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1. Introduction

Libya is one of the driest countries in the world [2]. The rainfall in the northern part of the
country varies between 100–500 mm/year, while the southern region receives only 10 mm/year
and some parts receive no precipitation at all [17]. Average evaporation rates are also high,
ranging from 1.7 mm/day in the north to 6.9 mm/day in the south, much higher than the
average annual rainfall. Irrigation water use has increased as part of the green revolution
program to make a Libya self-sufficient in terms of food production, e.g. for wheat and barley.
Agriculture in Libya developed remarkably during the last two decades, as can be seen from
the large increase in the irrigated areas, which has doubled during the period 1975–2005
[11,15]. The cultivated area has also increased, from 282,250 ha in 1975 to 470,000 ha in 2000
[15]. Increased agricultural activities have resulted in higher demands for groundwater,
irrigation water and applications of fertilizer and have also resulted in higher salinity (nitrate,
chloride, Na, Ca, Mg, ammonia) and increases in some trace elements in soil [3]. The devel‐
opment in agriculture has occurred at great cost to the environment, and concern is now being
expressed about the impact of agricultural chemicals. Whereas agricultural production
increased from 1137 thousand tons in 1975 to 1779 thousand tons in 2000, the agrarian
productivity per hectare decreased from 4 tons/hectare in 1975 to 3.5 tons/hectare in 1980 and
1990, and then showed a slight increase to 3.7 tons/hectare in 2000. Libya’s annual import of
fertilizer is about 2 × 108 metric tons, including fertilizer nutrients N, P205, and K20.1. [5,6-7].
[6] Observed that application of fertilizers to dry land not only increases plant shoot and stem
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growth, but also increases evapotranspiration through development of a larger root system
and greater extraction of stored water. [4.14] found that the amount of N and P fertilizer used
in the Montanan North African soils ranged from 20–120 kg/ha and 0–30 kg/ha, respectively.
However, under irrigated conditions, critical P levels are high (i.e. 12–15 mg/kg). The high pH
affects the availability of many crop nutrients in the southern Libyan soil [13].

The objective of the present study was to establish levels of As and other trace elements in the
grains and soils of the Libyan arable belt. Soil and wheat samples were collected from 3 Libyan
agricultural regions, East (ESR), West (WSR) and South (SSR). Each region included several
sampling districts (Fig.1).

2. Materials and methods

2.1. Sample preparation

Seventy-nine samples each of soils, shoots and wheat grains from arable land were collected
for the study, representing major soil types and climatic regions of agronomic cultures in the
Eastern, Western and Southern soil regions of Libya (ESR, WSR and SSR, respectively). Each
region included several sampling districts (52, 10 and 17, respectively). Soil samples were taken
from the root zone of each sample, and within the soil horizon (0–100 mm), using a spiral auger
of 20–50 mm diameter. Three samples were taken around the plant to make composite soil
samples and stored in airtight bags. The sampling was carried out between May 26th and June
30th in 2007. The sampling points are shown in Fig. 1.
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Figure 1. Soil survey sampling locations in Libya.
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All samples were air-dried and homogenized by grinding and sieving through a 2 mm mesh.
A soil sample of 0.2 g was placed in a digestion tube, 2 ml concentrated HNO3 added and the
sample pre-digested (i.e. left to stand overnight). 2 ml of H2O2 was added immediately before
digestion on a digest block at 100 °C for 1 hour, 120 °Cfor 1 hour and then at 140 °C until
samples were clear (c. 2 hours). Samples were then heated to 160 °C until the sample digest
appeared clear or a pale soil color.

Quality control and assurance

Each batch of 40 samples digested included a blank, a spike and a soil reference material (NCS
ZC 73007) (Table 1). The samples were allowed to cool, decanted into well-labelled 15 ml
centrifuge tubes and made up to 10 ml with ultra pure decant deionised water (18.2 M)
obtained from a Milli-Q system (Millipore) and analysed by ICP-MS. If the outcome of the
SRM NCS ZC 73007 was above 25 % of the certified values, the analysis of the batch was
rejected.

Soil sample analysis by ICP-MS

Cd, Pb, Cu, P, Zn, Co, Mn and As concentrations were measured in all soil sample digestions
by An ICP-MS Agilent™ 7500c (Agilent Technologies, Tokyo, Japan) octopole reaction system
(ORS)-ICP-MS with a Meinhard nebulizer was used to measure the elements Ti (m/z 49), Mn
(m/z 55), Co (m/z 59), Cu (m/z 63), Zn (m/z 64, 66, 67, 68), As (m/z 75), Se (m/z 77, 78, 82) and
In (m/z 115). Hydrogen (H) was employed as the reaction gas for the ORS, set at a flow rate of
1.8 ml/min. With this method, low detection thresholds can be obtained for elements such as
metalloids that have high ionization energies (e.g. As).

Soil As extraction

Soil extraction to determine As fractionation was performed. Sample material was oven-dried
at 90 °C for 48 hrs. Extracts were obtained by shaking 1 g of soil with 10 ml of 0.1 % HNO3, as
described by [10]. The soil was mixed with 10 ml of 0.1 % HNO3 in 15 ml plastic centrifuge
tubes shaken at a speed of 60 rpm for 24 hrs. After shaking, soil solids were separated from
the solution by centrifugation at 2958 g for 15 min. The concentrations of As were determined
as described above for the soil digestion. Quality controls (spikes and blanks) were run with
each digest set of 40 samples. Concentrations were determined using five point calibrations.

Soil As extraction and analysis by hydride generation (HG)

The 0.1 % NHNO3 water-soluble As fraction was determined by hydride generation (HG,
Perkin-Elmer A. Analyst 300) [10]; in order to achieve this, the system must first be calibrated
using a standard curve. AsV was reduced to AsIII by a mixture of hydrochloric acid (HCL) (30
% v/w), potassium iodide (KI) (10 % w/v) and ascorbic acid (5 % w/v). The solution was
pumped into a gas-liquid separator and reacted with sodium borohydride and sodium
hydroxide (NaBH4) (0.2 % w/v solution in 0.1 M NaOH) to from arsenic hydride generation
[10]. Sample concentrations were calibrated using a standard curve of 0.5, 1, 5, 10, 15 and 20
μg/l As, in 10 % HCl 1 % KI and further diluted where necessary. All As concentrations were
below the limit of detection (LOD).
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Soil As and other element extraction and analysis by ICP-MS

Since the analysis by hydride generation of all Asconcentrations were below the LOD, As and
other elements (Cd, Pb, Ni, Cu, P, Zn, Cu, Co and Mn) were analysed with ICP-MS.

The analytical procedures used ICP-MS to extract As and other elements extraction from the
soil are identical to those outlined in section 3.2.4 (Soil As extraction), as are the aristar grade
reagents used.

Minitab v. 15 was used for all statistical analyses.

3. Results

The certified reference material (CRM) as well as the LOD and spike recoveries for each of the
trace elements analysed are presented in Table 1.

Co Zn Cu As Cd Pb Mn

CRM (%) n=4 87 ±0.1 66 ±1.7 87 ±1.3 103 ±0.2 101 ± 0.01 90 ±1.2 88 ±5.1

Spike (%) n=4 97 ±0.7 96 ±7.4 112 ± 3.1 123 ±2.5 81 ±0.1 97 ±1.2 104 ± 5.4

LOD (mg/kg) 0.01 0.30 0.20 0.01 0.01 0.03 0.14

Table 1. Quality control measurements for analysis of Co, Zn, Cu, As, Cd, Pb and Mn concentration in Libyan
agricultural soils. (CRM = NCS ZC 73007).

It should be noted that the concentration of Cd in all samples was below the LOD. The
descriptive statistics for trace element concentrations in agricultural soil investigated in this
study. They are provided for each region, with a summary of the As levels and other trace
element concentrations in soils sampled from ESR, WSR and SSR. A one-way analysis of
variance (ANOVA) showed that the differences in As levels between location means are highly
significant (P<0.001,). ESR recorded the highest mean As the level in Libyan soil (8.10 ± 0.48
mg/kg), followed by WSR (1.97± 0.41mg/kg) and SSR (1.70 ± 0.58 mg/kg), i.e. As mean
concentrations in ESR are nearly 4.8 and 4.1 times higher than in SSR and WSR, respectively.
Conversely, the average As levels from the three regions were below 10 mg/g dry weight (dwt).
The concentration of As in the agricultural soil, therefore, ranged from 0.01–18.94 mg/kg in
ESR, 1.19–2.48 mg/kg in WSR and 0.73–2.92 mg/kg in SSR.The underlying rock structure in
ESR is composed of Lower Palaeozoic rocks. The clay agricultural soils of ESR recorded the
highest mean As the level in Libyan soil (8.10 mg/kg); this may have some relation to the parent
material.

Environmental Risk Assessment of Soil Contamination854



Sampling sites

ESR SSR WSR

M
ean A

s concentration (m
g /K

g)

0

2

4

6

8

10
n=52

n=17
n=10

Figure 2. Mean As concentrations in agricultural soils from Libya (Error bars represent ± std. error).

The descriptive statistics for trace element concentrations in the Libyan agricultural soil
investigated in this study are shown in Appendix.1, together with a summary of the levels of
As and other trace elements.

3.1. Southern soil regions (SSR)

In SSR, the sites used for sampling were ARL, JAF and TAS (sites are shown in Fig.1). The
mean As levels in sites in SSR decreased from TAS > JAF >ARL. In general, As levels were low
in SSR, ranging from 1–2.9 mg/g, 0.7–1.8 mg/g and 1.1–1.7 mg/g for the TAS, JAF and ARL
sites, respectively.

3.2. Eastern soil regions (ESR)

The sampling sites in ESR were BEN, DRN, HEN, MR, SF and SLQ (sites are shown in Fig.1).
The mean As levels in these sites decreased from SF > DRN > BAY > MAR > HEN > BEN >SLQ.
In general, As levels in ESR were high, ranging from 0.01 to 18.9 mg/kg.

Western soil regions (WSR)

Samples in WSR were taken from two sites, THR and SIRT (Fig.1). WSR recorded the second
highest mean total As level compared with ESR and SSR (2 ± 0.1 mg/kg vs.8.1± 0.50 and 1.7±
0.14, respectively). The mean As levels in sites in WSR decreased from THR > SIRT ( range 2–
2.5 mg/g and 1.2–2.1mg/g for THR and SIRT, respectively).
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Results of analysis of variance (ANOVA)

A one-way analysis of variance (ANOVA) was performed on each of the three regions studied.
For SSR, the ANOVA showed that that the mean As levels between sites were not significantly
different (SSR: P=0.398), but were for ESR and WSR (P<0.0016, P<0.015, respectively).

Multivariate analysis results

Principal component analysis (PCA)

PCA was applied in each region to assist in identifying sources of elements. 3-D plots of the
PCA loadings are presented in Fig.3, where the relationships among the six trace elements are
readily seen. As expected, four factors were obtained, accounting for 97.4, 98.0 and 99.4 % of
the total variance in ESR, SSR and WSR, respectively. In ESR, Factor 1 is dominated by Co, Cu,
Pb and Mn, while in SSR it was dominated by Co, Zn, As and Pb and in WSR by Co, Zn, As
and Mn (accounting for 67.4, 69.9 and 90.7 % of the total variance, respectively). In each area,
the loadings of certain minerals were lower than the others, which may, therefore, imply a
quasi-independent behaviour within the group. These elements were Cu and Mn (0.42 and
0.4, respectively) for ESR, Co and Zn (0.5 and 0.4, respectively) in SSR and Zn and As (0.4 and
0.4, respectively) in WSR.

Factor 2 is dominated by Zn and As in ESR, by Mn in SSR and by Cu and Pb in WSR (accounting
for 23.1, 15.3 and 6.0 % of the total variance, respectively). Factor 3 is dominated in ESR by As
and Pb, by Zn As and Cu Pb in SSR and by Zn and As in WSR (accounting for 4.1, 7.7 and 1.4
% of the total variance, respectively). Zn is negatively correlated with Cu in SSR, and with As
in WSR. In each region, certain elements (As and Zn in ESR, Mn in SSR and Cu in WSR) were
separated from the others by a large distance in the 3-D PCA loading plot, suggesting that
these elements are poorly correlated and may have different sources (Fig.3). Factor 4 is
dominated by Cu, As and Mn (accounting for 2.7 % of the total variance; Mn is negatively
correlated with Cu and As) in ESR, Zn, As and Pb (accounting for 5.4 % of the total variance;
Zn and Mn are negatively correlated with As and Pb) in SSR and Pb and Mn (accounting for
1.3 % of the total variance; Mn is negatively correlated with Pb) in WSR.

Pearson's correlation matrix for the trace element concentrations in agricultural soils from
Libya.

The correlations between trace element concentrations in agricultural soils showed a high,
positive, linear relationship (Table 2). To determine whether geochemical associations exist
between the different trace elements analysed in this study, the datasets for agricultural soils
from each region and soils from ESR, WSR and SSR were subjected to simple correlation
analysis. A scatter plot for the trace element correlations that were found to be significant
(P<0.05) in some of the soils studied are presented in Fig.4. The correlation analysis was also
performed on the composite data sets of all agricultural soils for this study. The Pearson
correlation coefficients and P-values for Co, Zn, Cu, As, and Pb were significant and all the
analyses are shown in Table 2.

Manganese

A summary of trace element Pearson correlation coefficients of soils from different regions of
Libya are shown in Table 2, Fig.4 and Appendices 3.11, 3.12 and 3.13.Mn concentration showed
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a significant correlation with Co, Zn, Cu and Pb in WSR and ESR. However, Mn is not
correlated with As and Pb in ESR or SSR, respectively, or with the other metals (Co, Zn and
Cu) in SSR, reflecting different sources for Mn and the other elements. Moreover, Mn is not
correlated with As and not significant in ESR and SSR, which may suggest a common origin
(Table 2 and Fig.4).

Lead

The Pb concentration showed a significant correlation with Co, Zn, Cu and As concentrations
in all three of the agricultural soil regions (Fig.5a, b & c and Table 2).
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Figure 3. PCA loading plots for the three rotated components for a) SSR, b)WSR and c) ESR.
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Arsenic

As is not correlated with Co and Cu in ESR; however, As concentration showed a significant
correlation with Zn concentrations in all three of the soil regions. Trace element correlations
with As were slightly varied across regions. As is also positively correlated with Co, Cu and
Zn in SSR and WSR (Table 2 and Fig.6a, b & c).

Zinc

Zn concentration correlated well with Co and Cu in soils from WSR and SSR sites but not with
those from ESR (Table 2). The Cu-Zn and Zn-Co correlations, however, remained significant
(P<0.01) when the analysis was performed on the composite data sets (Figs 3.7 and 3.8,
respectively). [6]Reported that in Libya, depending on the crop and soil, farmers use an average
of 100 kg/hectare of phosphate fertilizer annually.

ESR WSR SSR

Mn-Co (+ C * ) (+ C * ) (+ 0 NS)

Mn-Zn (+ C * ) (+ C * ) (+ 0 NS )

Mn-Cu (+ C * ) (+ C * ) (+ 0 NS )

Mn-As (+ 0 NS ) (+ C * ) (+ C NS )

Mn-Pb (+ C * ) (+ C * ) (+ 0 NS )

Pb-Co (+ C * ) (+ C * ) (+ C * )

Pb-Zn (+ C * ) (+ C * ) (+ C * )

Pb-Cu (+ C * ) (+ C * ) (+ C * )

Pb-As (+ C * ) (+ C * ) (+ C * )

As-Co (+ 0 * ) (+ C * ) (+ C * )

As-Zn (+ C * ) (+ C * ) (+ C * )

As-Cu (+ 0 * ) (+ C * ) (+ C * )

Cu-Co (+ C * ) (+ C * ) (+ C * )

Cu-Zn (+ 0 * ) (+ C * ) (+ C * )

Zn-Co (+ 0 * ) (+ C * ) (+ C * )

+: positive correlation (significant at P< 0.05)

–: negative correlation (significant at P< 0.05)

NS: not significant at P< 0.05

*:significant at P< 0.05

0: no correlation

C: correlation (r> 0.50)

Table 2. Summary of trace element correlation in soils from different regions of Libyan soils (see for correlation
coefficients and P-values).
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Figure 4. Mn correlations against other trace elements in agricultural soils from ESR, SSR and WSR sites.
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Figure 5. Pb correlations against other trace elements in agricultural soils from ESR, SSR and WSR sites.
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Overview of total shoot, soil and grain As for ESR, SSR and WSR

A one-way analysis of variance (ANOVA) was performed on each of the three regions studied.
The ANOVA showed that that the mean As levels for grain between sites were not significantly
different (P=0.662 ), but that those for soil and shoot were (soil: P<0.001; shoot: P<0.002). Fig.9
shows a comparison of the distribution of As concentrations in the shoot, soil and grain from
ESR, WSR and SSR.
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Figure 9. Cumulative ranked distribution of As concentrations in Libyan agricultural soil, shoot and grain from ESR
(solid), WSR (dash) and SSR (square dot).
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The mean shoot As content for SSR (range 0.07–0.35 mg/kg; mean: 0.19 ± 0.02 mg/kg) was higher
than for ESR (range 0.04–0.34 mg/kg; mean: 0.13 ± < 0.01 mg/kg) and WSR (range 0.01–0.19 mg/
kg; mean: 0.12 ± < 0.01mg/kg). At the 50th percentile, shoot As content for SSR (0.17 mg/kg) was
more than 1.5 times that recorded for ESR (0.12 mg/kg) and WSR (0.11 mg/kg; Fig.9).

ESR recorded the highest mean As level in Libyan soil (8.10 ± 0.48 mg/kg, range 0.01–18.94 mg/
kg), followed by WSR (1.97± 0.41 mg/kg, range 1.19–2.48 mg/kg) and SSR (1.70 ± 0.58 mg/kg,
range 0.73–2.92 mg/kg), i.e. mean As concentrations in ESR are nearly 4.8 and 4.1 times higher
than in SSR and WSR, respectively.

The mean grain As content for SSR (range 0.02–0.2 mg/kg; mean: 0.07±0.01 mg/kg) was also
significantly higher (P< 0.01) than for ESR (range 0.02–1.1 mg/kg; mean: 0.05 ± 0.02 mg/kg) and
WSR (range 0.02–0.04 mg/kg; mean: 0.02 ± < 0.01mg/kg). At the 50th percentile, grain As content
for SSR (0.05 mg/kg) was over twice that recorded for ESR (0.02 mg/kg) and WSR (0.02 mg/kg;
Fig.9).

The ranges of total grain, shoot and soil As concentrations over the three regions studied were
relatively wide; however, the distribution was markedly skewed, with 65 % in ESR having
grain, shoot and soil As concentrations of < 0.03, 0.17 and 9.9 μg, respectively, 21 % in SSR <
0.09, 0.28 and 1.8, respectively and 12 % in WSR < 0.02, 0.16 and 2.4, respectively (Fig.9).

As transfer from soil to shoot and grain

The range of As shoot/soil transfer factors (shoot/soil TFs) was considerable. Minimum and
maximum shoot/soil TFs were 0.06 for ESR, 0.04–0.29 for SSR and 0.04 for WSR, while means
and medians were 0.1 and 0.02, respectively, for ESR; 0.13 and 0.12 for SSR and 0.06 and 0.06
for WSR. In SSR, the median shoot/soil TF was nearly twice as high as that in ESR and WSR.
In this study, transfer of As was an order of magnitude greater from shoot to grain, despite
lower rates of soil to grain transfer. The differences in these transfer ratios may be due to
differences in As speciation. [18],reported that, in general, higher shoot As levels were
consistent with low grain/shoot transfer factors.

Estimation of bioavailable As concentrations by nitric acid extraction

Nitric acid extraction is a widely used method of estimating the bioavailable concentration of
elements. The precision of the results in the present work was controlled by analysis of CRM,
blank and spike samples. The correlation factors showed good precision, with the exception
of two analytical bioavailable and total results (Table 3). A summary of the bioavailable As in
soils sampled from ESR, WSR and SSR are shown in Table 3. A one-way analysis of variance
(ANOVA) showed that the differences in As levels between location means are highly
significant (P<0.001, Table 3). SSR recorded the highest mean levels of bioavailable soil As (0.05
± 0.01 mg/kg) (Fig.10). In contrast, the highest total mean As level was recorded in ESR (8.10
± 0.48 mg/kg;.Table 3 and Fig.11b). The mean bioavailable As concentrations in the three
regions studied decreased from SSR > ESR > WSR (Table 3) and was in general low, ranging
from 0.02–0.07 mg/g, 0.02–0.03 mg/g and 0.01–0.14 mg/g for SSR, ESR and WSR, respectively.
Bioavailable concentrations of As are 1–5 % of the total concentrations. In this study, the highest
median bioavailable / median total (B/T) As was recorded in SSR (Table 3, Fig.10 and 3.11b).

Conducted and Investigate Arsenic (As), Cobalt (Co) Copper (Cu), Manganese (Mn), Lead (Pb), and Zinc (Zn)...
http://dx.doi.org/10.5772/57429

865



There was no correlation between the mean total and the bioavailable As concentrations in
ESR and WSR. However, there was a negative correlation between the mean total and the
bioavailable As in SSR. [16]. reported that appreciable As can move with leaching water,
especially in coarse-textured soils. The mean and median bioavailable As concentration values
for SSR were close to the those for WSR and ESR (Table 3). The correlation factors between the
bioavailable and the total element concentrations were: 0.073, –0.419 and –0.097 (As); 0.371, –
0.349 and 0.892 (Co); 0.318, –0.124 and 0.614 (Cu); 0.24, –0.161 and –0.545 (Pb); and 0.466, 0.659
and –0.309 (Mn) for ESR, SSR and WSR, respectively (Table 3, Fig.10). Adriano (1986) reported
that As mobility and phytotoxicity is usually greater in sandy than in clayey soils. The SSR
samples had high B/T bioavailable As, Co, Pb and Mn contents, compared to B/T total elements
(Table 3 &Fig.10). In these samples, the levels of bioavailable elements were derived from P

Regions
Elements

T T T B B B (B/T)*100

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ra B/Tb

Mean Median Range Mean Median Range %

As ESR 7.81 8.45 24.36 0.02 0.01 0.13 0.1 0.2

SSR 4.05 2.48 6.50 0.05 0.05 0.05 –0.4 2.0

WSR 4.42 3.96 7.16 0.02 0.02 0.02 –0.1 0.5

Co ESR 11.49 11.63 15.11 0.76 0.02 5.59 0.4 0.2

SSR 2.27 2.27 2.26 0.10 0.02 0.33 –0.4 0.9

WSR 2.28 2.33 2.26 0.02 0.02 0.01 0.9* 0.7

Cu ESR 15.39 15.32 23.12 0.29 0.06 2.30 0.3* 0.4

SSR 4.28 4.22 7.21 0.08 0.05 0.33 –0.1 1.2

WSR 4.46 3.07 7.57 0.04 0.05 0.05 0.6 1.5

Pb ESR 14.36 14.06 24.11 0.22 0.01 2.98 0.2 0.1

SSR 3.05 3.04 3.36 0.01 0.01 0.06 –0.2 0.3

WSR 3.39 3.46 1.69 0.00 0.01 0.01 –0.6 0.3

Mn ESR 492.30 504.60 780.60 58.50 8.50 300.50 0.5* 1.7

SSR 117.80 111.40 241.50 14.17 1.34 72.57 0.7* 1.2

WSR 95.66 96.89 82.96 1.15 0.98 2.50 –0.3 1.0

Ni ESR 0.72 0.10 4.32

SSR 0.19 0.15 0.29

WSR 0.09 0.10 0.03

P ESR 7.66 1.95 105.61

SSR 52.80 33.40 154.40

WSR 8.92 9.96 12.27

a* Correlation is significant at the 0.05 level
bB/T= Median bioavailable/ Median total %

Table 3. The descriptive statistics for total (T) and bioavailable (B) trace element concentrations in Libyan soils (mg/kg).
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fertilization ) [12]. The low correlation value for total Cd is because the concentrations were
lower than the ICP-MS detection limit. Weathering will increase bioavailability of trace
elements in SSR. [1],found that at P:As ratios of 4:1 or greater, phytotoxicity on wheat was
markedly reduced and deduced phytotoxicity to be a function of P concentration.
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Figure 10. Scatter diagram of total vs. bioavailable trace element concentrations in agricultural soils from ESR, SSR
and WSR.
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Figure 11. Comparison of (b) soil extractable of As with (a) total soil concentrations in Libya

4. Discussion

Total As mean concentrations in ESR are nearly 4.8 and 4.1 times higher than in SSR and WSR,
respectively. Total As loads in ESR may be related to the soil parent material, which is
comprised of subsequently covered Lower Palaeozoic rocks. This may be the reason why the
clay agricultural soils of ESR have the highest background levels of As. This is in agreement
with [8], who reported higher concentrations of trace elements in Eastern Libyan soil than in
other areas. In the present study, the trace elements present in Eastern Libyan soil (Co, Zn, Cu,
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As, Cd, Pb and Mn) were nearly five times higher than in WSR and SSR. Trace element
concentrations in agricultural soils showed positive linear correlations (Table 2).

In this study, transfer of As was an order of magnitude greater from shoot to grain, despite
lower rates of soil to grain transfer. In addition, this study considered samples of soil, shoot
and wheat grains from arable land with a sampling design that allowed for the consideration
of intra-field variations. The differences in these transfer ratios may be due to differences in
As speciation. [18]reported that, in general, higher shoot As levels were consistent with low
grain/shoot transfer factors. Although this similarity in trends for plants from varying
geographical locations strongly suggests the involvement of plant physiological regulation,
the actual mechanisms involved are still far from clear. However, the findings from the present
study indicate that As transfer to grain isgoverned by multiple factors (Fig. 7.1). The bioavail‐
ability of trace elements in soils is influenced by a wide array of biophysical factors (Fig. 7.1),
including pH, redox potential, organic matter content and soil texture. These factors were,
however, not considered in the experimental/sampling design since the main thrust of the field
studies was to establish the contribution of elevated soil As to grain As levels.

In this study, the highest median bioavailable / median total (B/T) As was recorded in SSR
(Table 3, Fig.10 and 3.11b).[15]reported that appreciable amounts of As can move with leaching
water, especially in coarse-textured soils. This is in agreement with the [9], which reported that
As mobility and phytotoxicity is usually greater in sandy than in clayey soils. The SSR samples
had high B/T bioavailable As, Co, Pb and Mn contents, compared to B/T total elements (Table
3 &Fig.10). In these samples, the levels of bioavailable elements derived from P fertilization
(Hurd-Karrer 1939) and the high pH affects the availability of many crop nutrients in the
southern Libyan soil [12]. Weathering will increase bioavailability of trace elements in SSR.
[10]found that at P:As ratios of 4:1 or greater, phytotoxicity on wheat was markedly reduced
and deduced phytotoxicity to be a function of P concentration.

The present study agrees with [16], who reported that the available soil moisture holding
capacity for silty clay loams is three times higher than for loamy sands. Therefore, in the present
study, total As mean concentrations in ESR are nearly 4.8 times higher than in SSR. Total As
loads in Libyan agricultural soil may be related to the soil moisture holding capacity, with
different types of soil having varying capacities and also different levels of As.

5. Future research

• To investigate the differential efficiency with which the main species of As found in
Mediterranean conditions wheat are transferred to the grain, resulting either from remobi‐
lised shoot As, or coming direct from the soil.

• Effects of As on As uptake, speciation, and nutrient uptake by winter wheat (Triticum
aestivum L.) under hydroponic conditions.

• Determination and comparison of total As concentrations and speciation in different parts
of the wheat plant at various stages of growth and in different genotypes.
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• Future research needs to focus on the balance of trace elements in an agro-ecosystem,
elaboration of soil chemical and biochemical parameters that can be used to diagnose soil
contamination with or deficiency in trace elements, and quantification of trace metal
transport from an agro ecosystem to the environment.

• Investigate the relationship between mobility and leaching of As and soil profile depth.

• Set up baseline concentrations of As in Libya soil and wheat. This is of great importance
since Libya, as a nation, consumes an enormous quantity of rice.

• The determination of the trace elements iron, zinc, phosphors, cobalt and cadmium in
Libyan arable soils is essential for the management of fertilizers and pest side in that soils
projects.
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