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1. Introduction

Since several decades, the acoustic devices improvement depends largely on the theoretical
and Numerical tools. In Acoustic domain, the simulations provide results in high agreement
with the measurements. The numerical methods mainly used are either heuristic or
algorithmic. The heuristic ones give results rapidly but not necessary optimized e.g. the
Mixed Matrix formulation [1–3]. The second kind of numerical methods (algorithmic ones)
requires advanced mathematical development and also complex numerical algorithms e.g.
Finite Element Analysis (FEA)/Boundary Element Method (BEM) [4]. FEA also provides the
data structures for the heuristic methods such as P-Matrix method. In this chapter, we go
over the second kind of numerical methods i.e. the exact ones (FEA/BEM). First, the basis
equations are detailed as well as the current level of the numerical tools (Periodic FEA/BEM
[5]). Next, FEA improvements are demonstrated. Indeed, new research fields in acoustic
need to consider extra configurations which cannot be treated by the periodic way e.g. in
dual-mode SAW filters [6]. So, a non-periodic model was developed and implemented. The
theoretical approach is identical to the one used in periodic case. The strategy of digitizing
is also the same i.e. So only the inhomogeneous part of the studied configuration must be
discretized. By contrast, the surrounding space is considered by using boundary conditions.
Indeed, an acoustic devices is not flying in a free space but if one does not take care of the
boundary that is exactly what it is simulate. The edges of the mesh used in a FEA act as
a perfect mirror. So, without boundary conditions the component is in the vacuum. This
remark is valid both for the non-periodic and periodic. To avoid any problems with the
bottom and top limits of the mesh, one must first develop a BEM to simulate the radiation
in a multilayered substrate or surrounding medium. Here, BEM is based on Green functions.
The inverse Green problem is solved for the periodic case [7] while the direct one is used for
the non-periodic systems [8]. In a second step the artificial reflexions on the side edges of
the meshed grid must be eliminated. In periodic configuration (e.g. SAW transducers), this
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is considered by using periodic conditions on the edges [9]. In non-periodic case, a Perfectly
Matched Layer (PML) method must be used and specially for spatially finite SAW resonators.
This method avoids artificial reflexions on the edge side of the meshed.

This work presents first the basis of the FEA with a brief state of the art in simulation with
the main known results until now both for the non-periodic and periodic cases. Next, the
last improvements applied to these numerical investigations are introduced. The boundary
conditions are mainly developed to address new configurations such as the spatially finite
SAW devices. The radiation problem (BEM) is first shown and secondly the PML. The last
part is dedicated to the new results obtained by using the latter improvements.

2. Analytical recipes and state of the art

2.1. Fundamental equations

The Finite Element model allows to simulate the behavior of acoustic devices against many
parameters such as coated medium, electrodes apodization... This method was first initiated
by Tiersten [10]. The principle consists in the equilibrium of the potential and kinetic energy
in the volume with the electrical and mechanical excitation applied on the edges. Thus we
obtained the variational formulation from the equilibrium point of the Lagrangian functional
[11] :

∫∫∫

Ω
(

∂δui

∂xj
Cijkl

∂ul

∂xk
+

∂δui

∂xj
ekij

∂φ

∂xk
+

∂δφ

∂xi
eijk

∂uj

∂xk
−

∂δφ

∂xj
ε jk

∂φ

∂xk
− ρω2uiδui)dV =

∫∫∫

Ω
FiδuidV +

∫∫

Γ
δuiTijnjdS +

∫∫

Γ
δφDjnjdS

(1)

ui and φ are respectively the displacement and the potential unknowns, Cijkl the elastic
constants, eijk the piezoelectric ones, ρ the density and εij the dielectric coefficients. Fi, Tij and
Di are respectively the forces the stress and the displacement vector. Ω and Γ are respectively
the studied domain and its frontier with the outer space (See Fig. 1). The solution of such an
equation is not trivial. The scheme of FEA allows to find a global solution from an exact one
computed at local points. The global solution is obtained by polynomial interpolation in finite
elements. The sum of each elements give the Ω domain. The variational equation (1) is given
for the FEA scheme:
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∫∫∫

Ω(e)
F
(e)
i δu

(e)
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∫∫

Γ(e)
δu

(e)
i T

(e)
ij n

(e)
j dS +

∫∫

Γ(e)
δφ(e)D

(e)
j n

(e)
j dS

(2)

where e defines the eth element and E the total number of elements. In equation (2), all the
unknowns (δu, u...) should be written using polynomial interpolation for each element [12].
Each quantities Δ(e)(xi) is written according to the following interpolation in one element:

Δ(e)(xi) =
Ne

∑
n=1

Δ(e,n)P(e,n)(xi), (3)
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where xi is one space direction, Ne the number of nodes in the eth element, Δ(e,n) the value of
the quantity Δ at the nth node of the eth element and P(e,n)(xi) is the Lagrangian interpolation
polynomial for the same node. For the sake of clarity, only the elastic part is written below
according to the FEA formulation for a dimensional device (for instance along x1 in Fig. 1)
with all the mechanical contributions:

E

∑
e=1

Ne

∑
n=1

Ne

∑
μ=1

(

∫∫∫

Ω(e)

∂P(e,n)(x1)

∂x1
C
(e)
i11l

∂P(e,μ)(x1)

∂x1
dV

− ρω2
∫∫∫

Ω(e)
P(e,n)(x1)P(e,μ)(x1)dV

)

u
(e,μ)
i δu

(e,n)
i = 0.

(4)

In the nodal expression (4), the right hand is zero. The boundary is actually not considered in
this trivial model.

Limit, Γ

Meshed Domain, 

Ω

Outer space

x2
x1

x3

Figure 1. Splitting of space for a FEA. Ω is the inhomogeneous space under simulation. This is the
meshed domain in which the FEA is applied. Γ is the boundary of Ω with the remaining space. The
latest is either simulated using boundary conditions or considered as vacuum.

The right hands of equations (1) and (2) show several boundary conditions. They are
represented by the integration on the limit Γ. This domain is also discretized in all its elements.
The boundary conditions can be applied on each element considering a condition on the stress
as well as on the displacement or the potential. These parts are for example the beginning of
the radiating conditions. We define below this condition and how consider it in the variational
equation.

2.2. State of the art

The FEA is known since forty years in piezoelectric problem [13]. However, the finite
dimension of the meshed space involves the problem of the spurious reflexions on the edges.
Indeed, by default the edges act as perfect mirrors. The device is seldom in the vacuum.
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Moreover, to consider a real case, the device must be supported by a substrate. So, the
boundary conditions have to be set by considering all these constraints.

First, we were interested in the periodic acoustic devices e.g. Surface Acoustic Waves devices
(SAW). So, the side edges constraints were easily avoided. Indeed, periodic condition was set
on them [14]. to consider realistic case, the radiating medium must be modeled. The mix of
FEA and BEM in periodic configuration was so implemented [15]. A lot of results with high
accuracy are obtained from this numerical method. One of these results is depicted in figure 2
and 3. These results come from Ref. [15]. This is the comparison between experimental results

Figure 2. Mesh of the considered prominent electrode grating device Ref. [16] red part of the mesh:
quartz; blue part: Al; and green section: interface between FEA and BEM.

Figure 3. Comparison between theoretical and experimental resonance frequency and stop bandwidth
for prominent electrode grating based resonators Ref [16].

(Ref. [16]) and numerical simulations combining both FEA and BEM for Surface Transverse
Wave problem under massive electrodes. In that case, the grating’s period was 5 m with
a metalization ratio of 0.5. The strip height atop the resulting prominent quartz ridge was
300 nm with a groove depth ranging from 0 to 350 nm. FEA/BEM approach. The typical
mesh for prominent electrode gratings is plotted in Fig. 2. Both the resonance frequency
and frequency stop-band width were measured. The comparison between FEA results and
experiments are reported in figure 3. It highlights a good prediction of the behavior of the
device.

3D periodic problems have also be considered. We depict here a very original work on a
two direction a 2D periodic transducer consisting of square dots or pads exhibiting a double
excitation potential alternation (along x1 and x2, here the axes defining the surface) [17].
In other words, a two directions SAW resonator is investigated in this previous paper.We
particularly focused on one excitation configuration consisting in potential alternation along
both period d1 and d2 as illustrated in figure 4. It is however clear that the actual
implementation of such an excitation configuration is quite difficult to achieve, as we can not
imagine the fabrication of metal bridges for accessing all the square dots of the surface. We
then imagine the use of a dielectric spacer allowing for preventing the presence of electrical
charge at the surface between the dots but allowing for the connection we are looking for. This

244 Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices
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is graphically illustrated in figure 5, showing an example of mesh. This kind of mesh has been

Figure 4. A 2D excitation structure based on a double potential alternation to promote the excitation of
surface waves exhibiting complex polarization (the 2D equivalent of the usual interdigital transducer)

Figure 5. An example of simplified 3D mesh used to simulate the 2D periodic transducer. The period of
the grating is set to 25Âţm. The green square dots localize the dielectric âĂŞ SiO2 âĂŞ spacers and the
blue strips and squares show the deposition of the Al electrodes above the structure. The red
background is the piezoelectric material.

used for the computation of the harmonic admittance of an infinite 2D periodic transducer
according to the excitation conditions of figure 4. We then simply apply opposite potentials
to the adjacent strips and set the two excitation parameters to an integer value (typically one).
We particularly focused our interest on LiNbO3 and more specifically the (YXl)/128Âř cut
because of its advantageous electromechanical coupling. The numerical and experimental
results are drawn in figures 6. At a glance, the correspondence of the measured admittance
with the harmonic conductance reported in is rather convincing about the fact that the device
operates as theoretically announced. When focusing on the low frequency contributions,
one can see that they are composed of two principal wide band contributions modulated
by resonance peaks, expected to correspond to wave reflection on the surrounding devices
in experimental measurements. Whatever the origin of this effect, this measurement proofs
that the device actually can generate waves with clear electrical contribution on the device
admittance and that quite sharp resonance can be expected, although the operation frequency
remains rather low (near 100 MHz), corresponding rather fairly to theoretical predictions. To
better understand the operation of the transducer, we have plotted the deformed shape of the
surface for the two guided modes in figures 7. It turns out that the propagation takes place
in both case along the median trace of the dielectric dots. In that case, the wavelength is then
equal to 35.5μm, yielding the observed contributions near 100 MHz. In this configuration, the
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Figure 6. Harmonic admittance of the infinite 2D periodic grating of figure 5 focusing on the guided
modes. In red experimental measurements and in green simulation.

(a) Beginning of the stop-band (b) End of the stopband

Figure 7. Deformed mesh for both modes emphasized in figure 6 (isovalues correspond to displacement
along x1)

transducer does not really allow for exciting complex propagation polarization but behaves
more like a natural partially directionnal transducer (a small resonance at the beginning of the
stop band but a large one at its end).

The improvements of experimental approaches lead to take into account new effects such as
influence of SAW devices aperture. Indeed, up to now, the length of electrode is considered
as infinite compare to the period of the grating in SAW resonators. So, the influence of the
input buses and diffraction at the end of electrodes is neglected. However, this is a drastic
assumption. Thus, to quantify such an influence, PML method is necessary to simulate the
lateral leaky mode outside of the resonator. PML was already implemented in FEA [18, 19].
Nevertheless, a global approach to include PML in FEA is demonstrated below.

There are also more and more acoustic devices with finite lateral dimension such as BAW
resonators or acoustic filter to avoid reflections at the end of SAW devices (Bragg mirrors). In
some cases, it is possible to define a large periodicity in periodic FEA to model a non periodic
structure and thus avoid the interaction between the neighbors (as in specific BAW resonators
simulation). However, the computational time cost is very high. Moreover, in most cases, it is
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not possible to use periodic FEA with high width. For example, the simulation of non periodic
SAW resonators cannot be achieved in this way. So, the non-periodic FEA is necessary as well
as the related boundary conditions i.e. the BEM [20].

Below, the main advancements of the FEA scheme applied to acoustic resonators with finite
lateral dimension are depicted (such as dual mode filters or realistic periodic SAW resonators
with effective aperture). The PML method as well as the BEM are thus demonstrated
separately even if they are used together to simulate embedded finite resonator on radiating
medium for instance.

3. FEA improvements

3.1. Boundary Element method in non-periodic cases

A radiating surface in an non periodic acoustic problem can be included to the FEA formalism
in the right hand side of the general variational equation (1).

The right hand of equation (1) limited to the stress part stands for the radiation part. It can
thus be treated by using Green’s function based relation [21],

Tijnj = Giijk(ω, S)nj ∗ uk, (5)

where ∗ denotes the convolution between the displacements u and Gi, the inverse Green
tensor relating the stress T to the displacement. Knowing the Green tensor, one can just insert
equation (5) in equation (1) to solve the problem with radiation boundaries conditions without
any restriction. We developed a first approach of this method for isotropic radiation medium
in further work [8]. However, we can’t apply straight this method for anisotropic medium.
Indeed, the spectral Green function Ĝi(ω, s) (where s is the slowness) is not holomorphe
and so its inverse Fourier Transform (iFT) can’t be computed directly for the general case
(anisotropic medium). So to avoid this problem we use the reciprocal form of equation (5),

uk = Gijk(ω, S) ∗ Tijnj, (6)

in which the direct green function G relates the displacements to the stress [21]. This function
is defined from its iFT in the slowness space,

Gijk(ω, x1) =
ω

2π

∫ +∞

−∞
Ĝijk(ω, s1) exp(jωs1x1)ds1, (7)

whereˆdefines the Fourier Transform. s1 is the slowness along the direction x1. To avoid the
problem of loading or time calculation, we use the canonical Green function Ĥ(s1) [22] which
is frequency independent. This function is related to the Green function as following

Ĝijk(ω, s1) =
Ĥijk(s1)

ω
. (8)

Thus we are able to compute the canonical function before the FEA once and for all assuming
the radiation medium is semi-infinite [23]. The actual Green function is obtained by including
the equation (8) in equation (7),

Gi2k(ω, x1) =
1

2π

∫ +∞

−∞
Ĥi2k(s1) exp(jωs1x1)ds1. (9)
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(Here the notation takes into account the propagation and radiation assumptions of this
work i.e., j = 2). However, the spectral canonical Green function Ĥ(s1) gives rise to some
singularities. So, we must to divide up this function into three parts [24]

Ĥi2k(s1) = Ĥ
(res)
i2k (s1) + Ĥ∞

i2k(s1) + Ĥ
(0)
i2k (s1) + ĤR

i2k, (10)

where Ĥ
(0)
i2k (s1) is the contribution for the slowness s1 = 0, Ĥ∞

i2k(s1) is the asymptotic one and

ĤR
i2k stands for the acoustic poles contribution. Thus, we can define Ĥ

(res)
i2k (s1) as the residual

Green function part without singularities. The computation in the spectral domain as well as
in the spatial one always takes into account separately these four parts. The residual part can
be numerically computed whereas the others need to be considered analytically [24].

Once, the Green function numerically and/or analytically defined, one can express the
variational form of equation (6),

∫ x1=+∞

x1=−∞
δu∗

k uk(x1)dx1 =

∫ x1=+∞

x1=−∞
δu∗

i

∫ x′
1=+∞

x′
1=−∞

Gi2k(ω, x1 − x′1)Ti2(x′1)dx′1dx1,
(11)

in order to develop the Finite Element scheme for the radiation conditions,

Ne

∑
e=1

ηe

∑
m=1

δuk
∗(em)

ηe

∑
μ=1

u
(eμ)
k

∫

Γe

P(em)(xe
1)P(eμ)(xe

1)dx1 =

Ne

∑
e=1

ηe

∑
m=1

δuk
∗(em)

Ne

∑
ǫ=1

ηe

∑
μ=1

T
(ǫμ)
i2

∫

Γe

P(em)(xe
1)

∫

Γǫ

P(ǫμ)(xǫ
1)Gi2k(ω, (xe

1 − xǫ
1))dxǫ

1dxe
1,

(12)

where Ne is the number of elements on Γ2 and ηe the number of nodes by element. P(em)

are the FEA interpolation polynomials (first or second degree). The integrations from −∞ to
+∞ are bound to the Γ2 length. Indeed, anywhere else that the activated domain the Green
function is null. Note also that the nodal displacement, variational unknown and stress are
outside the convolution and the integrals on the elements.

So to match the FEA algorithm, we must write equation (12) in a nodal matrix relation,

< δu > (Ψ) {u} =< δu > (G) {T} , (13)

where (Ψ) is the nodal matrix relating the nodal vectors of the variational unknown and
displacements. In the same way, (G) is the nodal Green matrix relating the nodal vectors of
the variational unknown and stress. Equation (13) is right whatever the variational unknown.
So, on can write the reciprocal relation relating the stress to the displacement,

{T} = (G)−1(Ψ) {u} , (14)
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where (G)−1 is the inverse of the nodal Green matrix defined in equation (12,13). The general
variational equation (1) must be also written in a matrix formulation (Only the elastic part is
considered without losses of generality)

< δu >

[

K − Mω2
]

{u} =< δu > (Ψ) {T} . (15)

Thus the final FEA/BEM system is obtained by including equation (14) in equation (15),
[

K − Mω2 − (Ψ)(G)−1(Ψ)
]

{u} = 0. (16)

the global FEA/BEM system is similar to the ideal case with an additional correction which
doesn’t change the scheme to solve the problem.

3.2. Perfectly Matched Layer method

The PML method was first developped in electromagnetism [25] and well adapted to the Finite
Difference in Time Domain (FDTD) method [26]. More recently, some works demonstrated the
implementation of this approach for acoustic simulations based on FEA [18] [19]. The basic
idea consists in rigorously simulating an exponential decrease of the acoustic field along at
least one space direction. To clear the approach, let us consider the following incident plane
wave

u = Aexp−j(kx x−ω) = Aexp−jω(sx x−t) (17)

We then consider that in the absorbing area, one can apply a geometrical transform in the
complex plane to introduce the exponential decay. Since it must not modify the propagation
phase, this transform can be written

x̃ = x − j f (x) (18)

where f (x) growths from the origin of the absorbing area to its end along a defined rate.
However, since this transform must be efficient for any frequency (we represent the problem
in the spectral domain), it is wise to define this function as follow :

f (xi) =
1
ω

xi
∫

0

d(x)dx, (19)

d(xi) = dmax

(

1 −
(abs(xi)− xp)2

(xa − xp)2

)n

, (20)

which allows for an easy definition of the transform Jacobian linking the considered
coordinate systems. This reads

1
∂x̃

=
jω

jω + d(x)

1
∂x

→
1

∂x
=

(

1 +
d(x)

jω

)

1
∂x̃

= αx
1

∂x̃
(21)

Replacing x by x̃ in (17) provides the wanted exponential decay if f (x) unconditionally
growths, imposing d(x) even and positive to fulfil the absorbing condition for any x (we
assume the problem centred around x = 0). Since the absorbing function d(x) is not frequency
dependent, its efficiency should be constant along ω. Conformably to Zheng and Huang [27],
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we develop a formulation based on the usual piezoelectricity equations, yielding significant
modifications of the elastic, piezoelectric and dielectric constants to account for the absorption.

We now rewrite the elasticity equations in the absorbing region turning x to x̃, using then (5)
to express the result in the initial coordinates. As in [27], the absorbing effect is assumed along
the three space directions for the sake of generality. The equilibrium equation then reads

− ρω2ui =
∂Tij

∂x̃j
=

1
αj

∂Tij

∂xj
(22)

where αj is characterized by its specific function dj(xj). Tij and ui respectively represent
the dynamic stresses and displacements, and ̺ is the mass density. We introduce a non
symmetrical stress tensor, expressed in the transformed axis

T̃ij =
α1α2α3

αj
Cijkl

∂ul

∂x̃k
=

α1α2α3

αjαk
Cijkl

∂ul

∂xk
= C̃ijkl

∂ul

∂xk
(23)

where C̃ijkl is the transformed elastic constant tensor relative to the absorption area. We
multiply (22) by α1α2α3, thus yielding Newton relation for PMLs in the real coordinates

− ρ̃ω2ui =
∂T̃ij

∂xj
(24)

where ρ̃ = ρα1α2α3 is the mass density relative to the transformed domain. Since the
obtained form of the equilibrium equation complies with the classical expression for usual
solids, it is liable to exploit the standard FEA formulation for PML as well, accounting for the
frequency dependence of the transformed physical tensors. These developments of course
can be extended to piezoelectricity by rewriting Poisson’s equation and taking into account
the piezoelectric coupling in the stress definition as follows

T̃ij =
α1α2α3

αj

(

Cijkl
∂ul
∂x̃k

+ ekij
∂ϕ
∂x̃k

)

=

Cijkl
∂ul
∂xk

+ ẽkij
∂ϕ
∂xk

(25)

Poisson’s equation expressed in the transformed system of axes reads

∂Di

∂x̃i
= 0 ⇒

1
αi

∂Di

∂xi
= 0 (26)

with Di the electrical displacement vector. To provide an homogeneous formulation, we
proceed as for the stress definition (23), multiplying the electrical displacement by α1α2α3,
yielding

D̃i =
α1α2α3

αi
Di (27)

As for the propagation equation (22), the Poisson’s condition is written accounting for these
changes as

∂D̃i

∂xi
= 0 (28)
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Conformably to the stress tensor transformation, we introduce modified piezoelectric and
dielectric constants defined as follows

D̃i =
α1α2α3

αi

(

eikl
∂ul
∂x̃k

− εik
∂ϕ
∂x̃k

)

=

ẽikl
∂ul
∂xk

− ε̃ik
∂ϕ
∂xk

(29)

We now are able to establish a FEA formulation exploiting these developments without
fundamental changes of the existing code. Thus, equation (1) becomes

∫∫∫

ΩPML

(

∂δui

∂xj
C̃ijkl

∂ul

∂xk
+

∂δui

∂xj
ẽkij

∂φ

∂xk
+

∂δφ

∂xi
ẽijk

∂uj

∂xk

−
∂δφ

∂xj
ε̃ jk

∂φ

∂xk
− ρω2uiδui

)

dV =

∫∫

ΓPML

(

δui T̃ijnj + δφD̃jnj

)

dS

(30)

where ΩPML and ΓPML are respectively the PML domain and its boundary.

We must note here that all the parameters of the absorbing polynomial (Eqs. (19) and (20)) are
empirically defined. Indeed, the polynomial d(x) must increase from zero to the maximum
value dmax by a progressive slope. The value of d(x) must be zero at the beginning of the PML
to verify the impedance match. Moreover, the derivative of d(x) must be null too to avoid
any singularities. However, the absorbing polynomial must increase as quick as possible
to minimize the number of PML finite elements with respect to the better smoothy shape.
Therefore one can choose the degree of polynomial d(x) equal to 3. The depth of the PML
domain (xp − xa) is also defined according the absorbed waves. So, we defined that this
length must be approximately equal to one wavelength.

4. Results

In this section, we first depict results from the Boundary Element Method based on the direct
Green function. Next, the 2D and 3D results of the Perfectly Matched Layer method are
exhibited. At last, we depict how powerful the mixed approached is on a 2D case.

4.1. A Green’s function as boundary condition

4.1.1. Validation by comparison with proofed periodic FEA scheme

First, the non periodic numerical scheme developed here is compared to an existing periodic
one that we developed in previous works [15]. In order to make this comparison, we choose
the configuration depicted in figure 8. It seems to be odd to test a non periodic code with a
periodic one. However, in the configuration of figure 8, the most of waves provided by the
transducer propagate into the direction x2. Of course, there are some components along the
x1 due to the coupling with the radiation surface or the finite width of the transducer. So, we
choose a period p = 1.2mm which makes insignificant the coupling with nearest neighbor
in the periodic case at Γ3. This choice also allows us to neglect the reflections at the en of
the mesh for the non periodic case on Γ3. The results of the periodic computation have been

251Progress in Theoretical and Numerical Tools Devoted to Understanding of Acoustic Devices Behavior



12 Will-be-set-by-IN-TECH

Electrodes

Radiating medium

Piezoelectric medium

eb

etx3

x2

x1

Period: p

1Γ  : 

Γ  : 2

Γ  : 3

Without condition

Radiation conditions

Periodic conditions
}Meshed region

w

ea

Figure 8. Chosen geometry for the validation by comparison with periodic FEA code. This configuration
defines a single transducer providing mainly bulk wave.
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Figure 9. General geometry of resonator studied addressed by the investigated FEA-BEM. This
configuration defines a non periodic interdigital transducers grating devoted to SAW applications

tested to be unchanged from the chosen period p = 1.2mm. The thickness of electrodes is
set to zero and so we don’t consider the influence of the mass loading and material. However,
it’s not a restriction due to the numerical method and a study of the influence of the electrode
material could be achieved. The width of the piezoelectric transducer is set to w = 100μm,
its thickness is et = 4μm. we also choose the same material for the radiation medium and
the piezoelectric one. The constants used for computation are these of quartz with a YXl/36
cut. The surrounding medium is the vacuum. In figure 10, we show this comparison between
the periodic and the non periodic code. In this computation, we consider all the degrees of
freedom i.e., all modes can be observed (the in plane one as well as the shear one). The figure
10(a) depicts the conductance whereas figure 10(b) draws the susceptance both computed for
the above configuration. The good agreement between these two different methods is the first
proof of validation for the non periodic scheme presented in this work.

4.1.2. Validation by comparison with an other non periodic scheme

The second test presented here is the comparison with a non periodic method based on the
integral equations method [24]. The configuration is the one depicted in figure 9. It addresses
a SAW devices of finite width equal to w = ∑

n
i=1 wi. wi is the width of the pattern and n

is the number of electrodes pairs. The pattern k is defined by a pair of metallic electrodes.
The widths and the thicknesses of each electrodes for the considered pattern are respectively
denoted by l2n−1, e2n−1 and l2k, e2n. The metal ratio is constant and set to 0.5. The width of the
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(a) Conductance (μS) (b) Susceptance (μS)

Figure 10. Comparison between the results obtained with a proofed periodic computation (TRPP3D)
and the method presented in this work (TRPFS). All the degrees of freedom are taken into account and
the FEA interpolation is quadratic. All elements of the mesh are identical (triangle, 2 elements per
micron in x1 and 10 elements in x2).

(a) Integral equations method (b) FEA/BEM

Figure 11. Comparison between the results obtained with an integral equations based method and the
FEA/BEM method presented in this paper. All the degrees of freedom are taken into account and the
FEA interpolation is quadratic. The mesh is the same as previously.

piezoelectric medium is w and its thickness is et = 200nm. The piezoelectric material constants
used for computation are still these of quartz with a YXl/36 cut. The radiation medium is also
the same as the previous test with periodic method. As previously, the surrounding medium
is still the vacuum. Here, all the electrodes widths are equal to 2.5μm and they are without
thickness i.e., there is no mass loading. So the total width of the SAW device is w = 10nμm. We
increase the number of pairs of electrodes from 1 to 7. Thus, w varies from 10μm to 70μm. The
excitation is the excitation is an symmetric alternate potential for each pattern i.e. +U/ − U
where U = 0.5V.

The results of this comparison are drawn in figure 11. The figure 11(a) depicts the results for
the integral equations method. Those of the FEA/BEM methods are in figure 11(b). Once
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(a)

(b)

Figure 12. Geometrical configuration for a passivated electrodes grating with (a) non conformal and (b)
conformal deposition. The electrodes thickness is either null or equal to 200nm. The other parameter still
unchanged with the configuration depicted in figure 9.

again, the good agreement between the two method allows us to conclude that the FEA/BEM
method is a good tools for the understanding the behavior of such a SAW devices.

4.2. Application to a wide non periodic passivated SAW devices

The method presented in this work is devoted to address non periodic passivated SAW
devices among others. So, we give here some results about this configuration. We consider the
same configuration as in the case depicted in figure 9. We only vary the thickness of electrodes.
First we let them without thickness and look at the influence of the passivation layer and next
we consider a electrodes thickness equal to 200nm. We then study again the device behavior
against the passivation configuration i.e., without passivation, with conformal passivation
and with non conformal passivation (See figure 12). The material constants of the passivation
layer are to be the fused silicon ones. These results are depicted in figure 13. We can see
that the global effect of then passivation layer red-shift the resonance frequencies for the
non massive electrodes as well as for the massive one. Indeed, this layer acts as a mass
loading effect. So, the resonance frequency must decreases with the mass over the electrodes.
Moreover, this conclusion is corroborated by the evolution between the cyan and magenta
curves of figure 13. The frequency is slightly lower for the conformal passivation which leads
to a higher weight over electrodes. We also point out that the conductance level increases
when we put the passivation layer. This comment can be explained by considering the velocity
of the mode in the passivation layer is higher than in the guide. So the guidance is better for
the case with passivation layer. These results are in good agreement with previous results
obtained on periodic structures [15].

4.3. Perfectly Matched Layer Method: an other approach

The efficiency of the PML implemented in FEA is depicted in three parts. First, a 2D-case is
investigated showing the absorbing due to the PML domain and the effects of the effects of
the finite lateral size on the behavior of a SAW resonator. Next, the same study is repeated but
in a 3D configuration in order to validate the general PML approach. At last, a realistic SAW
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Figure 13. Conductance in (mS). Influence of the passivation layer on the acoustic device behavior
(figure 9). All the degrees of freedom are taken into account and the FEA interpolation is quadratic. The
same FEA mesh is used.

problem is addressed by considering the aperture of the resonator and absorbing the lateral
leaky modes.

First, A 2D SAW resonator problem is addressed. The geometrical configuration is depicted
in figure 14. A piezoelectric medium (quartz YXl/36) is driven by 4 pairs of electrodes. The
electrodes are non massive and alternatively activated with V = 1V and V = 0V. The
period is 10μm. The depth of PML on both sides is 35μm. The eight of the mesh is 75μm.
The absorbing parameters are set to dmax = 106 and n = 3. The result of this simulation
is shown in figure 15. We depicted the vibrations for the x-displacements in the XY plane.
The vibrations in both the right and left PML domains are strongly reduced as and as they
enter into. The decreasing factor is around 10−5. We also hardly observed the phenomena
of diffraction due to the finite lateral size of the resonator. Indeed, weak lobes appears at the
both lateral end of the grating and give rise to bulk wave and so losses in the medium.

Next, we repeat the same simulation as the one depicted in figure 14 but for a 3D geometry.
The configuration is drawn in figure 16. The piezoelectric is once more quartz YXl/36. The
same set of non massive electrodes is still powered in the same way. The absorbing conditions
are also the same.

The x-displacement obtained by FEA/PML is shown in the perspective figure 17. It is clearly
demonstrated that the vibration have the same absorption as in the 2D-case even if the
absorbing factor is slightly worse. One more time, the losses in the medium can also be
observed at the end of the resonator. We notice that there is no relection at the end of the
mesh for both side edges and bottom boundaries.
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Figure 14. Characteristic configuration for finite SAW resonators considering the mixed PML/FEA
approach. Eight non massive electrodes are activated alternatively (V1 = 1V, V2 = 0V). The width of
electrodes is equal to 2.5μm and the period of the resonator is set to 10μm. The piezoelectric medium is
quartz YXl/36. Its thickness vary from zero. On the left and right parts of the scheme, two PML domains
are set. No boundary conditions are defined neither at the top nor at the bottom. Th depth of the
piezoelectric h is chosen to avoid any interaction with the penetrating bulk wave at the bottom interface.
dmax = 106 and n = 3.

Figure 15. The vibrations for x-displacement in the XY plane for the 2-D problem depicted in figure 14.
The piezoelectric medium is quartz YXl/36 activated by eight electrodes alternatively powered by
V = 1V and V = 0V. The PML domains are delimited by the white dashed line at the let and right sides.
The frequency is 318MHz. h = 7e − 5m, dmax = 106 and n = 3.

The last configuration highlight a new point to design SAW resonator. Indeed, up to now,
the devices modelings were most often considered as 2D systems infinitely periodic in the
direction of propagation and infinite in the perpendicular one. We just demonstrate that it
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Figure 16. Same configuration as in figure 14 but in 3D-case. The z-direction is periodically infinite. So
the electrodes are infinitly long in the z-direction. Eight non massive electrodes are activated
alternatively (V1 = 1V, V2 = 0V).h = 7e − 5m, dmax = 106 and n = 3.

Figure 17. The vibrations for x-displacement for the 3-D problem depicted in figure 16. The piezoelectric
medium is quartz YXl/36 activated by eight electrodes alternatively excited by V = 1V and V = 0V. The
PML domains are delimited by the white dashed line at the let and right sides. The frequency is
318MHz. h = 7e − 5m, dmax = 106 and n = 3.

is now possible to take into account the effects due to finite dimension along the direction of
propagation. In this part, we depict the way to address the problem of real aperture of a SAW
resonator. In other words, we consider a finite dimension in the perpendicular direction of the
propagation. In this study, the number of electrodes is infinite. The geometrical configuration
is depicted in figure 18. The materials properties, excitation and dimensions of the grating are
still the same as previously in figure 16. We now consider a length of the electrodes equal to
54μm for a period in the direction of propagation equal to 10μm. The buses on the both right
and left gratings are infinite along the propagation and 20μm wide. We also assume that the
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piezoelectric medium continue towards the infinity on the both sides of the resonator. The
PML method allows this assumption.

Figure 18. Configuration of an infinitely periodic SAW resonator in the propagation direction but with
finite lateral dimension. The z-direction is infinitely periodic and the non massive electrodes are
alternatively excited with V1 = 1V and V2 = 0V. The piezoelectric medium is quartz YXl/36. The length
of electrodes is 54μm while the period is 10μm. h = 30μm, dmax = 1e − 6 and n = 3.

Once again, we show the vibration for the x-displacement in the perspective figure 19. The
factor of absorption is still very high even if we notice a slight decrease. The Ω domain stands
for the physical space in which the SAW is generated. We observe the Rayleigh wave in the
middle of Ω. On each side of this vibration, the presence of th buses is denoted by two maxima
of displacement. This displacements give rise to a lateral mode which is reflected on the side
edges if there is no activated PML. But, in figure 19, all PML are turned on. So, the lateral
modes can be detected at the very end of the Ω area, just before the PML domains. However,
due to the presence of the PML, this mode do not reflect on the side edges and moreover its
amplitude decreases at the time it progress in the PML from the beginning to the end where it
almost vanishes by then.

These three results show the efficiency of the combining of PML and FEA to simulate the
effects due to the consideration of the real length or width of a SAW resonator. Thus, using
this kind of method, we are able to simulate realistic effects in SAW. This method can also be
applied to other kind of resonator.

4.4. The mixed BEM/PML approach

In the last part of the results exhibiting, the complete mixed BEM/PML approach is
highlighted. This is done considering the general SAW configuration in figure 9 and adding
PML area. This configuration is depicted in figure 20. A finite SAW resonator is characterized
considering both the PML and the BEM as boundary conditions. The piezoelectric medium
is a YXl/36 quartz. Its thickness can increase from zero to a non null value. It’s excited
by two non massive electrodes. The width of each electrodes is equal to 2.5μm and the
length of the resonator is 10μm. The excitation is symmetric and V1 = −V2 = 0.5V. The
number of finite elements by length unit is equal to 1.6e6 elements/m along x direction and
6e5 elements/m along y. The PML domains have the same FEA properties except for the
absorbing conditions. The absorbing coefficient dmax is equal to 1e − 6 and the order of the
polynomial is set to n = 3. The BEM stands for the bottom radiation on Γβ and simulates the
propagation to the infinite in the same medium as the piezoelectric one. It’s important to note
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Figure 19. The vibrations for x-displacement for the 3-D problem depicted in figure 18. The piezoelectric
medium is quartz YXl/36 activated by eight electrodes alternatively excited by V = 1V and V = 0V. The
PML domains are delimited by the white dashed line at the let and right sides. The frequency is
318MHz. h = 7e − 5m, dmax = 106 and n = 3.

that the BEM introduces an infinite slab in the x direction under the piezoelectric medium. So
if the thickness of the piezoelectric is zero, the two electrodes are placed on an infinite layer of
YXl/36 quartz.
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Figure 20. Characteristic configuration for finite SAW resonators considering the mixed BEM/PML
approach. Two non massive electrodes are activated (V1 = 0.5V, V2 = −0.5V). The width of electrodes is
equal to 2.5μm and the period of the resonator is set to 10μm. The piezoelectric medium is quartz
YXl/36. Its thickness vary from zero. Only the radiation on Γβ is active and the radiating medium is the
same as the piezoelectric one. The surrounding medium is vacuum so there is no radiation on Γα. On the
left and right parts of the scheme, two PML domain are added.
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We first focused on the effects of the thickness of the piezoelectric medium on the response
of the resonator to an electric excitation. The excitation and the geometric configuration are
depicted in figure 20. This response is exhibited in figure 21. We depict the logarithm of the
conductance expressed in micro Siemens against the frequency for different thicknesses of the
piezoelectric medium. The depth of the piezoelectric medium increases from zero for the red
solid line to 2 microns for the red stars. It can be noted that when the thickness decreases the
conductance converges to the result of the infinite slab, i.e. when the thickness is zero. This
evolution can be explained by the diffraction at the end of the resonator when the depth is non
zero. So even is the behavior is nearly the same whatever the thickness of the piezoelectric,
the influence of this parameter is actually important.

Figure 21. The logarithm of the conductance in μS against the frequency for different thicknesses of the
piezoelectric medium when the PML is switch off. The radiation in the substrate is simulated with BEM.
The width of the transducer is finite and equal to 10μm and the PML domains vanish. The electrodes are
non massive. The number of finite elements by length unit is equal to 1.6e6 elements/m along x direction
and 6e5 elements/m along y.

Figure 22. The logarithm of the conductance in μS against the frequency for different thickness of the
piezoelectric medium when the PML is switch on. Except for PML domains, the configuration is the
same as in the figure 21. The width of PML Domains is equal to 30μm for the both right and the left part.
The number of finite elements by length unit is the same as outside PML domains. The absorbing
coefficient is set to dmax = 1e6 and the polynomial order is equal to n = 3.
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So to highlight the PML efficiency, we compare the results of the thickness equal to zero in
figure 21 to the non-zero ones when the PML are activated. The same configuration as in
figure 21 is used for the non PML area, we only add two PML on the right and the left parts.
The depth of the PML domains is equal to xp − xa = 3μm. The absorbing coefficients are
defined above. Again, the variation of the conductance against the frequency is depicted for
different thickness of piezoelectric when PML is switch on in figure 22. We can notice again
that the conductance converges to the result for a zero thickness when the piezoelectric depth
increases. That means there is a non zero interaction between PML and BEM giving rise to
undesirable effects for low thickness. So, It’s again important to notice that the mixed of the
two boundary conditions PML and BEM must be used in a drastic validity domain. One must
consider a sufficient thickness of piezoelectric medium or used a zero thickness without PML.
The last way can be used if no surrounding medium is taken into account. However, in the
configuration of figures 12, the PML must be used for an infinite passivation layer and we
must check if the simulation is in the validity domain.

Figure 23. The map of x-displacement in the XY plane for the fixed frequency 170MHz. The
configuration is the one depicted in figure 20. The height of the piezoelectric medium is set to 2e5m. The
electrodes are denoted by the references 1 and 2. The PML domain are delimited by the white dashed
line. The BEM is set at the bottom of the meshed domain also in PML area.

The last part of the results on mixed PML/BEM approach shows the effects of the boundary
conditions on the x-displacement in the sagittal plane (XY). The distortion is depicted in
figure 23. This is due to the electric excitation of the piezoelectric medium located in references
1 and 2. This result is obtained for a fixed frequency equal to 170MHz for the previous
geometrical configuration of figure 22 for a 20μm thickness. The PML areas are denoted by
the white dashed line and the conservative part (or the physical one) is under the electrodes.
First, we can notice that the x-displacement is absorbed in the PML domains with a 1e4 factor.
Indeed, we really pay attention to the validity domain and thus the PML actually acts as a
propagation towards the infinity in the same material that initially. Secondly, we can also
note the presence of lobes on the left and the right parts of the resonator due to its finite lateral
dimension. We already signified the lateral absorbed ones in the PML. However, there are two
other which propagate in the y-direction. They are not only absorbed by PML too but also not
reflected at the BEM interface indicating thus that the Green radiation conditions work well
too. These results show the possibility of combining these two boundary conditions.
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5. Conclusions

In this paper, we first demonstrated the theoretical and numerical basis of FEA. We next
illustrated the state of the art in simulation based on FEA for 2D and 3D acoustic devices
(especially SAW resonators). These examples introduced how the last research in acoustic
research needs further improvements of the numerical tools. For instance, the wide and finite
SAW resonators cannot be well numerically understood without a new theoretical approach.
We drew these numerical improvement based on a finite FEA combining with two different
kind of boundary conditions i.e. the PML method and BEM. At last, we show the efficiency of
these approach for several example and more precisely we also demonstrated that we can use
simultaneously the two boundary conditions to allow the simulation of realistic resonators
e.g. we can consider the numerical aperture of an acoustic device.

So we introduced here a new complete numerical based on FEA combining with PML and
BEM. We thus are capable to simulate a wide spectrum of resonators. We can simulate periodic
as well as non periodic devices. Moreover, new parameters can be considered e.g. aperture
or number of electrodes (for SAW resonators). In other worlds, we have now a strong and
efficient numerical tool allowing the simulation of nearly all the configurations for SAW and
BAW resonators.
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