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1. Introduction

Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is successfully
capable of imaging glucose metabolism of the tumor cells. Tumor glucose metabolism using
FDG-PET has a potential to distinguish viable cancer cells from those in suspension or necrotic
components because the degree of tumor FDG uptake is closely associated with its prolifera‐
tion activity. There is cumulative evidence showing that reduction in FDG uptake value on
the early phase after the initiation of chemotherapy more reliably predicts a favorable outcome
of patients with breast cancer. Therefore, FDG-PET could help to individualize treatment and
to avoid potentially ineffective chemotherapies. In this article, we discuss and illustrate the
role and limitations of FDG-PET in the management of neoadjuvant chemotherapy in breast
cancer.

2. Tumor metabolic response

FDG-PET has proven useful in the management of various cancers [1]. FDG-PET is known to
play an important role in the detection of distant metastasis and recurrence [2, 3]. In addition,
it provides quantitative information on tumor glucose metabolic activity, allowing the
measurement of metabolic changes and cancer activity shortly after initiation of therapy and
before tumor volume reduction [4]. This functional imaging tool may also be useful in
predicting tumor response to therapy and optimizing individual treatment [5].

Tumor response to therapy is traditionally assessed by comparison of tumor size before and
after treatment, which is determined using anatomical imaging devices such as ultrasonogra‐
phy and computed tomography (CT) on the basis of the Response Evaluation Criteria in Solid
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Tumors (RECIST) [6]. Although RECIST has been widely adopted, tumor response must be
evaluated for several months until surgery and it does not always reflect the pathological
response because of difficulties in distinguishing residual cancer cells from necrotic lesions,
fibrosis, or benign masses.

Because of limitations in applying the RECIST criteria using anatomic imaging alone, Wahl et
al. proposed a draft framework called the PET Response Criteria in Solid Tumors (PERCIST)
[7]. The proposed PERCIST criteria are being used in several current clinical studies. As far as
early response assessment with FDG-PET is concerned, clinical studies involving patients with
Hodgkin lymphoma and aggressive non-Hodgkin lymphoma have demonstrated that the
assessment of changes in FDG uptake on PET imaging after 2 or 3 cycles of chemotherapy was
superior for predicting patient prognosis compared with the assessment of morphological
changes on computed tomography (CT) [8]. This method was shown to be at least as reliable
as definitive response assessment at the end of therapy [8]. In a European multicenter trial
monitoring chemotherapy response and survival in 260 patients with lymphoma, an early
decrease in FDG uptake on PET after 2 cycles of chemotherapy was significantly correlated
with progression-free survival [9]. For other types of cancers, including breast cancer [10], non-
small cell lung cancer [11], esophageal cancer [12] [13], gastric cancer [14], and colorectal cancer
[15], several clinical studies revealed evidence of the emerging role of FDG-PET in predicting
both post-therapeutic clinicopathological response and patient survival.

In our institute, a discrepancy was observed between tumor morphological changes and tumor
metabolic activity in a patient treated with neoadjuvant chemotherapy for primary breast
cancer. FDG-PET was performed at the onset of chemotherapy, at the midpoint of chemother‐
apy, and prior to surgery. The primary tumor appeared to grow rapidly after the start of
neoadjuvant chemotherapy despite the gradual reduction in glucose accumulation (Figure
1). Postoperative pathological analysis revealed that the lesion was replaced with scar tissue
in addition to the presence of massive bleeding and small residual cancer cell nests. In this
case, FDG-PET was able to provide more accurate and clinically beneficial information
compared with CT.

Clinical studies conducted worldwide have repeatedly revealed the predictive value of FDG-
PET in patients with advanced breast cancer treated by chemotherapy. As early as 1993, Wahl
et al. studied 11 patients with locally advanced breast cancer before and after 1 cycle of
chemotherapy. A significant difference was observed in tumor FDG influx rate (K) from
baseline levels between responders and nonresponders (sensitivity: 100%, specificity: 100%)
[16]. In 1996, Bassa et al. conducted a retrospective study of 13 patients with breast cancer for
whom FDG-PET scans were performed prior to chemotherapy, at the end of the first cycle, at
the midpoint of chemotherapy, and before surgery. The mean standardized uptake value
(SUV) of the tumor after the first cycle of chemotherapy was significantly lower than the
baseline value (p < 0.01) [17]. In 2000, reports of clinical studies from two separate institutes
showed the usefulness of FDG-PET in the early evaluation of tumor metabolic response to
chemotherapy. Schelling et al. demonstrated the ability of FDG-PET to differentiate between
responders and nonresponders after the first course of chemotherapy (sensitivity: 100%,
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specificity: 85%) [18]. Smith et al. also successfully utilized FDG-PET for predicting tumor
response after the first cycle of chemotherapy (sensitivity: 90%, specificity: 74%) [19].

Our team investigated the maximum changes in SUV (SUVmax) in 32 primary breast cancer
lesions in 30 patients. The patients were treated with neoadjuvant chemotherapy comprising
4 cycles of epirubicine and cyclophosphamide on a triweekly basis and sequential weekly
cycles of taxane for 12 weeks [20]. Figure 2 shows representative tumor images on FDG-PET
performed at baseline, after one cycle of chemotherapy, after four cycles of chemotherapy, and
prior to surgery. The serial images on the upper row show a tumor in which a pathological
complete response (pCR) can be observed. The middle row depicts a tumor exhibiting a
pathological partial response (pPR), and the lower row illustrates pathological progressive
disease (pPD). SUV decreased dramatically in the pCR tumor after one cycle of chemotherapy,
after which metabolic activity ceased. SUV change in the pPR tumor was lower than that in
the pCR tumor after one cycle of chemotherapy, but SUV gradually diminished during further
chemotherapeutic treatment. The pPD tumor showed no significant changes in SUV after
treatment. In terms of the optimal threshold of a 40% decrease in SUV, the rate of pathological
response in terms of pCR or near pCR was higher (71.4%) in metabolic responders than in
nonresponders (12.5%). The sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were 63%, 92%, 71%, and 88%, respectively.

In 2008, Schwarz–Dose et al. performed the first prospective multicenter trial to evaluate the
effectiveness of FDG-PET in predicting early pathological response during chemotherapeutic

SUVmax decreased from 5.8 to 3.0 at the midpoint of treatment and returned to baseline levels prior to surgery. In
contrast, the tumor diameter increased from 36 mm to 50 mm at the midpoint of treatment and to 61 mm prior to
surgery.
FDG: fluoro-D-glucose; PET: positron emission tomography; CT: computed tomography
SUVmax: maximal standardized uptake value; EC: epirubicin and cyclophosphamide.

Figure 1. Transversal slices of FDG-PET/CT of a breast lesion before treatment (left), at the completion of the EC regi‐
men (middle), and at the completion of the paclitaxel regimen (right).
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treatment in 104 patients with locally advanced breast cancer [10]. In that report, when a 40%
decrease in SUV occurred in the first cycle after initiation of chemotherapy compared with
baseline values, FDG-PET predicted pCR and pathological macroscopic residual disease at a

pCR: pathological complete response; pPR: pathological partial response; pPD: pathological progressive disease; FDG:
fluoro-D-glucose; PET: positron emission tomography; CT: computed tomography; EC: epirubicin and cyclophospha‐
mide

Figure 2. Axial FDG-PET/CT images of a pCR tumor (upper row), a pPR tumor (middle row), and a pPD tumor (lower
row). Sequential FDG-PET scans were performed at baseline (left), after 1 cycle of chemotherapy (second from the
left), after completion of the EC regimen (third from the left), and at the completion of chemotherapy (right).
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high rate, with a sensitivity of 73%, specificity of 63%, PPV of 36%, and NPV of 90% [10]. Other
representative studies published in the literature since 2000 are listed in Table 1 [21-25].

In 2011, a meta-analysis in this field summarized 16 articles including a total of 920 patients
with breast cancer [26]. To predict histopathological response in primary lesions, the pooled
sensitivity, specificity, PPV, NPV, and diagnostic odds ratios were calculated. The results for
these parameters were 84% [95% confidence interval (CI), 78%–88%], 66% (95% CI, 62%–70%),
50% (95% CI, 44%–55%), 91% (95% CI, 87%–94%), and 11.90 (95% CI, 6.33%–22.36%), respec‐
tively. Although the checkpoints of FDG-PET administration in these trials differed, a subset
analysis showed that early response of glucose metabolism after the first or second cycle of
chemotherapy provided a significantly better indicator of accuracy compared with a later
response (third cycle or later). The subset analysis results showed in Table1. These data indicate
that changes in SUV during the first 1–3 cycles of chemotherapy are better indicators of clinical
outcome compared with changes during the later cycles.

Table 1. Studies evaluating treatment response with FDG PET or FDG PET/CT in breast cancer patients

Clinical study

Authors Year Study Type stage Population The timing of PETscans Early assessment Endpoint Cutoff Se Sp PPV NPV Accuracy

Martoni, et al.
22 2010 one center LABC 34 Baseline,after 2 cycles, 4 cycles, at the end after 2 cycles pCR+pMRD 50% in △SUV 100 30 27 100 44

Ueda, et al.
20 2010 one center LABC 32

Baseline, after 1 cycyle, after 4 cycles, at the
end

after 1 cycle
pCR+less than 3%
disappearance of tumor
ells

40% in △SUV 63 92 71 88 84

Kumar, et al.
21 2009 one center LABC 23 Baseline, after 2 cycle after 2 cycles pCR+pMRD 50% in △SUV 93 75 87

Schwarz-Dose, et

al.
10 2008 multiple centers LABC 104 baseline, after 1 cycle, after 2 cycle after 1 cycle pCR+pMRD 45% in △SUV 73 63 36 90 65

McDemott, et al.
25 2007 one center LABC 96

Baseline, after 1cycle, after 2 cycles, at the
midpoint, at the end

after 1 cycle pCR+pMRD 34% in △SUV 100 66

Berrido-Riedinger, et

al.
23 2007 one center LABC 50 Baseline, after 2 cycle after 2 cycles

75% or more absence
of tumor

40% in △SUV 77 80

Rousseau, et al.24 2006 one center LABC 64
Baseline, after 1 cycle, after 2 cycles, after 3
cycles, after 6 cycles

after 2 cycles
50% or more absence
of tumor cells

40% in △SUV 89 95 85

Smith, et al.
19 2000 one center LABC 30

Baseline, after 1cycle, after 2 cycles, after 5
cycles, at the end

after 1 cycle pCRmicro/macro 20% in △DUR 90 74

Schelling, et al.
18 2000 one center LABC 22 Baseline, after 1 cycle, after 2 cycles after 1 cycle pCR and pMRD 55% in △SUV 100 85

Meta-analysis

Authors Year Study Type stage Population The timing of PET scans Evaluation of the timing Endpoint Cutoff Se Sp PPV NPV Accuracy

Wang, et al.26 2011 meta-analysis LABC 920(Total) Various Various Various Various 84 66 50 91

347(subset) Various After 1-2 cycles Various Various 88 70 61 92 76

400(subset) Various After 3 cycles or later Various Various 81 61 34 93 65

LABC, Laegelly advanced breast cancer; pCR, pathological complete response; MRD, macroscope residual disease; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value  

Table 1. Optimal timing of FDG PET during chemotherapy

The high sensitivity and high NPV reported above indicate that FDG-PET may be useful for
the identification of nonresponders among patients in the early phases of treatment with
neoadjuvant chemotherapy. However, in cases where FDG-PET indicates changes in SUV
(responders), decision-making regarding continuation of treatment may still be difficult. This
problem has been addressed in research on lymphoma patients. Randomized trials have been
conducted to determine whether response-guided treatment using early response to therapy
as measured by FDG-PET scans is feasible or useful in decreasing the cumulative dose of
potentially cytotoxic agents in nonresponders [27], [28]. These trials aim at treatment modifi‐
cation based on PET response by comparing risk-adapted treatment guided by FDG-PET with
standard chemotherapy in these patients [29].

An emerging paradigm for a treatment strategy using FDG-PET has been introduced in
addition to traditional  assessment of  tumor response on the basis  of  staging and tumor
subtyping [30]. A specific treatment was chosen from a number of chemotherapeutic drugs,
and the usefulness of FDG-PET was analyzed in comparison to assessment based on staging
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and subtyping. This new strategy to optimize treatment timing includes staging, subtyp‐
ing, and response guiding. Staging and subtyping determine favorable treatment options
before the initiation of treatment. Functional imaging with FDG-PET offers opportunities
to assess tumor response early in the course of treatment. This response-guiding strategy
offers  the  opportunity  to  revise  treatment  and  improve  outcome.  FDG-PET  not  only
provides  invaluable  prognostic  information  in  patients  [31]  but  also  supports  efforts  to
switch to more effective treatment options in the early stages of treatment rather than on
completion of therapy (Figure 3).

FDG: fluoro-D-glucose; PET: positron emission tomography

Figure 3. Treatment strategy options using FDG-PET in conjunction with staging, subtyping, and response-guiding.

3. Limitations of FDG-PET

Although tumor FDG uptake is an indicator of the viability of cancer cells [31], [32], it is
influenced by many biological factors such as stromal cell activity [33], tumor perfusion [34],
immune reaction [35], hypoxia [36], [37], and apoptosis. The acute effect of cytotoxic drugs on
tumor FDG uptake occurs as a result of high glucose uptake by inflammatory cells and/or
energy demand in the process of acute apoptotic death [38], leading to a transient increase in
tumor FDG uptake (so-called “flare response”) [39], [40]. Therefore, some authors have claimed
that the timing of PET scanning soon after the onset of chemotherapy treatment may be crucial.
To avoid the flare response, scanning must be delayed for at least 1–2 weeks after the initiation
of chemotherapy [41]. PET may be administered immediately before initiation of the second
cycle of chemotherapy.

One cause of confusion regarding the results of FDG-PET is the heterogenous results concern‐
ing the pathological criteria of outcome, which distinguishes responders from nonresponders.
The overall prognosis of patients remains unconfirmed. In addition, variations in dose and
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different combinations of drugs add to the confusion. The optimal timing of PET scanning may
depend on dose intensity or regimen. If the regimen changes during the course of treatment,
the results may be affected because the mechanism of drug sensitivity differs according to
tumor characteristics.

The optimal timing of FDG-PET scanning after initiation of chemotherapy for the prediction
and elimination of progressive disease (PD) has also not been determined till date. In clinical
practice, most physicians are more concerned about tumor progression during neoadjuvant
chemotherapy than about achieving pCR. Because chemotherapeutic treatment may increase
genomic instability in some tumors, and because chemotherapy resistance may develop in
severe cases with hypoxia, neoadjuvant chemotherapy may be contraindicated. However, the
role of FDG-PET in the early prediction of PD remains to be established.

The optimal threshold of metabolic change on FDG-PET also remains unclear. A recent draft
standard of PERCIST has been advocated as response criteria in solid tumors [7]. It recom‐
mends a ≥30% decrease in SUV as a cutoff value for partial metabolic response, which is
associated with clinical outcome after chemotherapy. However, specific response criteria for
breast cancer must be defined in order to increase the accuracy of prognosis. Further prospec‐
tive research is needed to determine the optimal cut-off value for predicting tumor response.

Thorough evaluation of cost-effectiveness and prognostic impact of early switching from
ineffective neoadjuvant chemotherapy to a more effective regimen is essential. In a simula‐
tion study, Schegerin et al. found that early prediction of tumor response using functional
imaging devices such as FDG-PET facilitated tailoring of treatment options, which had economic
benefits [42]. Further clinical trials must be conducted in order to shed further light on this topic.

Finally, the European Organization for Research and Treatment of Cancer PET study group
recommended improvements in the quality of tumor imaging with FDG-PET. Interinstitu‐
tional bias is another factor in the usefulness of FDG-PET as a prognostic tool. The available
data are insufficient to define the optimal time after injection of FDG and the optimal dose of
FDG at which SUV should be measured [41].

4. Early changes in metabolism using molecular-targeted drugs and
endocrine therapy

Functional imaging devices may be useful in the assessment of the biological activity of
molecular-targeted drugs [43]. These agents are predominantly cytostatic in nature, that is, they
modulate biological behavior and arrest cell cycling rather than totally killing cancer cells [44].
In cases treated with these agents, the traditional endpoints used to evaluate the effects of
cytotoxic drugs, such as RECIST criteria, are insufficient and sometimes inappropriate for the
prediction of therapeutic outcome. For example, antagonists of the epidermal growth factor
receptor (EGFR), such as trastuzumab and cetuximab, block membranous EGFR in cancer cells,
halt cell cycling, and induce apoptosis. These drugs and many others require different evaluation
criteria to determine their efficacy. FDG-PET may be useful in establishing these criteria.
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Small molecule drugs to block protein kinases, such as gefitinib, have been used for the
inhibition of tumor proliferation and neovascularization. A rapid decrease in FDG uptake at
48 hour was seen in lung cancer xenografts treated with gefitinib. Su et al. also reported a very
early decrease at 2 hour in gefitinib-sensitive cancer cells and no change in resistant cancer
cells [45]. Other reports stated that a reduction in metabolism within 1 week after the com‐
mencement of therapy was associated with sensitivity to certain drugs, for example, an
epidermal growth factor receptor/human epidermal growth factor receptor 2 (HER2) dual
kinase inhibitor (lapatinib) used for the treatment of breast cancer, a c-kit inhibitor (imatinib
mesylate) used for the treatment of gastrointestinal stromal tumors (GIST), a mammalian
target of rapamycin inhibitor (rapamycin) used for the treatment of GIST, and various other
drugs used for the treatment of uterine and neuroendocrine carcinomas and sarcomas [44].
Moreover, in the clinical setting, FDG-PET was reported to be useful for the evaluation of
treatment response to sunitinib, a multitarget tyrosine kinase inhibitor, in patients with GIST
resistant to treatment with imatinib [46].

Endocrine therapy is one of the most common treatment strategies in patients with estrogen
receptor (ER)-positive breast cancer. Successful cytostatic drugs include ER antagonists such
as tamoxifen, which induce the deprivation of estrogen production, aromatase inhibitors, ER
downregulators, or fulvestrant. In 2011, we reported that changes in SUV at approximately 2
weeks after treatment with letrozole, an aromatase inhibitor, was correlated with a drop in
proliferative rate of cancer cells measured by immunohistochemical staining of Ki67 [47]. With
a tentative threshold value of a 40% decrease in SUV, Ki67 index values were significantly
decreased in metabolic responders. The Immediate Preoperative Anastrozole, Tamoxifen, or
Combined with Tamoxifen (IMPACT) randomized trial revealed that 2 weeks of treatment
with the aromatase inhibitor anastrozole suppressed the Ki67 index (as compared with a
percentage of baseline expression) to a significantly greater extent than did tamoxifen alone
or tamoxifen in combination with anastrozole. The affiliated study showed that after 2 weeks
of endocrine therapy, Ki67 index values predicted recurrence-free survival in individual
patients [48]. A positive correlation between the Ki67 index and tumor SUV has been reported
in some studies [32, 49], [50]. Mortazavi-Jehanno et al. investigated the predictive value of
metabolic response in patients with metastatic breast cancer after 8 weeks of endocrine therapy,
demonstrating that progression-free survival is related to metabolic response [51]. These
observations suggest that changes in tumor SUV after endocrine therapy may be associated
with favorable prognosis. Therefore, the biological basis of changes in FDG uptake using
cytostatic drugs may be associated more with intracellular pathways of metabolism and cell
cycling than with cytotoxic agents.

4.1. Tumor metabolic flare

Tumor flare reaction denotes a sudden and temporary worsening of tumor-related symptoms
after the initiation of treatment [52]. Several studies reported that radiotherapy and some types
of chemotherapeutic agents induce diffusely elevated FDG accumulation because of inflam‐
mation. Weber suggested a careful inspection of the degree and pattern of FDG uptake to
distinguish between radiation-induced inflammation and residual cancer activity [53]. As
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mentioned earlier, the EORTC PET study group recommends that after baseline FDG-PET
scanning and before the initiation of chemotherapy, serial scanning using FDG-PET should be
performed 1–2 weeks after the first course [41]. Therefore, the consensus till date has been that
a waiting period of 1–2 weeks should be observed after initial drug administration or radio‐
therapy in order to avoid the inflammatory response and accurately evaluate tumor activity.
However, metabolic flare does not necessarily indicate treatment failure or cancer progression.
Table 2 lists the imaging studies reporting the association between tumor metabolic flare and
tumor response to treatment.

                        

Animal experiments

Year Treatment Cancer type Origin of cell lines Tracer Modality Animal type
Time of flare 
reaction 
occurred

Comments

Furuta, et al.54 1997 radiotherapy NNE,GLS,KYG various FDG PET mice 2 hours
A flare was observed in 
radiosensitive tumors

Aliga, et al.56 2007 doxorubicin MC4L2, MC7L1 breast FDG PET mice 7 days

A flare reaction was 
observed 7 days after 
treatment of doxorubicin, 
methotrexate, letrozole, or 
placebo

Aide, et al.55 2009 cisplatin NCCIT testicular  FDG PET rats 2 days

A flare was related to a 
transient cell cycle arrest 
and apoptosis but did not 
reveal refractory disease

Bjurberg, et al.40 2009 cisplatin HNxSCC24 head and neck FDG PET mice 1 day

Bjurberg, et al.57 2010 cisplatin HNxSCC24 head and neck 2‐NBDG
Fluorescene 
microscope

cell culture 2 days

Clinical studies

Year Treatment Clinical staging Origin Tracer Modality Outcome

Schneider JA, et al.58 1994 Paclitaxel
metastatic, bone 

metastasis 
breast Scintigraphy

A flare response of bone 
metastasis after 2 cycle 
resulted in improvement on 
follow‐up scan 

Mortimer JE, et al.59 2001 Tamoxifen Advanced/metastatic breast FDG, FES PET

Responders had increase in 
SUV for FDG (28.4±23.3) 
while non‐responders had 
reduce in SUV (‐10.2±16.2) 
p = 0.0002 

Dehdashti, et al.60 2009 Estradiol Advanced  breast FDG, FES PET

Responders had increase in 
SUV for FDG (20.9±24.2) 
while non‐responders had 
reduce in SUV (‐4.3±11.0) p 
< 0.0001 

A flare occurred early after 
cisplatin treatment in 
responding tumors

Time of flare reaction occurred

after 2 cycle (4‐6wk)

7‐10 days

1 day

Table 2. Tumor metabolic flare on very early phase of treatment

In animal experiments, Furuta et al. reported a flare reaction detected by FDG-PET in nude
mice with ependymoblastoma, small cell lung cancer, and glioblastoma at 2 h after irradiation
with 10 Gy [54]. They claimed that flare intensity was strongest in the ependymoblastoma, the
most radiosensitive of these tumors, whereas the two less radiosensitive tumors showed no
increase in FDG uptake during the observation period. In human testicular cancer xenografts
in nude rats that received cisplatin, Aide et al. reported that FDG-PET scanning detected a
peak FDG uptake on day 2, followed by a marked decrease on day 7 despite the lack of change
in tumor volume [55]. They observed a transient S and G2/M cell cycle arrest and a marked
increase in apoptosis within this phase. A very early increase in FDG uptake may explain the
flare reaction that represents increased tumor metabolism in apoptotic cells as well as in cells
that exhibit transient cell cycle arrest.
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Aliga et al. reported a similar result mice after the administration of doxorubicin to decrease
tumor burden in BALB/c mice with breast cancer [56]. They observed a rapid decrease in tumor
FDG uptake 24 hour after chemotherapy and a transient accumulation in FDG uptake on day
7. They suggested that a partial agonistic effect of chemotherapy, apoptosis, cell repair
mechanisms, or intratumoral inflammation may be responsible for this flare reaction.

Using the fluorescent glucose analog 2-NBDG, Bjurberg et al. reported a very early increase in
metabolism in three squamous cell carcinoma cell lines (LU-HNxSCC-7, LU-HNxSCC-24, and
LU-CX-2) after exposure to cisplatin [40] [57]. The flare reaction was observed within 3 days
after exposure in these cells, whereas FDG uptake in nonmalignant fibroblastic cells was low.

Contrary to recent animal studies revealing a flare phenomenon-associated tumor response,
only a few clinical studies have utilized FDG-PET in detecting tumor flare. As early as 1996,
Schneiders et al. reported the use of scintigraphy to detect a flare reaction in bone lesions in
patients with metastatic disease; the flare reaction occurred despite a favorable overall
outcome [58]. This phenomenon may represent enhanced osteoblastic activity, rapid bone
repair, and improved blood flow around the responding lesions. Welch et al. conducted an
FDG-PET study in which a paradoxical flare phenomenon was detected within 7 to 10 days
after the initiation of tamoxifen in patients with breast cancer [59]. An increase in FDG uptake
was observed in responding tumors during week 1 after tamoxifen initiation ; however, this
was not observed in nonresponding tumors. The transient increase in FDG uptake could reflect
hormone receptor-related changes in tumor metabolism, which was predictive of a favorable
outcome. Partial agonist–antagonist activity in selective ER modulators such as tamoxifen is
known to differ over the treatment course after tissue exposure. The slow onset of action of
tamoxifen and the fact that its effects as an estrogen agonist peak 1–2 weeks after the onset of
therapy may contribute to the development of the flare reaction. The same group of investi‐
gators conducted a clinical study including an estradiol challenge test to predict hormone
sensitivity in women with locally advanced or metastatic ER-positive breast cancer. FDG-PET
after 30 mg estradiol induced a metabolic flare, showing greater responsiveness to endocrine
therapy and better overall survival in flare patients than in non-flare patients [60].

Results of those animal studies lead to the speculation that tumor metabolic flare is related to
the following sequence of events: transient cell cycle arrest, apoptosis, induction of the cancer
immune system, and hemodynamic reaction. As for estrogen-positive breast cancer and
endocrine therapy, estrogen stimulation may be closely associated with an increase in glucose
uptake [61]. At lease, this does not necessarily indicate refractory disease.

Taken together, the underlying presumption in these studies is that changes in FDG uptake in
response to chemotherapy occur in three phases (Figure 4). In the first phase, cellular damage
followed by inflammation and vascular changes occurs within hours or days, resulting in
accumulation of FDG and increased uptake in cancer cells and inflammatory cells such as
neutrophils (inflammatory phase). In this phase, pro-inflammatory cytokines may be released
because of the tumor’s response to chemotherapy, and these cytokines accelerate tumor cell
proliferation, activate the immune system, and increase blood flow, resulting in accumulation
of tumor FDG. Second, apoptosis, cell cycle arrest, and diminishing inflammation, which occur
within days or weeks, lead to a decrease in FDG uptake in cancer cells (apoptotic phase).
Decreased blood flow due to vascular damage caused by chemotherapy may deteriorate the
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tumor microenvironment and promote apoptosis. In addition, tumor cells may be replaced by
fibrotic cells, shrinking the tumor several weeks after the initiation of chemotherapy. FDG
uptake in the tumor then decreases because of volume reduction (volume reduction phase).
In this last phase, morphological changes can be identified by CT or magnetic resonance
imaging. Therefore, metabolic flare precedes decreased uptake of FDG. This is not necessarily
a confounding factor; rather, it provides an insight into pharmacodynamics [62]. Further
understanding of cancer metabolic flare in the early phase after chemotherapy can aid in
strategic planning of successful therapy.

FDG: fluoro-D-glucose

Figure 4. Tumor FDG uptake in response to chemotherapy hypothetically occurs in three biological phases. In the first
phase, FDG accumulation occurs because of cellular damage, inflammation, and vascular reaction. In the second
phase, apoptosis results in decreasing cellularity. In the third phase, the tumor decreases in size.

5. Summary

Of late, cancer treatment is frequently optimized on the basis of tumor subtype and stage.
Breast cancer is characterized by ER and HER2 status in addition to tumor size and distant
metastatic involvement. The advent of commercialized kits containing multiple molecular
biomarker assays has shifted the focus in tumor categorization from pathology to molecular
analysis. However, rapid development and wide availability of a broad range of new drugs
has exceeded the discovery of tumor subtyping methods or the establishment of biomarkers
predictive of chemosensitivity. Therefore, a new paradigm that involves response-guided
strategies during initial treatment, which can aid in decision-making about the next treatment
option, is emerging for cancer treatment. Early response assessment using FDG-PET may
eventually be applicable for planning and evaluating future treatment strategies. In future,
patients could be allocated to standard or investigational chemotherapy regimens on the basis
of metabolic response. Furthermore, in phase 1/2 studies determining the optimal dose of a
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new drug, nonresponsive patients can be eliminated on the basis of metabolic response.
Glucose metabolism analysis using FDG-PET will be one of several critical factors for evalu‐
ating tumor response to chemotherapy. Integration of multiple functional imaging systems
may also be useful in predicting early tumor response to chemotherapy.

Finally, considering the phenomenon of tumor metabolic flare, clinical trials must be conduct‐
ed to determine the best timing for the administration of FDG-PET. This information would
be useful to predict tumor response in the very early stages of treatment.
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