefficient (σ°).

1. Co-registration – Images acquired with the same observation geometry and mode are co-
registered in slant range geometry. This step is mandatory to allow time-series speckle
filtering.

2. Time-series speckle filtering – An optimum multi-temporal filtering is used to balance
differences in reflectivity between images at different times [18]. Multi-temporal filtering
is based on the assumption that the same resolution element on the ground is illuminated
by the radar beam in the same way, and corresponds to the same slant range coordinates
in all images of the time series. The reflectivity can change from one time to the next due
to a change in the dielectric and geometrical properties of the elementary scatters, but
should not change due to a different position of the resolution element with respect to the
radar.

3. Terrain geocoding, radiometric calibration, and normalization – A backward solution by
considering a Digital Elevation Model is used to convert the positions of the backscatter
elements into slant range image coordinates. A range-Doppler approach is used to
tranform the three-dimensional object coordinates in a cartographic reference system into
the two-dimensional row and column coordinates of the slant range image. During this
step, the radiometric calibration is performed by means of the radar equation, where
scattering area, antenna gain patterns, and range spread loss are considered. Finally, the
backscattering coefficient is normalized according to the cosine law of the incidence angle
in order to compensate for the range dependency.

4. Anisotropic Non-Linear Diffusion Filtering – This filter significantly smoothes homoge‐
neous targets, whilst also enhancing the difference between neighbouring areas. The filter
uses the diffusion equation, where the diffusion coefficient, instead of being a constant
scalar, is a function of image position and assumes a tensor value [19]. In this way, it is
locally adapted to be anisotropic close to linear structures such as edges or lines.
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5. Removal of atmospheric attenuation – Although microwave signals have the ability to
penetrate through the clouds, it is possible, particularly at short (X-and C-band) wave‐
lengths, that severe localised storms can affect the backscattering coefficient in the range
of several dB. The temporal signature of the backscatter coefficient can be affected in two
ways: (1) the thick layer of water vapor generates a strong decrease of backscattering
coefficient, followed by a strong increase; (2) the strong rainfall generates a strong increase
of the backscattering coefficient, followed by a strong decrease. These effects are corrected
in the processing chain by analyzing the temporal signature—anomalous peaks or troughs
are identified and the backscattering coefficient values are corrected by means of an
interpolator. This correct application of this process relies strongly on a priori knowledge
of the rice system and the weather conditions when the image was acquired.

Once the WS archive has been processed, it is ready for interpretation. Rice detection relies on
interpretation of the temporal signature from regular acquisitions within a given year or
season. The 2002-2012 WS archive does not have regular acquisitions over any one area and
so, we made the following assumption. Given that rice extent in Asia is relatively constant (see
Figure 3 for evidence of this in Bangladesh) and cropping calendars are relatively stable, we
can then develop a pseudo-annual time-series with a relatively high temporal occurrence by
combining all years of WS observations into one year. This is illustrated in Figure 6 where the
multi-year SAR data for a selected time frame (e.g., weekly, bi-monthly) is temporally averaged
leading to an annual signature.

Figure 6. Example of the pseudo-annual time series for a single pixel based on multi-year ASAR Wide Swath data
(2002-2010).

This temporal signature can be interpreted in two ways:
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1. The temporal evolution of the backscattering coefficient is analyzed from an agronomic
perspective. This assumes that the data have been regularly acquired in temporal terms,
and that a priori knowledge of rice type, calendar and duration, crop practice, and
meteorological conditions during the whole season is available. This is not the case for the
WS archive, so we move to option two.

2. From the backscattering coefficient time series, representative temporal features (or
descriptors) can be derived. Even if this approach cannot derive specific information on
the rice phenology [9], it can provide valuable information on the rice location and,
depending upon the temporal frequency of the SAR acquisitions, the various rice seasons.
We use this approach for interpreting the signature from the WS archive.

The most representative temporal features for rice have been found to be the relative minimum
and maximum, their difference, and minimum and maximum increment between two
subsequent acquisitions. The selected five temporal features are used to generate rice extent
and rice seasons according to:

1. The start of the rice season is identified when there is a relative minimum followed by a
maximum increment between two subsequent acquisitions;

2. The peak of the rice season is identified when there is a relative maximum followed by a
minimum increment between two subsequent acquisitions;

3. The pixel is classified as rice if:

• conditions 1 and 2 are satisfied;

• the range between relative minimum and maximum attains a minimum value;

• the temporal duration between 1 and 2 is within a given duration;

4. Rice is further distinguished in single, double, triple, etc., according the number of valid
minima and maxima (condition 3).

3.3. Phenological monitoring with MODIS data

3.3.1. MODIS data for land surface monitoring

With the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS), onboard
the NASA TERRA (EOS AM-1) satellite, a new era in multi-spectral satellite remote sensing
began. MODIS sensors permit continuous monitoring of the environment by measuring
spectral bands from the blue to the thermal infrared. The 36-band MODIS spectrometer
provides a global data set every 1-2 days. The swath dimensions of MODIS are 2,330 x 2,330
km and the spatial resolution (pixel size at nadir) is 250 m for channels 1 and 2 (0.6 µm-0.9
µm), 500 m for channels 3 to 7 (0.4 µm-2.1 µm) and 1,000 m for channels 8 to 36 (0.4 µm-14.4
µm).

There are many standard MODIS data products that are provided to users in near–real-time
and easy-to-use formats for no cost. The MOD09A1 product (a full technical description is
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available online at https://lpdaac.usgs.gov/products/modis_products_table/mod09a1) pro‐
vides 8-day composite reflectance data across seven spectral bands (red-0.6 µm, NIR-0.9 µm,
blue-0.4 µm, green-0.5µm, NIR-1.2 µm, SWIR-1.6 µm, SWIR-2.1 µm) at 500 m spatial resolu‐
tion, as well as pixel-specific quality control flags and observation dates. This product type is
derived from a multi-step process that considers atmospheric, cloud, and aerosol corrections,
and records the best reflectance data registered during the time composite window for each
pixel. MODIS product data are provided in Hierarchical Data Format (HDF) on a tile system
with the Sinusoidal projection grid. Each tile of the grid covers an area of 1,200 × 1,200 km,
more or less 10° of latitude and longitude (Figure 7A). Despite drawbacks related to spatial
and spectral resolution, it is the zero cost, ease of access, clarity of product description, and
ready-to-use nature of MODIS products that have contributed to their widespread use as a
source of remote-sensing information for monitoring.

Figure 7. The study area: The location of MODIS tile H26V06 in the Global Sinusoidal projection map (A), tile H26V06
which covers most of Bangladesh (B), and, Bangladesh in geographic coordinates showing the extent of H26V06,
which covers all the country except the far the north west (C).

3.3.2. PhenoRice algorithm

MOD09A1 data for 2011 from the tile H26V06 (Figure 7B) were used to demonstrate seasonal
rice monitoring in Bangladesh (Figure 7C) using a rule-based automatic algorithm called
“PhenoRice.” The aim of the PhenoRice approach is to detect paddy rice by analysing multi-
spectral data with quasi-daily revisiting cycles (e.g., TERRA/AQUA-MODIS, SPOT-VGT, etc.)
in a consistent and flexible way that minimises dependency on local threshold adaptation.

The basis for this approach is described in previous publications by CNR-IREA [7,20,21]. Before
any seasonal phenological monitoring can be performed, PhenoRice needs an estimate of the
rice-growing area. If there is no rice extent map available, then the PhenoRice process relies
on the work of [6,22-23] which identifies irrigated or lowland rainfed rice when a clear and
unambiguous agronomic flood is detected and is shortly followed by a rapid increase in
vegetation growth. However, the process can also use available land cover maps that show
rice extent, or use multi-year rice extent maps such as in this case study. The seasonal pheno‐
logical monitoring part of PhenoRice is performed by analysing the temporal signatures of
various vegetation indices [20].
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Figure 8 shows a schematic diagram illustrating the concept and steps of PhenoRice algorithm.

The algorithm involves three fundamental processing steps.

Figure 8. PhenoRice flow chart.

1. Pre-processing of MODIS composite data
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a. The identification of noise in the data by analysing the MODIS Science Data Set (SDS)
cloud and snow quality flags and blue band reflectance values. Quality flag values
are extracted from HDF layer 11 (500 m State Flag): bits 0-1, 3-5, and 15 are analysed
to identify cloud, land, and snow noises, respectively. This information, together with
a threshold on the blue band, is then combined to evaluate noise in the spectral data
and error in the computed spectral indices.

b. The computation of time series of spectral indices (SI) to perform (1) flood detection,
using moisture [Land Water Surface Index, LWSI [22]] and water [Normalized
Difference Water Index, NDWI [24]] indices, and (2) vegetation growth monitoring
using the Enhanced Vegetation Index, EVI [25]. The red (layer 1), NIR (layer 2), blue
(layer 3), and SWIR (layer 7) bands are extracted from each HDF file to compute the
EVI, LSWI, and NDWI indices.

2. Smoothing and temporal signal analysis

a. The EVI time-series is smoothed in order to reduce contamination that still affects the
MODIS data after the temporal compositing procedure. In the smoothing process,
the raw EVI profile is analysed to detect and clean outlier values, i.e., anomalous
peaks and irregular small drops. Finally, a temporal smoothing on the EVI data is
applied using a local polynomial function that weighs observation in relation to cloud
contamination (output of step 1a), which is based on a Savitzky-Golay filter [26]. This
filter is specifically recommended for the interpolation of vegetation index time-
series.

b. Derivative analysis: The smoothed signal is then analysed in order to calculate the
first derivative. These derivatives are used to automatically identify all points of local
(relative) minima (where the first derivative changes from negative to positive) and
local (relative) maxima (where the first derivative changes from positive to negative).

3. Rice and phenological detection

a. Rice transplanting/seeding (MIN point) is identified when a local EVI minima occurs
at the same time as a flood (NDWI, LSWI), and a series of positive EVI derivative
values (indicating plant growth) occur shortly after.

b. Rice heading/flowering (MAX point) is detected when there is a local absolute
maxima in the EVI time-series.

c. Finally, following [7], the smoothed EVI signal is analysed to extract rice emergence
[start of season (SoS)] and maturity [end of season (EoS)]. These metrics are identified
for each rice pixel, when EVI values match pixel-specific relative thresholds.

All the PhenoRice outputs refer to a temporal window of 12 months from 1 January to 31
December with a temporal step of 8 days corresponding to a MODIS composite granularity.
For the year under analysis, referred to as Current Year (CY), the method is able to provide
information on the different rice crop seasons (up to three) that occur in the period. It is
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assumed that a rice season belongs to the given CY, if at least the maximum (i.e., heading) of
the crop occurs in this period (from January to December).

In order to provide a flexible method able to detect rice seasons in different environmental and
climatic conditions with a specific crop calendar, we assume that the start of the season
(flooding and seeding/transplanting) can occur in the previous calendar year (PY) up to six
months before the start of CY. This results in an 18-month analysis period, which corresponds
to 24 8-day MOD09A1 composites (192 days) in the PY and 46 8-day composites in the CY
under analysis.

Finally, phenological metrics maps are produced for each quarter of the year. A rice detection
is therefore attributed to the quarter, in which heading occurs. Consequently, the associated
MIN, SoS, and EoS detection are referred to the same quarter, but as separate maps. In the case
study of Bangladesh, output maps have been post-processed and synthesized for the specific
cropping seasons of the country. Following the knowledge of the local crop calendar, all the
detection that occurs between February and late April are attributed to boro, the ones between
May and late July to aus, and others in the period from August to late November to aman.

4. Results

4.1. Multi-year rice extent from the ENVISAT WS archive

The 2002-2010 ASAR Wide Swath data stack consists of around 340 frames. Four scenes (in
two different orbits) were needed to completely cover the country. Hence, on average, there
are 85 frames across the 8-year period, corresponding to around 10 images per month in the
pseudo-annual time-series approach (Figure 6). In practice, the amount of images per month
in the pseudo-annual stack varies between 3 and 16, meaning that the archive data is not
suitable for annual or regular monitoring purposes. Figure 9A illustrates the country coverage
mosaic of three temporal features: the relative minimum, the relative maximum, and the
maximum variation.

The three temporal features, illustrated as a mosaic in Figure 9A, are exclusively carried out
for visualization purposes. Indeed, the applied gradient algorithm, which is used to produce
a seamless image, may significantly change the radiometric content in the overlapping areas;
hence, it is not suitable for data analysis purposes. Looking at the temporal features at country
level (Figure 9A), three main colours can be identified: blue, yellow, and light and dark orange
to brown. The blue colour represents the minimum, i.e., a constant low radar backscatter
during the whole year. Yellow, identified as rice and primarily located in the northeast of
Bangladesh, is the combination of a strong temporal variation (red) and a high maximum
(green). Light and dark orange to brown, distributed over the whole country, classified as rice,
is essentially a combination of a strong temporal variation (red) with a medium maximum
(green).
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Figure 9. (A) Mosaic (100 m) of temporal features based on ENVISAT ASAR Wide Swath data acquired from 2002 to
2010. Red is the maximum variation, green is the relative maximum, and blue is the relative minimum. (B) Rice extent
based on temporal features of archive ENVISAT ASAR Wide Swath data. Light green is single rice, dark green is double
rice, aquamarine is rice grown after a long flooding duration (up to six months), and orange is rice mixed with other
crops. (C) Enlargement of A (red box). (D) Temporal features (15 m) based on ENVISAT ASAR Alternating Polarization
data acquired from June 2011 to March 2012 on the same area shown in C. Red is the maximum variation, green is
the relative maximum, and blue is the relative minimum.

Due to the different acquisition times and geometry between the two orbits, the five temporal
features – derived from the monthly averaged backscattering coefficient – are computed for
each orbit separately. The rice extent is generated according to the rules described in section
3.1 and, subsequently, products belonging to the two orbits are shown as a mosaic at semantic
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level (Figure 9B). In this specific case, rice extent additionally includes the various rice crop
seasons, which could be identified with this data set because of the good temporal frequency.
Further distinction between single rice, double rice, and rice cultivated after prolonged
flooding is provided by the time component—the single rice crop has a short to medium
(90-120 days) duration; double rice usually means two short duration crops; and boro rice,
after prolonged flooding in the northeast, is usually medium duration. This is a coarse
characterisation of rice seasons, due to the fact that temporal features, derived from monthly
averaged backscattering coefficient acquired irregularly, are not sufficient to follow the rapid
spatial-temporal changes of agriculture. Nevertheless, this pseudo-annual data set enables the
generation of a detailed rice–non-rice extent at a one-hectare scale.

With regard to the consistency of the proposed approach and to the impact of spatial resolution,
temporal features derived from ASAR Wide Swath (Figure 9C) are compared to those derived
from ASAR Alternating Polarization data (Figure 9D). This 15-m resolution data set has been
acquired from June 2011 to March 2012 every 35 days, according to the repeat cycle of ENVISAT
ASAR. The visual comparison shows that the land cover patterns, particularly of rice, are
similar. It means that the multi-year (or pseudo-annual) approach is conceptually correct and
viable in this case.

Another interesting observation can be made by comparing the two colour composites—
spatial resolution plays an important role. Large and homogeneous regions are clearly
identifiable in both acquisition modes, while small features tend to be smoothed out and to
disappear. Rice covers a substantial part of the country, and although plots are small, the rice
areas in much of the country are large and connected, especially in the rainy season, where
rice is often the only viable crop. From analysis of SAR data at a range of resolutions (3 to 100
m), we estimate that an accurate area estimation using this approach would need a pixel size
at least five times smaller than the field size. Medium and lower spatial resolution systems
should be therefore exclusively used for the provision either of extent information — a proxy
of area — or, in case of agricultural applications, of phenological crop monitoring.

The ASAR Alternating Polarization HH/HV data were used to further compare the pseudo-
annual ASAR Wide Swath data to the quasi-annual HH/HV data, particularly with respect to
the contribution of the cross-polarization for rice detection. Figure 10 (left) illustrates the
temporal signatures of the ASAR WS Swath monthly averaged HH backscattering coefficient
from January to December and those at HH and HV acquired in Alternating Polarization mode.
First, this reaffirms that the use of multi-temporal data is essential, particularly at HH polari‐
zation. Second, the correspondence between the two HH radar backscatter signatures is
evident, confirming the validity of the proposed approach. Third, and confirming the studies
of [12,16], the HV polarization contributes in the discrimination of rice from other land covers.
Typically, the HH/VV ratio is preferred because it shows a variation up to 7 dB from the
beginning of the season to the plant maturity phase [11].

Finally, the quasi-annual HH/HV time-series is used to determine two key moments of the rice
growth — start of season and peak of season (Figure 10, right). The first happens when the
relative minimum is detected (September, blue colour), whereas the second is detected when
the relative maximum is reached (November, green colour). A comparison with the generic
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crop calendar of Figure 6 shows a good correspondence with the identified dates. However,
it should be noted that a 35-day repeat cycle is not sufficient to obtain an accurate estimate of
these two key moments. For this reason, the use of remote-sensing data acquired with higher
temporal frequency is of advantage.

4.2. 2011 seasonal rice monitoring with MODIS

4.2.1. Rice season map

The number of rice seasons detected is reported in Figure 11A. For the year 2011, the analysis
of optical data time-series revealed that most areas have one rice season. Two seasons were

Figure 10. Top left: Temporal signatures derived from ENVISAT ASAR Wide Swath HH data acquired from 2002 to
2010. Middle left: Temporal signatures derived from ENVISAT ASAR Alternating Polarization HH data acquired from
June 2011 to March 2012. Bottom left: Temporal signatures derived from ENVISAT ASAR Alternating Polarization HV
data acquired from June 2011 to March 2012. Right: Detected start of season and peak of season based on ENVISAT
ASAR Alternating Polarization HH data acquired from June 2011 to March 2012.
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identified in the northern regions, while up to three seasons (red area in Figure 11A) were
found in the northwest part of the country in Rajshahi Division. Areas with one or two rice
seasons per year may cultivate a second or third non-rice crop, but those non-rice cropping
seasons are not captured in the PhenoRice algorithm, nor is it represented in the map.

The same analysis also produces rice extent maps for the boro, aus, and aman seasons. The
main rice cultivation (~% 49) occurs in the boro period (Figure 11B), followed by aman (Figure
11D) during the wet season (~% 45). The aus crop is very small (6%) in comparison to the other
two, and occurs mainly in the central and western part of the country (Figure 11C).

Figure 11. Total detected rice seasons (A) and cultivated area for boro (B), aus (C) and aman (D) seasons.

Figure 12 reports some examples, extracted from single pixels, of temporal analysis performed
by PhenoRice. The panels provide examples for single rice in boro and aman (A, B), double
rice on both boro and aman (C), and triple rice in all three seasons (D). As previously described,
the algorithm analyses the temporal signature of three spectral indices — EVI (in green), LSWI
(blue), and NDWI (light blue)—for vegetation and moisture/water. The figures also report the
noise level for each composite data, mainly because of cloud contamination and are repre‐
sented with grey dots, and the occurrence of the detected phenological stages. The symbols in
red (square, triangle, diamond, and circle) represent agronomic flooding (MIN – crop trans‐
planting/seeding),; the plants’ emergence (SoS-start of the vegetative period of rapid growth);
the crop heading/flowering (MAX – start of the reproductive period); and finally, the estimated
crop maturity after senescence (EoS).

Figure 12A (pixel, 24°17’54.00”N – 90°59’48.46’’E in the Sylhet basin in northeastern Bangla‐
desh) shows the presence of a single rice crop in the boro season; the peculiarity of this location
is (1) the strong presence of surface water for nearly six months and (2) a medium crop
vegetative phase of about 120 days (period between EoS and SoS occurrence). The identifica‐
tion of these characteristics leads to the assumption that cultivation occurs after prolonged
flooding. This observation perfectly matches the ones from the ASAR map and represents an
area of low cropping intensity because of excess surface water.

In particular, Figure 12B (pixel, 22°1’30.00”N – 90°6’50.37’’E in Barisal Division in coastal
Bangladesh) reveals a single long-duration (150 days) rice crop in the rainfed aman season
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with (1) crop heading (MAX) occurring in November in the fourth quarter of the analysed
season, (2) a transplanting period (MIN) in June, (3) a green-up (SoS) in July, and (4) a crop
maturity (EoS) in December. This area is highly saline in the dry boro season and no cultivation
is possible so the land is left fallow for much of the year, until freshwater availability from
rivers or canals increase after the monsoon rains. Thus, this is another example of environ‐
mental conditions limiting cropping intensity. The agronomic flooding from May to August
that precedes the crop greening is particularly clear from the interpretation of LWSI and NDWI
indices trends. The former, as described by Xiao et al. (2005), shows values far greater than
EVI, whereas the latter presents values greater than zero.

Figure 12C (pixel, 25°10’60.00”N – 89°14’42.64’’E in Ranjpur Division, northwestern Bangla‐
desh) shows the detection of two rice crops in 2011. The first boro crop occurs during the first
and second quarters, from February to June, with crop heading in late March; whereas, the
second one, aman rice, takes place in the third and fourth quarters, starting in July and finishing
in late October. The boro crop is a short-duration one, 90 to 100 days, whereas the aman rainfed
crop is much longer, 130-150 days.

Finally, Figure 12D (pixel 24°36’45.00”N – 89°24’6.25’’E, Rajshahi Division in central Bangla‐
desh) illustrates the case of three rice seasons, heading occurrences are in February (boro), July
(aus), and October (aman), respectively. In this case, it is possible to appreciate that the crop
durations are much shorter than the ones in the previous examples — they are all 90 to 110
days — and could represent short-duration, high-yielding varieties that have done much to
increase rice productivity in Bangladesh since the Green Revolution.

Figure 12. Example of the temporal dynamics of the vegetation indices — EVI (green line), LSWI+0.05 (blue line), and
NDWI (light-blue line), and phenological detection for MIN, SoS, MAX, and EoS. Panels A, B, C, and D show a single
season for boro rice, a single season for aman rice, a double season (boro-aman), and a triple season (boro-aus-aman),
respectively.
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4.2.2. Phenological detection maps

Figure 13 shows the phenological detection results for the year 2011. The data represent a
spatial analysis conducted at sub-district or thana level, taking into account the median value
of the different phenological data occurring within each sub-district. Pixel-level interpretation
and visualisation is challenging because of the inability of the algorithm to detect every
occurrence, the well-known low-resolution bias of MODIS data when observing fields, and
the heterogeneity of the cropping systems [27]. Thus, given that PhenoRice is a very conser‐
vative approach to detection (in order to minimize false positive error) and, if we accept that
PhenoRice can only capture a proportion of the phenomena understudy, this aggregation of
data around a median value gives a more robust interpretation of the phenology data for a
selected unit of analysis. Furthermore, we excluded sub-districts if there were fewer than 30
pixels detected for a given season.

The boro maps confirm the well-known patterns of agronomic practices. Fields start to be
flooded (MIN boro map) in the southeast, red (Jan 2011), and then the season progresses
northwest, orange (Feb 2011). The SoS boro map highlights this trend more clearly. On the
other hand, the aman season starts in the north and heads south due to the north-south
progression of freshwater in the river systems as depicted by the light green (Jun 2011) and
green (Jul-Aug 2011) colours in the MIN map, respectively.

During the boro season, no rice crop is detected in the southwest since that corresponds to the
dry season, where there is insufficient freshwater for irrigation and the region is exposed to
high water salinity. Freshwater availability increases in the aman season in the southwest
during that time. The correct detection of these two seasons in this part of the country suggests
that this approach is well suited to the detection of seasonality.

The analysis of the aus map is more difficult because of the smaller and more fragmented area
of the rice crop in this season. Aus rice detection is concentrated mainly in the central part of
Bangladesh, along the Ganges River, and on the eastern region of Chittagong. The aus crop
relies on both early-season irrigation and late-season rainfall, and this partially explains the
limited extent. Two cropping patterns could appear: the first one, much earlier in the middle
of the country, and the second, a later pattern for the rest of the country.

5. Discussion

5.1. Observations on the SAR analysis and results

Temporal analysis of moderate-resolution SAR, especially using the backscattering coeffi‐
cient (σ°) from C-band time-series, is ideally suited for irrigated and lowland rice detection. It
is particularly advantageous in monsoon Asia where much of the world’s rice is produced over
huge areas and under cloudy conditions.

The use of the 10-year ENVISAT ASAR Wide Swath data archive, even if not optimal for the
targeted application – since it is irregularly acquired in temporal terms – provides a valuable
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Figure 13. From top to bottom: Min, SoS, Max, and EoS phenological metrics for the boro, aus, and aman rice seasons
in Bangladesh, in the analysed time window: June 2010-December 2011.
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data source, enabling the generation of a consistent rice extent product, with 1-hectare
resolution, nationally. In this respect, it is well-known that SAR data availability is currently
problematic, mainly because of the recent failure of the ENVISAT ASAR and ALOS PALSAR-1
systems. Nevertheless, today, there are tens of thousands of archived unexploited SAR images
that could be leveraged for baseline mapping to generate rice extent and area. This multi-year
approach is applicable to Asia because most rice systems are generally not subject to seasonal
rotations (upland rice is one exception, but it accounts for a small portion of the total rice area)
and there is little scope for rice area expansion in Asia. This is obviously not feasible for all
crops, where rotation mandatory and significant land-use change can occur.

The availability of systematic SAR acquisitions at an appropriate time interval — for instance,
bi-monthly or weekly, as planned for in the Sentinel-1A/B mission — would allow the
generation of annual and seasonal rice area data nationally. Moreover, high-resolution SAR
time-series acquired along the whole season could complement the phenological monitoring
provided by optical moderate resolution, particularly with respect to the detection of key
phenological stages such as the start and peak of season. This would be facilitated if space
agencies, with mandates for future SAR missions, could incorporate systematic background
missions according to the geographical areas and applications, instead of building data
archives based on sporadic/irregular acquisitions.

Concerning the SAR data processing aspect, it is essential that a multi-temporal data process‐
ing approach is performed, in primis, to enhance the data quality — hence, the level of detail
— by significantly reducing the speckle. Future hyper-temporal data stacks acquired from
Sentinel-1A/B will have an important role for the provision of high-quality data (i.e., high
Equivalent Number of Looks) at the highest level of detail. This will permit a pixel-based
approach, which is simpler and less time-consuming than a regional based one.

Due to the nature of the multi-year ENVISAT ASAR Wide Swath data (irregularly acquired
in temporal terms), the resulting rice temporal signature is occasionally not optimal or not
representative enough for rigorous date-by-date analysis. For this reason, we used a pixel-wise
temporal signature analysis using selected representative temporal features (relative mini‐
mum and maximum, and the corresponding difference, minimum and maximum gradient
between two subsequent acquisitions). Although this approach discriminated between rice
and non-rice areas, the features are not sufficient to properly determine the country-wide
extent of various rice seasons (single, double, etc.) and, even less, the rice phenology. There
are some exceptional cases with sufficient coverage, where various rice seasons can be
identified by detecting the amount of minimum and maximum gradients and related dates.
In summary, assuming the availability of dense multi-year, regularly acquired SAR images,
an average rice crop calendar could be generated together with the rice extent.

5.2. Observations on the MODIS analysis and results

Temporal analysis of moderate-resolution optical data time-series for detection of rice
phenology is possible where there is a good rice extent base map from SAR or other sources,
and good prior knowledge of the general cropping systems. Phenological occurrence maps
show an agreement with local knowledge on rice cultivation, highlighting different gradients
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of transplanting dates in the country. Analysis and interpretation of Vegetation Index time-
series without prior knowledge or understanding of the crops, cropping patterns, and crop
management is extremely challenging and difficult to interpret in terms of an operational crop
monitoring system.

The proposed method is able to identify particular crop management systems such as single-,
double-, and triple-cropping patterns. Moreover, a range of seasonalities and of crop durations
from 90-to 150-day varieties could be detected. Further experiments in rice/wheat, rice/pulse,
rice/shrimp and drought-prone areas should be conducted to assess the capability of detection
in other commonly occurring rice cropping systems and environments.

The optical time-series data described the temporal pattern of rice systems across Bangladesh.
The SAR data describes where rice is cultivated and the optical data describes when rice is
cultivated. This is encouraging considering the aforementioned triple challenges of using
moderate-resolution data in a region characterised by pervasive cloud cover, small fields, and
complex cropping systems. The conservative nature of the phenological detection with
moderate-resolution data suggests that pixel-level interpretation and pixel counting for area
estimation should be avoided as they are likely to be unreliable estimates of crop system
characteristics. Such estimates can always be improved through fine-tuning, expert classifica‐
tion, and other manual interventions, but these do not lend themselves to operational methods
that require rapid and robust estimates that are free of user-bias.

Summarising the crop phenology at high levels of aggregation that match existing data or
management units could provide one solution to this underestimation effect. PhenoRice is
conservative in its detection criteria and, if we can assume that the detected pixels are repre‐
sentative of the cropping systems, then some statistical representation of the seasonality by
sub-district, irrigation scheme, or other management unit would provide useful information.
Most cropping calendars (e.g. Figure 2) provide ranges for the start and end of season, and
remotely sensed phenolology metrics could be used in the same way to provide robust, year-
and season-specific information to assess the onset of a late or early season. The same infor‐
mation is vital for yield modelling, since the phenology data can be used to drive/force crop
growth simulation models in order to produce more reliable yield estimates.

5.3. Final comments

The current structure of the algorithm does not allow a near–real-time analysis since it needs
to obtain all remote-sensing data through to the end of the year to provide complete pheno‐
logical information. This can be overcome by interpreting the vegetation indexes or σ° trends
at the end of the time-series, which would be refined as new information is added in near–
real-time. Thus, for each phenological parameter, there would be a ‘possible detection’
counterpart that could be provided rapidly and which would be confirmed as a ‘real detection’
after several more images are acquired. This approach to crop and crop phenology detection
is an analogy to what can be achieved with the advent of the Landsat continuity mission and
GMES-ESA Sentinel mission, which will, for the first time, provide the possibility of high-
resolution SAR and multi-spectral time-series analysis with weekly revisit periods. Moderate-
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resolution analysis will still play a role with Proba V, representing an alternative or a
complement, to MODIS data.

In this processing chain, we have demonstrated the joint use of active and passive data as a
smart method, based on the strengths of both sensors, to produce rice extent information (from
multi-year ASAR analysis) and seasonal monitoring (from MODIS analysis). Crop monitoring
systems should rely on a range of remote-sensing information sources in order to obtain the
best possible information and smart combinations. The ever-increasing range of information
from remote sensing is essential if such systems are to become operational, reliable, and
accurate.
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