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1. Introduction

The human body is an incredibly complex organism that exhibits an impressive resilience to
external influences, such as infecting bacteria and inhaled particles. This, however, proves to
be a difficult problem to overcome when designing and implementing implantable devices for
medical therapy, as the body is supremely primed to resist any artificial intervention. One of
the critical parameters to consider is the mechanical compatibility of the implanted device with
the tissue of interest. Additionally, the footprint of the device should ideally be as minimal as
possible to decrease tissue damage and to minimize encapsulation responses. Until recently,
however, it has proven difficult to integrate naturally inflexible solid state circuits with flexible
components due to connection complexities and pitch limitations. In addition, material and
fabrication limitations have prevented the implementation of thin-film cables, radiofrequency
coils, and neural stimulation electrode arrays in implantable devices.

Here, after a brief review of the literature, we discuss novel flexible technologies being
developed for biomedical applications, and especially for high density functional neural
stimulation and recording. The distinctive parameters of a unique material, namely the
semicrystalline thermoplastic parylene C, that make it particularly well-suited as a biocom‐
patible substrate for thin-film biomedical circuits are discussed, explaining the reasoning for
its use in a novel paradigm as a substrate and not just as a coating. In addition, we discuss a
new packaging scheme that has been developed to enable high lead count interconnects using
microfabrication equipment for alignment and patterning, and demonstrate a complete
parylene-based stimulation microsystem combining radiofrequency coils with solid state
circuits and electrodes in a parylene substrate. This integration of solid state circuits with
flexible, biocompatible components gives rejuvenated hope for a new generation of neural
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prosthetics aimed to provide eyesight to the blind and limb movement to para- and quadri‐
plegic patients through spinal cord stimulation. These technologies can also enable integration
of solid state devices with novel bioMEMS sensors in such a manner that devices previously
only conceived of are now possible.

2. Outer retinal disease

Blindness due to such outer retinal diseases as retinitis pigmentosa (RP) and age-related
macular degeneration (AMD) affect hundreds of thousands of people worldwide. In fact, it
has been estimated by The Eye Diseases Prevalence Research Group and the National Eye
Institute that AMD alone will affect three million people in the United States by the year 2020
[1]. In addition, the prevalence of RP has been estimated to be approximately 1 in 4000 [2].
Although the pathogeneses of these retinal photoreceptor diseases are, to date, not entirely
understood, it is known that they are largely restricted to the outer retina, and that downstream
circuitry, although it undergoes significant remodeling, is relatively spared [3-5]. There exist
several possible approaches to thwarting the devastating effects of these diseases. Of these,
the surgical, pharmacological, stem cell, and dietary approaches are promising. Laser ablation
of leaky blood vessels and diets rich in antioxidants, for example, have been shown to slow
the progress of AMD, but not to have any effect on its incidence. Effective pharmacologic
agents, likewise, have long been elusive. Recent evidence has shown that stem cell therapy
could also be a possibility for the treatment of such diseases, by possibly replacing the lost
photoreceptors with stem cells capable of maturing into photoreceptors that then make
connections with the rest of the retina [6]. However, such treatments, in reality, are still very
far away from being used in clinical practice, and have a number of ethical and political barriers
to their implementation.

In need of another possible treatment for these profound retinal diseases, in 1994 Humayun
et al. reported the results of a pioneering study to electrically stimulate vertebrate retinas [7],
a bioengineering approach that would possibly bypass the diseased photoreceptors in the
visual pathway. In this study, bullfrog eyecups, as well as rabbit eyes (the rabbits were injected
intravenously with sodium iodate, a chemical toxic to the retinal pigment epithelium and with
other effects on photoreceptors), were stimulated with platinum electrodes. In their report, the
following conclusion was made: “Surface electrical stimulation of the inner retina in normal
eyes and in eyes with outer retinal degeneration can elicit a localized retinal response.” This
has since had a profound impact on the field of ophthalmology, by dramatically throwing an
engineering solution into the mix of possible treatments for patients with devastating blindness
due to outer retinal disease.

As a follow-up to this study, it was shown in 1996 by Humayun et al. that this seemingly simple
approach of passing a carefully controlled electrical current through an electrode placed
directly on the retinal surface to activate the still functional electrically excitable cells of the
retina can also elicit visual percepts in humans with otherwise bare or no light-perception
vision [8]. Perhaps even more important than the perception itself was the nature of the

Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies2



perception. Subjects did not report seeing streaks or multiple percepts of light simultaneously
when stimulating from one electrode, as might be expected if the axons of the ganglion cells,
as they made their way to the optic nerve in the nerve fiber layer, were being stimulated.
Instead, they reported seeing discrete, highly localized percepts that seemed to correlate very
well with the location of stimulation. This suggested that it was not the axons that were the
most electrically excitable, but instead the cell bodies of the several retinal ganglion cells
(RGCs) or the bipolar, or even possibly amacrine or horizontal cells underlying the electrode.
Indeed, it has since been conjectured that it could even be the characteristic right-angle bend
in the axon of the RGCs that has maximal electrical excitability [9]. No matter the case, this
was the confirmation of the feasibility of an engineering approach to treat human blindness
with a “retinal prosthesis.”

There are now a large variety of approaches to artificial vision, each with their own advantages
and disadvantages. There is this epiretinal approach (Figure 1), in which an electrode array is
placed directly on the retina from its anterior aspect. There is the subretinal approach, in which
an electrode or photodiode array is placed within the layers of the retina [10], as is also shown
in Figure 1 (this can be further subdivided to the ab interno and ab externo approaches, in which
an incision is made within the retina or within the sclera, choriocapillaris, or RPE to insert the
device, respectively). There is also the optic nerve approach, in which electrodes are placed
around the optic nerve in an attempt to coarsely stimulate the afferent ganglion cell axons [11].
Finally, there are also the cortical approaches, whether they be to the visual cortex [12] or to
the lateral geniculate nucleus (LGN) of the thalamus [13, 14], the first stop for information from
the retina as it enters the cortex. A complete discussion of the advantages and disadvantages
of each of the different approaches is beyond the scope of this text, but can be found in several
good review articles on visual and retinal prostheses.

The harbinger of an epiretinal prosthesis was the successful demonstration of a prototype 16-
electrode device, fabricated by Second Sight Medical Products, Inc. (Sylmar, CA, USA) in six
patients [15]. While clearly not enabling such activities of daily living as newspaper reading
and facial recognition, previously completely blind subjects can, for instance, differentiate
between a plate, a cup, and a knife, in a high-contrast environment free from background
distracters, an undeniably incredible feat of engineering and medicine. Furthermore, subjects
have been shown to be able to discriminate direction of movement of parallel white bars on a
black background, and can locate white squares within a quadrant of otherwise black space
[16]. This implant demonstrated the technology as well as the remarkable ability for the human
brain to compensate for low-resolution input. Although this had previously been demonstrat‐
ed by cochlear prostheses for patients with severe hearing impediments [17], it was unclear
whether this plasticity would translate well to visual prostheses. In fact, patients have
demonstrated their ability to discriminate large letters simply by instinctively scanning the
camera mounted on their head back and forth over the image displayed in front of them, a sort
of innate edge-detection mechanism, dramatically increasing the capability of the 16-electrode
device on their retina. Few scientists disagree, however, that increasing the number of
electrodes on the implanted array will dramatically add to the capabilities of the prosthesis as
a whole in enabling the patient to better carry out activities of daily living. The prototype device
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is hand assembled, a fact that limits the resolution possibilities of the device. Indeed, were it
still necessary to interconnect integrated circuits by hand, computers would be far less useful
to us as they are today. The need exists, then, to bring microelectronics and microfabrication
technology to bear on the problem of retinal prosthetic devices. The race is on to build high-
density multielectrode arrays in such a way and with such materials that the method is scalable
to the needs of long term, high-density retinal stimulation. Recently, a sixty electrode version
of the epiretinal prosthesis has been tested and has gained the CE Mark in Europe for sale for
the treatment of retinitis pigmentosa. The FDA is now reviewing the results of these same
studies for potential approval in the United States as a therapy for outer retinal blindness.

Figure 1. System overview and relative locations of epiretinal and subretinal implants [18].

3. Spinal cord injury

Spinal cord injury (SCI) can occur through a variety of mechanisms. The primary modalities
fall into two major categories: trauma (e.g., automobile/motorcycle accident, sports injury such
as from diving or horse riding, violence, fall), or disease (e.g., spina bifida or tumor). Spinal
cord injuries can affect motor function, sensation, and autonomic functions (e.g., bladder

Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies4



control, breathing). Approximately 50% of SCIs in the United States are classified as complete
[19]. This means that the spinal cord has lost the ability to transmit information across a
segment within it, cutting off all functional communication from the brain to the nerves below
the injury site and resulting in no sensation or voluntary control of motor function below the
injury site due to lost input from the brain. This usually results in para- or quadriplegia,
depending on the site of injury. Although in most cases the cord is not completely transected
or even cut, it is significantly damaged by interruption of blood flow supplying one of its
segments or through spinal contusion. Even though the vertebral column protects the cord,
when trauma is sufficient to compromise this protective cage, the broken vertebrae can
impinge on the cord and crush or destroy the axons within it very quickly, with continued loss
of axons over time [20]. Some estimates pin the prevalence of spinal cord injury in the United
States at approximately 250,000 [21], with an incidence of approximately 10,000 to 12,000 per
year [22], while others state the prevalence is significantly higher, at around 450,000 [19].
Approximately 55% of spinal cord injuries occur in young victims between 16 and 30 years of
age, making it a disease to bear usually for the rest of their lifetime, and more than 80% of
victims are males [22]. In some cases of incomplete injury, function can be recovered over time
[23]. However, in most cases, some level of impairment is permanent.

The complexity of the spinal cord is undeniable. In fact, despite the popular misconception
that the spinal cord serves only as a communication conduit between the brain to the muscles
and organs and from the skin back to the brain, it is much more accurate to view the spinal
cord as an extension of the brain. While the spinal cord below a complete injury does indeed
lose input from the motor cortex, and its ability to send sensations of touch to the brain is
completely compromised, the spinal cord is not rendered useless. Even an intact cord does a
lot of the primary processing and reflex control without any input to or from the brain.

In patients with spinal cord injury, there are several approaches to rehabilitation. The foot-
drop stimulator, wherein stimulation of the peroneal nerve affects localized contraction of
ankle dorsiflexors to counteract the problem of foot drag, has been widely studied [24] with
mixed results [25-27]. Other functional movements requiring much more coordinated mus‐
culature responses are far more difficult with implantable peripheral nerve or muscle stimu‐
lators because of the need to control timing as well as pulse amplitudes of likely a large number
of electrodes in rapid succession. Skin surface electrodes such as those in the ParaStep system
[28, 29] suffer from these problems as well as the problem that many muscle groups are difficult
to target from this more remote location. In addition, because in complete SCIs the voluntary
input from the motor cortex to initiate such movements is lost, an accessory mechanism for
determining the desired motion is warranted. This may require recording electrode arrays in
the motor cortex as another component of this system, as well as possible electrical stimulatory
feedback (in addition to the visual feedback already present). Any such system, then, is likely
to be quite complex and difficult to implement in practice.

We propose a system, which eventually will be completely implantable, that is capable of
stimulating the dorsum of the spinal cord in such a manner that modulation of the sensory
input to the cord, interneruonal activity within, and even motor output from the cord, is
possible. Tonic, subthreshold stimulation, applied at precise times and precise locations along
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the spinal cord, would likely help sustain or stop locomotor activity with the kind of coordi‐
nation and rhythmicity already discussed. Perhaps in combination with both locomotor and
standing training as well as appropriate pharmacological administration (e.g., quipazine), it
is possible that such an array would give those with both complete and incomplete spinal
injury the ability to stand and walk once again. In order to provide appropriate proprioceptive
input in the case of complete SCI, it would likely be possible to provide an accessory device
or muscle stimulator to initiate this type of activity. However, this approach leverages the
innate activity and processing power present in the spinal cord to its greatest extent and likely
obviates the need for a stimulation control system of great complexity in order to bring about
coordinated muscle activity, as is necessary for a peripheral muscle or motor neuron control
system. Such electrical stimulation may also, as has been hypothesized in the case of subthres‐
hold retinal stimulation systems as well, have the capability of promoting axon regrowth [30,
31] and facilitating plastic changes in the cord. Such an array would likely need to be con‐
formable to the cord, and would need to be implanted in relatively close apposition to it, either
epidurally (from which location the electrical field would need to penetrate several meningeal
layers) or subdurally, such that it is closer to the surface of the cord. In the ideal case, the array
would be flexible enough to move with the cord during motion and bending such that
functional targets are the same in any position. In addition, it should be the case that such an
array can also record from the cord so as to recognize returning action potentials from the
dorsal root and modulate this input accordingly. This approach, then, requires a high-density
array with many electrode sites from which to choose during training and daily activity, as
well as the ability to both record from and stimulate the cord, something which current arrays,
such as those for pain management, simply can not do because they are too bulky, inflexible,
and of too low a density (up to 16 electrodes).

4. Introduction to parylene

Parylene is the trade name for a family of semicrystalline thermoplastic polymers known as
the poly(para-xylylenes) (PPX). These were discovered in 1947 by Michael Szwarc in Man‐
chester, England [32]. It was originally deposited in an investigation of aliphatic carbon-
hydrogen bonds where the carbon was attached directly to a benzene ring, by heating toluenes
and ortho-, meta- and para-xylenes to very high temperatures and looking for degradation
products [33]. The very first parylene film deposited, then, was parylene N (with no substitu‐
tions on the benzene ring), and was temporarily known as a Szwarcite snakeskin. This
deposition process, however, had the disadvantage that gaseous by-products were an inherent
part of the method. William Gorham, an employee at Union Carbide, soon thereafter devised
an alternate method of parylene deposition that involved the pyrolysis of a dimerized form of
the material, di-para-xylylene, or [2.2] paracyclophane. It was largely unknown at the time
how to make this dimer in large amounts as it had only been isolated as an impurity in Szwarc’s
method. However, in 1951 Donald Cram reported a method for making this material in bulk.
On February 17, 1965, Union Carbide announced the availability of parylene films and the new
vacuum deposition method, known as the Gorham process. There were over 20 types of
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parylene actually developed, but only three were considered commercially viable: these were
parylene N (no chlorines on the benzene ring), parylene C (one chlorine on the benzene ring),
and parylene D (with two chlorines on the benzene ring) (Figure 2). However, a new fluori‐
nated version of parylene, parylene HT, has recently become commercially available, and can
be deposited in a new parylene deposition system.

In the Gorham vapor-deposition process [34] (depicted in Figure 3), which takes place at
vacuum (~25-35 mT, to increase mean free path to the substrate), a charge of parylene dimer
is placed in a vaporizer furnace. The dimer evaporates at approximately 130 to 150 °C, and
then passes through a very high temperature pyrolysis (~650 to 750 °C) furnace, where the
molecule is split into monomers. The monomers enter a chamber that is held at room temper‐
ature, and polymerize on all exposed surfaces in the chamber conformally and without
pinholes. Residual monomer is collected on a cold trap. Different variants of parylene require
varying process conditions, but the method remains essentially the same.

Figure 2. The three originally commercialized parylene variants.

Figure 3. center) Gorham process for parylene deposition. (left) Chemical structures at corresponding points. (right)
PDS 2010 Labcoater System.
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The existing variants of parylene have varying properties as well as uses. Parylene N is
primarily  used  as  a  dielectric  and  when  lubricity  and  crevice  penetration  is  important.
Parylene  C  is  an  ISO  10993,  United  States  Pharmacopeia  (USP)  Class  VI  material  (the
highest  biocompatibility rating for plastics in the United States)  and has excellent water
barrier properties. In addition, it has a very large elongation to break. Parylene D has now
been largely  replaced by parylene HT [35],  but  is  used when mechanical  strength is  of
primary  concern.  Parylene  HT  has  extremely  low  coefficients  of  static  and  kinetic  fric‐
tion, excellent thermal stability and good water barrier properties, high ultraviolet stability,
and is also ISO 10993 biocompatible [35-37]. Finally, very recently, Kishimoto Sangyo Co.,
Ltd. in Japan has devised additional parylenes in which amino groups have been added
to  the  benzene  rings.  The  amino group may add even more  improved biostability,  but
could also generate bioactivity that may or may not be beneficial to device functionality.
We have preliminarily  tested these amino parylenes  have found them to be compatible
with standard parylene processing technology, such as oxygen plasma reactive-ion etching
(RIE), in our cleanroom, but they will not be explored further in this text.

The advantages of using parylene, and, more specifically, parylene C, as the structural material
for neuroprostheses, when compared with technologies based on the use of other materials
such as PDMS, polyimide [38] and silicon [39], include parylene’s pinhole-free conformality
due to its unique room-temperature chemical vapor deposition process, its low water perme‐
ability, its chronic implantability and its high flexibility and mechanical strength (Young’s
modulus ~4 GPa). The Young’s moduli of two other commonly used materials for neuropros‐
theses, PDMS and polyimide 2611, are graphed alongside that of parylene C in Figure 4. PDMS
arrays have been handled by surgeons in our vivarium, and these are often as reported as too
floppy and difficult to handle due in part to the low Young’s modulus, hence requiring very
large thicknesses to handle appropriately. In addition, polyimide 2611 (often chosen because
its water permeability is lower than that of other polyimides) has a Young’s modulus larger
than that of parylene C. It has been suggested that polyimide arrays often are too rigid and
can damage the retina. In addition, they tear quite easily. Parylene C handles very well under
surgical manipulation, and, as we will show, behaves very well when implanted. In addition,
the thickness of parylene films is determined by the mass of dimer placed in the vaporizer. As
such, thicknesses can be very thin or very thick, and thicknesses are very repeatable and well
controlled, more so than spin-on coatings, especially when deposited over step junctions.
Parylene thickness can be controlled so as to match the rigidity to the application of interest,
more easily than most other materials. Since parylene is deposited at room temperature (we
have verified this using Temp-Plate irreversible temperature recorders traceable to NIST (Wahl
Instruments, Inc., Asheville, NC, USA)), the coating process is post-IC compatible. Parylene C
is also optically transparent, enabling the anatomy to be seen through the cable and the array
during ophthalmic surgery, post-implantation examination, and follow-up. While many
groups use parylene C as a coating on their arrays for many of these reasons, we have chosen
to use it as the main substrate for our devices [40, 41], a paradigm that leverages these
advantages to the greatest extent.
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Figure 4. Comparison of Young’s moduli of various materials. Ordinate is logarithmic.

Although parylene is known to be biocompatible in many sites of implantation, in order to
initially assess the intraocular biocompatibility of the material in the unique immune envi‐
ronment of the eye, an approximately 2 cm × 0.5 cm piece of unmodified 20 µm thick parylene
C was implanted in the vitreous cavity of the right eyes of two rabbits for six months. The
retinas of the right eyes of both rabbits were compared post-mortem with those of their left
eyes that served as controls. Histological evaluation revealed no discernable difference
between right and left eyes, indicating that there was no detectable adverse retinitis, choroi‐
ditis, endophthalmitis, or scleritis seen as a result of parylene implantation in the vitreous
cavity [40]. These results supported the tenet that parylene C is a biocompatible bulk material
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for an intraocular retinal prosthesis and other ocular implants, and paved the way for the
design and fabrication of a flexible electrode arrays and a packaging system using parylene C
as the primary substrate. Given these biocompatibility results, we have also been investigating
parylene in several other ocular implants, with excellent results to date [42-44]. Similar
experiments were performed with parylene C implanted on the spinal cord of mice. The arrays
were well tolerated, with no obvious immune reaction or gliosis.

5. Single-metal-layer flexible MEAs

5.1. Fabrication

Single-metal-layer parylene C-based electrode arrays are fabricated as shown in Figure 5. A
photoresist sacrificial layer is optionally spun on a standard silicon wafer. Approximately 8
µm of parylene C is then vapor deposited in a PDS2010 system (Specialty Coating Systems,
Indianapolis, IN, USA) on the entire wafer. An LOR3B photoresist layer (Microchem Corp.,
Newton, MA, USA) and an AZ1518 layer (AZ Electronic Materials, Branchburg, NJ, USA) are
spun on top of the parylene, exposed in a 10X reduction GCA Mann 4800 DSW wafer stepper
(General Signal Corporation, Stamford, CT, USA) or a Kasper 2001 contact aligner (Kasper
Instruments, Inc., Sunnyvale, CA, USA) depending on the required resolution of the electrode
array, and developed to achieve a liftoff pattern comprising contacts, conductive traces, and
electrodes. After hard bake, approximately 2000 Å to 5000 Å of platinum, with or without a
200 Å titanium layer, is then e-beam evaporated (SE600 RAP, CHA Industries, Fremont, CA,
USA) on the wafer. The subsequent photoresist strip generates the desired single-layer
metallization pattern. An approximately 7 µm thick coating of parylene C is then deposited,
followed by a spin coating of photoresist. This photoresist etch mask is exposed over the areas
of the electrodes and contact pads and to pattern the overall array geometry, and the entire
wafer is then subjected to an RIE in oxygen plasma, removing the parylene insulation over the
electrodes and the parylene surrounding the array. The photoresist mask is then removed with
solvent. Finally, if a sacrificial photoresist layer was used, the array is released from the
substrate in an acetone bath. If no sacrificial layer was used, it is peeled from the silicon in a
water bath. Ultimately, for most cases, the sacrificial photoresist layer is unnecessary, and can
often complicate array fabrication due to cracking while under process. The arrays can be easily
released from a natively oxidized silicon surface by placing them in a deionized water bath
and peeling them from their edge. The water will then release the rest of the structure due to
the hydrophobicity of the underlying parylene surface.

A single-layer square-grid electrode array, consisting of 256 Ti/Pt thin-film electrodes 125 µm
in diameter in a 16 × 16 grid with connecting lines of 12 µm pitch fabricated in the manner of
Figure 5 is shown in Figure 6. An SEM highlighting the typical electrode morphology in such
structures is shown in Figure 7. As can be seen, the parylene covering the electrode has been
completely removed, whereas the incoming trace remains conformally coated with the
material.
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Figure 5. Fabrication process for parylene-based single-metal-layer flexible MEAs.

Figure 6. Photograph of Ti/Pt electrode array of 256 electrodes and lines of 12 µm pitch.
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Figure 7. SEM of electrode morphology showing parylene C insulation surrounding exposed metal electrode.

5.2. In vitro retinal recording and stimulation

Parylene C-based arrays of thin-film platinum electrodes, comprising four 200 µm diameter
stimulating electrodes and 56 recording electrodes of 10 µm diameter were fabricated accord‐
ing to the single-metal-layer process on a glass substrate. These were placed in a bicarbonate
perfusate under a microscope and connected to a stimulus generator and preamplification
board (Multi Channel Systems MCS GmbH, Reutlingen, Germany) [45]. As shown in Figure
8, a retina isolated from larval tiger salamander (Ambystoma tigrinum) was placed RGC side
down on the array (to simulate epiretinal stimulation), and a remote platinum ground
electrode was introduced to the bath.

Figure 8. Isolated larval tiger salamander retina (darker region at left) overlying parylene-based platinum electrode
array. Arrow indicates 10 µm diameter electrode used for recording trace in Figure 9. Asterisk identifies 200 µm diam‐
eter stimulating electrode used to generate action potentials seen in Figure 9.

Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies12



With the lights off, a 20 µA, 400 µs/phase, cathodic-first biphasic electrical pulse was applied
between the stimulating electrode indicated with an asterisk in Figure 8 and the ground
electrode. The voltage trace from the recording electrode is shown in Figure 9. This stimulation
was consistently repeatable over a 50 pulse train with a 400 ms inter-pulse interval, and other
stimulating electrodes were also capable of “epiretinally” stimulating other cells in the retinal
slice. As is clear from these results, the parylene-based platinum electrode was able to stimulate
the tissue and elicit a response similar to the response generated from a light pulse in this intact
retina. Given these results and the knowledge garnered from clinical trials with prototype
arrays fabricated of other materials, it is not unreasonable to presume that our arrays will most
likely be able to stimulate retinal tissue in other species, including human.

Figure 9. Typical recording of response of cells overlying recording electrode to a 20 µA, 400 µs/phase, cathodic-first
biphasic electrical pulse from “epiretinal” stimulating parylene-based platinum electrode denoted with an asterisk in
Figure 8.

6. Spinal cord prosthesis

6.1. System overview

The ideal spinal cord stimulation system, just like the retinal system, would have a power
source, circuitry for driving the appropriate electrodes, as well as a cable and electrode array,
this time implanted epidurally or subdurally on the spinal cord. We believe that a penetrating
electrode array would be problematic for implantation and would likely lose efficacy and fail
ultimately due to a gliosis over time, as has been shown in many other studies [27]. The power
source could be an RF coil, or could, due to the much larger space available in the abdomen
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and back as compared with the eye, be a rechargeable battery capable of charging through the
inductive link. The RF coil, in addition, would enable reprogramming of the implanted
electronics for alternative stimulation protocols at the physician’s discretion. The electrode
array should be conformable to the spinal cord so that it can tonically stimulate at low currents
and with high precision. While a completely implantable system is the ultimate goal, an interim
goal is to stimulate the spinal cord chronically from an array connected to a head plug, while
simultaneously being able to record electromyograms (EMGs). In order to achieve this, we
have studied the efficacy of the multielectrode array portion of this system and have begun to
develop a connector technology capable of connecting 36 electrodes in with a small enough
form factor to be chronically mounted on a mouse skull.

Figure 10. Parylene MEA for murine spinal cord stimulation and recording.

6.2. Fabrication

Spinal cord arrays, consisting of five or ten electrodes of 250 µm diameter were designed and
fabricated (Figure 10). Interelectrode spacing was controlled so that each array of electrodes
covered four to five segments of the murine lumbosacral spinal cord upon implantation. Suture
holes were also designed into the body of the array to ensure placement and attachment of the
array on the cord, as well as to facilitate implantation (suture can be attached to the end of the
array and can be threaded along the cord first to help direct the array along it).

The single-metal layer fabrication process was performed using a contact aligner process for
fast throughput. The fabricated arrays were annealed to increase the adhesion of parylene to
parylene. At the same time, they were clamped between two pieces of Teflon or glass slides
coated with aluminum foil to ensure they would be flat during implantation. The arrays were
connected via Clincher connectors (FCI, Versailles Cedex, France) to the stimulation and
recording electronics.

6.3. Implantation and testing

Just prior to implantation, the arrays were rinsed in isopropyl alcohol.  Under isoflurane
anesthesia, the spinal cord electrode arrays were implanted epidurally on spinal cord seg‐
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ments L2-S1 in nontransected mice. The electrodes were oriented linearly along the rostrocau‐
dal extent of the cord. Recording capability was assessed by using the electrode array to record
spinal cord potentials evoked by tibial nerve stimulation. Following stimulation of the tibial
nerve, somatosensory evoked potentials were recorded from the cord dorsum at three lumbo‐
sacral levels (P1-P3, rostral to caudal). The recorded waveform consisted of three response peaks,
two of which are clearly depicted in Figure 11 (N1 and N3). These findings closely mirror results
reported previously  in  a  study using conventional  spinal  cord recording electrodes  [46]
demonstrating that the recording capability of the array electrodes matches that of convention‐
al electrodes. By measuring the difference in the response latencies obtained at each electrode
position (corresponding to different levels of the spinal cord), and by utilizing the known, fixed
interelectrode spacing, accurate measurements of the conduction velocities were obtained. The
properties of these responses can potentially be used to diagnose the progressive recovery of the
spinal cord as a result of treatments provided after a spinal cord injury.

To test the capability of the electrode array to act as a multichannel stimulating device for
generating hindlimb movements, constant-current monophasic stimulus pulses (amplitude:
50-850 µA, frequency: 0.3-10 Hz, pulse duration: 0.5 ms) were applied to the spinal cord
between each of the array electrodes and a ground electrode located near the shoulder, while
muscle activity was monitored using electromyogram (EMG) recordings of the tibialis anterior
and medial gastrocnemius muscles. Stimulation generated a typical three-component EMG
action potential consisting of an early (direct motor), a middle (monosynaptic), and a late
(polysynaptic) response, classified by post-stimulus latency (Figure 12). These data clearly
indicate that the parylene arrays were able to stimulate the spinal cord in such a way that the
musculature was activated.

Figure 11. Peak amplitudes of somatosensory evoked potentials (N1 and N3) recorded from three levels of the rostro‐
caudal spinal cord (P1-P3). Example waveform at top shows approximate response times.
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Figure 12. Typical medial gastrocnemius (ankle plantarflexor) EMG recording showing early, middle, and late respons‐
es after stimulation of spinal cord with parylene MEA.

Because of the known spacing of the electrodes on the array (as compared with traditional
fine-wire electrodes which do not have known interelectrode spacing), we were able, in
addition, to determine whether electrode position had a significant impact on muscle recruit‐
ment. The appearance and magnitude of each of the EMG responses was indeed correlated
with the choice of electrode position (Figure 13). This serves as evidence that position of
stimulation is very important. With a one-dimensional array, it is difficult to assess whether a
bilateral stimulation paradigm would also result in lateralization of response, but we strongly
suspect that this would be the case.

Figure 13. Medial gastrocnemius EMG showing varying levels of activation due to stimulation at different rostrocau‐
dally located electrode sites.
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7. Dual-metal-layer flexible MEAs

7.1. Motivation

An inherent problem with single-metal-layer arrays is that electrodes and traces are necessarily
fabricated alongside each other. For high-lead-count devices, this limits the size of electrodes
and tends to crowd electrodes and traces into artificial groups. To allay these problems, a dual-
metal-layer approach was devised that enables traces to pass underneath overlying electrodes.

7.2. Fabrication

Dual-metal-layer electrode arrays are fabricated as shown in Figure 14. Approximately 8 µm
of parylene C is first deposited on a silicon wafer with the optional photoresist sacrificial layer,
forming the underside of the electrode array. A platinum or titanium-platinum metal liftoff
process is used to define traces with 16 µm pitch and 2000 Å to 3000 Å thickness. A second
parylene deposition (~1 µm) forms the insulation between the two metal layers. At this point,
6 µm by 6 µm vias are patterned in the insulation layer over the ends of the traces using an
O2 plasma RIE. A second step-coverage optimized liftoff process is used to define a second
metal layer comprising electrodes and traces, while at the same time achieving electrical
continuity between the underlying traces and the overlying electrodes. A final parylene
coating approximately 7 µm thick forms the top insulation. The electrodes are exposed and
the overall geometry of the implant is defined in a final set of O2 reactive-ion etches using a
thick photoresist etch mask. Finally, the arrays are peeled from the wafer in a water bath or
released through removal of the sacrificial photoresist in acetone. The process depends on
optimal step coverage of the parylene sidewall during evaporation, which is aided, in part, by
the slightly isotropic nature of the O2 plasma etch of parylene [47] as well as by the special
design of the rotating wafer domes inside the e-beam evaporator, for which the angle of attack
of the metal evaporant is adjusted for best coverage. This requirement conflicts marginally
with those for successful metal liftoff, however, in this case, the liftoff technique is robust even
under these step-coverage optimized conditions due to the choice of an LOR/positive photo‐
resist compound layer.

7.3. Implantation and testing

Chronically implantable retinal electrode arrays comprising 1024 75 µm diameter electrodes
arranged in a complex biomimetic pattern that closely mimics the density of RGC in the human
retina [48] were designed (the electrode density varied radially in a ratio matched to that of
the RGCs), as shown at the left in Figure 15. These arrays (shown at right in Figure 15) were
fabricated according to the dual-layer process, with 60 of the electrodes connected via two
traces each to facilitate electrical conductivity verification. The strength of metal adhesion was
verified using a Scotch tape test, which demonstrated that direct platinum evaporation is
feasible without the need for a titanium adhesion layer. Electrical testing demonstrated a
typical line impedance of a contact-electrode-contact circuit to be approximately 5 kΩ, which
included two 8 µm wide traces of 20 mm length, as well as two via step junctions connecting
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underlying traces to the overlying electrode. Two types of via and electrode configurations
were tested. Some electrodes (electrode SEM given in Figure 16 (left)) had vias connecting to
the underlying trace near the center of the electrode, hence enabling charge spreading from
the center of the electrode. One possible drawback to this configuration is that the contact from
trace to electrode over the sidewall is a potentially vulnerable point of the circuit during
processing (e.g., subsequent RIE processes) and during pulsing in electrolyte because the metal
may be thinner there. The other electrode configuration had vias located adjacent to the
electrode (electrode SEM given in Figure 16 (right)), with the possible advantage that it would
be protected during RIE and subsequent pulsing by the overlying conformal parylene layer.
An SEM showing the morphology of a single central via is given in Figure 17. This clearly
depicts the sidewall coverage responsible for the electrical contact between the first and the
second metal layers. In both configurations, each via had an impedance of less than 12.5 Ω.
The best final configuration has not yet been determined.

Figure 15. (left) Design of biomimetic dual-metal-layer retinal electrode array showing biomimetic arrangement of
electrodes. (right) Fabricated biomimetic chronically implantable arrays with 60 of 1024 75 µm diameter electrodes
connected through dual-layer process with U.S. dime for size comparison.

Figure 14. Fabrication process for parylene-based dual-metal-layer flexible MEAs.
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Figure 16. Two possible dual-layer electrode configurations. Electrode with central vias (left), and electrode with
abutting vias (right).

Figure 17. Magnified view of trace to electrode via showing sidewall coverage.

The arrays were successfully molded to the approximate curvature of the canine retina (Figure
18 (top)) using heat-annealing and a custom mold in a vacuum chamber, and sterilized using
ethylene oxide gas. Two biomimetic arrays were implanted in the right eye of two canines
through a 5 mm pars plana incision after vitrectomy, and were affixed to the retina (Figure
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18 (bottom)) using a retinal tack modified by the addition of a PDMS washer (to account for
the thin nature of the parylene arrays).

 

Figure 18. Heat-molded and annealed retinal electrode array with retained spherical curvature (top), and intraopera‐
tive photographs of tacking in each canine (bottom).

Follow-up in both animals was conducted for six months using fundus photography, fluores‐
cein angiography (FA), in which blood is fluorescently stained to assess vessel perfusion in the
retina, and optical coherence tomography (OCT), an interferometric technique that enables
cross-sectional imaging of the retina. Fundus photography and FAs of both animals, examples
of which are shown in Figure 19, consistently demonstrated that vessel filling underneath the
array was normal. Obstruction and vessel leakage would have been visualized if the array
were placing excessive pressure on the retina. In addition, OCT demonstrated that the
electrodes were consistently less than 50 µm away from the ganglion cell layer in both animals
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(typical OCTs of both animals are shown in Figure 20), an outcome that theoretically would
afford excellent electrical coupling between the electrodes and the electrically excitable cells
of the retina. It is important to note that in the OCT of the second canine, the scan was taken
along a segment furthest from the tack site, where one might expect the least proximity. Even
at this location, this array remained in very close apposition throughout the six-month
implantation. Post-enucleation histology has since confirmed the excellent biostability seen
during follow-up.

As was briefly mentioned previously, the dual-layer process proffers considerable advantag‐
es over the more traditional single-layer approach. Design of single-layer electrode arrays
is usually hindered by the need to route traces amongst the electrodes. This tends to cause
crowding of traces and electrodes into groups, an organization that may not be optimal for
stimulating the tissue of interest. In addition, this has a propensity to constrain the geometric
area  of  the  electrodes  in  the  MEAs  to  smaller  sizes,  and  thus  reduces  the  number  of
electrodes  possible  in  a  given  area.  The  dual-layer  process  obviates  these  problems  by

Figure 19. Fundus photographs (left) showing parylene MEAs tacked to the right retina of both animals and FAs
(right) showing normal vessel perfusion under the arrays. Arrows point to retinal tacks.
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enabling traces to pass under overlying electrodes without making contact to them, having
the effect of both relaxing the constraints on electrode size and number and enabling more
complex  electrode  organization  (such  as  the  biomimetic  one  presented  in  this  work).
Although the arrays fabricated here had just 60 electrodes of connectivity with 120 traces
total, this was without making full use of both layers for wire routing and connection of
electrodes. In order to not make traces unnecessarily narrow and of too high impedance,
we believe an extension of this process to three or more metal layers will be necessary to
achieve  1024  electrodes  of  total  connectivity.  Indeed,  this  fabrication  process  is  easily
extendable to create such structures through addition of extra layers of parylene and metal.
Given the encouraging biostability results presented here and the ability of these arrays to
stimulate  retinal  tissue,  future  studies  will  include  chronic  stimulation  from  implanted
parylene-based arrays in an animal model.

Figure 20. OCTs of both animals showing very close apposition (<50 µm) of the arrays to the RGC layer.
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8. Electroplating

As a possible mechanism for extending the longevity of chronically pulsed electrodes, we have
investigated electroplated films of high surface-area platinum. Specially designed thin-film
platinum electrode arrays, consisting of sixteen 75 µm and 150 µm diameter electrodes of 3000
µm center-to-center spacing, were fabricated according to the single-layer process. Initial
experiments were performed on these arrays to determine material morphologies after plating
at different potentials in an aqueous ammonium hexachloroplatinate solution according to
Whalen et al. [49]. Subsequently, arrays were immersed in the solution in a specialized jig and
six were plated at a plating potential of -0.6 V (vs. an Ag/AgCl reference electrode) for 1.5
hours. The others remained unplated. Electrochemical tests were performed to evaluate the
efficacy of this plating step in extending electrode longevity under chronic pulsing.

The electrode morphologies of a typical array of 16 electrodes plated at different poten‐
tials are shown in Figure 21. Note that the 4 corner electrodes (1, 4, 13, and 16) were not
plated. Magnified views of some of the possible morphologies attainable via this mecha‐
nism are  shown in  Figure  22.  These  micrographs  show morphologies  that  likely  corre‐
spond to a drastically increased surface area. In order to confirm this cyclic voltammograms
(CVs) in O2-free H2SO4 were taken of the electrodes before and after platinization. Accord‐
ing to [50], “real” electrode surface area can be adequately estimated by integration of the
area over the hydrogen adsorption peak or likewise the area under the hydrogen desorp‐
tion peak. The two CVs in Figure 23 show that there was a more than 40-fold increase in
surface area after platinization when compared with the pre-plated surface area (note the
change in scale of the ordinate from nA to µA). Under pulsing, the voltage responses of
both plated and unplated electrodes remained stable for approximately 29 days, at which
point  the  unplated  electrodes  showed  signs  of  failure.  Voltage  responses  for  one  such
electrode  on  day  26,  29,  and  31  are  overlaid  in  Figure  24  (left),  which  documents  the
progression of failure. The plated electrodes, on the other hand, remained intact for much
longer, most surviving more than 50 days, or 430 million pulses, at which point the testing
goal  was  met  and  the  test  was  stopped.  Overlaid  voltage  responses  for  one  such  elec‐
trode, showing the voltage responses at day 26, day 31, and day 50, are shown in Figure
25  (right).  The  electrochemical  impedances  at  1  kHz  of  a  typical  plated  and  unplated
electrode are shown in Figure 25.  A dramatic  jump in impedance was observed for the
unplated  electrode  at  the  time of  failure,  while  the  plated  electrode  demonstrated  only
minor  variability  in  its  lower  impedance  throughout  the  430-million-pulse  trial  (most
variability happened on the days that CVs were taken, as expected). These preliminary data
corroborate the evidence that plating of the electrodes is beneficial to longevity, and suggest
that high surface-area platinization of electrodes can have a dramatic effect on extending
electrode life while lowering electrochemical impedance to charge delivery. Future work
will include replication of these tests and chronic pulsing at high temperatures for longer
times to further accelerate and assess the possible modes of failure.
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Figure 21. SEM of each of the electrodes on a typical 16-electrode array after platinization.

 

Figure 22. Magnified views of possible surface morphologies after platinization.
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Figure 23. CVs showing more than 40-fold increase in electrode surface area from before plating (left) and after plat‐
ing (right). The surface area is estimated by integrating the area under the peaks circled in red. Note change in scale of
the ordinate. Scan rate: 100 mV/s. Electrolyte: O2-free H2SO4 (N2-bubbled).

 

Figure 24. Voltage responses to a current pulse for (left) an unplated electrode, documenting the process of electrode
failure, and (right) a plated electrode, showing steady responses throughout the 50 day test. Note response ampli‐
tudes for plated electrodes are far lower than those for the unplated electrode, as expected [27].

Flexible Circuit Technologies for Biomedical Applications
http://dx.doi.org/10.5772/55308

25



Figure 25. Magnitude of the electrochemical impedances at 1 kHz of an unplated and plated electrode over time. The
unplated electrode showed a dramatic increase in impedance around day 30, at which time the test was stopped,
whereas the plated electrode showed steady impedance through day 50. The arrow denotes a temporary dip in impe‐
dance due to CV scanning.

9. Chip-level integrated interconnect technology

9.1. Introduction

Despite our ability to fabricate such a large number of electrodes in such a small area, a
significant impediment to future progress is the problem of how to package and interconnect
these multielectrode arrays with foundry-fabricated ASICs, discrete components (e.g., chip
capacitors, oscillators, diodes) and RF coils in a way that provides for high lead-count
interconnects. A wafer-level process is cost prohibitive, as it is necessary to maximize the area
of a wafer devoted to IC processing to keep costs low. Furthermore, current technologies for
packaging would be far too tedious and low yield to apply to a 1000-electrode device. In order
to achieve our goal of a 1000-electrode retinal prosthesis and a high-density spinal cord
stimulation system, then, a new way of forming such a package so as to enable high-lead-count
integration is necessary.

We have invented a way to place prefabricated chips, manufactured, for example, at a foundry,
into the fabrication process of a parylene-based multielectrode array and/or RF coil, such that
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all interconnections to the chip are made using standard photolithography and standard
microfabrication techniques in a fully scalable manner [40]. This packaging scheme is known
as the chip-level integrated interconnect (CL-I2) package. Figure 26 shows an overview of the
fabrication process and how multiple chips could be joined together in this manner. A detailed
discussion of the fabrication process, as adapted from [40], follows.

Figure 26. Overview of the CL-I2 process. Multiple chip connections are possible.

9.2. Fabrication

Three MOSIS-fabricated ASICs, as well as seven chips fabricated to simulate them (with
circuitry that facilitated testing), were used to demonstrate the CL-I2 packaging technology. In
order to fabricate the replicas of the MOSIS chips, these chips were imaged using a WYKO
interferometer (Veeco Instruments Inc., Woodbury, NY, USA), and were found to have mean
dimensions of 2.500 mm in length, 2.617 mm in width, and 254.2 µm in total thickness.

One hundred angstroms of chrome and 2000 Å of gold were e-beam evaporated on a 260 µm
thick silicon wafer. Using a photoresist mask, the metal was wet etched to pattern pads of the
same size and in the same locations as on the MOSIS-fabricated chips (approximately 70–100
× 100 µm2 with a center-to-center pad spacing of approximately 200 µm), as well as a pattern
of short circuits connecting these pads to nearby pads. After stripping the photoresist, a second
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photoresist layer was spun on the wafer and patterned as a mask for a Bosch through-wafer
etch in a PlasmaTherm SLR-770B deep reactive ion etching (DRIE) system (Unaxis Corpora‐
tion, St. Petersburg, FL, USA). This etch defined the length, width, and thickness of the
simulated chips as 2.49 mm, 2.61 mm, and 260 µm, respectively. Finally, the photoresist mask
was removed from the individual chips. In this manner, chips comprising simple electrical
shorts and intrinsic resistors were fabricated as our primary CL-I2 package test structures
(Figure 27.)

Figure 27. MOSIS ASIC (left) next to test chip (right).

The only properties of these prefabricated chips that had to be known before incorpora‐
tion in the CL-I2  process were their overall length, width, and thickness, and the dimen‐
sions and locations of the contact pads. Figure 28 gives a detailed CL-I2 process flow. To
begin, shallow alignment marks are etched into a standard 550 µm thick silicon wafer using
a thin photoresist mask and an SF6 plasma. 2.51 × 2.63 mm2 holes are then patterned after
alignment in a 10X reduction stepper in thick photoresist and an optional silicon dioxide
mask. Through holes are then etched using the Bosch DRIE process. After photoresist and
oxide removal, Nitto tape is placed on the frontside of the wafer. The chips are then self-
aligned in  the  holes  by inserting them from the backside (the  Nitto  tape enables  front‐
side planarization whereas  the lateral  dimensions of  the etched cavity determine lateral
displacement), and they are sealed in place using several drops of sacrificial photoresist to
cover the backside of the chip and to fill the gaps around it. A subsequent approximate‐
ly 12 µm thick parylene C deposition in a PDS2010 mechanically anchors the chips in place
from the backside. After removal of the frontside parylene by peeling off the Nitto tape,
vertical  displacements of  the chips are measured using a stylus profilometer (Alphastep
200 and P-15, KLA-Tencor, San Jose, CA, USA).

The parylene-based flexible electrodes, or, in this implementation, contact pads for electrical
testing, are then fabricated on this wafer as if it were a whole wafer with prefabricated
integrated circuitry. First, a photoresist sacrificial layer is spun on the wafer and patterned to
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expose the chip’s surface. After baking to remove excess solvent, approximately 3 µm of
parylene C is deposited on the entire wafer. Photoresist is spun on the wafer, exposed in the
10X reduction stepper, and developed to pattern etch holes above the on-chip pads, similar to
the vias in the dual metal-layer process. This pattern is transferred into the parylene using an
O2 plasma in an RIE system, exposing the metal of these on-chip pads. Two hundred angstroms
of titanium and 2000 Å of gold are deposited in the e-beam evaporation system using optimized
step coverage, and patterned (using a photoresist mask and wet etching) to define the remote
contact pads and remote pad to on-chip pad interconnects. The top photoresist is stripped, and
a second layer of approximately 10 µm of parylene C is deposited and patterned as before, but
this time to open the remote pads/electrodes to enable electrical testing. Finally, all photoresist,
including the sacrificial layer, is removed by soaking the wafer in acetone, releasing a flexible
parylene skin with embedded interconnects to the packaged ASIC. The host wafer can be
substituted in the process with a precisely machined substrate, and can be reused after this
release step. It is also important to note that the ASIC or discrete component can be of any
thickness, but generally the thickness should be less than that of the host wafer or machined
substrate, and it can have parylene or any hermetic coating deposited on it a priori, provided
that the chip contacts can be opened using microfabrication techniques before the interconnect
metal is laid down and patterned (Figure 28 steps 8 and 9). Thus, this technology combines
the best aspects of chip-level packaging, in which every surface of the prefabricated chip can

Figure 28. Detailed process flow for CL-I2 package fabrication.
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be manipulated or coated beforehand, and wafer-level packaging, in that photolithography
and microfabrication can be performed on the surface after such chip-level techniques.

9.3. Integration testing results

We successfully performed photolithography on ten prefabricated stand-alone chips using this
paradigm: seven test chips (three conformally coated in parylene a priori) and three MOSIS-
fabricated chips (one coated in parylene a priori). A MOSIS chip anchored in place in the host
substrate is shown centrally in Figure 29 with the host wafer shown on the perimeter. As is
expected, minimizing vertical displacement of the ASIC from the wafer surface is crucial for
further photolithography steps. Figure 30 gives typical surface profiles of all ten chips with
respect to the surrounding host wafer, and indicates that for most chips, this vertical displace‐
ment was less than 5 µm after removal of the frontside Nitto tape. Photolithography on the
somewhat anomalous test chips 2 and 7, however, was also successful.

The accurate horizontal alignment of the perimeter interconnects to the embedded chips is
shown in Figure 31, with Figure 32 giving a detailed micrograph of a single interconnect for
both the test chip (a) and the MOSIS chip (b). By design, the chips should be self-aligned to
within 10 µm of lateral displacement; some chips were aligned far better than this, however
others were misaligned worse than this. With tighter tolerances on the cavity sidewalls, or with
chip-alignment lithographic equipment, this alignment error could be improved. The embed‐
ded chip with remote contact pads is shown in Figure 33, and Figure 34 depicts the flexibility
of this package. Functional contacts to the chips were verified as described in [40].

Figure 29. MOSIS chip (center) shown anchored in host silicon substrate (perimeter).
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Figure 30. Typical single-axis vertical displacements of all 10 chips after mechanical anchoring in the host wafer (Fig‐
ure 28, step 4), where the top surface of the wafer corresponds to 0 µm.

Figure 31. Embedded chip with fabricated perimeter interconnects (numbered traces connect to numbered remote
pads shown in Figure 33).
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Figure 32. (a) Example of <10 µm lateral misalignment of a test chip; (b) Example of >10 µm lateral misalignment of a
MOSIS chip.

Figure 33. A CL-I2 packaged chip shown resting on a penny.
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Figure 34. Demonstrates flexibility of CL-I2 package. Chip can be seen underlying overlying parylene “skin.”

9.4. Discussion

It  should  be  stressed  that  the  lead-count  and  interconnect  density  limitations  for  this
technology stem only from the limitations of  the microfabrication and photolithography
equipment  used  to  fabricate  the  CL-I2  package,  and,  in  particular,  to  pattern  the  first
parylene etch (Figure 28, step 7). All interconnects to the chip are fabricated simultaneous‐
ly during the metal  deposition step,  and depend on optimal  step coverage of  the pary‐
lene  sidewall  (aided  in  part  by  the  slightly  isotropic  nature  of  the  O2  plasma  etch  of
parylene [47]).  The CL-I2  process thus avoids the use of tedious and comparatively low-
density ball-wedge [38] or wire bonding.

Our method of incorporating discrete modules into a MEMS process is far more cost-effective
when compared with full-wafer IC processing and MEMS integration [51], because valuable
space on the wafer is not wasted during the IC fabrication step. Furthermore, in comparison
to other ASIC integration attempts [51-53], this packaging scheme is superior for biodevices
because it takes advantage of parylene’s low water-absorption [54] and highly conformal
pinhole-free deposition, and because the package is both flexible and biocompatible. Among
the feasible uses for this technology is the interconnection of chips, devices such as other
CMOS-compatible MEMS, as well as discrete components such as chip capacitors, fabricated
using different materials and processes, to make large conglomerate circuits for neural
prostheses and for other applications. This technology is capable of increasing the previously
projected number of I/O interconnects available in 2010 significantly, while using lead-free,
biocompatible materials. Fabrication is not limited to the use of parylene as either the backside
anchoring material or as the frontside electrode insulation material, although, because of its
superior electrical, mechanical, and water permeability properties when compared with other
polymers, we believe parylene will ultimately prove to be the best choice for monolithic high-
density neural prosthetics. It is interesting to note that another research group has, after our
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original publications [40, 56, 57], explored an integration technique in polyimide very similar
to ours, with interconnect density motivations much akin to our own [58]. We have recently
demonstrated a fully integrated parylene-based single-channel neural stimulator [59]. In
vitro measurements demonstrated the ability to generate 7 V pulses of 500 µs pulse width from
a wireless transmitter 4 mm away. Preliminary evidence from animal implantation studies has
shown these are mechanically reliable under surgical conditions.

10. Conclusions and future work

BioMEMS, an emerging field in which MEMS are designed, fabricated, and utilized to interface
with and examine biological systems, is a discipline replete with incredible possibilities, but
also one that is fraught with potential pitfalls. This is no more true than in the case of implant‐
able microelectronics, where applications abound because of the near perfect match in the sizes
of the functional components of the body, namely cells and neurons, and the technologies
possible using microfabrication techniques. Materials must be carefully selected such that they
are biocompatible with the body, while still enabling maximal functionality to be delivered to
the patient, requirements that are often competing in nature. In this vein, the microtechnologies
necessary for parylene-based flexible microelectrode technologies have been presented. All
evidence thus far points to the fact that such parylene-based technologies are likely an ideal
option for implantable neuroprostheses and microdevices.

It should be stressed that these technologies are not limited to use in retinal and spinal cord
prostheses. In fact, the ability of our flexible arrays to conform to the geometries of interest in
the human body enables them to be used in a variety of locations heretofore previously
inaccessible with such high precision. Such locations include the surfaces of the cerebral cortex,
another area of interest from both a scientific and treatment point of view due to such neuro‐
logical problems as stroke, epilepsy, and memory loss. Areas of other interest include periph‐
eral nerve and muscle. It is also possible to embed sensors in such arrays, as has recently been
demonstrated [60], to assess mechanical forces placed on the tissues of interest by our arrays
as well as to detect extrinsic pressures, such as those within the eye or within blood vessels.

Understandably, there is a public reticence to the implementation of such technologies in the
human body. While such apprehension is not a recent phenomenon, the burgeoning era of
computerized special effects in television and cinema has helped fuel the fear that the blending
of “man” and “machine” can have devastating consequences. What is missed in such intima‐
tions is that, in the hands of ethical doctors, engineers, and other scientists, such consequences
are extremely remote. But it is not about the inventors of these technologies, and it should
never be about personal glory. All of that slips away the moment one talks to a person who
has devoted their life to be a pioneer in the field by volunteering to be a test subject of such
devices for the benefit of mankind. In such conversations, one realizes the full potential of this
technology. Investigation into these devices not only has the possibility to positively affect the
lives of such people, by enabling them to “walk” or “see” again, but it transcends all that by
bringing about in all involved a sense of camaraderie. Indeed, the selfless motivation of such

Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies34



individuals who devote their most precious commodity, their body, to such studies, more than
anything else highlights our very humanity. It shows that, despite the need for such techno‐
logical innovation, it is only by working together and for one another that we, as a people, can
break the bonds of human disease.
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