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1. Introduction

The Kruppel-like factor family is a group of zinc finger containing transcription factors,
which are highly homologous with the Drosophila Kruppel protein. The feature that distin‐
guishes the KLF family from other zinc finger containing transcriptional factors is the pres‐
ence of three highly conserved C2H2 containing zinc finger motifs at the C-terminus [1-3].
These fingers enable KLFs to bind to the GC-box or CACCC-boxes on DNA with different
affinities [4]. KLF4, as a member of KLF family, expresses in a wide range of tissues in mam‐
mals, and plays a critical role in regulating a diverse array of cellular processes including
proliferation, differentiation, development, maintenance of normal tissue homeostasis and
apoptosis. KLF4 can also acts either as a tumor suppressor or an oncogene depending on
differing cellular context and cancer types.

The role that KLF4 plays in stem cell biology has attracted much more attention in recent
years. For instance, in 2006, Takahashi K et al [5] reprogrammed somatic cells into pluripo‐
tent stem cells using KLF4 in combination with three other transcription factors: Oct4, Sox2
and c-Myc. Numerous recent literatures have further proved that KLF4 is essential for both
embryonic stem (ES) cells self-renewal and maintenance, additionally our recent work re‐
vealed a critical role of KLF4 in maintenance of breast cancer stem cells [6]. Furthermore, we
found that KLF4 is expressed in mouse skin hair follicle stem cells and such expression con‐
tributed to mouse cutaneous wound healing [7]. In this review, functions of KLF4 in stem
cells, especially breast cancer stem cells and mouse hair follicle stem cells will be discussed,
and the signaling pathways possibly involved will be addressed as well.

2. Identification and characterization of KLF4

Mouse KLF4 was first identified in 1996 independently by two groups and separately given
two different names - GKLF (gut enriched Kruppel like factor):due to its high expression in the
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gastrointestinal tract [8], and EZF (epithelial zinc finger) since it was highly expressed in differ‐
entiated epithelial cells of the skin [9]. Human KLF4 cDNA was cloned from human umbilical
vein endothelial cell cDNA library [10] and later renamed as KLF4 to avoid confusion.

The human KLF4 gene locus is mapped on chromosome 9q31 whereas mouse KLF4 is on
chromosome 4B3. Mouse KLF4 has a single ORF of 1449 bp that encodes a polypeptide of
483 amino acids with a predicted molecular weight of 53 Kd; while human KLF4 has an ORF
of 1444 bp coding for a 470 amino acid protein with an estimated molecular mass 50 Kd. At
the amino acid level the human and mouse KLF4 are shown to have 91% sequence similari‐
ty. The three tandem zinc finger motifs are conserved completely in the human and mouse
sequences. Except skin and colon [8, 9], KLF4 is also found in lung, testis, small intestine [8,
9], thymus [11], cornea [12], cardiac myocytes [13] and lymphocytes [14]. In testis, four KLF4
transcripts with alternative polyadenylation were found and they generated different RNA
species in various testicular cells, strongly suggesting translational regulation of KLF4 in
spermatogenesis [15, 16].

3. General functions of KLF4

3.1. Inhibition of cell proliferation

KLF4 is known to induce growth arrest, inhibiting cell proliferation by regulating the expres‐
sion of key cell cycle genes. Elevated expression of KLF4 in NIH3T3 subjected to serum starva‐
tion [8] has been shown to inhibit DNA synthesis. Microarray analysis confirms that a number
of genes were up- or down-regulated upon KLF4 induction, most of which are involved in cell
cycle control [17]. For example, the expression of cell cycle inhibitor p21/Cip1 was elevated
[18], while cell cycle promoter Cyclin D1 was depressed [19]. KLF4 has been shown to inhibit
cell proliferation by blocking G1/S progression of the cell cycle and to mediate p53 dependent
G1/S cell cycle arrest in response to DNA damage [20, 21]. Furthermore, KLF4 plays an impor‐
tant role in maintaining the integrity of the G2/M checkpoint following DNA damage. While
wild type HCT 116 colon cancer cells were arrested at the G2/M phase checkpoint upon γ-irra‐
diation, p53 -/- cells were able to enter M phase even after irradiation. It was observed that upon
introduction of KLF4 into p53 -/- cells, the mitotic indices were considerably reduced and the
Cyclin B1 levels were also risen [22]. These studies suggest that KLF4 is a critical factor in regu‐
lating entry of the cells into the mitotic phase. Finally, KLF4 was found both necessary and suf‐
ficient in preventing centrosome amplification following γ–irradiation-induced DNA damage
by transcriptionally suppressing cyclin E expression [23].

3.2. Promotion of cell differentiation

Microarray analysis has shown that many keratin genes were upregulated on KLF4 induction,
indicating its role in epithelial differentiation. Additionally, KLF4 has been reported to transac‐
tivate promoters of epithelial genes including CYP1A1 [24], laminin α 3A [25], laminin 1 [26],
keratin 4 [27], keratin 19 [28]. Recent studies demonstrated that KLF4 plays a vital role in goblet
cell differentiation in the intestine [29, 30], conjunctiva [31], and also in the formation of the epi‐
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thelial barrier of the skin [32]. KLF4 null mice died one day after birth due to loss of barrier func‐
tion of the skin. It appears that KLF4 influences the formation of the cornified envelope in the
late-stage differentiation process that was supported by upregulation of Sprr2a, a cornified en‐
velope gene, in KLF4 knockout mice. Two additional cornified envelope proteins: repetin (en‐
coded by Rptn) and plasminogen activating inhibitor 2 (encoded by Planh2) were found later.
KLF4 may regulate these genes resulting in an imbalance in cornified envelope assembly or
composition, thereby altering the structural scaffold on which the lipid lamellae are organized.
A differential role of KLF4 has also been reported in smooth muscle cells [33], monocytes [34],
testes [15], T cells [11, 35] and murine tooth development [36].

3.3. Other functions

KLF4 is thought to be involved in chronic inflammatory disease since it has been shown to
mediate proinflammatory signaling in human macrophages in vitro [37, 38] and regulate the
expression of interleukin-10 in RAW264.7 macrophages [39]. KLF4 is also essential for differ‐
entiation of mouse inflammatory monocytes and involved in the differentiation of resident
monocytes [34, 40]. The inflammation-selective effects of loss-of-KLF4 and gain-of-KLF4-in‐
duced monocytic differentiation in HL60 cells identify KLF4 as a key regulator of monocytic
differentiation and a potential target for translational immune modulation [40]. KLF4 posi‐
tively regulates human ghrelin expression [41], which is expressed in the gastrointestinal
tract. In addition, it was found that KLF4 is an immediate early gene for Nerve Growth Fac‐
tor [42]. A recent study showed that glutamatergic stimulation can trigger rapid elevation of
KLF4 mRNA and protein levels, and that the over expression of KLF4 can regulate neuronal
cell cycle proteins and sensitize neurons to NMDA-induced caspase-3 activity [43]. Another
study demonstrated that KLF4 is involved in regulating the proliferation of CD8+ cells [44].
The transcription factor ELF4 directly activated the tumor suppressor KLF4 'downstream' of
T cell antigen receptor signaling to induce cell cycle arrest in naive CD8+ T cells [44].

KLF4 has been implicated in the regulation of apoptosis [45, 46]. During DNA damage, cells
can take two routes - either pass into the next phase overcoming the checkpoint or get ar‐
rested at the checkpoint and activates the repair machinery. As discussed previously, over
expression of KLF4 in RKO colon cancer cells, when subjected to UV radiation, reduced the
percentage of apoptotic cells [47]. In esophageal cancer cell lines, KLF4 has been shown to
bind to the promoter and repress the activity of the surviving gene in vivo [48], which is nec‐
essary for caspase inactivation and therefore acts as a negative regulator of apoptosis.

4. KLF4 in stem cell biology

4.1. KLF4 function in embryonic stem cells

Embryonic stem (ES) cells are characterized by a self-renewal ability and pluripotency. Self-
renewal is the capability of ES cells to be maintained in a proliferative state for prolonged
periods of time, whereas pluripotency is the ability of ES cells to differentiate into a diverse
array of specialized cell types. It has been shown that self renewal and maintenance of pluri‐
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potency in mouse ES cells requires leukemia inhibitory factor (LIF). LIF is a member of the
IL6 cytokine family and is used to maintain ES cell cultures in an undifferentiated state
through activation of the Stat3 gene. Oct4, Sox2, and Nanog are all thought to be the master
regulators of ES cell pluripotency. Although Oct4 and Sox2 are not direct targets of Stat3
[49], they have been identified as two essential transcription factors that form a heterodimer
which binds to the Nanog promoter and regulates the expression of downstream genes that
contribute to the maintenance of self-renewal [50]. KLF4 acts as a fast responding mediator
to LIF-Stat3 signal changes, and directly binds to the promoter of Nanog to help Oct4 and
Sox2 in regulating the expression of Nanog [51]. This observation confirms the critical role
of KLF4 in ES cell self renewal as well as pluripotency.

4.2. KLF4 function in generation of induced pluripotent stem cells

ES cells are believed to hold great promise for regenerative medicine due to their unique
ability to differentiate into any cell type. However, the application of human eggs or em‐
bryos encounters big ethical problems. This dilemma was broken in 2006 by Dr. Shinya Ya‐
manaka’s group. They picked four transcription factors, including Oct4, Sox2, c-Myc, and
KLF4, to introduce into mouse embryonic fibroblasts via retroviral transfection [5]. The
modified embryonic fibroblasts were found to be reprogrammed to a pluripotent state simi‐
lar to that observed in ES cells. Later the finding was further confirmed by using either
mouse or human adult fibroblasts [52-57]. The discovery of these “induced pluripotent stem
cells” (iPS cells) was regarded as a great achievement in stem cell research and gave new
insights into the feasibility of clinical application of stem cells.

A panel of assays has been performed to compare iPS cells with ES cells in morphology,
surface  marker  expression,  epigenetic  status,  formation  of  embryoid  bodies  in  vitro,  di‐
rected differentiation into neural cells and beating cardiomyocytes, teratoma formation in
vivo  and chimera  contribution.  The  results  indicated that  iPS  cells  resemble  ES  cells  by
all  measured  criteria.  Not  only  fibroblasts,  but  also  other  terminally  differentiated  cells
can  be  reprogrammed  to  pluripotent  cells  [58].  After  the  introduction  of  pluripotency
from terminally  differentiated  cells,  the  applications  of  the  iPS  cells  have  also  been  ex‐
plored. By using a humanized sickle cell anemia mouse model, mice can be rescued after
transplantation with hematopoietic  progenitors obtained from autologous iPS cells  in vi‐
tro.  Mechanistically,  the rescue was due to the correction of  the human sickle hemoglo‐
bin allele by gene specific targeting.  This report provides the first  proof of principle for
using iPS cells for disease treatment in mice [59] and demonstrates the therapeutic poten‐
tial of iPS cells for human diseases.

Although iPS cells based on somatic cells avoid ethical issues, the use of oncogenes and ret‐
rovirus still raised safety concerns. For example, reactivation of the c-Myc retrovirus, in‐
creased tumorigenicity in the chimeras and progeny mice, hindering clinical applications
[60]. Another problem is that iPS cells are refractory to differentiation and thereby increase
the risk of immature teratoma formation after directed differentiation and transplantation
into patients. Even if only a small portion of cells within each iPS cell clone shows impaired
differentiation, then those cells might be sufficient to produce immature teratomas [61].
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Nevertheless, the iPS cell technology potentially can overcome two important obstacles as‐
sociated with human ES cells: immune rejection after transplantation and ethical concerns
regarding the use of human embryos [61]. The advantage of iPS cell technology is that iPS
cells can be generated using a few programming factors in any laboratory using standard
techniques and equipment. Establishment of a stable and self-sustainable ES-specific tran‐
scriptional regulatory network is essential for reprogramming [62]. iPS cells still have the
scope for clinical applications provided that proper ways are established to precisely evalu‐
ate each iPS cell clone and to select appropriate sub clones prior to clinical application.

4.3. KLF4 function in breast Cancer Stem Cells (CSC)

Cancer stem cells (CSCs) are a subpopulation of tumor cells that possess the stem cell prop‐
erties of self renewal and differentiation, which allows them to generate the heterogeneous
lineages of cancer cells that comprise the tumor. In 1997, a hierarchy in human acute mye‐
loid leukemia cells was first reported, which improved the understanding of tumorigenesis
and cast new light on cancer therapy [63]. CSCs in other types of hematological malignan‐
cies were identified later, and then CSC research was expanded to solid tumors shortly after.
The identification of CSCs in solid tumors depends on specific biomarker. Recently, CSCs
have been identified in numerous solid tumors, including pancreas [64], colon [65], prostate
[66], bladder [67], lung [68] and breast cancer [69].

In  breast  cancer  the  first  evidence  of  CSC was based on a  combination of  specific  cell-
surface antigen profile CD44+/CD24-/Lin- in 2003 [69]. More recently, aldehyde dehydro‐
genase (ALDH) was used as stem cell marker in a series of 577 breast carcinoma and 33
human breast cell lines [70]. ALDH is a detoxifying enzyme that oxidizes intracellular al‐
dehydes and is thought to play a role in the differentiation of stem cells via the metabo‐
lism  of  retinal  to  retinoic  acid  [71].  Side  population  (SP)  was  also  defined  as  a
characteristic of breast CSC, which indicated an inherently high resistance to chemothera‐
peutic agents [72].  Since the CSCs have the capacity for self-renewal, differentiation into
multiple cancer cell lineages, extensive proliferation as normal stem cells, and are respon‐
sible for tumor recurrence and chemotherapeutic resistance,  it  is  necessary to figure out
the key regulators  and related signaling pathways that  regulate  the CSC in the process
of carcinogenesis and tumor metastasis.

As discussed previously, KLF4 plays a critical role in ES self renewal and pluripotency, and
is one of the four transcription factors creating iPS cells. Therefore, it’s very worthy to ex‐
plore the relationship between KLF4 and breast CSCs along with underlying mechanisms.
Our recent work provides evidence for the first time that KLF4 is essential for the mainte‐
nance of breast CSCs and cell migration and invasion [7]. This evidence may offer important
clues to understand how KLF4 promotes breast cancer development.

Earlier reports have shown that elevated KLF4 expression is detected in nearly 70% of breast
carcinomas and that nuclear localization of KLF4 is associated with a more aggressive phe‐
notype in early-stage breast cancer [73, 74]. However, the ability of KLF4 to initiate aggres‐
sive tumors in vivo has not been examined yet. Our study showed that KLF4 was highly
expressed in CSC-enriched populations in mouse primary mammary tumor and human
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breast cancer cell lines (Figure 1). Knockdown of KLF4 in breast cancer cell MCF-7 and
MDA-MB-231 inhibits cell migration, invasion and adhesion in vitro, and the self-renewal of
breast CSCs (Figure 2). Tumor growth in mouse xenograft mode was suppressed as well
(Figure 3), suggesting that KLF4 could act as an oncogenic protein in breast cancers.

Figure 1. KLF4 was highly expressed in CSC-enriched population. (a) KLF4 expression was examined in adherent cells
and mammospheres of primary tumors originated from MMTV-Neu transgenic mice. Oct4 and Nanog were used as
positive and negative controls, respectively. (b) KLF4 expression was examined in SP and non-SP cells of MCF-7. The
symbol * indicates P<0.05 vs non-SP cells group. (c) KLF4 expression was determined in CD44+/CD24- and CD44-/
CD24- populations isolated by flow cytometry. The symbol * indicates P<0.05 vs CD44-/CD24- group.

The anti-proliferative function of KLF4 is associated with inhibition of cell cycle promot‐
er  cyclin-D1  [19]  and activation  of  the  cell-cycle  inhibitor  p21/Cip1  [18].  Since  inactiva‐
tion  of  either  protein  not  only  neutralizes  the  cytostatic  effect  of  KLF4  but  also
collaborates  with  KLF4  in  oncogenic  transformation  [75],  thus  further  highlighting  the
importance of p21/Cip1. Although p21/Cip1 status might be a switch that determines the
tumor  suppressor  or  oncoprotein  function  of  KLF4,  the  exact  mechanism  has  not  been
elucidated yet. Moreover, a cellular mechanism by which KLF4 contributes to the aggres‐
sive characteristics of breast cancers remains unknown. Our current studies indicate that
KLF4 is  required for  the  maintenance of  breast  CSCs and the  knockdown of  KLF4 sig‐
nificantly  decrease  the  self-renewal  of  breast  CSCs  by  examining  several  different  CSC
markers. Notably KLF4 exerted an anti-apoptotic function in many cancer cell lines, so it
is possible that the decreased CSC population upon KLF4 knockdown may be a result of
the increased apoptosis mediated by KLF4 reduction. However, the fact that cell viability
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of  KLF4  knockdown  cells  was  comparable  to  that  of  the  control  cells  would  argue
against this possibility. We have not performed limiting-dilution assays to determine the
tumor-initiating  capacities  of  CSC  cells  in  non-obese  diabetic/severe  combined  immu‐
nodeficiency  mice  yet,  which  is  a  traditional  method in  CSC studies.  Nevertheless,  our
results  not  only  provide  additional  experimental  support  for  the  important  function  of
KLF4 in  stem cell  biology,  but  also  are  important  for  breast  cancer  studies.  CSCs have
been shown to foster blood vessel formation and promote cell motility. They are also re‐
sistant to chemotherapy and radiotherapy [76] and have been implicated in breast cancer
metastasis that remains the number one cause of cancer-related mortality in women [77].
Our study suggested that  overexpression of  KLF4 was sufficient  to  drive cell  migration
and  invasion.  Additional  studies  on  the  mechanisms  by  which  KLF4  maintains  cancer
stem cell phenotype will be very helpful to develop novel therapeutic strategies targeting
KLF4 or the related signaling pathway to treat malignant breast cancer and metastasis.

Figure 2. Knockdown of KLF4 resulted in a reduced stem cell population and decreased self-renewal of breast cancer stem
cells. (a) Freshly isolated siCon and siKLF4 MCF-7 cells were labeled with CD24 (fluorescein isothiocyanate (FITC)) and CD44
(phycoerythrin (PE)) antibodies to identify CD44+/CD24-population using a FACSCalibur flow cytometer. (b) SP popula‐
tion in MCF-7 stable cells was determined by Hoechst 33342 efflux assays. (c) Left, MCF-7 cells (siCon and siKLF4) were
grown in ultra-low attachment surface plates at a density of 1000, 500, 200, and 100 per well. Assays were conducted after
10 days (left). The symbol * indicates P<0.05 vs siCon group. Right, primary (P1) and secondary (P2) mammosphere forma‐
tion under suspension culture conditions were evaluated in MCF-7 mammary tumor cell lines.
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Figure 3. Knockdown of KLF4 reduced tumorigenesis in vitro and in vivo. (a) Colony-forming abilities of siCon and
siKLF4 cells were assessed. The symbol * indicates P<0.05 vs siCon group. (b) Tumor growth curves were plotted for
immunocompromised non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice injected with KLF-
knockdown (siKLF4, solid line) and control cells (siCon, dashed line). Data are shown as mean size ± s.e.m. of tumors in
five mice per cell line.

The function of KLF4 in maintenance of CSCs has been further confirmed in our study by
using Kenpaullone, a small molecule inhibitor of KLF4. Previous work has demonstrated
that Kenpaullone is able to replace KLF4 in the reprogramming of primary and secondary
fibroblasts, and that Kenpaullone-induced iPS cells display characteristics of pluripotent ES
cells [78]. We tested KLF4 expression in Kenpaullone-treated breast cancer cell lines and
found that it decreased at both of the mRNA and protein levels. Additional reporter assays
showed that KLF4 promoter activity was significantly inhibited by Kenpaullone treatment,
suggesting that Kenpaullone-mediated downregulation of KLF4 occurred at a transcription‐
al level. KLF4 downregulation was also accompanied by decreased expression of two previ‐
ously reported down-stream targets [79, 80]: p53 and intestinal alkaline phosphatase. This
further validates the regulation of KLF4 by Kenpaullone. Since a maximal downregulation
of KLF4 was observed at a 4 h time point after Kenpaullone treatment, we postulate that
KLF4 may be an early responsive gene after Kenpaullone treatment, and after this point, the
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expression of KLF4 gradually recovered. Kenpaullone-treated cells possessed phenotypes
similar to KLF4 knockdown cells in our studies, which, from another point of view,
confirmed the indispensable role of KLF4 in CSCs and extended a function of Kenpaullone
from the induction of iPS cells to the maintenance of mammary CSCs.

Our research also indicates that KLF4 might promote epithelial-mesenchymal transition
(EMT) in breast cancers. EMT is a unique process by which epithelial cells undergo remarka‐
ble morphological changes (leading to increased motility and invasion) and believed to be
reminiscent of ‘cancer stem-like cells’, showing characteristics similar to many cancer sys‐
tems [81, 82]. It has been reported that KLF4 interacts with transforming growth factor-β, a
well established regulator of EMT [83], and β-catenin, one of the most important mesenchy‐
mal markers. Based on the pivotal role of KLF4 in CSCs, in combination with its links to the
transforming growth factor-β signaling pathway, we highly suspected that KLF4 improved
EMT in breast cancers. In our studies, KLF4 knockdown MCF-7 cells exhibited a well-spread
morphology, with the majority of cells forming a rounded, epithelial-like form and aggre‐
gating together in groups, a typical characteristic of mesenchymal to epithelial transition
[84] and a reversal of EMT. Fibronectin and vimentin, two critical mesenchymal-associated
markers, were both decreased in KLF4 downregulated cells, which were consistent with re‐
duced ability of migration and invasion of these cells. However, E-cadherin expression and
localization, a hallmark of the EMT phenotype, showed no significant difference after KLF4
was knocked down. Contrary to our results though, KLF4 was reported to inhibit EMT in
non-transformed MCF-10A cells by another group [85]. Our major argument is that
MCF-10A cells are spontaneously transformed cells with no potential of tumorigenesis.
Therefore, the results from MCF-10A cells may not be readily applicable to other mammary
tumor cells. In their study, MDA-MB-231 tumor cells with KLF4 overexpression had also
been used. However, results from our studies, using KLF4 knockdown and overexpression
stable cells, supported a positive connection between KLF4 and EMT. Clearly, more studies
are necessary to examine whether the difference of the two systems or the genetic back‐
ground of specific MDA-MB-231 clones contributes to the discrepancies between the previ‐
ously reported results and our current results.

4.4. KLF4 function in mouse hair follicle stem cells

Skin is renewed throughout life by proliferation of a multipotential stem cell population and
terminal differentiation of stem cell progeny. Epidermal renewal is thought to be controlled
by stem cells located either in the basal layer of the interfollicular epidermis (IFE) or in the
deepest portion of permanent hair follicle called bulge [86]. Mouse hair follicle stem cells
which reside in the hair follicle bulge are characterized by expression of CD34 and CD49
[87-89], retention of either DNA or histone labels over long periods [90, 91], and expression
of Leucine-rich repeats and immunoglobin-like domain protein 1 (Lrig1) [92, 93]. Wound
healing is an important response of skin in order that it might repair itself after an injury.
Regeneration of epidermis after wounding involves activation, migration and proliferation
of keratinocytes from both the surrounding epidermis and the adnexal structures such as
hair follicles [94-96]. The discovery of properties of epidermal stem cells led to the hypothe‐
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sis that these stem cells play a critical role in epidermal repair after wounding. Previous
work has reported that bulge stem cells rapidly respond to wounding and migrate towards
the IFE to help with the rapid hair-follicle regeneration, and that bulge-derived cells are
transient amplifying cells committed to differentiation [93, 95, 97]. However, the role and
contribution of keratinocytes derived from hair follicle bulge stem cells to cutaneous wound
healing needs further elucidation.

It has been proven that KLF4 is essential for establishing the barrier function of skin. How‐
ever, KLF4 expression and potential function in epidermal stem cells has not been studied
before. In our current study, we have shown that KLF4 is likely expressed in mouse epider‐
mal stem cells. A decreased number of hair bulge stem cells was observed in KLF4 knockout
mice, which was accompanied by a decreased ability of colony formation from these cells
when compared to those from control mice, suggesting that KLF4 may be required for the
maintenance of skin hair follicle stem cells. Notably, KLF4 deficiency delayed the process of
mouse cutaneous wound healing, during which KLF4-expressing multipotent cells migrated
towards the wound area [6].

Using the wild type mice and KLF4/EGFP mouse model, we found that KLF4 was expressed
in CD34+/CD49f+ bulge stem cell-enriched populations. However, KLF4 gene expression in
CD34+/CD49f+/Lrig1+ cells was about 2.2 fold higher than in CD34+/CD49f-/Lrig1- cells sort‐
ed from wild-type mice. High levels of KLF4 expression in most differentiated, post mitotic
skin epithelial cells [98] and low percentage of skin epidermal stem cells may be reasons
why a difference has not been observed. Nevertheless, our studies collectively provide the
first evidence that KLF4 was likely expressed in mouse hair follicle stem cells, especially in
bulge stem cells.

The label retention cell (LRC) assay was used to confirm the quiescent nature of KLF4-ex‐
pressing cells (Figure 4). Three-day-old KLF4/EGFP mice were injected with BrdU and left
for an extended period. Twelve weeks later, the proportion of KLF4-positive cells in LRCs
was 4.1%, suggesting that only a subset of these LRCs expressed KLF4. These results reveal
a heterogeneous nature of LRCs. However, the difference between KLF4-expressing and
KLF4-non-expressing LRCs and the related functional influence in wound healing still re‐
main unknown. By lineage tracing to the KLF4/CreERTM/ Rosa26RLacZ mouse model, a
multipotent and clonal nature of KLF4 expressing cells was identified as well (Figure 5). Our
studies have also shown that KLF4 knockout decreased the population of CD34+/CD49f+
cells accompanied by reduced self-renewal ability of these cells. Together with the label re‐
taining ability of KLF4 expressing cells, our results indicated KLF4 plays an important role
in the homeostasis of skin bulge stem cells. In addition, expression of KLF4 in rare skin stem
cells and in the bulk of differentiated keratinocytes may suggest that the functions of KLF4
in these populations are different. It has been reported that different KLF4 isoforms may ex‐
ist and exhibit different functions in pancreatic cancer cell [99]. Characterization of different
KLF4 isoforms and/or separation of distinct KLF4 expressing cells will be necessary for dis‐
secting specific functions of KLF4 in skin homeostasis as well as pathogenesis including
wound healing.
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Figure 4. KLF4-expressing cells possessed label retaining property. 3-day-old KLF4/EGFP mice were injected with BrdU
(75mg/kg) for 5 consecutive days. BrdU-positive cells were examined 3 months later by immunohistochemical staining.
Anti-KLF4, anti-BrdU, and anti-Ki67 antibodies were used to stain consecutive slides. Insets show enlarged portion of the
staining indicating co-localization of KLF4 and BrdU positive cells with no Ki67 signals (red arrows). Scale bars, 50 mm.

Figure 5. KLF4-expressing hair follicle stem cells were examined by lineage tracing. KLF4/CreERTM/Rosa26RLacZ mice
were induced by tamoxifen (100mg/kg) for 5 consecutive days at 6-week-old (a).4 weeks later X-gal staining was per‐
formed. Potential KLF4 expression in interfollicular epidermis (shown by red arrows in c, d) and bulge area (b, and
black arrows in c, d) was shown. A typical epithelial proliferation unit was shown in e (inset). Note that fixation was
performed without xylene in a and b. Scale bars, 80 mm.
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Figure 6. Knockout of KLF4 decreased hair follicle stem cell population and self-renewal potential in vitro and retard‐
ed would healing in vivo. (a) Dorsal skin keratinocytes isolatedfrom control (KLF4+/+) and KLF4 knockout (KLF4-/-)
mice were analyzed by flow cytometry using mouse epidermal stem cell markers CD34 and CD49f. (b) Quantitation of
the colony numbers from 2000 seeded keratinocytes. Data shown were the mean ± SM of three separate experiments.
*P <0.05 vs. control. 5mm wounds were introduced into the backs of KLF4/CreERTM/Rosa26RLacZ mice 5 (c, d) or 10
days (e–h) after using control (c, f) or tamoxifen (d, e, g, h) induction and X-gal staining was performed. Blue strips on
epidermis were shown in d (inset 1) and h. Blue cells was indicated by black arrows outside (d) and by green arrows
inside (e) the conjunction of the wound (separated by dashed green lines). Inset 2 in d showed blue cells around hair
follicles. Migration of KLF4 expressing multipotent cells from hair follicles (g) and interfollicular epidermis towards the
wound area was detected similarly.. Scale bars, 80 mm.

Previous work has demonstrated that stem cells located in the bulge area [95] and isthmus
[100] contribute to wound healing. Our work has shown that KLF4-expressing multipotent
cells participate in re-epithelialization during cutaneous wound healing. It known that cuta‐
neous wounds heal with an acute delay in re-epithelialization in the absence of hair follicles
[101]. From our study we learned that KLF4 expression in possible hair follicle stem cells
may contribute to the wound healing (Figure 6). We also observed that KLF4-expressing
stem cells remained quiescent as evidenced by rarely detectable blue cells eight months after
the cells were labeled. However, they were readily activated and detectable when the cuta‐
neous wound occurred. This observation is consistent with a recent proposal for olfactory
neural stem cells. In this pattern, stem cells within the LRC population serve as a reservoir
of long-lived progenitors that remain largely quiescent during normal neuronal turnover or
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even after acute, selective loss of mature neurons; meanwhile previously identified progeni‐
tors are largely responsible for tissue maintenance. Surprisingly after extensive injuries that
deplete resident neuronal precursors, these quiescent stem cells transiently proliferate and
reconstitute the neuroepithelium to maintain homeostasis [102]. Moreover, KLF4 deficiency
delayed the process of wound healing and cell migration. It has been proven that KLF4 is
essential for establishing skin barrier function because KLF4 deficiency selectively perturbed
the late-stage differentiation structures including the cornified envelope [32]. It is not clear
though, whether the role of KLF4 in barrier function is also involved in wound healing in
our setting. Finally, our wound healing model did not limit for contraction. Although this
simple method allowed us to observe an obvious phenotype, more rigorous models should
be used in the future in order to define the role of KLF4 in the complex wound healing proc‐
ess. Nonetheless, our results suggest a critical function of KLF4-expressing epidermal multi‐
potent stem cells in cutaneous wound healing.

4.5. Signaling pathways regulating KLF4 and stem cell biology

Stem cells often reside in locations called stem cell niches. Specifically, stem cell niches are
defined as particular locations or microenvironments that maintain the combined properties
of stem cell self-renewal and multipotency [103]. A combination of genetic and molecular
analyses has identified many factors that support stem cell niches that also control stem cell
identity. These factors include components of Notch, Wnt, and Hedgehog signaling path‐
ways, all of which KLF4 is thought to be involved in [104-106].

5. Notch signaling and KLF4

Notch signaling is involved in cell proliferation and apoptosis, which affects the develop‐
ment and function of many organs. The signal is initiated by interaction of a Notch receptor
with a Notch ligand on an adjacent cell. Upon activation, Notch is cleaved, releasing intra‐
cellular domain of the Notch (ICN) through a cascade of proteolytic cleavages by the metal‐
loprotease tumor necrosis factor-α-converting enzyme (TACE) and γ-secretase. ICN then
translocates to the nucleus where it displaces corepressor complexes that are prebound with
CSL. The following recruitment of coactivators, including Mastermind-like proteins and
CBP/p300, then activates gene expression of downstream target genes [107].

It has been reported that altered Notch signaling affects the function of a variety of mamma‐
lian stem cells such as hematopoietic, intestinal, and skin stem cells, and intestinal stem cells
in Drosophila and germ stem cells in C. elegans [103, 105, 108]. KLF4 is proposed as the
downstream target of Notch signaling pathway and KLF4 promoter activity is inhibited by
Notch, but the relationship between the Notch signaling pathway and KLF4 appears de‐
pendent on different cellular contexts. Our early work and that of others suggest that KLF4
is inhibited by Notch in the gastrointestinal tract [107, 109, 110]. Recently, downregulation of
Notch1 gene expression in keratinocytes by KLF4 has also been reported [111].In our current
study on breast CSCs, we found that the expression of Notch1, Notch2 and Jagged1 were
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significantly decreased in KLF4 knockdown cells, and upregulated by overexpression of
KLF4. Unexpectedly, inhibition of the Notch pathway by CompE, a γ-secretase inhibitor,
had no effect on stem cell numbers and self-renewal potential of breast cancer cells. This re‐
sult suggested that the Notch signaling pathway is not required for KLF4-mediated mainte‐
nance of stem cells in breast cancer cells (Figure 7). On the other hand, inhibition of Notch
signaling by CompE in KLF4-overexpressing cells led to decreased migration and invasion
ability, which indicated that the Notch signaling pathway was responsible for KLF4-mediat‐
ed mobility characteristics of breast cancer cells. These results are consistent with the role of
Notch signaling as potent drivers during tumor progression and in converting polarized ep‐
ithelial cells into motile, invasive cells [112]. However, in breast cancer cells, inhibitors of
canonical Notch1 signaling suppressed the transformation induced by Notch1 whereas it
had no effect on the transformation by KLF4, indicating KLF4-induced transformation re‐
quires Notch1, canonical Notch1 signaling is not required, and Notch1 may signal through a
distinct pathway in cells with increased KLF4 activity. These results suggest that KLF4 could
contribute to breast tumor progression by activating synthesis of Notch1 and by promoting
signaling through a non-canonical Notch1 pathway [113].

Figure 7. Notch signaling pathway is activated but not required for KLF4-mediated maintenance of stem cells in
breast cancer cells (a) Levels of Notch1, Notch2 and Jagged1 expression in siCon and siKLF4 MCF-7 cells were detected
by real-time PCR. The symbol * indicates P<0.05 vs siCon group. (b) Similar to (a) except that control and KLF4-N (KLF4
overexpression) MCF-7 cells were used. (c) MCF-7 cells (siCon and siKLF4) were seeded into ultra-low attachment sur‐
face plates and incubated with CompE at a concentration of 1 mM.

6. Wnt signaling and KLF4

Wnt signaling is an ancient and highly conserved system that is involved in embryogen‐
esis,  development,  cell  polarization,  differentiation  and  proliferation  [114-116].  Wnt  sig‐
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naling  cascades  have  traditionally  fallen  into  two  categories:  canonical  and  non-
canonical,  differentiated  by  their  dependence  on  β-catenin.  Canonical  Wnt  signaling  is
initiated when a Wnt ligand engages co-receptors of  the Frizzled (Fzd) and low-density
lipoprotein  (LDL)-related  protein  (either  Lrp5  or  Lrp6),  ultimately  leading  to  β-catenin
stabilization,  nuclear  translocation  and  activation  of  target  genes.  The  canonical  Wnt/β-
catenin pathway plays  a  crucial  role  in  stem and cancer  stem cells’  self-renewal  and/or
differentiation of skin, intestine and mammary gland [117].

In the absence of Wnt stimulus, β-catenin is held in an inactive state by a multimeric “de‐
struction” complex comprised of adenomatous polyposis coli (APC), Axin, glycogen syn‐
thase kinase 3β (GSK3β) and casein kinase1α (CK1α) [118]. Nearly 90% of colon cancer
harbors Wnt/β-catenin signaling mutations that result in β-catenin mutation. The most com‐
mon type of mutation in colon cancer results in the inactivation of APC, thus driving constit‐
utive activation of β-catenin [119-121]. KLF4 binds the transcriptional activation domain of
β-catenin and inhibits β-catenin-mediated transcription in colorectal cancer cells, suggesting
that the cross talk between KLF4 and β-catenin plays an important role in intestinal homeo‐
stasis and colorectal carcinogenesis [122]. A growing body of evidence illustrates a critical
role of β-catenin in CSCs. For example, stem-like colon cells with a high level of β-catenin
signaling have a much greater tumorigenic potential than counterpart cells with low β-cate‐
nin signaling [123]. The latest report shows that in stem cells and cancer cells, TERT, the en‐
zymatic subunit of telomerase complex controlling telomere length, is directly regulated by
β-catenin, and klf4 is required for β-catenin to localize to the Tert promoter [124].

In over 50% of clinical breast cancer cases a stabilization of β-catenin has been demonstrat‐
ed. Inhibition of Wnt/β-catenin signaling in the mouse mammary gland blocks organ devel‐
opment and pregnancy-induced proliferation and heavily reduces the numbers of alveolar
progenitor cells [125]. Wnt/β-catenin has also been implicated in mediating the radiation re‐
sistance of mouse mammary gland progenitor cells. Our recent study shows that KLF4 is re‐
quired for maintenance of breast CSCs and for cell migration and invasion along with Notch
signaling pathway [7]. However, the reaction of KLF4 and Wnt/β-catenin signaling in this
setting still remains unknown and needs further investigation. Our other work showed that
KLF4 contributes to cutaneous wound healing [6]. Additionally, the canonical Wnt signals
are required in the normal skin to instruct bulge stem cells toward the hair cell fate [126],
while in epidermal tumors, they control the maintenance of skin CSCs [84]. Therefore it is
speculated that both of KLF4 and Wnt/β-catenin signaling are implicated in this process,
and the relationship between them needs further investigation as well.

7. Hedgehog signaling and KLF4

Under normal conditions, HH signaling plays important roles in embryonic development
and is also involved in tissue regeneration in adults [127, 128]. Activating events in the HH
pathway are involved in numerous human cancers, including melanoma [129], glioma [130],
and basal cell carcinoma (BCC) [131]. Mammalian HH signaling is initiated when one of

Function of KLF4 in Stem Cell Biology
http://dx.doi.org/10.5772/54370

331



three HH ligands (Sonic, Indian, and Desert HH) binds the dodecatransmembrane receptor
Patched (Ptch1). Ligand/receptor interactions occur through an autocrine or paracrine man‐
ner, depending on the context. Receptor engagement results in activation of the heptatrans‐
membrane Smoothened (Smo), which is held in an inactive state in the absence of a ligand.
Smo activation in turn regulates the activity of transcription factors Gli1, Gli2 and Gli3.
Gli1/2/3 function to regulate transcription of genes involved in HH signaling such as Gli1
and Ptch1, and importantly genes involved in epithelial-mesenchymaltransition (EMT), such
as SNAIL1[127, 128].

HH-GLI signaling was found to modulate normal dorsal brain growth by controlling pre‐
cursor proliferation [132]; it was also found to have an essential role in controlling the be‐
havior of CD133+ glioma cancer stem cells [130]. However, HH pathway-driven
tumorigenesis depends on canonical Wnt/β-catenin signaling in BCC [131]. Recently, CSC/
tumor initiating cells (TIC) in human melanomas were found in a collection of human mela‐
nomas obtained from a broad spectrum of sites and stages by using non-adherent spheres
and ALDH enzymatic activity. Both pharmacological inhibition of HH signaling by the SMO
antagonist cyclopamine and GLI antagonist GANT61, and stable expression of shRNA tar‐
geting either SMO or GLI1 result in a significant decrease in melanoma stem cell self-renew‐
al in vitro and a reduction in the number of ALDH high melanoma stem cells, indicating an
essential role of the HH-GLI1 signaling in of melanoma CSC/TIC. Notably, melanoma‐
spheres express not only high levels of Hedgehog pathway components, but also high levels
of embryonic pluripotent stem cell factors Sox2, Nanog, Oct4 and KLF4 [129]. This is the first
report that reveals a possible correlation of HH signaling and KLF4 in CSC, though the un‐
derlying mechanism appears entirely unknown.

8. Concluding remarks

Since the identification and characterization of KLF4 over 10 years ago, significant progres‐
sion has been made to understand its biological function, including its role in cell prolifera‐
tion, differentiation, apoptosis and maintenance of normal tissue homeostasis. However, a
novel role of KLF4 in stem cell biology further opens a window to study KLF4 in a different
area. KLF4 is believed to play a significant role in ES cell self-renewal and pluripotency. No‐
tably, KLF4 collaborating with other transcription factors including Oct4, Sox2 and c-Myc,
drives somatic cells into iPS cells. CSCs have been identified in various tumors, and KLF4
can be speculated to have similar functions in CSCs based on its function in ES cell [133].
Our work provides evidence for the first time that KLF4 is essential for the maintenance of
breast CSC and cell migration and invasion, which may be helpful to develop new therapeu‐
tic strategies for breast cancer. Apart from just breast CSCs, our work also demonstrates that
KLF4 is highly expressed in skin hair follicle stem cells and facilitates the process of cutane‐
ous wound healing. Many papers have confirmed the underlying molecular mechanism that
KLF4 exerts its action in stem cell biology by integration of different signaling pathways, in‐
cluding Notch, Wnt and HH. Notch signaling pathway is responsible for KLF4-mediated
mobility characteristics of breast cancer cells, while Wnt/β-catenin signaling recruits KLF4 to
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regulate TERT expression in stem cells and cancer cells. As to HH signaling and KLF4, the
research is still just beginning, but considering the crosstalk between Wnt/β-catenin and
HH, it is very important to discern the communication between them. Nevertheless, under‐
standing the signaling circuitries regulating stem cell fate decisions might provide impor‐
tant insights into novel therapeutic strategies for cancer and regeneration medicine.
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