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1. Introduction

The principle of antimicrobial vaccines is to increase immunity against a specific infectious
agent so when the individual is challenged by that agent the appropriate immune response is
mounted rapidly and efficiently. Vaccines for infectious agents have historically developed
from whole live or dead microorganisms to more defined native or recombinant pure fractions,
following antigen-coding DNA and the latest approaches of antigen-pulsed dendritic cells.
Although bacterial and viral infections have a quite long list of effective vaccines, parasitic
infections – from worms to protozoa – have been a hard challenge for researchers to be able to
develop proper vaccines. Currently, the most advanced anti-parasitic vaccine is the RTS,S/
AS01 for malaria with a protection that covers 30-40% [1]. Despite several attempts during
seven decades of research with some promising approaches, so far there is no vaccine available
for human leishmaniasis and the options available for veterinary use have zone-restricted
market authorization, being inaccessible to many endemic countries.

Traditionally, live vaccines incorporate attenuated strains that after entering the host cause a
non-pathological short-lived infection, being rapidly controlled by the innate and adaptive
immune systems. In few words, the microorganism is taken up and processed by antigen
presenting cells (APCs) that efficiently expose the microbial antigens via MHC class I or MHC
class II molecules, activating the cognate T cell receptors (TCRs) on the surface of CD8+ or
CD4+ T cells, respectively. From here, the effector cellular and humoral machinery develop a
specific response aiming to eliminate the aggressor. When a sterile cure (i.e. complete elimi‐
nation of the microorganisms) is achieved, a contraction in all the effectors takes place, though
specific central memory T cells and antibodies endure [2], being ready to initiate a stronger
response upon a second encounter with a similar microorganism. However, the abidance time
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of memory is highly dependent on the strength of the primary response. Studies using mice
models have shown that small numbers of parasites restricted to the inoculation site, without
causing clinical manifestations, are essential for protection from a virulent challenge [3],
indicating that antigen persistence is of major importance in a vaccination protocol for
leishmaniasis. In fact, this is the concept behind the leishmanization strategy applied in
humans.

In this chapter we address some general aspects of the epidemiology of human and canine
leishmaniasis to introduce the needs for a vaccine and the desirable immune response to be
generated upon vaccination. We present the animal models most commonly used in leishma‐
niasis vaccine research, the road so far travelled by the scientific community attempting to
discover the vaccine for leishmaniasis and its current status. Finally, we show our experimental
study in BALB/c mice about the influence of a primary infection of Leishmania infantum on the
outcome of a de novo infection with a homologous or heterologous strain with distinct infec‐
tivity and immunomodulation.

1.1. Human leishmaniasis

Leishmaniasis is endemic in 98 countries and 3 territories ranging the Mediterranean Basin,
the Middle East, the Indian sub-continent, and the tropical regions from America and Africa
[4]. The last WHO report on the epidemiology of leishmaniasis estimates that every year 0.7
to 1.2 million new cases of cutaneous leishmaniasis (CL) are mounted and 0.2 to 0.4 million
people develop visceral leishmaniasis (VL) which, in turn, is responsible for 20000 to 40000
deaths [4]. Nevertheless, in endemic countries most of the L. infantum- or L. donovani- infected
people are asymptomatic carriers or self-healers [5, 6].

The relation of leishmaniasis with poverty catalogues it as a neglected tropical disease. In fact,
72 of the endemic countries are developing nations with a burden of 90% of the VL, CL and
mucocutaneous leishmaniasis (MCL) [7]. In these regions, the majority of the population lives
in rural areas, where higher densities of sand flies are found, and is malnourished, a condition
that leads to immunosuppression. In addition, HIV concomitant infection is frequent, contri‐
buting to a severe state of immunodeficiency [8]. The close geographical overlap of Leishma‐
nia and HIV promote the concomitant infection of both pathogens. In fact, HIV infection
increases in 100-2320 times the risk of developing VL in the endemic regions. HIV/Leishma‐
nia coinfections correspond to 2-9% of all the VL cases in endemic countries [9]. Furthermore,
leishmaniasis is nowadays an important issue in developed countries due to coinfection cases
with HIV where Leishmania arises as an opportunistic infectious agent, the third of the parasitic
infections after Toxoplasma gondii and Cryptosporidium spp. [10]. Indeed, 90% of the reported
HIV/Leishmania cases are from Southern European countries, namely Spain, Portugal, Italy and
France [8]. The routine use of highly active antiretroviral therapy (HAART) by the end of 1990’s
produced a clear decrease of HIV/Leishmania coinfection cases in southern Europe, but it is
now a growing concern in those major foci of leishmaniasis in developing countries like
Ethiopia, where the incidence of HIV is still high [9]. In addition, following the climatic changes
that currently allow the presence of the vector in higher latitudes and the constant circulation
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of people and animals crossing frontiers and oceans, nowadays leishmaniasis cannot anymore
be considered restricted to the endemic countries but is otherwise spread in the world.

The progression of a Leishmania infection to clinical disease comprises multifactorial phenom‐
ena, including the tropism of the species and strains, the genetic background of the host and
the efficiency of the immune response developed against the parasite [11]. Studies using mice
models have helped the scientific community to better understand the host-parasite relation‐
ship in leishmaniasis. Interleukin (IL) -12 is considered a key cytokine in the early development
of the effective immune response due to its requirement for the activation of natural killer cells
and T lymphocytes [12]. Activation of these cells leads to the secretion of interferon-γ (IFNγ),
another commander cytokine.

Both in mice as in humans, macrophages are classically activated by IFNγ. This leads to the
transcription of inducible nitric oxide synthase (iNOS) and phagocyte NADPH oxidase (phox)
that produce nitric oxide (NO) and reactive oxygen species, respectively, specimens generally
considered indispensable for macrophage-direct killing of Leishmania [13]. Macrophages
activated by IL-12-driven IFNγ secretion by Th1 lymphocytes – named M1 macrophages – also
produce TNFα, IL-1β and IL-6, pro-inflammatory cytokines that favor the protective response
against Leishmania infection. These macrophages are, then, both effectors and inducers of the
Th1 polarized immune response [14]. Nevertheless, the strong Th1 pro-inflammatory response
must be balanced with the secretion of IL-10 and transforming growth factor-β (TGFβ) to avoid
immunopathology through excessive tissue damage [15].

Effector CD4+ and CD8+ T cells that were activated by the recognition of Leishmania antigens
on the cognate TCR and expanded to respond to infection will face a massive contraction on
their numbers of about 90% after the elimination of the parasite, leaving a subset of experienced
cells that constitute the memory pool. Memory cells are long-lived cells that rapidly expand
in response to a secondary challenge with the priming antigen [16]. They form a heterogeneous
pool with distinct abilities in proliferation, migration and cytokine production, which allow
their classification in central memory (TCM) or effector memory T cells (TEM).

Memory cells were demonstrated to have great importance in the control of leishmaniasis,
with distinct roles described for TCM and TEM cells. Zaph et al. have shown that in mice both
TCM and TEM CD4+ cells require parasite presence to be developed, though maintenance of
TCM is independent of antigen persistence [2]. This achievement, however, seems highly
dependent on the initial overall T cell response, since in some immunization experiments that
used low dose of parasites protection was lost after the elimination of the parasites, possibly
due to insufficient expansion of the TCM pool [3]. Adoptive transfer of TCM from L. major-
infected mice to naïve animals conferred protection upon a challenge. When facing the antigen,
TCM expanded in the lymph nodes, acquired effector functions, including CD62L downre‐
gulation which allowed their migration to the infection site and effective protection [2]. In
accordance, analysis of CD4+ memory T cells from patients with CL stimulated ex-vivo with
soluble Leishmania antigen (SLA) revealed the high proliferative ability and IL-2 production of
TCM and high percentage of IFNγ-secreting TEM [17].
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Nevertheless, concomitant immunity, i.e. efficient protection upon a challenge due to the long-
term and simultaneous persistence of the pathogen, seems to be a hallmark in leishmaniasis [18].

1.2. Canine leishmaniasis

Dogs are primary reservoir hosts of zoonotic visceral leishmaniasis (ZVL) caused by Leishmania
infantum and play a key role in the long-term maintenance of the parasite in the endemic areas
of Mediterranean countries, the Middle East, Asia and Latin America. Epidemiological surveys
estimate that, for example in western Mediterranean countries, seroprevalence ranges from 5
to 37%, varying from region to region depending on ecological aspects. Nevertheless, surveys
based on PCR diagnosis demonstrated high infection rates in endemic areas, for example 80%
in Marseille, France [19], and 67% in Majorca, Spain [20]. Longitudinal studies in Italy have
also shown high incidences (40-92%) during the season of transmission [21]. Importantly, not
all infected dogs develop canine leishmaniasis; more than 50% of infected dogs remain
asymptomatic after infection, though it has been shown that these asymptomatic carriers are
also infective to sandflies [22].

The high prevalence of infected dogs in endemic areas, their common presence in the domestic
surroundings where ZVL transmission occurs, and the high infectiousness of both sympto‐
matic and asymptomatic animals makes that Leishmania-infected dogs represent not only a
serious veterinary but also an important public health problem. Infected dogs have been
associated with the emergence of new foci of ZVL, like those in the North of Argentina, where
the appearance of human cases is preceded by those of canine leishmaniasis [23], and also with
the spread of VL observed in large Brazilian cities [24] and the northward spread of the disease
reported in Italy [25]. Therefore, the control of parasite-infected dogs is of prime urgency to
reduce the number of cases of human VL by decreasing prevalence in dogs [26].

The outcome of Leishmania infection in dogs is variable and depends on the persistence and
multiplication of the parasite and the immune response of the animal. Not all the infected dogs
will develop clinical disease, part of them can control the expansion of the parasite and
spontaneously cure the infection; in others, the infection is subclinical for an undefined time
(years or even the whole life) during which the animal remains asymptomatic. Few than 50%
of infected animals do not have (or have lost) the capacity to control the parasite, in these cases
being distributed extensively throughout the organism: spleen, liver, lymph nodes, bone
marrow, kidney, skin, etc., (as opposed to what occurs in humans, where the parasite is
normally limited to bone marrow, spleen and liver) [26]. In these dogs the disease progresses,
the parasite burden and the Leishmania-specific antibody levels increase, and after two to four
months of incubation the symptoms of canine leishmaniasis appear [27].

The natural history of canine leishmaniasis mostly depends on the efficacy of the dog´s
immune response to L. infantum infection which determines the development of resistance or
susceptibility to the disease. In general, resistance is associated with low levels of specific
antibodies and presence of a predominant Th1 cell-mediated response against the parasite,
with the production of IFNγ that is able to stimulate, in collaboration with TNFα, the leish‐
manicidal activity of macrophages mediated by the induction of iNOS. Absence of symptoms
is related with high levels of IFNγ expression in the peripheral blood as detected by quanti‐
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tative real-time PCR [28]. When dogs develop such parasite-specific cell-mediated immunity,
they are able to control parasite dissemination and present an overall low tissue parasitism.
This status of resistance is reflected in the development of a positive leishmanin skin test
or/and an in vitro lymphoproliferative response after stimulation of peripheral blood mono‐
nuclear cells (PBMCs) with leishmanial antigens. In these animals, it has been observed that
in vitro stimulation of PBMCs with L. infantum SLA induces the expression of IL-2, IFNγ,
TNFα, IL-4 and IL-10, confirming the existence of both Leishmania-specific Th1 and Th2 clones
[29]. Also, quantification of the cytokine expression by real-time PCR allowed to establish that
PBMCs from resistant dogs expressed high levels of IFNγ and TNFα after in vitro stimulation
with purified parasite antigens [30, 31]. Therefore, the evaluation of IFNγ expression level from
PBMCs constitutes a good approach to evaluate the in vitro immunogenicity of leishmanial
molecules to identify vaccine candidates able to induce the protective cellular immune
response to canine leishmaniasis [30, 32].

Different attempts have been made to confirm a correlation between the classes and subclasses
of immunoglobulins and the type of response against Leishmania infection in dogs. Early
studies associated the appearance of specific IgG2 antibodies against Leishmania with the
asymptomatic state of the dogs, and the preponderance of IgG1 with progression of the disease
[33]. However, other studies have failed to show this [34, 35]. Recent reports have proposed
the analysis of IgG, IgG1 and IgG2 isotypes as immune biomarkers for the assessment of the
immunogenicity of vaccines against canine leishmaniasis. Since IgG1 and IgG2 responses are
largely T cell dependent, the evaluation of the specific isotypes has been considered an
important aspect to evaluate the overall immunity induced by a specific vaccine. It has been
seen that IgG2 induced by vaccination with L. infantum excreted/secreted proteins (LiESP) had
a potent inhibitory effect on the in vitro growth of both amastigotes and promastigotes and
that the pre-treatment of amastigotes with this serum reduced significantly their in vitro
infectivity in canine macrophages [36].

It is important to remark that the lack of Leishmania-specific cell mediated immunity constitutes
a key aspect in the pathogenesis of canine leishmaniasis and also in the recovery of the animal
after treatment. It has been confirmed that successful chemotherapy of the animals correlates
not only with the disappearance of external signs of leishmaniasis but also with a significant
increment in the percentage of CD4+ T cells and the appearance of a parasite-specific prolifer‐
ative response of PBMCs [37].

2. Vaccine research for leishmaniasis

The ideal vaccine for leishmaniasis should be safe, effective, long lasting, transversal to all
infective Leishmania species and affordable, to be available to the populations most in need.

2.1. Animal models for vaccine research for leishmaniasis

Much of the knowledge generated from leishmaniasis research come from experimental
infections in animal models. Differently from human population and natural infections, the
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most common models of disease employed in leishmaniasis research are based on infection of
inbred mice with cloned lines of parasites. These experimental settings reduce the variety of
factors that play a role on the disease manifestation, such as host’s genetic background and
immune competence, concomitant infections with other microorganisms, autoimmune or
inflammatory diseases or drug treatments that may affect the fitness of the immune system,
diversity of parasite’s strains and species, site of infection and inoculum dose, infecting sand
fly’s species, etc. However, in comparison to the natural transmission and disease, the same
limitations are also the major advantages, as in laboratorial settings researchers control all
those variables and are able to focus on their specific target to unravel the molecular and
immunological mechanisms behind leishmaniasis.

Many models of leishmaniasis have been tested, although none is able to mimic the exact
pathology of cutaneous and, principally, visceral human diseases, or to develop the same
immune responses. Despite valuable information has come from animal models, careful
generalizations must be done when transposing it to the human disease.

The animal species applied on studies of human CL is almost exclusively the mouse (Mus
musculus). Inbred strains are experimentally infected by subcutaneous or intradermal route
with millions of promastigotes cultivated in vitro or axenic or tissue-derived amastigotes. The
mice’s genetic background has a major impact on the severity of the disease. For instance, when
infected with a high dose BALB/c strain develops extensive skin lesions that spread away from
the inoculation site leading to death of the animal, while C57BL/6 and CBA/N are able to control
the infection and skin ulcers self-heal with time [38].

Considering animal models for VL, golden hamsters (Mesocricetus auratus) are among the best
mimicking model of the human disease. Despite the artificial route (intracardiac or intrave‐
nous) and the high amount of parasites usually inoculated, L. infantum- or L. donovani-infected
hamsters show heterogeneous phenotypes of infection, with animals that are asymptomatic,
oligosymptomatic or polysymptomatic, in quite a good correlation with human and also
canine epidemiology in endemic areas. Symptomatology comprise weight loss, uncontrollable
increase in the splenic, hepatic and bone marrow parasite loads, hepatosplenomegaly,
pancytopenia, hypergammaglobulinemia and ultimately death (Carrillo et al., submitted, 2013
and [39]). Due to the lack of specific reagents needed to study the immunological mechanisms
associated with Leishmania infection, the hamster model has been put apart and neglected over
the mice models. Visceral leishmaniasis in mouse do not fully resemble the human nor canine
disease, but the availability of numerous strains genetically modified and an endless offer of
anti-mouse antibodies make the mouse the most preferred model to understand the host-
parasite interactions and the immunological aspects of visceral leishmaniasis. However, in the
scope of vaccine development and drug screening, where more than the mechanism behind
the most important read-out is efficacy (i.e. parasite loads and pathology), golden hamsters
are the most appropriate rodent model for the human disease.

The use of dogs (Canis lupus familiaris) as model of leishmaniasis is an advantage in the way that
dogs are themselves natural hosts. Some breeds, like German Shepard, Boxer and Doberman,
seem to be more susceptible to natural Leishmania infection [40]. However, the most common
breed used in laboratorial studies is the Beagle. In addition, many research studies are done
with field animals. They can be artificially infected or put in natural contact with sand flies in
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endemic areas to test the efficacy of vaccines or anti-Leishmania drugs for veterinary practice or
be used in the scope of model for human VL. Despite the existence of some dog-specific tools
that would allow the study of the immune response, working with dogs is not as easy as handling
mice, due to their size, the unpredictability of the infection rates, the cost of the experiments
and the emotional connection that naturally exist between humans and dogs.

Non-human primates are usually confined to pre-clinical trials in humans. Some models based
on artificial inoculation of rhesus macaques (Macaca mulata) [41], African vervet monkeys
(Chlorocebus spp.) [42] or langur monkeys (Presbytis entellus) [43, 44] have been tested for
Leishmania vaccines. Due to the close phylogenetic relation with humans and considerably
good mimicking of pathology and immune responses generated upon infection (depending
on the parasite and animal species), these models are attractive for vaccine research. But the
difficulty on the handling, the very expensive costs and the impossibility of exposing the
animals to a natural challenge are drawbacks on the use of non-human primates for Leishma‐
nia vaccine research.

2.2. Leishmanization

Until date, the only successful, long-lasting strategy for human immunization against leish‐
maniasis is the leishmanization process. It consists on the inoculation of live virulent parasites
in a hidden area of the skin of healthy people with the purpose of development of immunity
for protection when the individuals are challenged by a natural infection. Leishmanization
showed 100% protection when used as prophylaxis for cutaneous leishmaniasis (CL) through‐
out the ex-Soviet Union, Asia, and the Middle East [45]. Due to risk of complications in healthy
people and difficult standardization of the live L. major inoculum, this procedure was mostly
abandoned. However, this is still a current practice in Uzbekistan [45] and a few years ago it
was reported to be applied in the evaluation of the efficacy of new vaccines [46].

A “natural” form of leishmanization may be the reason why in Sri Lanka so many cases of CL
by L. donovani are reported while VL is rare [47]. McCall et al. have recently reproduced this
scenario in the BALB/c model, immunizing the mice subcutaneously with a dermotropic L.
donovani strain from Sri Lanka followed by intravenous challenge with a viscerotropic
autochthonous strain, and indeed, partial protection was obtained in the liver of the infected
mice [48]. The authors attributed the ability of the cutaneous strain to protect against the
challenge with the visceral strain to a probable great similarity between the two L. donovani
strains; this hypothesis may justify the opposing phenotype observed by others [49]. Also, an
epidemiological study in Sudan indicated that only individuals previously negative for
leishmanin (Montenegro skin test) developed VL, thus, though without scientific evidences,
leishmanin-positive individuals that were possibly formerly infected with L. major were
protected against the visceral disease [50].

2.3. First generation vaccines

First generation vaccines comprise whole killed parasites and live attenuated parasites. They
were primarily developed to overcome one of the major concerns related to leishmanization:
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the risk of disease development in immunocompetent persons and the total improperness for
immunosuppressed patients for this same reason.

2.3.1. Killed parasites

With more or less success, some examples of killed vaccines include L. braziliensis crude
antigens tested in dogs [51] and trivalent (L. braziliensis + L. guayanensis + L. amazonensis) phenol-
killed whole Leishmania promastigotes with bacille Calmette-Guérin (BCG) as adjuvant in
Ecuadorian children [52]. According to a meta-analysis conducted in 2009 by Noazin et.al. to
evaluate the efficacy of the clinical trials performed with whole killed parasites in endemic
areas since 1970’s, with the exception of this latter in Ecuador, none of the other eight clinical
trials considered (based on autoclaved L. major (ALM) with BCG tested against CL in the Old
World and L. amazonensis or multivalent preparations inactivated with merthiolate used
against CL in the New World) showed significant protection against natural infection [53]. A
new option was tested recently: a killed but metabolically active (KBMA) L. infantum. This
vaccine showed partial protection in spleen and liver of BALB/c mice 2 and 8 weeks after
challenge triggering a mixed Th1/Th2 response but the authors claim that improved results
could be obtained by adding TLR agonists and Th1 adjuvants [54].

2.3.2. Live attenuated parasites

For the live attenuated parasites many are the works reported whether using physical,
chemical or genetic manipulation for reducing the virulence of the strains, or even naturally
attenuated strains, like the non-pathogenic L. tarentolae [55]. Some of the most successful
vaccine candidates for VL based on genetically altered live parasites were L. donovani biopterin
transporter gene knockout (KO) (BT1−/−) [56], L. donovani replication deficient centrin gene KO
(Cen−/−) [57], L. donovani cytochrome c oxidase complex component p27 gene KO (Ldp27−/−) [58],
L. infantum silent information regulatory 2 single KO (SIR2+/−) [59] and L. tarentolae expressing
L. donovani A2 antigen [60]. Despite showing hopeful efficiency in murine models, the
promising candidates that were tested in human and canine diseases failed to protect (re‐
viewed in [61]).

2.4. Second generation vaccines

A different approach relies on recombinant proteins, polyproteins, DNA vaccines, liposomal
formulations and dendritic cell vaccine delivery systems [45]; these constitute the second
generation vaccines.

2.4.1. Purified or recombinant Leishmania antigens and engineered polyproteins

The Leishmania antigen that has been more extensively studied in the scope of a vaccine is the
gp63 glycoprotein that is expressed on the surface of both the amastigotes and the promasti‐
gotes forms. The recombinant and the native proteins have been inoculated in several strains
of mice as models of CL, generally showing a protective phenotype (see [62] for details). Also,
an early study using monkeys revealed a partial protection against CL by L. major [63]. This
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gp63 is one of the few recombinant antigens studied in the scope of VL; Bhowmick et al. showed
that gp63 encapsulated in cationic liposomes induced more than 80% reduction of the parasite
loads in spleen and liver of BALB/c mice infected with L. donovani [64]. In this group of
recombinant antigens, some others of the most successful candidates against VL were the
amastigote-specific protein rA2, rHASPB1 (hydrophilic acylated surface protein B1), KMP-11
(kinetoplastid membrane protein-11) and rORFF (open reading frame fragment). LiESA (L.
infantum promastigotes’ excreted/secreted antigens), FML (fucose-mannose ligand) and
GRP78 (glucose-regulated protein 78) are the few purified antigens tested in vaccines for VL
and all of them revealed at least certain degree of protection (see the reviews from Evans and
Kedzierski [45] and Nagill and Kaur [62] for details and references). For CL, other antigens
tested by several groups, though with conflicting results, are rLACK (Leishmania homologue
of receptor for activated C kinase) [65-67] and PSA-2 (promastigote surface antigen 2) [68, 69].

Concerning the recombinant polyproteins, rLeish-111f (or LEISH-F1, composed of three
molecules fused in tandem: the L. major homologue of eukaryotic thiol-specific antioxidant
(TSA), the L. major stress-inducible protein 1 (LmSTI1) and the L. braziliensis elongation and
initiation factor (LeIF)) and its non His-tag form rLeish-110f are undoubtedly the best studied
and the most promising candidates for a vaccine against leishmaniasis. After having proved
to protect mice with CL [70] and VL [71], rLeish-111f with MPL-SE adjuvant has also demon‐
strated to be safe and well tolerated in humans [72] as well as immunogenic in healthy subjects
of endemic areas with or without previous contact to L. donovani [73]. Clinical trials in dogs
have resulted in disparate conclusions about the efficacy of the vaccine in the prophylaxis of
ZVL [74, 75], though survival of infected dogs was increased after vaccination and treatment
with glucantime [76]. rLeish-110f with MPL-SE was shown to be immunogenic and protective
in BALB/c mice after L. major and L. infantum challenges [77] (see [78] for complete information
about the clinical trials run with rLeish-f111 and rLeish-f110).

Another polyprotein named Protein Q, composed of the fusion of four fragments of the acidic
ribosomal protein Lip2a, Lip2b, P0 and histone 2A, has shown 90% protection as measured by
parasite clearance in vaccinated dogs using BCG as adjuvant [79]. After testing other adjuvants
in mice, 99% protection was achieved against L. infantum when administering Protein Q with
CpG-ODN [80].

2.4.2. DNA vaccines

DNA vaccines are able to activate both CD4+ and CD8+ T cells through the engagement of MHC
class II and MHC class I, respectively [38]. In addition, co-administration of cytokines and CpG
oligonucleotides allows the modulation of the cellular immune response [81]. Besides being
relatively easy to prepare and stable, another unique advantage is the appropriate folding of
the intracellularly synthetized peptide on its native structure [38].

The first DNA vaccines to be studied were the classical candidates that have been tested as
proteins. As single plasmids or in multicomponent DNA vaccines, there are successful
examples that have shown to protect from some Leishmania species but not others, or were
effective in some animal models but not others (see [62] for an extensive description of DNA
vaccines). Among the most investigated are gp63 for CL in mice, LACK and KMP-11 for both
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CL and VL tested in mice, hamsters and dogs. Some reports have shown the use of the strategy
of heterologous prime-boost using LACK DNA followed by administration of rLACK protein
with positive results [82-86].

2.4.3. Dendritic cell vaccine and liposomal formulations delivery systems

The unique capacity of DCs in amplifying the innate defense mechanisms and providing the
link between these and the acquired immune responses makes them ideal candidates for anti-
Leishmania vaccines [87]. In the recent years, DCs pulsed with gp63 or gp63-derived peptides
[88, 89], histone H1 [90] or a mixture of histones [91] delivered to mice challenged with L.
major or DCs pulsed with KMP-11(12-31aa) peptide + CpG ODN [92] against L. infantum have
shown to decrease lesion size and parasite loads through the production of antigen-specific
IFNγ.

On another approach, the concept behind the use of liposomes to deliver Leishmania antigens
is that they can modulate antigen presentation, enhancing antigen-specific T cell proliferation
and humoral responses. Conventional liposomes are presented by MHC class II molecules,
whereas the presentation via MHC class I requires pH-sensitive liposomes [93]. The encapsu‐
lation of rgp63 or rLmSTI1 in liposomes has proven to develop a Th1 response that protected
BALB/c mice from L. major [94, 95] or L. donovani infection [64]. A different strategy using polar
phospholipids from Escherichia coli to encapsulate L. donovani SLA protected hamsters from L.
donovani infection by the production of CD4+ and CD8+ T cell-specific responses [96]. Impor‐
tantly, the route of administration of the liposomes may have a crucial role on the generation
of the protective response. For example, BALB/c mice that were immunized by intravenous or
intraperitoneal routes with liposomal L. donovani membrane antigens were protected from a
L. donovani challenge, whereas the intramuscular or subcutaneous immunizations failed to
protect [97].

2.5. Adjuvants

Adjuvants are synthetic or natural highly immunogenic components that are combined with
the specific immunizing antigen with the purpose of efficiently stimulate the immune cells to
mount a strong response against that antigen. Adjuvants are usually categorized in two classes.
Immunostimulatory or non-particulate adjuvants are agonists of the pathogen-recognition
receptors (PRRs) that localize at the surface or inside intracellular vesicles of innate immune
cells [93]. These are activated by the binding of the cognate pathogen associated molecular
patterns (PAMPs) (or their agonists) and signal a complex cascade of events that triggers the
secretion of cytokines, chemokines and type I interferons [98]. The other class comprise the
particulate adjuvants which are mineral-, lipid- or polymer-based delivery systems that, along
with being transporters of the Leishmania antigen, are themselves immunostimulators due to
their size, charge and composition; their properties can even be further improved by the
decoration with other PAMP-like adjuvants [93].

In a vaccine for leishmaniasis, it is expected that adjuvants modulate the immune system
towards a Th1 response, with high amounts of secreted IL-12 and IFNγ. Indeed, recombinant
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IL-12 has been successfully tested in animal models as a potent adjuvant. However, stimulation
with IL-12 was unable to induce a strong memory response to the immunizing antigen in
BALB/c mice [99]. Nevertheless, when administered as IL-12 DNA it induced long-lasting
protection against L. major [100].

MPL®  is  a  purified  derivative  of  the  monophosphoryl  lipid  A  hydrophobic  moiety  of
Salmonella minnesota’s lipopolysaccharide (LPS). As LPS, MPL® is a potent TLR4 activator,
though without the pyrogenicity of the parent molecule [101]. To even increase its efficacy,
MPL® has been formulated in an oil-in-water stable emulsion in squalene (MPL-SE) which
rendered high levels of IFNγ and low amounts of IL-4 and IL-10 [102]. A similar deriva‐
tive, GLA-SE (glucopyranosyl lipid adjuvant) has been chemically synthetized in order to
obtain  a  pure  molecule,  free  of  biological  components,  but  still  maintaining  the  same
multifunctional immunomodulatory activity as the naturally-derived MPL® [103]. Current‐
ly, MPL-SE and GLA-SE are undergoing clinical trials with the antigen LEISH-F3 for the
first vaccine for human VL (see section 2.6.2).

Other TLR agonists are CpG-containing oligonucleotides (CpG ODNs) and imiquimod, which
are ligands for the TLR9 and TLR7/8, respectively. CpG ODNs are strong immunostimulators
by the upregulation on macrophages and DCs of CD40 and MHC class II costimulatory
receptors [104] and the induction of IFNα, IFNβ and IFNγ, IL-12, IL-18 and TNFα secretion
by lymphocytes [105]. In the same direction, imiquimod, a synthetic imidazoquinoline, is a
Th1 activator. But noteworthy, imiquimod has itself anti-leishmanial activity through the
activation of macrophages leading to the secretion of IL-12 and IFNγ [106]. Also, signal
transduction directed to NO production was detected on L. donovani-infected macrophages
treated with imiquimod [107]. Indeed, a recent report showed the effective application of topic
imiquimod on the cutaneous lesions of a child infected with L. infantum unresponsive to
liposomal amphotericin B [108].

Bacillus Calmette-Guérin (BCG), besides being the most widely administered vaccine in the
world, it is also commonly used as adjuvant in numerous vaccine candidates for infectious
diseases. In anti-Leishmania treatment [109] and vaccine research it has been tested in murine
[110-112], hamster [113], canine [114, 115] and non-human primate models [42] (just to mention
the most recent works). Its mechanism of immunostimulation relies on the activation of TLR2,
TLR 4 and TLR9 [116, 117] in addition to its anti-leishmanial properties revealed in early studies
[118, 119].

Saponins are natural products from the Quillaja saponaria tree chemically modified in order to
increase their adjuvant properties [120]. QuilA is the heterogeneous mixture of saponins
obtained from the aqueous extract of the Quillaja bark. Due to its high toxicity, purification by
HPLC and chemical modifications have originated several saponins which display different
toxicity and immunogenicity [121]. Saponins are common adjuvants used in vaccines for
Leishmania. Indeed, the three approved vaccines for ZVL include saponins in their formulation
(see section 2.6.1).

Particulate adjuvants have many properties that can be designed to bias the immune system
in the desirable way which make them very versatile adjuvants. They serve as carriers for
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antigens and non-particulate adjuvants, targeting both vaccine components to the same APC
and controlling their release. They can be used to increase the stability of antigens, like proteins,
peptides or oligonucleotides, to improve the solubility of hydrophobic compounds or to
bypass gastric degradation [93].

Aluminum salts are common in human and veterinary vaccines, though they are not proper
adjuvants per se to be used in vaccines for leishmaniasis because their immunostimulatory
properties drive a Th2 response. However, they have been used as carriers for other adjuvants,
like IL-12 [122] or BCG [111], in combination with ALM antigen. Lipid-based vesicles (lipo‐
somes and niosomes) have been tested to carry ALM antigen with or without BCG in C57BL/
6 [123] and BALB/c mice [124]. Similarly, virosomes are spheres formed by a phospholipid
bilayer but that also contain viral glycoproteins (hemagglutinin and neuraminidase from
influenza virus) which confer structural stability and enhance the adjuvanticity of these
particles [93].

Micelles and emulsions likewise fall in this category of particulate adjuvants as, for example,
MPL® and GLA formulated in stable emulsions (MPL-SE and GLA-SE). The oil-in-water
emulsion formed with squalene (SE) is itself an adjuvant that has been included in the ongoing
clinical trials run by IDRI (see section 2.6.2), though immunization with Leish-110f antigen
plus SE led to the development of a Th2 response in BALB/c mice [77].

Finally, thought without great expression in Leishmania vaccine research, the most complex
particulate adjuvants are the immune stimulating complexes. ISCOMATRIX™ are cage-like
structures composed of cholesterol, lipids and QuilA bond together by hydrophobic interac‐
tions; they allow the inclusion of several antigens forming ISCOMATRIX™ vaccines [102].
Similar structures that include a hydrophobic antigen are called ISCOMs, while hydrophilic
antigens must be held in cationic ISCOMs-like structures named PLUSCOMs [93]. The
inclusion of QuilA in these systems allows the reduction of its amount and the bonding to
cholesterol, therefore leaving no free QuilA to interact with cell membranes, which decrease
its toxicity [93].

2.6. Current status of vaccine research

2.6.1. Vaccines for zoonotic visceral leishmaniasis

In canine vaccinology three authorized vaccine options are available.

Leishmune® was the first vaccine licensed for the prevention of ZVL but is authorized only in
Brazil. It consists of L. donovani purified fucose-mannose ligand (FML antigen) in combination
with a saponin adjuvant. Clinical trials have showed that Leishmune® reduces the risk of
infection but also prevents disease progression in already infected dogs, though the manufac‐
turer does not recommend the vaccine as immunotherapy. A transmission-blocking activity
was also attributed to this vaccine, making it highly appealing for the control of the zoonosis
[125]. After 5 years of spread use among veterinary clinics in all the Brazilian territory, the
manufacturer reports an efficacy of 97.3% in 8393 vaccinated Leishmania-seronegative dogs
exposed to the natural challenge [126]. Strong cellular response (determined as Leishmania-
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specific lymphoproliferation with high levels of IFNγ in the absence of IL-10 and positive
Montenegro skin reaction test) and favorable humoral response (with high titers of Leishma‐
nia-specific IgG2) are behind this protective response in vaccinated animals [126].

Some years later, Leish-Tec® was released, also only in Brazil. The recombinant A2 protein is
the antigen that constitutes the vaccine along with saponin adjuvant. Protection was found to
be related to high levels of anti-A2 IgG and IgG2, without the presence of IgG1, and high
amounts of specific IFNγ with low levels of IL-10 [127]. However, there is no updated
information about the efficacy of the vaccine in the field.

Recently, a new vaccine, CaniLeish®, the only authorized in Europe, has entered the market
for the prophylaxis of ZVL. The manufacturer claims that vaccinated dogs have a 4-fold
reduced risk of developing the disease compared to non-vaccinated animals [128]. The use of
L. infantum excreted/secreted proteins associated to QA-21 adjuvant (LiESP/QA-21) leads to
the increase of IgG2 specific antibodies, stronger Leishmania-specific lymphoproliferation with
an increased IFNγ-producing T cell population that is able to activate a significant leishmani‐
cidal macrophage ability in vitro due to NO production [129].

2.6.2. Ongoing clinical trials for a vaccine for VL

On February 2012 the Infectious Disease Research Institute (IDRI) has launched a phase 1
clinical trial for the first vaccine against VL [130]. Thirty six healthy adult American volunteers
were recruited to evaluate the safety, tolerability and immunogenicity of the LEISH-F3
recombinant antigen (composed of two fused proteins) with GLA-SE, MPL-SE or SE adjuvants
[131]. About one year and a half later, this first clinical trial was completed and the vaccine
was shown to be safe and to induce potent immune responses in healthy volunteers [132].
Later, IDRI partnered with the Indian pharmaceutical company Zydus Cadila to develop,
register and market the three vaccine candidates to ensure that the possible future vaccine is
affordable and accessible by the people that really need it. Also, in July 2013 this partnership
has started phase 1 clinical trials in India to evaluate the effectiveness of the vaccine on
individuals from endemic regions [132].

3. Experimental data: Highly infective Leishmania infantum strain induces
strong central and effector memory CD4+ and CD8+ immunity required for
partial protection against re-infection

3.1. Aim of the study

It is well accepted that the broad clinical manifestations described in leishmaniasis are
associated with the different cytokine milieu developed in response to the infection, which is
highly dependent on the parasite itself. Accordingly, a diversity of immune responses have
been described for L. major substrains [133] and L. infantum strains from the MON-1 zymodeme
[134]. These immune responses may have a pivotal importance if the host faces a de novo
Leishmania infection. In fact, data from endemic countries put on evidence the reality of
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resistance to re-infection in VL. In the one hand, it is evident the predominance of L. infan‐
tum infections in children compared to adults [6], which may result from acquired resistance
to re-infection in adulthood, and, on the other hand, there are the examples of fully recovered
patients that showed resistance to re-infection by the same Leishmania species [61].

Some studies on re-infection have been performed in mice as model for visceral leishmaniasis.
Streit et al. described a partial level of protection against L. chagasi when mice were first infected
with a high-dose inoculum since it was able to stimulate the immune system towards a Th1
response for counteracting a subsequent infection. On the contrary, an infection with a low
dose suppressed IFNγ production and elicited high levels of TGFβ. Also, protective immunity
was not achieved if an attenuated dhfr-ts knockout strain was used instead for immunization
[49]. However, Oliveira et al. published opposing results as when they infected mice with a
low dose of L. chagasi a protective immune response was generated, while a high dose
contributed to the development of visceral disease [135].

To our knowledge, there is no previous literature about the concomitant immunity developed
with live virulent L. infantum infection followed by homologous or heterologous re-infection.
Since the severity of the infection and the progression of visceral leishmaniasis are strongly
determined by the elicited immune response, in this work we analyzed the ability of two L.
infantum virulent strains, which have presented different infectivity and immunomodulation,
in the generation of an effective adaptive immunity in the context of experimental chronic
infection and in the induction of a recall response after re-infection in BALB/c mouse model.

3.2. Development of protection needs highly infective Leishmania

Many efforts have been made to understand how Leishmania-specific immunity is generated
and maintained over time. Nowadays, it is of scientific consensus that early activation of the
innate immune system is essential for the production of a reliable adaptive response that leans
on CD4+ and CD8+ specific cellular immunity.

To understand the strain-specific immunomodulation mechanisms that lead to protection to
re-infection we used two strains of L. infantum, one dermotropic (HL) and the other viscero‐
tropic (ST), which presented differential onset and progression of VL in mice. As previously
shown [136], HL was able to colonize the spleen, liver and bone marrow in higher extent than
ST parasites 6 weeks after infection (Figure 1, Infection bars). We hypothesized that these
differences in infectivity could lead to distinct levels of protection. Thus, we re-infected the
mice with homologous or heterologous strains.

In our model, mice that were previously imprinted with HL strain and then challenged with
the same highly infective strain (Figure 1, Re-inf HL bars) were able to sustain the splenic
parasite load and to decrease in about 1 logarithm the number of parasites colonizing the liver
and bone marrow. On the contrary, HL re-infection after ST imprinting led to a significant
increase of about 1000 times in all the target tissues. Concomitant immunity was more
pronounced when the animals were infected with the highly infective HL strain and then
challenged with ST due to its lower infectivity (Figure 1, Re-inf ST bars). As such, the infections
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in the spleen and liver of HL imprinted mice suffered a significant reduction of ~1000-fold in
the parasite loads to levels close to the quantification limit, and in the bone marrow parasitic
presence was detected but not quantifiable. Accordingly, ST imprinting and consecutive
challenge resulted in a ~10-fold increase in the splenic and hepatic parasite burden compared
to the primary infection numbers, though no changes were noticed in the parasite load of the
bone marrow.

7-8 week-old BALB/c mice were infected by intraperitoneal route with 108 HL (grey bars) or ST (white bars) L. infantum
strains cultivated for 4 days in Novy-MacNeal-Nicolle (NNN) medium at 26 ºC. After 6 weeks of infection mice were
anesthetized with isoflurane and sacrificed by cervical dislocation (Infection bars). In the re-infection experiments, ani‐
mals were infected for 6 weeks with HL or ST strains as before and challenged intraperitoneally with 108 promasti‐
gotes of the same or the other strain; 6 weeks after challenge they were sacrificed (Re-inf HL and Re-inf ST bars). (A)
Spleen, (B) liver and (C) femoral bone marrow were recovered for quantification of the parasite load by real time PCR
[136]. Bars represent means ± SD of 5 to 9 animals of one experiment representative of two independent. Statistically
significant differences between HL and ST infections were calculated with Mann-Whitney test and are signed with +.
Kruskall-Wallis test followed by Dunn’s multiple comparison test were used to calculate differences before and after
challenge and are depicted with *. Statistical analysis was done in GraphPad Prism 5 (GraphPad Software). Dashed line
indicates the limit of detection for quantification for each tissue.

Figure 1. Parasite load after infection and challenge with L. infantum strains presenting different infectivities

Based on the data exposed above, in terms of parasitological analysis we established that the
onset of pathology (set as hepatosplenomegaly (data not shown; see [136]) and high parasite
loads) by an infective L. infantum strain confers a degree of protection over a re-infection
episode which correlates with the infectivity of both the imprinting and the challenging strains
that are inoculated in the host. Similar findings were reported previously, when a high-dose
of L. chagasi promastigotes was required for the development of protection against re-infection,
whereas a low-dose immunization either had no effect or slightly exacerbated disease [49].

3.3. Infectivity may influence downstream adaptive response-triggering events

To understand the immune response behind this protective phenotype, we analyzed the
splenic  populations  and  the  T  cells  functionality.  We  observed  that  infection  with  HL
produced a  significant  increase  in  the  total  cellularity  and major  leukocyte  populations
when compared to naïve animals, which was not noticed when mice were infected with
ST strain (Figure 2A-E).
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(A-E) After infection and consequent challenge with both HL and ST strains, splenocytes were recovered and surface-
stained for identification of major leukocytes populations. (A) Total cells were counted and (B) CD4+ T cells
(CD3+CD4+), (C) CD8+ T cells (CD3+CD8+), (D) B cells (CD19+) and (E) macrophages (CD11b+Ly6C+) were evaluated by
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flow cytometry in a FACSCanto (BD Bioscences). Cell numbers from infected mice were normalized with respective val‐
ues from age-matched naïve mice and results are presented as log2 of the fold change relative to naïve animals, with
dashed and solid lines indicating 2- and 4-fold difference. Boxes and whiskers with 5-95 percentile and mean (showed
with +) of 5 to 9 animals of one experiment representative of two independent. Mann-Whitney test was run to calcu‐
late statistically significant differences between mice infected with HL or ST and results are depicted with +. Differences
before and after challenge are indicated with * for p<0.05 or ** for p<0.01 and were calculated with Kruskall-Wallis
test followed by Dunn’s multiple comparison test in GraphPad Prism 5 (GraphPad Software). (F-H) Number of (F) in‐
flammatory macrophages (CD11b+Ly6C+ CCR2+), (G) inflammatory neutrophils (CD11b+Ly6G+CCR2+) and (H) activated
dendritic cells (CD11c+CCR2+) in infected mice before (Infection bars) and after homologous challenge (Re-inf bars).
Bars represent means ± SD of 5 to 9 animals of one experiment representative of two independent. Statistically signifi‐
cant differences were calculated in GraphPad Prism 5 (GraphPad Software) with Mann-Whitney test between naïve
and infected or challenged animals and show * p<0.05, ** p<0.01 and *** p<0.001.

Figure 2. Splenic cellular populations after infection and challenge with highly and low infective L. infantum strains

Interestingly, when the animals were subjected to a secondary infection by HL, regardless of
the infectivity of the imprinting strain, we detected the same increase in the number of
splenocytes, while after challenge with ST there was no change in the cellularity.

Inflammatory macrophages/monocytes and neutrophils, besides its recognition as host cells
[137, 138], have been implicated in the remodeling of the spleen during splenomegaly in
leishmaniasis  [139,  140],  as  well  as  in  the  modulation  of  the  specific  CD4+  T  cells  re‐
sponse in late phases of infection,  at  least  with L. major  [141].  Infiltration of neutrophils
[142], DCs [143] and macrophages [144] in inflamed tissues is tightly regulated by the CC
chemokine receptor 2 (CCR2) that also participates in important processes related to anti-
Leishmania defense [143, 144].

As these are the first cells that need to be committed, we determined the number of inflam‐
matory macrophages, DCs and neutrophils by the expression of CCR2 (Figure 2F-H). Infection
and challenge with HL led to the significant increase of these inflammatory cells in the spleen.
Similarly, infection with ST also significantly increased the inflammatory DCs and neutrophils,
but only with a second wave of parasites the CCR2+ macrophages arisen in numbers signifi‐
cantly higher than in uninfected animals. However, this difference in the number of CCR2+

macrophages relates with the total macrophages present in the spleen, as the relative percen‐
tages were similar between HL and ST (data not shown). These CCR2+ macrophages exert an
important role in the defense against Leishmania, since it has been previously described that
optimal parasite killing require the recruitment of CCR2+ macrophages, followed by stimula‐
tion with combined monocyte chemotactic protein 1 (MCP-1) and IFNγ [144].

Thus, monocyte and neutrophil activation showed no major differences between HL and ST
strains, similarly to the findings of Meddeb-Garnaoui et al. that compared the cytokine profile
of human monocytes infected with dermotropic and viscerotropic L. infantum strains which
presented respectively high and low infectivity in vitro [145]. In their in vitro setup, no
differences were found in the ability of those two strains in the modulation of monocyte-
secreted cytokines [145], indicating that the infectivity of a Leishmania strain not always
produces a direct effect on the innate immune response. Nonetheless, in vivo, where other
factors that influence macrophage function are present, the effect of the infectivity was not
evaluated. We hypothesize that despite monocyte and neutrophil activation were similar, HL-
and ST-activated cells should present divergent efficiencies when triggering the adaptive
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immune response, which may be indicative of intrinsic characteristics of the strains in
modulating downstream events.

3.4. Highly infective L. infantum triggers memory and effector CD4+ and CD8+ T cells

We have studied the generation of CD4+ and CD8+ memory T cells 6 weeks post-infection and
upon challenge with the same strain by the surface expression of CD44 and CD62L (Figure 3).

(A, B) CD4+ and (C, D) CD8+ T cells were analyzed by flow cytometry in a FACSCanto (BD Bioscences) according to their
surface expression of CD44 and CD62L. Naïve (CD44loCD62L+), central memory (TCM; CD44hiCD62L+) and effector mem‐
ory (TEM; CD44hiCD62L-) subpopulations were quantified before (A, C) and after (B, D) challenge. Bars show means ±
SD of 5 to 9 animals of one experiment representative of two independent and statistically significant differences be‐
tween naïve and infected mice are depicted with * for p<0.05, as calculated by two-tailed Mann Whitney test run in
GraphPad Prism 5 (GraphPad Software).

Figure 3. T cell memory repertoire of mice subjected to infection and homologous re-infection with HL and ST L. infan‐
tum strains

HL infection potentiated the expansion of central memory CD8+ (Figure 3C, TCM bars) and
especially CD4+ T cells (Figure 3A, TCM bars) that doubled in percentage compared to
uninfected mice. These memory populations are probably an important factor in the control
of the parasite load in the spleen, as presented before (Figure 1A), when the animals were
subjected to re-infection. Memory cells constitute a source of experienced-antigen cells that are
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able to rapidly respond to face a similar challenge. While TEM cells display protective effector
functions, TCM are thought to replenish the TEM pool [146].

In fact, after challenge with HL, both CD4+ (Figure 3B) and CD8+ (Figure 3D) TCM pools
remained high and TEM cells also significantly increased compared to naïve mice. Moreover,
taking into account that the total numbers of T lymphocytes in the infected animals were
significantly increased in relation to naïve mice (Figure 2B and C), the number of memory
(CD44hi) T cells was even more expressive in the spleens of those HL re-infected animals. On
the contrary, ST strain showed no potential in clonal expansion of memory populations or at
least in their high number maintenance in order to bring advantage upon re-infection. Neither
in the imprinting infection nor after challenge could we detect CD4+ or CD8+ central or effector
memory T cells in a percentage higher than that of the naïve animals. The decrease in the
CD8+ TCM cells 6 weeks after ST infection (Figure 3C) was considered not to have any
biological meaning since, when adjusted to total number of cells, both naïve and infected mice
have similar amounts of that subpopulation.

From the data exposed, we justified the partial protection that a primary infection with HL L.
infantum strain can generate upon an homologous re-infection. This strain has the ability to
activate the innate defenders (DCs, macrophages and neutrophils) for mobilization to the
spleen where they can drive an effective generation and expansion of memory CD4+ and
CD8+ T cell subsets.

3.5. Double producers CD4+IFNγ+IL-10+ and CD8+IFNγ+TNFα+ T cells arise after re-infection

To appreciate the mechanisms underlying the protection observed after re-infection with a
highly infective strain, we analyzed the magnitude of the developed T cell response in infected
and re-infected mice with HL strain. After infection, we detected high levels of IFNγ-producing
CD4+ and CD8+ T cells (Figures 4A and C, respectively). This finding was suspected after having
noticed the massive cellular infiltrate of leukocytes in the spleen (Figure 2) and also the
existence of approximately 15 % of effector memory lymphocytes (combined CD4+ and CD8+)
that classically secrete this cytokine [147]. Upon re-infection (Figures 4B and D), however, a
more interesting panel of effector cells has emerged. Along with the same IFNγ+ cells, detected
in both CD4+ and CD8+ lymphocytes, we identified IL-10+ in ~1.5 % and IFNγ+IL-10+ double
producers in ~0.75 % of the CD4+ T cells, which represent an increment of ~1.7 and ~3.1,
respectively, compared to uninfected animals.

CD4+T-bet+IFNγ+IL-10+ cells were recently described by us and others upon infection of BALB/
c mice with L. infantum [148] or L. donovani [149]. This Th1 population is driven by CD4+ T cells
activation by the infected DCs and leads to an unprotective phenotype that accentuates the
infection. However, a protective role was previously attributed to CD4+CD25-Foxp3-IFNγ
+IL-10+ cells in a vaccination study with L. donovani LdCen1-/- [57] and in a non-healing model
of CL with L. major [150], which were claimed to arise after a strong inflammatory stimulus as
a feedback control of Th1 responses to avoid tissue damage.

In CD8+ T cells, conversely, cytokine double producing cells were found for IFNγ+TNFα+, in a
representation of ~0.86 %, meaning an increase of ~3.4 fold compared to naïve mice. IFNγ and
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TNFα concomitant production by Th1 and CD8+ T cells has for long proven to be more efficient
in the killing of L. major [151, 152] and other unrelated microorganisms (e.g. Mycobacterium
tuberculosis [153]) than the production of IFNγ or TNFα alone. More recently, IFNγ+TNFα+

high quality CD4+ and CD8+ T cells were described to be generated after several vaccination
protocols against L. major and correlate with prognosis of protection much better than IFNγ
single producers [154]. Moreover, those double producers CD4+ T cells, which can also be
IL-2+, were determined to belong to the central memory subset, providing long-term protection
[154, 155]. As for CD8+IFNγ+TNFα+ T cells, they were described to have enhanced cytolytic
activity compared to IFNγ+ single producer cells in HIV-infected patients [156]. However, in
our study, we could not detect any difference in the cytotoxicity mediated by CD8+ T cells from

IFNγ, IL-10 and TNFα production was analyzed by flow cytometry in CD4+ (A, B) and CD8+ (C, D) lymphocytes. Spleno‐
cytes were stimulated ex-vivo with phorbol 12-myristate 13-acetate (PMA), ionomycin and brefeldin A, stained for sur‐
face and intracellular molecules and analyzed in a FACSCanto flow cytometer (BD Bioscences). Cytokine single and
double producers in each lymphocyte population are depicted from naïve, infected (A, C) or challenged (B, D) mice.
Bars represent means ± SD of 4 to 9 animals of one experiment with statistically significant differences between naïve
and infected mice indicated with * when p<0.05, as calculated by two-tailed Mann Whitney test run in GraphPad
Prism 5 (GraphPad Software).

Figure 4. Intracellular cytokines of CD4+ and CD8+ lymphocytes of HL infected and re-infected animals

Leishmaniasis - Trends in Epidemiology, Diagnosis and Treatment296



HL infected and challenged mice compared to that from naïve animals (data not shown), which
may indicate that cytolytic activity of those cells was not required in the containment of the
parasites in the spleen or, instead, the persistence of the splenic parasite load is due to an
incomplete effector function of the CD8+ T cells.

3.6. Conclusions

Taken together, our results show that HL L. infantum strain promotes a robust activation of the
immune system upon infection initiated by a strong recruitment of leukocytes to the spleen
which stimulates the development of an effective adaptive response. This is a mixed response
as considered by the detection of single producers IFNγ+ and IL-10+ CD4+ T cells that become
more evident when the antigen is re-loaded (i. e. re-infection). CD8+ T cells also exert their
effector function by the production of IFNγ. After re-infection, double producers CD8+IFNγ
+TNFα+ and CD4+IFNγ+IL-10+ T cells arise, probably from the expansion of the central and
effector memory subsets, to contain the parasites that colonized the spleen and to efficiently
resolve the infection in the liver and bone marrow, controlling tissue damage by IL-10
production. To confirm this hypothesis, adoptive transfer of these memory cells produced after
re-infection with our highly infective L. infantum strain could be performed to evaluate the
protective phenotype of such pools of CD4+ and CD8+ T cells in naïve animals challenged with
a subsequent L. infantum infection.

Taking the fact that HL is a dermotropic strain that caused CL in a human patient, its tropism
is possibly justified by the inflammatory potential of the strain that impedes a silent entry into
the host. A protective response may immediately be mounted in the skin, abrogating any
chance of the parasite to reach internal organs and visceralize [157]. Concerning the ST strain,
an agent of human VL, the initial activation of the innate immune system does not translate
into efficient adaptive immunity as no memory cells were detected. With this, a primary
infection does not serve as imprinting, since a re-infection with the same strain led to the
increase of the parasite load in the spleen and liver.

With this work we contributed to the better understanding of the complex modulation that
Leishmania parasites do to surmount the protective strategies developed by the host’s immune
system. Much of the knowledge acquired so far by the scientific community was based on L.
major-infection models that have a clear Th1/Th2 dichotomy on protection/progression of the
disease, and more studies with VL models are needed to clarify the intriguing modulation that
viscerotropic Leishmania strains provide to take advantage of their host.

4. Final remarks

Leishmaniasis is a tropical neglected disease that urgently needs control measures, as vacci‐
nation, since nowadays the global population is at risk. As some vaccines are available for
ZVL, the discovery of an effective human vaccine for VL is near. Choosing the right antigen
coupled with the appropriate adjuvant for the formulation is crucial to have an effective
vaccine, but immunogenicity sometimes countervail safety and complicates the scenario.
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Effective immunization requires the presentation of the antigen by proper APCs to mount a
strong immune response and develop immunological memory, as well as it entails antigen
persistence. As described previously, live vaccines produce more robust immune responses
than dead parasites or defined protein or peptides but they represent an important health risk,
mainly in immunosuppressed people. Furthermore, the immune response developed against
live Leishmania infantum strains that display differences in infectivity is also unique and
characteristic of each strain, being infectivity related with a stronger induction of an immune
response, as showed by our experimental data.

In this chapter, we have updated the main aspects to consider when a vaccination study against
Leishmania is planned. We aimed to show that vaccination is an effective way, and hopefully
a soon reality, to prevent the spread of leishmaniasis, limiting the outcome of the disease and
avoiding the parasite transmission. While successful research is close, many efforts are still
needed for achieving an efficient human vaccine for leishmaniasis accessible to everyone in
need.

5. Abbreviations

ALM autoclaved Leishmania major

APCs antigen presenting cells

CL cutaneous leishmaniasis

IL interleukin

MCL mucocutaneous leishmaniasis

MPL purified derivative of the monophosphoryl lipid A

NO nitric oxide

PAMP pathogen-associated molecular pattern

PBMCs peripheral blood mononuclear cells

SE squalene-based oil-in-water stable emulsion

TCM central memory T cell

TCR T cell receptor

TEM effector memory T cell

TLR Toll-like receptor

VL visceral leishmaniasis

ZVL zoonotic visceral leishmaniasis
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