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1. Introduction

The lithography is a well established technology for fabrication of microelectronic components,
integrated optics, microfluidic devices and Micro-Electro-Mechanical-Systems (MEMS) [1,2].
Using energy sources like ultra-violet (UV) photons or X-ray, various patterns are transferred
from photo lithographic masks to photoresist materials. Developed for MEMS fabrications,
the photoresists are light-sensitive materials. During exposure, chemical reactions are initiated
in the irradiated volume, changing the chemical properties of the material. An imprinted
pattern can be obtained when the exposed or unexposed material is removed by chemical
solvents.

The size of the structures created through lithographic methods depends on the radiation
wavelength. The optical diffraction limit represents the limiting factor for obtaining the
minimum feature size. As a result, in the UV lithography the exposure wavelength was
reduced initially from g-line (436 nm) to h-line (405 nm) and then to i-line (365 nm).

When smaller structures were required for the metal–oxide–semiconductor (MOS) circuits
improvement, the UV lamps were replaced with excimer lasers. Deep UV lithography (DUV),
based on 248 nm (KrF) and 194 nm (ArF) wavelengths [3,4], is used in semiconductor industry
to produce transistors with 90 nm gate lengths. A further decrease of the radiation source to
157 nm wavelength (molecular fluorine) [5] was limited by the low transmission of fused silica
material in this spectral range.

High quality crystalline calcium fluoride with low birefringence was grown for mask substrate
and refractive lenses fabrication. Some technical difficulties, related to the mask protection,
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the requirement of special vacuum chambers and the growth of calcium fluoride material [6,7],
have limited the implementation of this technology on large scale.

The 194 nm technology was reconsidered when a new technology, based on a liquid immersion
between the last optical components and the photoresist material, was proposed [8]. In this
case, the achieved resolution becomes similar to the 157 nm technology in air.

Despite some difficulties, like impurities from liquid immersion or bubbles formation [9,10],
the immersion technology was used to manufacture 45 nm features in mass production. Using
high-index fluids, it was tested for a 32 nm feature target too [11].

Other nano-technologies, like X-ray lithography [12] and ion/electron beam lithography
[13,14], are used to obtain smaller feature size. Using exposure wavelengths under 100 nm,
structures smaller than 30 nm were obtained [15]. The high cost of the mask fabrication for X-
ray lithography limits the implementation of this technology on large scale production.

Another challenging technique, extreme ultraviolet lithography (EUV), uses a very short
wavelength, 13.5 nm, to induce feature size down to 11 nm in photoresist materials [16]. The
implementation of this technology is limited due to the complexity of installations for EUV
radiation generation and photoresist characteristics like sensitivity and resolution.

Alternative methods like electron/ion beam lithography are used to produce nanometric
structures in photoresist materials. A focused electron beam can generate chemical reactions
in photoresist materials. This method does not require a photomask to create a pattern. The
beam is focused directly in the photoresist material where structures with dimensions less than
30 nm can be obtained [17]. The implementation of this technology as mass volume production
is limited by the high price of installations and the long exposure time for large area.

Alternative techniques like nano-imprint (soft) lithography can be used for low-cost pattern
imprint. By this method, to create a pattern replica, a stamp or mold is pressed on a photoresist
or thermoplastic material. The resulting mold replica can be used to multiply the original mold
without complex and high cost production installations. Structures with dimensions under
100 nm were regularly imprinted, becoming the preferred method for high number microde‐
vices fabrication.

All these lithographic methods which use masks or expose directly the photoresist material
are limited to bi-dimensional structures. In some applications, such as photonic devices or
microfluidics, three-dimensional (3D) structures with high-aspect ratio are needed. In order
to create 3D structures, other exposure techniques, like laser holography or laser lithography
with near infrared (NIR) femtosecond lasers, are required.

In case of holographic methods, based on the interference of several laser beams, the pattern
is directly reconstructed in the photoresist volume. Using the holographic method [18,19],
several research groups have obtained periodical structures with sub micrometer features on
large surfaces. Nevertheless, the holographic method has some limitations when the design of
the structure imposes localized defects in a complex 3D structure.

To overcome this drawback, infrared (IR) femtosecond laser installations with high repetition
rate can be used to create 3D structures in photoresist materials. Due to the transparency in
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the NIR spectral band, the femtosecond laser pulses can be focused deeply in the photoresist
volume. The high NIR photons density created in the focused spot induce two-photons or
multi-photons absorption. Chemical reactions are initiated and structural modifications take
place similar to the case of a single UV photon absorption.

In this paper we present an IR femtosecond laser processing method which can be used in
organic and non-organic photoresist materials lithography. Section 2 is dedicated to micro‐
structures created by two-photon polymerization (TPP) in organic materials irradiated with
femtosecond lasers. The TPP principle, the experimental set-up and processing procedure, as
well as some applications of photoresist microstructures, are presented in this section. The
non-organic photoresist materials and the main effects related to their interaction with the laser
radiation are described in Section 3. Optical micro-lenses and photonic crystals, manufactured
by photoresist laser lithography, are presented too. Conclusions are presented in Section 4.

2. Femtosecond laser lithography in organic photoresists

2.1. Principle of photo-polymerization mechanism in organic photoresist materials

Organic photoresist materials are composed by two main molecular components: monomers/
oligomers (M) and photo-initiators (I). The monomers are unsaturated molecules and repre‐
sent 90% from the photoresist material composition. These molecules can be bound in
polymeric chains using the energy from a radiation source like photons. Two different photo-
mechanisms, Chain Polymerizations and Step Polymerization (Photo-crosslinking), can be
used to initiate this conversion.

When the light is used as an exposure energy source, the commonly encountered polymeri‐
zation mechanism is based on chain propagation. Three stages: initiation, propagation and
termination, are involved in this mechanism. The initiation stage starts when the excited photo-
initiators (I*), produced in the presence of light, generate active species [20-22] like free radicals
(R*), (Equation 1). Afterwards, these radicals interact with monomers, creating a new molecule
which has an active termination (Equation 2). Once the process is started, a new monomer is
added through this termination to the molecule (Equation 3). In this way, the polymeric chains
grow rapidly without any supplementary photons excitations.

During propagation stage (Equation 4), the polymeric chains increase in length, until the active
termination encounter a free radical (Equation 5) or an other active termination from a second
polymeric chain (Equation 6). Through this coupling effect the formation of the polymeric
chain comes to an end.

* R* (initiation)hvI I¾¾® ® (1)

1 1R*+M RM *® (2)
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1 2 1 2RM *+M RM M *® (3)

1 n k (n+k)RM ...M *+M RM * (propagation)® (4)

(n+k) (n+k)RM *+R* RM R (termination)® (5)

n n mRM *+RM* RM M R (termination)® (6)

Usually, depending on the concentration and the photo-initiator type, the commercially
available photoresist materials have a high absorption for the UV photons and are highly
transparent to NIR radiation. The photo-initiator molecule excitation can be realized using the
energy from UV photons or by two IR photons absorption. The non-linear optical effect of the
two photon absorption (TPA), represents the rule behind the Two Photon Photopolymeriza‐
tion (TPP) method, where 3D structures can be realized deeply in the photoresist volume.

2.2. Two-Photons Absorption (TPA) effect

Two-photons absorption process was early emphasized in 1965 [23] using a ruby laser focused
in a styrene and p-isopropylstyrene photoresist. The importance of this method was proved
when a 3D spiral coil microstructure was created in SCR 500 (urethane acrylate) by an infrared
femtosecond laser [24].

Like other commercially available photoresist materials, the SCR 500 was developed for UV
lithography. Under specific conditions, the photo-polymerization mechanism can be initiated
by infra-red photons. The probability to obtain the photo-polymerization effect using IR
photons strongly depends on the radiation intensity. A much higher photon density is
necessary compared with the UV exposure. IR lasers which work in continuous wave (CW)
regime can not achieve this high density without inducing thermal damages in material. For
this reason, low energy short-pulses IR lasers are tightly focused in the photoresist volume.
When a femtosecond laser pulse is focused in the photoresist volume, high power density can
be reached. In the central area of the focused laser beam, the photo-polymerization effect is
induced in a very tiny volume (voxel). The voxel dimensions, that can be smaller than the size
of the focused spot, correspond to the TPA volume (Figure 1).

By translating the focused laser spot through the photoresist volume, complex 3D microstruc‐
tures can be obtained (Figure 2a). The voxel size and geometry can be modified by controlling
the laser intensity or by using focusing optics with different numerical apertures (NA).
Depending on the geometry created in the photoresist material, the NA of the focusing optics
can be selected in order to control the axial resolution. The voxel shape is defined by an ellipsoid
with a long axis dz, which represent the axial resolution, and a short axis dxy, which is the voxel
thickness (Figure 2b).
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Figure 2. a) The sketch of the 3D structuring inside the transparent photopolymer. b) The geometry of the photo-
polymerized voxel.

The voxel dimensions are also related to the photo-initiator used in the chemical composition
of the photoresist material. Used in TPA processing method, the photo-initiator absorption
efficiency is defined through a cross-section value (δ ). Commercially available photoresists
used in UV exposure are not created specially for the TPA processing. The low δ value of this
processing method implies an increasing of laser energy and time exposure [25,26]. New
photoresist materials with photo-initiators adapted for laser processing such as IP-L (Nano‐
scribe) were developed in order to obtain higher δ values.

This necessity generates new applications like up-converted lasing [27], where molecules with
a large TPA cross-section are used. Several methods can be used to measure the δ value and
to evaluate the TPA photo-initiators [28-30]. The elongation ratio value (dz /dxy) depends on
the NA and can be reduced to 1.5 – 3, when focusing optics with high NA (~1.4 NA) are used.
This NA value can be obtained only with immersion oil/water microscope objectives where
the lateral spatial resolution can be less than 100 nm [31]. For smaller elongation value, shaded-

Figure 1. Longitudinal beam profile of the laser waist and the photopolymerized volume (voxel).
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rings [32] or annular binary filters [33] can be used to control the axial component (dz) of the
intensity distribution.

2.3. Experimental setup

A common Direct Laser Writing (DLW) setup for processing photoresist materials consists of
the femtosecond laser source with high repetition rate, the attenuator for controlling the laser
intensity, the focusing optics and translation stages with displacements at submicrometer
resolution or better. For the 3D microstructuring experiments (Figure 3), a femtosecond laser
oscillator with 5 nJ pulse energy, 15 fs pulse duration and 80 MHz repetition rate at 800 nm
central wavelength was used. In order to preserve the laser pulse duration, the optical
components of the experimental setup must be designed for a spectral bandwidth larger than
100 nm. Silver coated broadband optics were used for laser beam steering.

Positive group delay dispersion (GDD) generated by the glass in the optical path (focusing
optics, polarizers, waveplates, beam colimators) produces a stretching of the pulse duration
of the order of few hundreds of femtoseconds up to picosecond range. The temporal broad‐
ening of the pulses implies a considerable reduction of the laser peak power, leading to
reduction of the photo-polymerization efficiency. In order to recover the pulse duration, for
spectrally broad femtosecond laser sources, a dispersion compensator has to be used. The pulse
chirp and pulse duration is controlled by tuning the GDD. In a standard dispersion compen‐

Figure 3. Schematic diagram of the DLW setup for 3D microprocessing using temporal compressor (TC): MS - Mechan‐
ical shutter; WP - Half wave-plate; P1 and P2 - Reflection Polarizers; P - BK7 prism; HR - Hollow Retro-reflector; RM -
Roof Mirror; CCD - video camera; MO - microscope objective; M1 to M7 - Steering mirrors; M6 - Dichroic mirror.
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sator with prisms, four or two prisms are used, with total length of the beam path up to few
meters. For minimizing the set-up foot-print, the compensator can be folded by a hollow corner
cube reflector (HR) and a roof mirror (RM) [34]. The femtosecond laser beam passes four time
through a BK7 single prism. By changing the distance between the dispersive prism and the
hollow reflector, variable GDD is introduced. In this approach, the temporal compression can
be adjusted in a flexible way, even if the focusing optics or other optical components are
changed in the optical path. The laser intensity is adjusted by a variable attenuator, which
consists in a half wave-plate and two reflection polarizers.

For processing the photoresist, the laser was coupled with a work station realized in a modular
configuration. The work station consists in focusing optics, sample translations with piezo and
motorized stages, and the visualization module. The focusing optics were selected depending
on the resolution and the desired working distance. A 100x IR Mitutoyo microscope objective
with 0.5 NA and 12 mm working distance was used for microfabrication of high-aspect-ratio
structures [35]. For sub-micrometer feature size, a 100x Zeiss oil immersion microscope
objective with NA 1.4 is more appropriate. However, the total high of the structures is limited
by the short working distance of such objective of 0.17 mm.

The photoresist samples are translated by a piezoelectric translation stage with 300 μm
displacement on all XYZ axes. A software controls the scanning path, scanning speed and the
laser shutter according to a programmed design. Pre-defined geometries can be selected from
a library, or can be imported in stereolithography (STL) format. A CCD camera is used for
monitoring the laser focus on the sample surface and for direct observation of the irradiated
area during the laser processing.

The CCD camera can be replaced by a photomultiplier, or by a spectrometer for spectroscopy
measurements working with the focusing optics in confocal regime. Using the above presented
DLW setup, both organic photoresist materials and non-organic materials (chalcogenide
glasses) were processed.

2.4. Processing protocol for organic materials

When photoresist materials are used in micro-device fabrication, a processing protocol
including some steps has to be followed. Substrate cleaning, photoresist deposition, material
exposure, and development are the main stages (Figure 4).

 Substrate  
cleaning 

Photoresist  
deposition 

Photoresist  
exposure Development 

Figure 4. Usual process flow for the organic photoresist materials.

2.4.1. Substrate cleaning

Micro and nano processing technologies require a rigorous impurities control in order to
prevent the sample contamination with dust particles or other chemical elements. The wafer
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substrate cleaning represents one critical stage. Here, several procedures have to be carried
out for a good adhesion between photoresist material and substrate. First, a ultrasonic bath
with chemicals solvents, like acetone or piranha solution, is used to remove the impurities
from the substrate surface. Then, the substrate is rinsed in pure deionised water in order to
eliminate the remaining solvent. After this stage, water molecules are left on the substrate
surface, inducing a weak photoresist adhesion to the substrate. A water desorption step, which
can be realized by heating the substrates to 150 oC for 30 minutes or using oxygen plasma
cleaning, is necessary. The photoresist adhesion to different substrates can be poor, even if the
water desorption was performed. Several methods can be used to eliminate this drawback.
Reactive plasma etching, chemical corrosion or adding a promoter adhesion layer can be used.
These treatments are usually recommended by the photoresist manufacturer.

2.4.2. Photoresist deposition

The photoresist material can be deposited on the substrate using various methods. Spray-
coating, spin-coating, drop-cast or roller-coating are few methods which can be used. The most
used common technique is spin-coating. Characterized through uniform and thin film
thickness, this method uses the spinning speed to control the photoresist deposition. In order
to use this deposition method, the photoresist must be in a liquid state. For this reason, the
viscosity of the photoresist material is controlled using chemical solvents. For different
viscosities, photoresist manufacturers provide informations about the evolution of the film
thickness reported to spin rate (rpm) and time (s). Varying the ratio between the solid content
and the solvent, photoresist materials can be deposited from 1 μm up to 1 mm.

One of the most popular negative photoresists, SU-8, is an epoxies based material where the
polymerization is done by a cationic photo-polymerization mechanism. For this material a
wide range of viscosities can be found. When the required thickness of the film is less than few
micrometers, the manufacturer recommends to use a photoresist version which has 40% solid
content and 60% solvent. For this viscosity, 1 ml of liquid SU-8 is necessary for every inch
diameter of the substrate. The distribution of this quantity on the substrate surface begins with
low spinning speed (500 rpm) for few seconds. Then, the speed is increased up to 8000 rpm in
order to obtain 1 μm film thickness.

After deposition stage, for some photoresist materials a soft bake step is required. For SU-8
material, a thermal treatment was performed. A hot plate heated at 950 C is recommended to
be used. During this step, the solvent is eliminated from the material, resulting a solidified
material. A baking time ranging from 2-3 minutes for 4-10 microns photoresist thickness up
to 15-40 minutes for 40-100 microns thickness is required. Because an insufficient thermal
treatment could create a weak adhesion to the substrate and deformed structures, this step is
very important.

2.4.3. Photoresist exposure by IR femtosecond lasers

The dimensions of the photoresist structures produced through TPP method depend on the
focusing optics and processing parameters like fluence and scanning speed. The importance
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of the focusing optics, especially the NA, to voxel shape has been detailed in subsection 2.2.
Here, the importance of the fluence and the scanning speed will be emphasized. These two
parameters control the dimension and strength of the photoresist structures. Usually, in order
to determine the most suitable conditions, a processing map is plotted for a given fluence F
and different scanning speeds. The process is repeated for different fluence values (e.g. 2F, 3F,
…, nF). In this way, through combinations between scanning speed and fluence, photoresist
structures with different thickness are produced (Figure 5). After the imprinted pattern is
investigated, the optimum exposure conditions are selected.

Figure 5. Pillars realised in OrmoComp photoresist by translating the IR focused beam (SynergyPro oscillator) in Z di‐
rections with different scanning speed. The fluence was fixed at 8.9 mJ/cm2 and the scanning speed was : a) 5 µm/s b)
10 µm/s c) 50 µm/s.

In the SU-8 photoresist case, after exposure, the refractive index difference between the
exposed and unexposed area is very low due to the fact that the polymerization is not realized
instantaneously during exposure. In order to complete the formation of the polymeric chains,
a supplementary post-exposure bake step is required.

Unlike the SU-8, the Ormocers and OrmoComp hybrid photoresists are laser photo-polymer‐
ized in a single irradiation step, without any additional thermal treatment. In these classes of
inorganic-organic hybrid photoresists, the polymerization is instantly produced.

After exposure, for all photoresist materials a chemical etching stage is performed. Depending
on the photoresist type, different chemical solvents are used to remove the exposed or
unexposed photoresist material.
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2.4.4. Development stage

When the photo-polymerization mechanism is accomplished, chemical solvents are used to
develop the sample. Two classes of photoresists are identified: positive and negative. In the
negative photoresists case, the irradiated material is transformed in polymer chains and
becomes insoluble to solvents. Therefore, the non-irradiated material is removed. Unlike
negative photoresists, the positive irradiated photoresists become soluble, being removed by
the solvent.

2.4.5. Limiting factors in organic photoresist processing

Photoresist materials developed for nano-processing lithography have to satisfy several
conditions in order to be used for MEMS mass production. The physical and chemical material
properties, temperature conditions storage, chemical reactions with other materials, film
thickness, minimum dot size, etching rate, are important parameters for semiconductor
industry. Besides these parameters, other limiting factors are encountered in photoresist
materials processing.

One limiting factor, which can induce some deviations from the initial design, is the shrinkage
effect. Due to the photoresist chemical properties, the shrinkage effect appears after the etching
stage where the structure becomes temporally a swollen gel. After complete removal of the
solvent, the volume of the structure reduces and the initially designed opto-mechanical
characteristics are changed. The shrinkage effect can be pre-compensated by adjusting the
initial design of the structure. This way, a final photoresist structure with the desired symmetry
and dimensions can result after the shrinkage. An attenuation of the shrinkage effect can be
also obtained by developing new improved photoresist materials or by adjusting the photo‐
resist protocol [36].

Even if the shrinkage was compensated, another limiting factor can appear after chemical
etching. Here, the microstructures created are stand alone, immersed in the solvent. During
the sample extraction from solvent, the capillary forces can induce pattern distortions. To avoid
this, methods like super-critical drying (SCD) [37] or the change of the contact angle between
the structure and solvent during extractions were used [38].

2.5. Applications of the organic photoresist microstructures

2.5.1. High power laser targets

Several materials (e.g Zr, Mo, Au, Ag, Al) can be used as laser targets in experiments like fast
ignition [39], X-ray emission [40], shock compression [41], ion acceleration [42] or hot electrons
generation [43]. When a high power laser pulse interacts with a material, due to the strong
electromagnetic field, hot dense, highly ionized plasma is generated. The resulted electrons,
protons, ions or X-rays are analysed and used in many applications. Concepts of fusion or fast
ignitions lead to new targets geometry, where the properties of the emitted particles like energy
and directionality are analysed and improved. Using micro-cones target geometry, highly
charged and collimated particles were produced through a better coupling between laser
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energy and material. Plasma structuring and optimization of radiation emission [44], represent
two advantages of the new targets geometry. When the thickness [45] and lateral dimensions
[46] of the target are reduced, the proton energy and the laser energy conversion efficiency
increase.

With a sub-micrometer resolution, the photoresist materials offer an alternative to conven‐
tional high power laser targets fabrication methods. Using a microscope objective with 0.5 NA,
capillary microstructures were created in Ormocore material through TPP method (Figure 6).
Keeping the IR femtosecond beam focused on the substrate surface and by translating the
sample, capillary structures with reduced height and thickness were obtained (Figure 6a). The
capillary height can be increased by translating the focused beam along the Z axis through the
photoresist volume (Figure 6b).

Figure 6. Capillary microstructures obtained in Ormocore photoresist by TPP method.

The photoresist structures can be used as template for more complex geometries. Other
materials like metal or ceramics can be afterward deposited on the photopolimerised structures
by different techniques, such as electroplating, thermal evaporation, pulsed laser deposition.
After deposition, the photoresist material is eliminated by thermal treatment. The final target
will reproduce the photoresist microstructure design.

2.5.2. Light coupling masks

Other applications of photoresist microstructures are in the optical contact lithography [47]
and laser interference surface processing [48]. In both cases, a transparent photoresist mask
with a periodic pattern is used to change the electromagnetic field propagation, generating a
phase-shift during the propagation through the mask. Due to the periodic phase-shift intro‐
duced by the mask, an interference pattern is obtained. If the mask is placed in the proximity
of a sample, the interference pattern and the localized high laser fluence induce modifications
on the surface of the material or even inside the transparent photoresists. Initially used for
photoresist processing, where sub-wavelength photoresist structure were produced, this
method was implemented for semiconductor processing too.
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We created a photoresist mask in a PMMA positive photoresist for light coupling mask (LCM)
experiments. Using the spin-coating method, a photoresist layer with 300 nm thickness was
deposited on a glass substrate. The photoresist mask, with a grid pattern periodicity of 2 μm,
has been created by electron beam lithography (Figure 7a). We placed the photoresist mask in
contact with a silicon wafer, without any additional pressure.

The mask was irradiated by an IR femtosecond laser pulse (775 nm central wavelength, 200 fs
pulse duration) through a focusing lens with 75 mm focal length (Figure 7b). The laser fluency
on silicon surface was 0.15 J/cm2, below the silicon ablation threshold. Due to the electromag‐
netic field enhancement under photoresist mask, the laser fluency was enough to locally ablate
the silicon wafer. Periodic grooves with 350 nm width and few nm depth, were obtained on
silicon wafer surface (Figure 8). The imprinted pattern is identical with the configuration of
the mask. In order to imprint a large area, the size of the spot was increased by changing the
focus position with 1 cm below the photoresist mask position (Figure 7b).

A large silicon wafer surface was structured with a single IR laser pulse (Figure 9). Both the
photoresist mask and the imprinted pattern were investigated by Atomic Force Microscopy
(AFM).

Because the exposed area dimensions are limited only by the laser available energy and not
by the photoresist mask, this method represents a fast and low cost surface processing
technology.

Figure 7. Large areas processing using LCM. a) The 3D AFM image of the PMMA photoresist mask. b) The experimen‐
tal setup for large area processing.

2.5.3. Photonic nanostructures

The actual computing speed of the micro-processors is limited mainly by the resistive heating
resulting from the electrons current in circuits and it is hard to be improved. To overcome this
limitation a new technology which uses light instead of electrons is foreseen. A photonic device
will provide a fast signal processing, transmission of higher information volume and lower
power consumption.
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In such devices the propagation of the light is controlled by the so called photonic bandgap
structures. These structures usually consist of periodic arrangements of photonic "atoms" with
designed voids or defects such as cavities, or waveguides. The dimension of the photonic
"atoms" and the period of the photonic structures are comparable with the light wavelength.
Special designs and material configurations could even lead to non-conventional optical effects
such as negative refraction index, negative refraction, cloaking at visible frequencies. The
structures presenting such fascinating effect are widely known as negative index metamate‐
rials (NIM). The dimension of an elementary cell in a metamaterial is several times smaller
than the light wavelength and could decrease down to 100 nm for optical frequencies. For this
reason, the fabrication of the photonic bandgap structures and metamaterials for visible
spectral range requires complex processing techniques which are able to generate 3D struc‐
tures with dimensions of the order of few hundreds nm and even below 100 nm. DLW is one
of these techniques providing high accuracy in 3D. Such processing equipments are already
commercially available for producing 2D and 3D structures with minimum linewidth of about

Figure 8. AFM image and profile of the periodic grooves imprinted in silicon wafer using LCM.

Figure 9. Extended area of imprinted pattern on silicon surface using LCM.
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100 nm. Using a 3D lithography system (Photonic Professional - Nanoscribe) based on TPP,
we have obtained structures with dimensions of 90 nm (Figure 10a). A scanning speed of 50
μm/s and a 0,1 nJ pulse energy at 80 MHz repetition rate were used to create a periodic pattern.
An immersion oil microscope objective 100x and 1.4 numerical aperture was used for focusing
the pulsed laser beam in the comercial photoresist IP-L (Nanoscribe), specially developed for
TPP method.

 

Figure 10. Nanostructures produced in IP-L photoresist. a) periodic lines; b) woodpile structure.

The organic materials have low refractive index, usually at the order of 1.4-1.6 at the visible
wavelengths. In simple geometries, such as periodic arrangements of pillars in hexagonal or
rectangular symmetry, the structures will not show photonic bandgaps. Complex geometries
such as woodpiles has to be designed. 3D structures can be obtained by scanning the photo‐
resist layer by layer. Recently, we have fabricated a woodpile structure with a period of 500
nm between lines and 5 μm tall (Figure 10b). For this value of the period, these structures could
show photonic bandgaps for the visible spectral domain.

An alternative solution to these complex designs is to realize microstructures in non-organic
photoresist materials, like chalcogenide glasses, with higher refractive index.

3. Laser processing of non-organic materials

3.1. Non-organic photoresist materials

The chalcogenides are materials either in crystalline or amorphous states, which are based on
the chalcogen elements (Sulphur, Selenium and Tellurium) in combination with other elements
(Arsenic, Phosphorus, Germanium, Tin, etc.). The structure of the chalcogenides is based on a
network of covalent bonds, which gives the specific properties to these materials. While the
crystalline state of the chalcogenide can be hardly obtained, the amorphous phase can be easily
obtained by the melt cooling [49].
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The properties of the amorphous (glassy) compositions are quite different from the crystalline
counterparts. The basic structure at the atomic level consists in chains of atoms for elemental
chalcogen and disordered layers for complex chalcogenides. A typical chalcogenide structure
(Arsenic trisulphide, As2S3) in a bulk glass is shown in Figure 11a, while a disordered layer is
presented in Figure 11b. Arsenic trisulphide glass is intensively studied due to its optical
properties and versatility in structural modifications. It is characterized by a high nonlinear
refractive index (Figure 12a), high transmission in infrared regions, and low phonon energies.

The study of the optical features of non-crystalline vitreous semiconductors near the absorp‐
tion edge is of great interest. The absorption edge of non-crystalline materials is very sensitive
to material composition and structure as well as external factors such as electric and magnetic
fields, heat, light, and other radiation. Under the influence of these factors the optical properties
of non-crystalline semiconductors are reversible or irreversible modified. They are suitable for
optical investigations because their absorption edge is in the visible region of the spectrum.
The absorption edge of As2S3 is at 2.4 eV (Figure 12b). Moreover, vitreous materials can be
easily obtained in bulk samples, thin film, and optical fibers. These properties make them
suitable to be used as materials for components in optoelectronic devices, as solid electrolites,
photonic crystals, IR-transmitters, optical and electrical phase change memories or rewritable
memory materials for CD’s and DVD’s.

Due to their sensitivity to different radiation wavelengths, chalcogenide glasses are suitable
for laser lithography. They have small molecular units thus having the possibility to obtain
higher resolution. They are much harder than polymers and can maintain the shape.

Due to the metal photodissolution in chalcogenide glasses, dry grayscale lithography can be
done [50,51]. Chalcogenide glasses can also be used for wet lithography. Much simpler etching
can be done without any treatments and they are resistant to acids. Thereby, there is easy to
transfer patterns in substrates using reactive ion etching.

Depending on the type of glasses, both positive and negative resists can be obtained. Besides
currently available organic photoresists, chalcogenide glasses offer a new powerful class of
photoresists for a versatile lithography.

3.2. Light interaction with chalcogenide glasses

Many applications of the glassy chalcogenides are based on their interaction with light.
Recently, different effects produced in chalcogenide glasses and thin films were investigated
[52]. The main effects related to the interaction of the light with the glass are:

• Photodarkening and photobleaching

• Photoexpansion of the material

• Change of composition with the elimination of one chalcogen

• Vaporization of the material

The photodarkening [53 - 57] and photobleaching [58] effects were the first optical effects
discovered in chalcogenide glasses. The optical absorption edge can be shifted toward higher
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wavelengths (photodarkening) or toward lower wavelengths region (photobleaching) under
laser light illumination with photon energy near absorption edge (2.4 eV). These processes are
reversible as a function of heat treatment (under the glass transition temperature (Tg)).

The photoexpansion is one of the main phenomena which produce photoinduced volume
change. The irradiation of amorphous chalcogenides films with bandgap light produces an
increase in thickness and is termed photoexpansion [59, 60]. It has been demonstrated that
amorphous As2S3 thin films irradiated with bandgap and sub-bandgap light expand with
about 0.5 % and 4 % (giant photoexpansion) [61], respectively. Both photoexpansion and giant
photoexpansion vanish after annealing close to the glass transition temperature. On the other

Figure 11. a) The structure of As2S3 glass in a bulk glass. b) A thin disordered film. (As – red, S – yellow)

 

Figure 12. Optical properties of As2S3 glass. a) The variation of the refractive index with the wavelength. b) The ab‐
sorption edge.
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hand, when the material is irradiated with super-bandgap light, photocontraction effects
ascribed to ablation or photovaporization [62] are induced. Photoexpansion and photocon‐
traction are usually produced in chalcogenides, the sign of the effect depending on the glass
composition [63 – 68].

One important effect occurring during interaction of high power light with the chalcogenide
material is the vaporization in the chalcogenide mass. The vaporization occurs by elimination
of clusters of different composition and size [69]. Vaporization is preceded by photofluidity
effect discovered by Hisakuni and Tanaka [70]. The standard processing protocol of a chalco‐
genide photoresist is described in the next section.

3.3. Processing protocol for chalcogenide glasses

As shown in the previous section, chalcogenide materials have specific properties that make
them suitable for lithography. The steps of the lithographic process in chalcogenide glasses
are presented in Figure 13. First, a chalcogenide thin layer is deposited on a glass substrate
using the pulsed laser deposition method (PLD). As2S3 films were deposited on glass substrate
by PLD using a KrF* excimer laser, with 80 mJ pulse energy and 25 ns pulse duration at 248
nm wavelength. Homogeneous films were obtained with thickness of around 2 micrometers.
Secondly, the layer is irradiated using femtosecond laser pulses (λ = 800 nm).

Figure 13. The lithographic process in As2S3 chalcogenide glass.

In this case the chalcogenide glass acts like a negative photoresist. In the final step, the sample
is etched using an amine based aqueous etchant. The removal of the irradiated regions by
etching leaves behind the selected regions of the photoresist. In the following subsections we
present the main methods used for chalcogenide glasses processing using laser irradiation:
direct laser writing by pulsed femtosecond laser irradiation and interference lithography.

3.3.1. Pulsed femtosecond laser irradiation. Two photon absorption in chalcogenide glasses

It is known that the chalcogenide glasses exhibits a characteristic one-photon absorption
spectrum. The absorption edge consists of three functional curves, i.e., a square-root depend‐
ence, the so-called Urbach edge, and an exponential weak-absorption tail. The weak-absorp‐
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tion tail limits optical transparency of chalcogenide glasses [71]. The two-photon absorption
spectrum of As2S3 glass has an exponential form β=exp(hω/Εβ), where Εβ ~ 150 meV [72].

This exponential form implies that the two photon process is enhanced by the gap states, which
cause the weak-absorption tail. When the incident light intensity is less than 10 MW/cm2, one-
photon excitation of the gap states occurs more frequently than two-photon excitation of free
carriers, and accordingly, the former could be responsible for the phenomena photoinduced
by sub bandgap photons.

From the studies of the 3D optical data storage into As2S3 blocks via photodarkening with 800-
nm femtosecond laser pulses [73] it was shown that two photon absorption can be achieved
using relatively low energy laser pulses. The two-photon absorption cross-section was found
to be 6.2 ± 0.5 GM (Goeppert-Mayer units, where 1 GM is 10-50 cm4 s photon-1) at around 800
nm wavelength.

Figure 14. AFM images of laser irradiated As2S3 thin film surface using an average laser power of a) 8 mW, b) 12 mW,
c) 18 mW, d) 20 mW, e) 25 mW, f) 30 mW, g) 50 mW

Some results of femtosecond laser imprints on As2S3 film surface have been reported in
reference [74].

Using a femtosecond laser with 80 MHz repetition rate and 15 femtosecond pulse dura‐
tions, a network of nano-lenslets was created by local exposure of individual sites sepa‐
rated  by  5  μm  ×  5  μm.  The  irradiation  was  performed  for  300  ms  in  each  point.  The
average laser power was varied from 8 to 50 mW, corresponding to femtosecond pulse la‐
ser energy from 0.1 nJ to 0.63 nJ.

In Figure 14, one can see the formation of hillocks and/or holes on the surface of a thin
amorphous As2S3 film by direct laser writing method using femtosecond laser pulses (central
wavelength, λc = 800 nm). The shape of the modified surface is found to be a function of the
laser power. Thus, a network of nano-lenslets could be imprinted at appropriate laser power
and might be used in planar optoelectronic circuits.
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It can be observed a boundary between the low energy laser pulses and high energy laser
pulses. For low energy laser pulses the main evidenced effect is the photoexpansion. For higher
energy pulses, over 0.25 nJ, a process of material ablation takes place and determines the holes
formation into the film.

3.3.2. Interference lithography

Interference lithography (IL) is widely used for the fabrication of one dimensional nanostruc‐
tures [75], production of the master mold for nano-imprinting lithography [76], formation of
grating structures on semiconductor surfaces [77,78], pre-patterning of the substrate before the
formation of photonic crystals by electrochemical etching [79] or vacuum deposition [80] etc.

We used As2S3-As2Se3 as an inorganic photoresist for the fabrication of submicrometer periodic
relief on silicon wafers using interference lithography [81]. A 300 nm thick photoresist of
As2S3-As2Se3 was vacuum evaporated on a (100) silicon substrate on which a 50 nm thick
chromium layer was previously deposited. The obtained samples were exposed to an inter‐
ference pattern that was generated by an argon laser (λ = 488 nm) using a holographic setup.
To generate interference fringes, light beam has to be divided into two waves which afterwards
are recombined. In an amplitude-division system, a beam splitter is used to divide the light
into two beams travelling in different directions, which are then superimposed to produce the
interference pattern. The laser fluence was around 0.5 J/cm2. For the formation of bi-gratings
each exposure can be 1.5-2 times reduced. The two-dimensional periodic structures on Si (100)
surface were formed by double exposure on two perpendicular orientations of the Si wafers.

During the first exposure, Si (100) wafers were aligned by a base cut in parallel to interference
grating lines and during the second irradiation the wafers were rotated with 90o. The size of
the exposed part on the substrate reached up to 0,075 mmx 0,075 mm.

After exposure, the samples were chemically treated in non-water alkaline organic solutions
(negative etching) to form a relief pattern. The removal of Cr layer using water solution of HCl
through a chalcogenide mask was the next step. Thus, the obtained two-layer resistive mask
As2S3-As2Se3-Cr was used to form a corresponding relief on Si surface. Anisotropic etching of
silicon was carried out using ethylene diamine solutions.

As ethylene diamine actively dissolves chalcogenides, etching of silicon occurred, mainly,
through a Cr resistive mask that is neutral to alkaline solutions.

Figure 15a shows the AFM image of a diffraction grating formed on the silicon (100) surface
by the anisotropic etching through As2S3-As2Se3-Cr resistive mask (grating period is near 1.0
μm). Figure 15b shows the bi-grating structure that was formed using double exposure of 0.3
J/cm2. Symmetrical photoresist islands were obtained, with the ratio of the island diameter to
the interval width between islands closed to unity. Time of the silicon etching was 15 s. Depth
of the obtained relief is 0.15 micrometers. The size of photoresist islands depends on the value
of exposure, and the form of islands depends on the ratio of exposures in two mutually
perpendicular directions.
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Two applications of the lithographic process in chalcogenide glasses are presented in the next
section.

3.4. Chalcogenide glasses applications

3.4.1. Optical microlenses

A first application is related to the formation of microlenslets on the surface of the chalcogenide
film. By irradiating a thin chalcogenide film with the above mentioned femtosecond laser
(Section 3.3.1), As2S3 microlenses were obtained. The profile of the lenslet measured from the
AFM data was fitted with an asymmetric double sigmoidal curve (Figure 16). The fitting curve
is given by equation (7), where y0 is the offset, A is the amplitude, xc is centroid and w1, w2,
w3 are width parameters.
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Figure 15. AFM images of the created relief on the surface of Si (100). a) Relief and groove profile of a grating ob‐
tained on by 50 s silicon etching. b) Profile of bi-grating with symmetrical elements obtained by a 15 s etching time.
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Fitting parameter Value Standard error

y0 -0.09925 0.00382

xc 8.30668 0.00035

A 0.33291 0

w1 1.34572 0.00763

w2 0.18998 0.00267

w3 0.20191 0

Table 1. Fitting parameters

The lenslet profile is very well fitted to the parameters of the fitting curve presented in Table
1. The geometrical characteristics of the lenslet are: a diameter of 2.03 μm and a height of 0.21
μm. The focal length was between 1.21 μm at λ = 650 nm and 1.37 μm at λ = 5 μm (Figure
17). For computing the focal length we used the values of the refractive indices at different
wavelengths from [82]. The transmission of light through the lenslets is limited by the As2S3

optical absorption edge of 2.41 eV.

3.4.2. Photonic crystals

Photonic structures are important components of the optoelectronic circuits used in telecom‐
munications and in non-linear optics, as lossless guiding [83] and tightly bent 90o waveguides
[84]. They can combine optical waveguides, resonators, dispersive devices and modulators for
on-chip integration. Recently, it was shown that various 2D or 3D structures can be inscribed
on the surface and bulk of an arsenic sulphide glass by the action of femtosecond laser pulses
followed by etching in alkali or amine based etchants [85,86]. The laser installation is presented
in section 2.3.

Figure 16. Chalcogenide microlenses. a) A lens represented by a 3D-plot. b) The shape of the lens fitted by an asym‐
metric double sigmoidal curve.
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A 2D photonic crystal structure was imprinted on the surface of bulk As2S3 chalcogenide glass.
Regular bumps obtained by photoexpansion of the glassy material have the height of 150 – 200
nm (Figure 18a) [87].

After etching, using an amine based etchant, a hexagonal lattice of holes having the diameter
of about 2 micrometers was obtained (Figure 18b).

In order to obtain photonic devices for the visible light domain, further investigations are in
progress to improve the processing parameters.

Figure 18. photonic crystal. a) Before etching. b) After etching.

Figure 17. The variation of the focal length of the microlenslets with the radiation wavelength.
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4. Conclusions

The laser lithography can be considered an alternative to the classical lithography methods.
In this chapter we emphasize the possibility to obtain nano/micro-structures in organic and
non-organic materials by femtosecond laser lithography.

The organic and non-organic photoresist materials properties are presented. Photo-chemical
reactions induced by femtosecond laser irradiation of photoresists are described. Due to the
transparency at IR wavelengths, the laser pulses can be focused deeply in the photoresist
volume. A Direct Laser Writing station coupled with a high repetition rate femtosecond la‐
ser was used to process the photoresist materials.

Various geometry structures were obtained in organic photoresists and chalcogenide
glasses. When photoresist materials specially developed for the TPP method were used,
nanostructures with dimensions under 100 nm were obtained.

Using the TPP method, high power laser targets were fabricated in organic photoresist ma‐
terials. These structures can be used as template for other materials. An other domain where
the organic photoresist structures can be used is optical contact lithography. Based on the
electromagnetic field enhancement produced by the photoresist masks, structures with 350
nm width were created in a silicon wafer.

Besides the organic photoresists, the femtosecond laser lithography can be used to process oth‐
er photoresist materials, like chalcogenide glasses. Taking advantage of their higher refractive
index in comparison with organic photoresists, the chalcogenide glasses are suitable for visible
and near-IR micro-optical devices fabrication. They act either as negative or positive photore‐
sists. Optical microlenses and photonic crystals structures where produced in As2S3 chalcoge‐
nide glasses using DLW method. The microlenses imprinted on the surface of PLD deposited
As2S3 thin films could be used to focus the red-infrared laser light transmitted through optical
fibers. Transition from the bump to the hole configuration has been revealed when the laser
pulse power was increased. Bi-dimensional photonic structures characterized by a hexagonal
assembly of bumps or gratings with traces of micrometer width have been obtained.

The possibility of structure direct writing by translating the focused spot through the photo‐
resists volume, recommends the femtosecond laser lithography technique as a fast, cheap
and flexible processing method.
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