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1. Introduction

Attention-Deficit/HyperactivityDisorder (ADHD) is one of the most prevalent neurodeve‐
lopmental disorders among children. It affects 3-10% of school-age children (Polanczyk et
al., 2007), and a prevalence rate of 7.5% was reported in a local Taiwan study (Gau et al.,
2005). The core symptoms of ADHD are inattention, hyperactivity, and impulsivity, and
ADHD patients are commonly comorbid with other neuropsychiatric disorders, such as Op‐
positional Defiant Disorder (ODD), Conduct Disorder (CD), and tic disorders (American
Psychiatric Association, 2000; Spencer et al., 2007). The most well-known neurobiological
hypotheses to account for the complexity in etiology of ADHD are the dysregulation of cate‐
cholaminergic neurotransmission (Biederman & Faraone, 2002). In recent years, many re‐
searchers have raised concerns with regards to the potential roles of the neuroendocrine
system in the pathogenesis of ADHD (Dubrovsky, 2005; Golubchik et al., 2007; Goodyer et
al., 2001; Martel et al., 2009; Strous et al., 2006), based on observations of the epidemiological
data of ADHD. ADHD is more prevalent in boys than in girls, with the ratio ranging from 4
to 1 to as much as 9 to 1, and boys generally exhibit more impaired cognitive control than
girls (American Psychiatric Association, 2000). In addition, longitudinal studies have shown
that there is a clear decline of symptoms with age, and a possible remission occurs after the
age of 12 (Polanczyk & Rohde, 2007). The neuroendocrine system, the activation of which is
closely associated with age and gender, may influence developing neural circuitry and be‐
havioral systems; thus it has reasonably been speculated that this system plays a role in the
pathogenesis of ADHD (Martel et al., 2009).

Methylphenidate (MPH), classified as a psychostimulant, is the most widely used drug for
the pharmacological management of children with ADHD (Swanson et al., 2002). The effects
of MPH on attention result from a combination of noradrenergic and dopaminergic mecha‐
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nisms (Overtoom et al., 2003; Wilens, 2008). MPH exerts treatment effects by reducing im‐
pulsivity and disruptive behavior (Huang & Tsai, 2011), and it improves plenty of
dimensions of neurocognitive function in ADHD patients (Huang et al., 2007; Pollak et al.,
2010). Furthermore, some evidence has been revealed that MPH treatment possibly influen‐
ces the neuroendocrine system (Hibel et al., 2007; Lurie & O'Quinn, 1991), and these influen‐
ces possibly play a role as a mediator of the therapeutic effects for ADHD patients.
Therefore, we herein review the related literature which investigates the relationship be‐
tween ADHD, neuroendocrine, and MPH administration.

2. ADHD and neurosteroids

The term “neurosteroid” was first introduced by Baulieu (1981), which indicated steroid
hormones synthesized in brain cells from cholesterol, independent of peripheral endocrine
sources, acted at the central nervous system. Initially, neurosteroid referred to dehydroe‐
piandrosterone sulfate (DHEA-S) (Baulieu & Robel, 1996). DHEA-S concentration in the
brain was found to remain stable following adrenalectomy and gonadectomy. This implied
that DHEA-S levels in the central neural system appeared to be independent of peripheral
formation in the adrenals or gonads (Strous et al., 2006). Subsequently, progesterone, allo‐
pregnanolone, pregnenolone, dehydroepiandrosterone (DHEA) and their corresponding
sulfate esters were identified as neurosteroids (Baulieu & Robel, 1998). Neurosteroids are
important substrates that have been demonstrated to affect mood expression, energy level,
aggression, and general activity (Wolkowitz et al., 1999).

2.1. DHEA and DHEA-S

DHEA is one of the major circulating neurosteroids in human, and it is also an ACTH-regu‐
lated steroid and a substrate for the synthesis of androstenedione and testosterone (Gurnell
& Chatterjee, 2001). DHEA has been demonstrated to play several vital neurophysiological
roles and to be affected by various physiological processes, including those associated with
neurotrophic and neuronal excitability effects, circadian rhythms, sexual responses, immu‐
nological and stress reactions, memory, and sleep (Baulieu & Robel, 1996; Herbert, 1998).
DHEA-S is a sulfated form of DHEA that is believed to be the most abundant steroid in the
body (Wolf et al., 1997). DHEA-S is measured more frequently than DHEA because circulat‐
ing levels of DHEA-S are approximately 500 times higher due to its lower metabolic clear‐
ance rate and minimal diurnal variation (Longcope, 1996).

Strous et al. (2001) demonstrated that DHEA and DHEA-S levels in blood are inversely re‐
lated to the severity of hyperactivity/impulsivity symptoms in children with ADHD aged
between 7 and 12 years. Another study found that ADHD patients treated with methylphe‐
nidate for 3 months exhibited pre- to post-treatment increases in plasma levels of DHEA and
DHEA-S for 23% and 53.6%, respectively (Maayan et al., 2003). Subsequently, Lee et al.
(2008) were the first research group investigating the role of neurosteroids in Asian ADHD
population. They suggested that plasma DHEA-S levels in ADHD patients increased signifi‐
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cantly during a 12-week MPH treatment and under a 12-week bupropion treatment as well.
These studies revealed a substantial increase in DHEA levels among pre-pubertal ADHD
patients; however, there was no data with regards to age- and gender-matched healthy con‐
trols for comparison. Finally, our research team demonstrated that salivary DHEA levels
were significantly lower in ADHD patients than those in healthy controls (Wang et al.,
2011b). Salivary DHEA levels were not significantly correlated with ADHD clinical symp‐
tom severity, but positively correlated with performance in a neuropsychological test (Con‐
ner’s Continuous Performance Test, CPT). Thus the authors suggested that lower morning
DHEA levels might be a biological laboratory marker for ADHD, particularly for perform‐
ance during CPT. In the longitudinal analyses, we found that morning salivary DHEA levels
significantly increased under the 6-month MPH treatment course for ADHD patients. How‐
ever, the salivary DHEA levels in healthy age- and gender- matched controls remain un‐
changed during the 6-month natural observation. Similar with the findings in the cross-
sectional survey, DHEA levels exhibited a significant and independent association with
overall CPT performance during the course of MPH treatment (Wang et al., 2011a). We
could thus determine that the elevation of DHEA levels among ADHD patients is not de‐
rived from natural physiological change, but from MPH administration.

There is interesting coincidence in the similarity of the natural course of ADHD, brain devel‐
opment and age-related change in DHEA/DHEA-S levels. ADHD symptoms generally de‐
cline in severity between puberty and the early twenties (Biederman et al., 2000). Some brain
imaging studies have found there to be a dysfunction of the cerebellar-striatal-prefrontal cir‐
cuitry in ADHD (Gogtay et al., 2002), and that this may be the result of delayed maturation
of the cerebral cortex, especially the prefrontal region (Shaw et al., 2007; McAlonan et al.,
2009). Plasma DHEA/DHEA-S levels change with age, being low in the first years of life,
then rapidly increasing from about eight years of age through puberty to reach their highest
levels during early adulthood (de Peretti & Forest, 1978). DHEA-S has antiamnestic effects,
and also anxiolytic and anti-aggressive properties (Wolf & Kirschbaum, 1999). Both DHEA
and DHEA-S have been shown to regulate the motility and growth of neocortical neurons in
the rodent brain (Compagnone & Mellon, 1998). This implies that DHEA/DHEA-S exert bio‐
logical actions that may play crucial roles in guiding cortical projections to appropriate tar‐
gets, and thus may be important for the regulation of neurodevelopment (Golubchik et al.,
2007). It has been proposed that DHEA/DHEA-S exerts its positive effects in ADHD patients
through stimulatory or antagonist effects at the gammaaminobutyric acid A (GABAA) recep‐
tor and facilitation of the N-methyl-D-aspartate (NMDA) activity (Davies et al., 2009; Strous
et al., 2001; Tang et al., 1999). DHEA protects hippocampal neuronal activity from glutamate
toxicity. DHEA-S also protects hippocampal neuronal cells from excitatory amino acid in‐
duced neurotoxicity. Taken together, DHEA and DHEA-S may provide an important antiox‐
idant function and may thus play a role in neurodevelopment and have neuroprotective
effects (Strous et al., 2006).

Some molecular genetic studies demonstrated candidate genes contributing to ADHD. The
steroid sulfatase (STS) gene, which escapes X inactivation in humans, desulfates several sul‐
fatedsteroids, including DHEA-S to DHEA. In an animal study, it has been noticed that the
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STS may modify the attentional function and motor impulsivity through administration of
the substrate DHEA and DHEA-S (Davies et al., 2009). The same research team showed that
the 39,X(Y*)O mice (which lack the STS gene but no other known genes as a consequence of
end-to-end fusion of the X and Y chromosomes) exhibited significantly lower DHEA serum
levels than 40,XY mice. They concluded that STS-deficient mice exhibit endophenotypes rel‐
evant to ADHD (Trent et al., 2012). In human studies, Kent et al. (2008) have demonstrated
that boys with X-linked ichthyosis who have a deletion or point mutation of STS are at an
increased risk of ADHD. In addition, Brookes et al. (2008) indicated that common variants
within the STS gene may increase susceptibility to ADHD. The over transmitted risk allele of
rs12861247 was also associated with reduced STS mRNA expression, and hence deficit in
STS protein production is at a significantly increased risk of developing ADHD (Brookes et
al., 2010). However, ethnic differences in epidemiology and genetic polymorphism of
ADHD patients have been demonstrated in some studies (Nikolaidis & Gray, 2009; Pastor &
Reuben, 2005). It remains unclear whether the relationships between the STS gene, ADHD
and neurosteroids also exist among non-Caucasian populations.

Neurochemical findings showing MPH exerts its effects on catecholamines in areas such as
the prefrontal cortex, nucleus accumbens, and striatum are consistent with the neurobiologi‐
cal and clinical effects of MPH on memory, attention, and movement (Wilens, 2008). The
neuroendocrine effects of MPH administration might be related to its dopaminergic and
adrenergic agonistic activity (Hibel et al., 2007; Lurie & O'Quinn, 1991; Weizman et al.,
1987). Hibel et al. (2007) demonstrated that children taking concerta (methylphenidate ex‐
tended-release tablets) had higher average levels of DHEA than those who were non-medi‐
cated. Several studies suggested that MPH increased DHEA or DHEA-S levels of ADHD
patients during a 3-month treatment (Lee et al., 2008; Maayan et al., 2003; Wang et al.,
2011a). One possible neurochemical explanation for this phenomenon is that MPH-induced
increases in DHEA or DHEA-S may act either by decreasing levels of the GABAA antago‐
nist-like pregnenolone sulfate, or by increasing levels of the GABAA agonist-like progester‐
one metabolites (Robel & Baulieu, 1995). In addition, the direct influence of medications on
salivary hormones may act on the secretion and feedback control of the HPA and hypothala‐
mic-pituitary-gonadal (HPG) axes. MPH may also indirectly influence DHEA or DHEA-S by
attenuating or potentiating the impact of environmental events and subjective experience on
HPA axis and HPG activity (Hibel et al., 2007). However, it is not clear whether DHEA or
DHEA-S exerts effects in conjunction with or independently of MPH on neurocognitive
function in ADHD. It remains to be clarified whether DHEA or DHEA-S plays a role as a
mediator of the therapeutic effects of MPH, or if these associations are epiphenomena of the
benefits of MPH treatment. Moreover, it would also be interesting to investigate whether
DHEA or DHEA-S could directly benefit the treatment of ADHD patients.

2.2. Other neurosteroids and gonadal hormones

Neurosteroids, other than DHEA and DHEA-S, mainly contain pregnenolone (PREG) and
progesterone, which is metabolized to 5a-dihydroprogesterone (5α-DH PROG) and 3α,5α-
tetrahydroprogesterone (3α,5α-TH PROG), also named allopregnanolone (Vallee et al.,
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2001). PREG is the principal precursor of DHEA. The sulfated form of pregnenolone (PREG-
S) exerts its neurochemical action as a negative modulator of the GABAA and also as a posi‐
tive modulator of the NMDA subtype of glutamate receptor (Mayo et al., 2001). PREG-S is
also capable of modulating acetylcholine neurotransmission associated with paradoxical
sleep modifications (Mayo et al., 2003). In animal studies, PREG-S in the hippocampus re‐
gion plays a physiological role in preserving and enhancing cognitive abilities, possibly via
an interaction with central cholinergic systems (Vallee et al., 1997; Vallee et al., 2001).
Among humans, PREG appears to improve clinical symptoms in patients with mood disor‐
ders (Osuji et al., 2010), and in patients with schizophrenia as well (Marx et al., 2011). To
date, there has been only one study investigating the relationship of PREG and ADHD
(Strous et al., 2001), and this study revealed that PREG levels in the blood are inversely relat‐
ed to the severity of hyperactivity/impulsivity symptoms in children with ADHD.

Gonadal hormones may act on the prenatal development of dopaminergic neural circuitry
and dopamine function in the nucleus accumbens, striatum, and prefrontal cortex via its
masculinizing effects (Martel et al., 2009). Therefore, gonadal hormones may modulate cor‐
responding deficits in cognitive control and reward processes in ADHD. In animal studies,
estradiol and progesterone both appear capable of inducing increases in dendritic spine
density during development. Estradiol and progesterone have been also proposed to play a
role in ADHD, because they are synthesized de novo in the cerebellum during critical devel‐
opmental periods (Dean & McCarthy, 2008). In addition, estrogen has been identified to
have neuroprotective effects through protection against oxidative stress, and neurotrophic
cross-talk through the signal cascade shared with neurotrophic factors (Sawada & Shimoha‐
ma, 2000). However, the relationship of estradiol, progesterone and ADHD in humans has
not yet been well-established in clinical studies.

Prenatal testosterone exposure has been implied in the etiology of ADHD. High levels of
prenatal testosterone may moderate the relationship between prenatal risk factors, and fur‐
ther affect dopaminergic neural circuitry by slowing down neural development globally
(Morris et al., 2004). Several studies have examined the association between the presence of
ADHD phenotype and the ratio of the length of the second and fourth digits (2D:4D ratio),
which is a marker of fetal testosterone exposure (de Bruin et al., 2006; Lemiere et al., 2010;
Stevenson et al., 2007). However, the findings are inconsistent between these studies. Fur‐
thermore, Yu & Shi (2009) found that salivary testosterone levels are higher in children with
aggressive tendencies than those without aggressive tendencies. Whereas Dorn et al., (2009)
suggested that no significant difference in salivary testosterone levels between children with
and without disruptive behavior disorders. Regarding the effects of MPH on testosterone,
Avital et al., (2011) indicated that long-term exposure to MPH led to elevated testosterone
levels in rodents. However, Mattison et al., (2011) reported that MPH administration in rhe‐
sus macaques, beginning before puberty, led to delay in pubertal testicular development un‐
til 5 years of age. Among humans, Hibel et al. (2007) investigated the relationship of salivary
biomarker levels, diurnal variation and the effects of medications among maltreated or low-
income disadvantaged children. They found that testosterone in non-medicated children de‐
creased along with time in a day, but those in children taking psychostimulants remained
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unchanged. In summary, evidence about the role of gonadal hormones in the aetiology of
ADHD in humans is remains scarce, thus future clinical studies are warranted to eluci‐
date this issue.

3. Cortisol

Dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis in ADHD children was pro‐
posed to address the complexity in the pathophysiology of ADHD (Kaneko et al., 1993; Ma
et al., 2011). The HPA axis plays an important role in regulating central nervous system neu‐
rotransmitters and behavior, such as attention, emotion, memory, and learning (Talge et al.,
2007). The function of the HPA axis has typically been assessed by cortisol levels, which can
be measured from a number of sources (saliva, urine, and blood plasma) (Hellhammer et al.,
2009). Low cortisol levels generally reflect under arousal or an elevated threshold for the de‐
tection of stressors (Freitag et al., 2009; Kaneko et al., 1993). Many clinical studies investigat‐
ed cortisol levels in either a stress response or an awakening response (Freitag et al., 2009;
Popma et al., 2006; Stadler et al., 2011; Yang et al., 2007). For example, Popma et al. (2006)
reported that patients with disruptive behavior disorders showed a significantly decreased
cortisol response after a standard public speaking task as compared with the normal con‐
trols. Yang et al. (2007) demonstrated that the magnitude of the increase in cortisol reactivity
to stress was inversely correlated with aggression tendency in patients with ADHD. Freitag
et al. (2009) indicated that ADHD children comorbid with ODD showed a weaker cortisol
awakening response compared to ADHD children without comorbidity and control chil‐
dren. Stadler et al. (2011) reported that ADHD patients scoring high on callous unemotional
traits showed a blunted HPA axis reactivity to the experimentally induced stress. Moreover,
it has also been suggested that the cortisol reactivity to stress at baseline in ADHD patients
could predict treatment effects (van de Wiel et al., 2004), and was associated with the one-
year outcome (King et al., 1998).

On the other hand, some studies aimed to determine the basal level of morning cortisol in
ADHD patients, and to determine the relationship between cortisol levels and ADHD re‐
lated social/behavioral  symptoms or cognition deficit.  Among these,  Schulz et  al.,  (1997)
showed that there was no significant difference in basal cortisol levels between aggressive
and nonaggressive boys with ADHD. In addition, the basal level of morning cortisol was
not  significantly  correlated  with  the  severity  of  ADHD hyperactivity/impulsivity  symp‐
toms (Strous  et  al.,  2001)  and the  performance  in  neuropsychological  test  (Wang et  al.,
2011b). However, there is one study which demonstrated gender differences in the corti‐
sol levels among a community sample of adolescents, which showed that females carry a
positive and males a negative association between cortisol and conduct symptoms (Young
et al., 2012). For ADHD subtypes, Ma et al. (2011) reported that the level of cortisol in the
ADHD group was significantly lower than that of the control group. There was a signifi‐
cant  difference  in  cortisol  levels  between  ADHD  subtypes:  The  level  of  cortisol  of  the
ADHD-predominantly  hyperactive  impulsive  type  was  significantly  lower  than  that  of
ADHD-predominantly inattention type and ADHD-combined type (Ma et al.,  2011). Fur‐
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thermore, a recent meta-analysis revealed that the age of the children significantly moder‐
ated the relation between basal cortisol and externalizing behavior. Externalizing behavior
was associated with higher basal cortisol in preschoolers, and with lower basal cortisol in
elementary school-aged children (Alink et al., 2008).

Regarding with the effects of MPH on cortisol, Weizman et al. (1987) reported that plasma
cortisol levels of ADHD patients increased under acute challenge of MPH; nevertheless, the
effects disappeared when subjects were re-challenged after 4 weeks. Similar effect of acute
challenge MPH for increasing cortisol levels was also observed among normal adults (Joyce
et al., 1986). However, Lee et al. (2008) showed that during a 12-week period, there was no
significant change in cortisol levels in ADHD patients under MPH treatment. In contrast,
Chen et al. (2012) reported that basal plasma cortisol levels were significant increased after
treatment either with MPH or with atomoxetine. Furthermore, our research team showed
that the morning levels of salivary cortisol in the patients with ADHD were significantly in‐
creased from baseline at 1 month after the MPH treatment was started (Wang et al., 2012).
Subsequently, the cortisol levels dropped to an intermediary level that differed from the
baseline and 1-month values. The effects of MPH on the neuroendocrine system were pro‐
posed to result from a combination of noradrenergic and dopaminergic mechanisms (Lurie
& O'Quinn, 1991). The higher concentrations of dopamine and norepinephrine could pro‐
mote the release of corticotropin releasing hormone (CRH) and the adrenocorticotropic hor‐
mone (ACTH) (Biondi & Picardi, 1999). It might be a possible explanation of MPH-induced
cortisol elevation; however, the effect of MPH on cortisol secretion seems to be temporary.
Acute tolerance to MPH has long been reported in the treatment of ADHD in children
(Swanson et al., 1999). It warrants further investigation to clarify whether the transient effect
on cortisol increment shares similar neurobiological mechanisms with the tolerance of MPH.

4. Conclusion

Awareness of the prominent position that the neuroendocrine system has to play in patho‐
physiology of ADHD is increasing. DHEA and DHEA-S are important neurosteroids sub‐
strates which demonstrate a potential correlation to symptoms severity and neurocognitive
function in ADHD patients. MPH, the most therapeutically efficient drugs in

ADHD, exerts its pharmacological effects via increasing the level of the dopamine and nore‐
pinephrine. Extant studies almost identically indicate that MPH administration would lead
to increases in the levels of DHEA or DHEA-S. With regards to other neurosteroids or gona‐
dal hormones, their influence on developing neural circuitry and behavioral systems has al‐
ready been established in animal models. However, many findings noted in animal studies
have yet to be replicated in humans, in particular patients with ADHD. The HPA-axis dys‐
function, which was measured by cortisol levels, has also been indicated to address the com‐
plexity in the pathogenesis of ADHD. Current studies revealed that ADHD patients,
especially for those with higher aggression tendencies or comorbidities, might have lower
levels of cortisol than healthy controls. MPH administration is able to elevate cortisol levels,
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but the effects seem to be temporary. To date, much remains unclear about the complex in‐
teraction between neuroendocrine system, pathophysiology of ADHD and effects of MPH.
Further research at the basic scientific level as well as in the context of double-blinded place‐
bo controlled investigation is mandated to better elucidate the role of neuroendocrine in the
understanding and management of ADHD patients.
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