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1. Introduction 

Wheat (Triticum aestivum L.) is grown in most regions of the globe due to its importance as a 

food source, and its enormous genetic variability in phenological response to photoperiod 

and temperature including vernalization [1]. Argentina is one of the countries with the 

largest wheat-growing area with more than 5 million ha spread all over the country.  

Most of the Argentinean wheat is produced in the Pampean region. This region has a 

temperate humid climate without a dry season and with a warm summer. Precipitation is 

higher in summer than in winter. The rainfall distribution is close to monsoonal in the 

north-west of the Pampas and it tends to an isohigrous pattern at the southeast of Buenos 

Aires, which means that excess or defect of precipitation could appear at any time. The 

temperature regimen for the region shows that June and July are the coldest months and 

January is the hottest. Mean monthly temperatures rarely fall below 7°C and the period of 

free frost ranges between 180 and 260 days. Temperature indices decrease along a north-

south direction, but thermal amplitude also increases from east to west; the frequency and 

intensity of frost increase westward. 

It has an annual rainfall of approximately 600-1000 mm and a mean temperature of 15-17 ° C 

depending on the region, with some differences between the east and the west. Soils in the 

region are mainly mollisols including argiudolls, hapludolls and haplustolls developed on a 

deep mass of Pampean loess [2]. Wheat crops are sown from the second half of May to the 

first half of August. Varieties are classified as long or short season. Long season varieties 

have higher requirements of long photoperiod or days with low temperatures, although 

their requirements in vernalization are not as high as in winter varieties cultivated in other 

countries. Short season varieties have in general low requirements in photoperiod or days 
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with low temperatures, and are similar to some spring varieties. Risk of frost damage at 

flowering is the main climatic factor determining optimum sowing dates for particular 

varieties in the various regions. Optimum seeding rates for long-season varieties may vary 

between 200 to 250 established plants per m2, while short-season varieties tend to be sown 

with seeding rates between 250 to 350 established plants per m2 [3]. 

During grain production, plant species are rotated following different patterns depending 

on the region but the most common cropping system tends to be the double-cropped full-

season-wheat and soybean [Glycine max L. (Merr.)]. The doubled-crop system is usually 

stable and financially convenient, since wheat crop provides a financial return during 

summer and the soybean during autumn and winter.  

The grain production region has experienced severe tillage changes in the past twenty years, 

mostly due to the increased interest in maintaining soils covered with plant residues. This 

has led to implement no tillage systems to restore soil structure in large areas cultivated 

with double-crop sequences such as wheat/soybean; corn (Zea mays L.) - wheat/soybean; or 

wheat monoculture. No tillage is also desirable because of its positive effect on soil organic 

matter, for maintaining soil humidity and to prevent soil erosion [4]. 

No tillage can reduce costs by decreasing fuel consumption required to produce a crop. 

However, in the wheat/soybean system under no tillage, as in wheat following wheat, the 

inoculum of necrotrophic fungi may survive until the next wheat season. Therefore, the use 

of fungicides is essential to decrease the severity of necrotrophic diseases. 

On the other hand, nitrogen (N) fertilization is necessary to achieve high yield and grain 

quality. Even in high soil fertility conditions, N uptake is important because is positively 

correlated to grain protein content [5]. However, N availability may also enhance the 

development of some foliar diseases caused by fungi. Fungicides are usually applied on 

foliage to control diseases but they are also used for seed treatments to prevent seed decay 

(since soil fungicide applications are not a common practice in Argentina).  

2. Wheat yield and quality as affected by foliar diseases 

Foliar diseases caused by fungi are the major biotic limitation on yield and quality on wheat 

[6, 7]. Foliar pathogens reduce yield through reductions in the photosynthesis rate, 

increasing the rate of respiration, and decreasing translocation of photosynthates from 

infected tissue [8, 9]. Photosynthesis of diseased plants is reduced due to the destruction of 

the photosynthetic area. Infected plants usually produce fewer tillers and set fewer grains 

per spike and the grains are smaller, generally shriveled and of poor milling quality. 

Shriveled grains occur because the diseases reduce the dry matter destined to the grain but 

also because the fungi induces earlier maturity of the plant, resulting in decreased time 

available for the grain to fill [10]. Shriveled grains can contribute to impurities, reduced 

flour extraction rates and lower contents of metabolizable energy [11]. 

Foliar pathogens include three diverse groups ranging from poorly specialized necrotroph 

to highly specialized biotroph parasites. The leaf blights are caused by necrotroph and 
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hemibiotroph parasitic fungi that cause tissue death. The most important leaf-blights in 

wheat are tan spot [(Pyrenophora tritici-repentis (Died.) Drechs., Drechslera tritici-repentis 

(Died.) Shoemaker)] and Septoria leaf blotch, caused by Septoria tritici Rob. ex Desm., 

teleomorph Mycosphaerella graminicola (Fuckel) J. Schröt. in Cohn. Tan spot symptoms 

include tan lesions surrounded by a yellow halo on leaves (Fig. 1a), and Septoria leaf blotch 

produce yellowish specks leaf spots that later enlarge, turn pale brown and finally dark 

brown, usually surrounded by a narrow yellow zone (Fig. 1b). Both fungi mentioned before 

can be grown in laboratory conditions. The control of these foliar diseases by genetic 

resistance strategies has been difficult because the pathogens have a high variability 

partially caused by the presence of both asexual and sexual reproduction and because the 

pathogens show a high degree of specialization. Cultivars in Argentina generally are 

moderately susceptible to susceptible with only a few with moderate resistance. Therefore, 

integrated disease management including cultivars with acceptable levels of resistance, crop 

rotation, seed treatments, different cropping and tillage systems, N fertilization 

management and fungicides has been used by growers. Tan spot and leaf blotch can be 

managed by cultural practices such as crop rotation with non-hosts, removal or destruction 

of infested residue, or tillage, which buries infested residue. Seed treatments are usual since 

tan spot and leaf blotch can be seed-transmitted, therefore treating seed with fungicide 

before planting can reduce seed-borne inoculum. 

Together with some other pathogenic fungi (mainly Bipolaris sorokiniana (Sacc.) Schoem., 

teleomorph Cochliobolus sativus (Ito & Kuribayashi) Drechsler ex Dastur and Alternaria spp.), 

tan spot and Septoria leaf blotch form a leaf spot disease complex in Argentina. The 

proportion of each fungus in this complex may vary depending on the environment and 

geographic location [12, 13, 14].  

 

Figure 1. (From left to right): a. Tan spot symptoms caused by Drechslera tritici-repentis on wheat leaves 

[15]. b. Leaf blotch symptoms caused by Septoria tritici [16]. c. Leaf rust symptoms caused by Puccinia 

triticina [17]. 

On the other hand, leaf rust (Puccinia triticina Eriks) is the main foliar disease in Argentina 

caused by a biotroph fungus. It is a very-specialized obligated parasite, thus it cannot be 

cultivated in laboratory conditions. This foliar disease attacks all the aboveground parts of 

wheat plants, especially leaves, and causes numerous rusty, orange spots that rupture the 
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epidermis on wheat leaves (Fig. 1c). Leaf rust may reduce the grain number per plant [18] 

and the grain produced may be of extremely poor quality, as it may be devoid of starch [10]. 

Chemical control is a common practice complemented with cultivars with different levels of 

resistance, usually with a short durability.  

3. Different types of fungicides: Its control mechanisms 

Planting resistant cultivars is one of the least expensive and most effective management 

strategies to prevent diseases. However, cultivars with an adequate genetic resistance level 

to necrotroph foliar diseases are scarce, and usually resistance to leaf rust is complete, 

conditioned by one or a few genes and has low level of durability in Argentina. Therefore, 

chemical protection together with cultural practices is a common method of control. In 

addition, fungicides are also important because Argentinean wheat region combine high 

yield potential cultivars with high infection pressure, both deriving from adequate 

temperature and moisture levels, large application of N fertilizers and rotations dominated 

by cereals, which promote progression of some foliar diseases.  

However, the response varies depending not only on the fungicide but also on the N 

fertilization level, tillage system, foliar disease type and characteristics of the genotypes. The 

relationship between yield loss and disease severity can differ widely between crop 

genotypes [9] and some of them exhibit a smaller yield loss under a given severity of 

infection than others. On the other hand, mechanisms of fungicides to control foliar diseases 

on wheat may vary according to the active ingredient they have. 

Recently, varieties with French germplasm have been introduced or crossed with local 

germplasm to produce new cultivars in Argentina. These cultivars are characterized by high 

yield potential but lower resistance to foliar pathogens as tan spot, leaf blotch and leaf rust 

than the traditional ones. However the increasing adoption by growers of French 

germplasm varieties susceptible to foliar diseases is leading to a higher use of fungicides. 

Triazoles and Strobilurins are the most common systemic fungicides used to control foliar 

diseases on wheat in Argentina. Statistics shown by Campos [2] indicate that 50% of the 

products used in Argentina are triazoles and the remaining 50% consists in mixtures of 

formulations containing triazoles and strobilurins (Fig. 2). Systemic fungicides are absorbed 

through the foliage or roots and are translocated within the plant through the xylem. These 

types of fungicides generally move upward in the transpiration stream and may accumulate 

at the leaf margins [19]. 

Triazoles are characterized by being an active ergosterol inhibitor, which is the major sterol 

in fungi. Sterols derivate from terpenes, and they are an essential part of the fungal cell 

membrane. These molecules are rigid and flat and in its association with the cell membrane 

give them stability, making it less flexible and allowing the permeability control. Ergosterol 

Biosynthesis Inhibitors (EBIs) have become one of the most important groups of fungicides, 

however they may not be effective in controlling Oomycetes because they do not possess the 

ergosterol synthesis via [19]. 
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The EBIs can be divided into: 1,4 α-demethylase inhibitors (DMIs), which includes the azole 

(triazole, imidazole) and pyrimidines; the  ∆ 8,7 isomerase and  ∆1,4 reductase inhibitors 

(morphines and piperazines) and  3-ceto reductase sterol inhibitors (hydroxyanilide). 

The triazoles have been useful to control many foliar diseases. They inhibit the fungus 

dependent enzyme cytochrome P-450 called 1,4α-demethylase involved in the ergosterol 

biosynthesis and consequently affect the permeability of the membrane. However, the mode of 

action may vary relatively between the different active principles within this group. One of the 

most common chemicals commercialized in Argentina containing triazoles is Tebuconazole, 

which is used for seed treatment and foliar and spike applications in cereals [19]. 

The fungi-resistance genetic basis to triazoles is not well known. In many cases it seems to 

be polygenic and observed decreasing effectiveness does not always imply loss of yield 

performance. The triazol group has many benefits such as high antifungal activity, low 

toxicity to other organisms, curative properties, and they are compatible with an integrated 

disease management; however its preventive action is low. That is why they are usually 

used in mixed formulations with other chemical groups to compensate this deficiency. 

 

Figure 2. Most common fungicides used in Argentina. 

On the other hand, strobilurins are a chemical group which act as mitochondrial respiration 

inhibitors (MRIs). The strobilurins are an important class of agricultural fungicides, the 

discovery of which was inspired by a group of natural fungicidal derivatives of β-methoxy-



 

Fungicides – Showcases of Integrated Plant Disease Management from Around the World 8 

acrylic acid [20]. Strobilurins are synthetic derivatives of the Basidiomycete fungus 

Strobilurus tenacellus, which grows on pine wood producing decomposition. This chemical 

group reduces or eliminates competition with other microorganisms that uses wood as a 

source of food. Strobilurins have become a valuable tool for disease management, as this 

group controls Oomycetes, Ascomycetes and Basidiomycetes, the three major groups of 

plant pathogenic fungi in crops. However, strobilurins vary in their levels of activity against 

the different plant diseases and not all of them give high levels of control of all three major 

groups of plant pathogenic fungi [20]. 

Strobilurins mode of action was not considered generating resistance initially; but in recent 

years resistance to this group has been found in different countries on several diseases, 

therefore it is essential to achieve an appropriate disease management to avoid these kind of 

problems [21].  

Strobilurins are mesostemic compounds (except Axozystrobin which is partially systemic), 

which means they possess strong adsorption and cuticle-waxes penetration on leaves. Most 

of the strobilurins are lipophilic and therefore, the active ingredient is moved into the leaf 

and may enter through the cuticle of the lower leaf surfaces. Consequently, the fungicide 

may be found on both leaf surfaces even if only one was treated. This movement may take 

one or a few days and it may move in vapor phase in the air layer adjacent to the leaf 

surface as well. These processes might be especially important in crops with dense canopy 

as in the case of wheat in advanced development stage [19]. Moreover, strobilurins are 

excellent preventive fungicides because they can kill spores. Nevertheless, they are not 

curative fungicides, since strobilurins binds tightly to the leaf cuticle and therefore the 

amount of active ingredient present into the leaf tissue would be lower than in the cuticle, 

being insufficient to control the fungus once it has entered in the plant. Furthermore, the 

germinative spores are more sensitive to the strobilurins than the mycelium and 

consequently the best use of the strobilurins is when they are applied before the infection 

takes place. With this new mode of action the strobilurins are an important addition to the 

existing fungicide range, particularly for cereals in which recent broad-spectrum fungicide 

products have been largely based on sterol biosynthesis inhibitors (EBIs) [22]. Therefore, 

they are generally used in mixtures with triazole fungicides which provides curative power. 

Finally, strobilurins has an ethylene-synthesis-inhibition-property that cause a delay in 

leaves senescence and it may causes higher increases in crop yield than other types of 

fungicides. Wu & von Tiedemann [23] suggested that the fungicide-induced delay of 

senescence is due to an enhanced antioxidative potential protecting the plant from harmful 

active oxygen species. A longer period of photosynthetic active green leaf area has been 

suggested to be the main factor for yield increases obtained with strobilurin fungicides, 

because the increased photosynthetic period would increase the quantity of assimilate 

available for grain filling [22]. 

Strobilurins fungicides have become an integral part of disease-management programs on a 

wide range of crops in many countries of the world. The major reasons for the success of 

strobilurins have varied between individual active ingredients, but have consisted of one or 

more of the following: broad-sprectrum activity, control of fungal isolates resistant to other 

fungicides mode of action, low use-rates and excellent yield and quality [20].  
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4. The use of fungicides in the integrated foliar disease management to 

enhance wheat yield and quality  

Crop potential yield is defined as that attainable yield, when no nutrient or water limitations 

occur, i.e. when incident radiation, temperature and physiological crop genotype 

characteristics determine yield [24]. On the other hand, grain quality has several definitions 

depending on the users; therefore, the end-use quality is vastly diverse [25]. Several factors 

have influence on the severity of the main foliar diseases of wheat, among them resistance of 

the cultivars, tillage systems, N fertilization and fungicide applications. 

Genetic resistance is the basis of the integrated disease management. Plant disease resistance 

can be classified into two categories: qualitative resistance, conferred by a single resistance 

gene (also termed as race non- specific or slow rusting resistance) and quantitative 

resistance, mediated by multiple genes or quantitative trait loci (QTLs) (also termed as race 

non-specific or slow rusting resistance) with each providing a partial increase in resistance 

[26]. Considering the main foliar diseases in wheat during the last decade, 18 major genes 

conferring resistance to the pathogen have been identified for resistance to Septoria tritici. 

They were: Stb1 located on the chromosome 5BL [27], Stb2 on the chromosome 3BS [28], Stb3 

on the chromosome 6DS [29], Stb4 on the chromosome 7DS [30]; Stb5 on the chromosome 

7DS [31]; Stb6 on the chromosome 3AS [32]; Stb7 on the chromosome 4AL [33]; Stb8 on the 

chromosome 7BL [34]; Stb 9 on the chromosome 2B [35], Stb10 on the chromosome 1D [36]. 

Stb 11 on the chromosome 1BS [37], Stb12, on the chromosome 4AL [36], Stb13 on the 

chromosome 7BL [38], Stb14 on the chromosome 3BS [38], Stb15 on the chromosome 6AS 

[39], Stb16 on the chromosome 3D [40], Stb17 on the chromosome 5A [41] and Stb 18 on the 

chromosome 6DS [42]. In addition, several QTL were also found. Eriksen et al. [43] found 

some on chromosomes 2BL, 3AS, 3BL, 6B and 7B. In Argentina resistance was localized in 

several foreign lines [41]  

Considering resistance to tan spot eight races of the pathogen has been characterized based 

on their ability to cause necrosis and/or chlorosis in differential wheat lines [44]. In 

Argentina and in general around the world cultivars with acceptable levels of resistance to 

tan spot and Septoria leaf blotch are scarce. 

Considering leaf rust, more than sixty genes for leaf rust resistance (Lr), most of them major 

or race specific genes, have been catalogued to date in wheat [45, 46]. However, the gene-

for-gene interaction between host resistance genes and pathogen virulence genes combined 

by virulence shifts in pathogen populations have reduced the effectiveness of a significant 

number of major leaf rust resistance genes [47, 48]. Replacement of highly variable land 

races by higher yielding, pure-line varieties in many parts of the world, including the South 

Cone, has further reduced the wheat gene pool and favored virulence shifts events in 

pathogen populations.  

In Argentina using molecular markers, a set of 66 adapted cultivars previously evaluated by 

gene postulation for presence of 15 Lr genes was screened, and eight genes were detected: 

six seedling genes (Lr9, Lr10, Lr19, Lr24, Lr26, Lr47) and two adult plant resistance genes 

(Lr34, Lr37). Genes Lr20, Lr21, Lr25, Lr29, Lr35 (adult plant resistance gene) and Lr51 were 
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not detected in tested cultivars [49]. Resistance in most Argentinean cultivar and around the 

world is conditioned by one or a few genes. 

In the Rolling Pampa region of Argentina, conservation management practices such as no 

tillage are increasing as alternative cropping systems. No tillage systems have been 

implemented to restore soil structure in large areas cultivated with double-crop sequences 

such as wheat (Triticum aestivum L.)/soybean (Glycine max L. (Merr.); corn (Zea mays L.) -

wheat/soybean; or wheat monoculture [50]. Annual wheat/soybean double-crop sequences 

using conventional tillage are considered less desirable because of the effect on soil organic 

matter and the reduced quantity of residue that soybean crops leave after-harvest [51]. In 

the semiarid region of Argentina, conservation management techniques are also necessary 

to prevent soil erosion and effectively store and use the limited amount of precipitation for 

crop production [52]. No tillage can also reduce costs by decreasing fuel consumption 

required to produce a crop [53].  

However, in the wheat/soybean system under no tillage, as in wheat following wheat, the 

inoculum of necrotrophic fungi usually survives until the next wheat season; typically, a 

minimum of one to two years between wheat crops is required to reduce populations of 

these organisms [54]. In no tillage systems, crop residue mineralization is slow. It requires 14 

to 16 months in Brazil [55] but approximately 18 to 32 months in Argentina and Uruguay 

due to lower average temperatures than in Brazil [56, 57]. No tillage may have a different 

effect on plant diseases depending on the soil type, geographic location, environment, and 

the biology of the particular disease-causing organism [58]. 

Tan spot and Stagonospora blotch [Phaeosphaeria avenaria (G.F. Weber) O. Eriksson f. sp. 

triticea T. Johnson, anamorph Stagonospora avenae (A. B. Frank) Bissett f. sp. tritica T. Johnson] 

increased in no tillage systems in wheat monoculture or wheat following fallow, although 

the opposite occurred when wheat followed other crops [59, 60, 61, 62, 63]. In some studies, 

conventional tillage increases crop residue mineralization, reducing fungal inoculum [61, 

64]. However, others [23, 58, 59, 61, 65, 66, 67, 68, 69] reported contrasting results regarding 

the effect of no tillage on necrotrophic wheat diseases, depending on the environment and 

the crop growth stage evaluated (early or late in the season).  

Fungicides are widely used to manage foliar wheat diseases in Argentina and several 

countries [70]. The response to fungicide application depends on the severity of specific 

foliar diseases, cultivar disease resistance or tolerance, management practices, and 

environmental conditions [71, 72, 73]. Fungicides applied at flag leaf and spike emergence of 

winter wheat increased mean grain weight and grain yield when they extended canopy life 

[74]. The green area duration of flag leaf is important because is the last leaf senescing, it 

intercepts more light than lower leaves and it is in closer vascular proximity to spikes than 

lower leaves [75]. Strategies to protect flag leaf and delay the senescence process are 

therefore important to assure not only higher yield but also higher grain quality [76]. 

Gooding [74] found that the effect of fungicides increasing green area duration of the flag 

leaf was associated with increases in yield, thousand grain weight and specific weight. 

Fungicides containing strobilurins to control foliar diseases in wheat are associated in some 
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cases with higher increases in grain yield and grain weight comparing with triazoles. 

Dimmock & Gooding [77] reported that strobilurins prolonged green flag leaf area duration 

and increased mean grain weight significantly more than triazoles. 

Jorgensen and Olsen [67] reported wheat yield increases following fungicide treatments 

ranging from 0.8 to 4.4 Mg ha-1, depending on the amount of infested straw on the soil 

surface,  disease severity and fungicide strategy (type of active ingredient, timing or number 

or applications, rates and method of application). Severe foliar infections before or at 

flowering stage of wheat are extremely damaging and may cause important yield losses, 

whereas when serious infections occur later, the damage to yield is much smaller. 

Increased yields disease management are associated mainly with an increase in thousand 

grain weight [72, 73, 78, 79, 80], while other yield components such as number of spikes.m-2 

[72] or grains.spike-1 [72, 79, 80, 81] are usually not affected by disease severity. However, 

Simón et al. [82] reported that preventing early wheat infection by Septoria tritici could result 

in an increase of spikes.m-2 and grains.spike-1.  

In Argentina, Serrago et al. [83] determined that grain number was not affected by foliar 

diseases when they appeared after anthesis. Grain weight was strongly, poorly or not 

affected by foliar diseases and was not associated individually with both, the sink size and 

the source size. However, when the grain weight increment due to fungicide application 

was plotted against the healthy area absorption per grain, a significant negative association 

was found for the Argentine experiments [83]. When the healthy absorption area per grain 

was corrected by the grain weight potential  all experiments conducted in Argentine and in 

France fit well to a common negative linear regression for the relationship between grain 

weight variation and grain weight potential demonstrating that grain weight potential is an 

important feature to consider in diseases control programs [83]. Foliar diseases forced the 

crop to use the accumulated reserves increasing the utilization rate of the water soluble 

carbohydrates , depleting as a consequence the water soluble content  at physiological 

maturity in all experiments. The association between water soluble carbohydrates and the 

healthy area absorption per grain corrected by grain weight of healthy crops suggests that 

foliar diseases in wheat cause source limitation, forcing to the crop to use the water soluble 

content reserve which could be insufficient to fill the grains previously formed [83].  

Management practices such as N fertilization can also affect the expression of wheat foliar 

diseases [82, 84] and the effectiveness of foliar fungicide application [72, 82, 84, 85]. 

Increasing N rates may cause negative, positive or neutral effect on foliar disease severity, 

depending on the geographic location [86] and the type of disease. The magnitude and 

direction of the influence of N supply on Septoria leaf blotch severity has been studied with 

contrasting results [85, 87, 88, 89]. Simón et al. [82, 84, 90] found that in conducive 

conditions, N fertilization increases the severity of Septoria leaf blotch and discussed the 

effect of different factors affecting the influence of N supply. Increasing N rates retarded tan 

spot development [66, 69, 73, 91, 92, 93, 94]. However, Bockus and Davis [95] suggested that 

N applications do not directly affect tan spot severity, but rather appear to reduce disease 

impact through delayed leaf senescence or that high N rates increase Septoria leaf blotch or 
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tan spot severity due to an increase in crop biomass production, which creates a micro-

environment conducive to fungal development in humid regions [82, 84, 85, 96, 97]. In 

addition, experiments carried out in Argentina indicated that yield increase and increase in 

yield components due to application of tebuconazole was similar in fertilized and non 

fertilized conditions, despite the increase in the area under disease progress curve under N 

fertilization [82]. 

Biotrophic pathogen such as leaf rust also causes important diseases in wheat. N fertilization 

usually increases the severity of this disease [98, 99, 100].  

Using cultivars with good behavior to tan spot, optimizing N rates and fungicide 

applications would reduce yield losses compared to non fertilized plots planted with 

susceptible cultivars. Results of some experiments carried out in Argentina addressing this 

question are presented. Those experiments showed that no tillage often leads to wheat yield 

losses from diseases caused by necrotrophic foliar pathogens. Conventional tillage reduced 

foliar disease severity caused mainly by tan spot at GS 23 [101] by 46 and 56% and the area 

under disease progress curve (AUDPC) [102] by 20 and 14% for each season, respectively 

compared with no tillage (Table 1). Fungicide and N application reduced disease severity at 

GS 23 by 35 and 34% respectively, on average over two seasons (Table 1) Disease was less 

severe in no tillage plots which received a fungicide compared to conventional tillage plots 

that were not treated with fungicide. Application of 160 kg ha-1 N increased crop biomass by 

71% at GS 23 and 57% at GS 83 averaged over two seasons compared to plots that received 

no nitrogen. N fertilization treatments decreased the AUDPC 17.2% and 23.5%, and 

fungicide input reduced the disease severity 37.6% and 24.7% in each season. It is 

remarkable that AUDPC was reduced with N160 as much as with fungicide applications in 

one of the years (Table 1).  

Fungicides increased yield by 9% on average of both years. The increased yield resulted 

from increases in spikes.m-2 and thousand grain weight in two seasons, and also from 

grain.spike-1 in one season [94] (Table 2). 

Experiments were also carried out in Argentina with artificial early inoculation with Septoria 

tritici to investigate how N supply influences the disease severity, yield and yield 

components. In one of the years, with weather conditions conducive to the disease, AUDPC 

values were higher in the fertilized treatment. In another year with insufficient rain 

immediately after inoculation, the disease only progressed faster under N fertilization in the 

flag leaf, which was exposed to conducive environmental conditions from its appearance. 

The effect of N fertilization was influenced by the cultivar characteristics, climatic, and 

agronomic conditions (Table 3). Knowledge that N fertilization promotes the development 

of Septoria tritici blotch in conducive conditions will be useful for deciding management 

strategies of the cultivars and for optimizing conditions for the selection in breeding 

programmes. Considering yield and yield components, additional N increased yield, 

spikes.m-2 and grains.spike-1, but not thousand kernel weight or test weight. The percentage 

reduction in yield, yield components and test weight due to inoculation was similar in 

fertilized and non-fertilized conditions, despite the increase in the AUDPC values by N 

fertilization (Table 4). 
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AUDPC; area under disease progress curve, GS, growth stage  

LSD (P=0.05) for significant interactions:LSD  interaction T x F severity GS 23, 2002=5.82 

Table 1. Means for the interactions of cultural practices on foliar disease intensity and wheat biomass over two season at Los Hornos, La Plata, 

Argentina 
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Table 2. Means for the interactions of cultural practices on yield and yield components of wheat over two seasons, at Los Hornos, La Plata, 

Argentina 
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 Year 1 Year 2

 ---------------------------------------------------AUDPC----------------------------------------------------------------------- 

 

Cultivar 

With

fertilizer

Without 

fertilizer

Average With fertilizer Without 

fertilizer

Average 

Buck Ombú 723 ay (812)x 634 a (702) 679z E (757) 343 a (351) 370 a (380) 356 B (365) 

Don Ernesto 428 a (459) 237 b (273) 332 B (366) 362 a (370) 286 a (295) 324 AB (333) 

Klein Centauro 505 a (330) 466 a (272) 486 C (301) 420 a (489) 374 a (445) 397 B (467) 

Klein Dragón 265 a (231) 85.3 b (96) 175 A (163) 222 a (246) 258 a (268) 240 A (257) 

PROINTA 

Federal 

313 a (343) 169 b (205) 241 A (274) 382 a (391) 332 a (342) 357 B (366) 

PROINTA 

Verde 

721 a (778) 423 b (472) 572 D (625) 406 a (292) 336 a (225) 371 B (258) 

Averages 492 a 336 b 357 a 326 a  

Means are adjusted by heading date as a covariant.  
x Unadjusted values. y Means followed by the same letter in the same row within the same year are not significantly 

different, LSD (P=0.05). z Means followed by the same letter in the average columns within the same year are not 

significantly different, LSD (P=0.05). 

Table 3. Means of the AUDPC of Septoria tritici blotch on six wheat cultivars under two nitrogen 

fertilisation treatments in two years. 

 
 Year 1 Year 2   

 With fertilization Without 

fertilization

With fertilization Without fertilization   

Cultivar With 

inocula-

tion 

Without 

inocula-

tion

With 

inocula-

tion

Without 

inocula-

tion

With 

inocula- 

tion

Without 

inocula-

tion

With 

inocula-

tion

Without 

inocula-

tion

Average 

1996 

Average 

1997 

 Kg.ha-1 

Buck Ombú 5305 (38.1)† 8579 4501 (44.9) 8166 5097 (31.3) 7423 4822 (30.6) 6951 6638 6074 

Don Ernesto 6521 (26.3) 8852 4949 (32.0) 7251 5157 (27.0) 7062 4176 (29.5) 5925 6888 5580 

Klein 

Centauro 

6835 (18.6) 8400 5836 (20.8) 7371 7413 (19.5) 9213 5961 (22.0) 7644 7111 7558 

Klein Dragón 9325 (16.6) 11175 6974 (17.7) 8474 6512 (20.8) 8223 5798 (23.5) 7508 8987 7029 

PROINTA 

Federal 

6524 (25.3) 8744 4713 (31.6) 6888 5035 (28.2) 7015 4760 (27.0) 6525 6717 5834 

PROINTA 

Isla Verde 

6550 (31.4) 9542 5252 (31.5) 7661 4950 (28.0) 6879 4550 (28.0) 6321 7251 5675 

Average 

Cultivar 

6843 (25.7) 9215 5367 (29.7) 7635 5694 (25.4) 7636 5011 (26.6) 6824 7265 6291 

Average 

fertilization 

   

With 8029 6665   

Without 6501 5918   

Average 

inoculation 

   

With 6185 5353   

Without 8425 7230   

LSD cultivars 249.0 906.8   

LSD 

fertilization 

522.9 598.6   

LSD 

inoculation 

721.0 306.6   

† Percentage of reduction relative to the non-inoculated control are given in parenthesis. 

Table 4. Means of yield per hectare for six wheat cultivars under two nitrogen fertilization conditions 

and two inoculation treatments with Septoria tritici. 
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Further experiments were also carried out in Argentina comparing the effect of N 

fertilization and fungicides on the severity caused by tan spot, Septoria leaf blotch and leaf 

rust and on the yield of wheat in the same environment [103]. Results indicated that there 

was a three way interaction pathogen × N fertilization × fungicide. This interaction was 

caused by the fact that tan spot severity decreases with N fertilization, but increases for 

Septoria leaf blotch and leaf rust (Fig. 3, 5, 7). The application of N fertilization did not 

reduce severity of tan spot as much as fungicide application. Fungicides (Nativo: 

combination of triazoles and strobilurins) were effective in controlling the three foliar 

diseases, but mainly leaf rust. In addition the control produced by the fungicide was higher 

when the severity increases. With similar severity values, the control produced by the 

fungicides was similar for all N treatments. Yield was increased by fungicide application 

20% and by N fertilization by 27.5% when the pathogen inoculated was Septoria tritici (Fig. 

4) and by 10.3% and 18.6% when the pathogen inoculated was Drechslera tritici-repentis (Fig. 

6) On the contrary, when the pathogen inoculated was Puccinia triticina, fungicides caused 

the higher increase in yield (19.2%), whereas the increase due to N fertilization was 9.2% 

(Fig. 8). 

Grain quality in wheat is a complex of different traits deeply influenced by genotypic and 

environmental factors. The baking market requires flour for different types of products, e.g. 

mechanized bread, artisan bread, baguette, flat breads, steamed bread, biscuits, crackers, 

pasta, noodles, etc. Although varieties are assigned to quality groups when they are 

registered to be commercialized, the final product after growing and harvesting is not 

always adequately classified for commercialization. 

 

Figure 3. Means of fungicide x fertilizer interaction of disease severity (%) on a trial inoculated with 

Septoria tritici with three nitrogen levels, four fungicide treatments and two cultivars in two years.  
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Figure 4. Means of fungicide x fertilizer interaction of grain yield in wheat (kg.ha-1) on a trial 

inoculated with Septoria tritici with three nitrogen levels, four fungicide treatments and two cultivars 

in two years. 

 

 

Figure 5. Means of fungicide x fertilizer interaction of disease severity (%) caused by Drechslera tritici-

repentis in GS 82 on a trial with three nitrogen levels, four fungicide treatments and two wheat cultivars 

in two years. 
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Figure 6. Means of fungicide x fertilizer interaction of grain yield in wheat (kg.ha-1) on a trial 

inoculated with Drechslera tritici-repentis with three nitrogen levels, four fungicide treatments and two 

cultivars in two years. 

 

 

Figure 7. Means of fungicide x fertilizer interaction of disease severity (%) caused by Puccinia triticina in 

GS 82 on a trial with three nitrogen levels, four fungicide treatments and two wheat cultivars in two 

years. 

 



Recent Advances on Integrated Foliar  
Disease Management with Special Emphasis in Argentina Wheat Production 19 

 

Figure 8. Means of fungicide x fertilizer interaction of grain yield in wheat (kg.ha-1) on a trial 

inoculated with Puccinia triticina with three nitrogen levels, four fungicide treatments and two cultivars 

in two years. 

The main quality characteristics for the wheat utilization are flour extraction (milling yield), 

flour protein concentration and rheological-breadmaking properties. The behavior of dough 

is strongly linked to the type and amount of protein present in flour, and hence the 

concentration of protein in the wheat grain at harvest. Grain protein concentration is 

positively associated with breadmaking quality, particularly to loaf volume [104]. In most 

production systems there is a negative relationship between yield and grain protein 

concentration. Nevertheless, this does not imply that higher grain protein cannot be 

obtained at high-yield levels. At low N rates of fertilization (Fig. 9), yield increases 

asymptotically, i.e. the response of starch accumulation is greater than protein content (zone 

1) [105]. The first increments of N tend to increase yield but decrease protein percentage, 

resulting in the frequently reported negative relationship between grain yield and protein 

percentage (zone 1). After a certain level of N is attained, the response of starch and protein 

accumulation has a different response (zone 2). At these N fertilization levels, additional N 

results in a lower yield increase regarding the previous N doses (but still positive), and a 

comparatively higher increase in protein percentage. Finally, with higher amounts of N, the 

crop reaches a third region of response (zone 3), where maximum yield may be attained. At 

this point, additional fertilizer does not affect the amount of starch in the grain, but increases 

protein content (Fig. 9). On the other hand, different genotypes generate different protein 

concentrations in grain, depending on N rates fertilization and how efficiently they absorb 

and use N for yield generation . The increase in grain protein content under high N 

fertilization conditions results in greater synthesis and accumulation of storage protein 

(gliadins and glutenins), which are the gluten forming proteins [106]. Gluten proteins are 

the major determinant of the processing properties of wheat dough, by conferring 

viscoelasticity, which is essential for breadmaking process. 
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Figure 9. Diagrammatic representation of the response of yield and protein percentage to nitrogen 

fertilizer [105]. 

Little attention has been given to foliar diseases impact on milling and baking quality and to 

the interactions of disease severity × cultivar on the wheat quality. These effects are more 

significant when strobilurins are applied due to the prolongation of the green flag leaf area 

duration compared with triazoles. Flag leaf photosynthesis in wheat contributes about 30-

50% for grain filling [77], and longevity of the flag leaf promoted by strobilurins affects 

concentration of protein in the grain.  

Gooding [74] reported fungicide effects on crude protein concentration depending on 

cultivar and disease control. The effect of foliar diseases on protein content may vary 

depending on foliar disease type. When biotrophic fungal pathogens such as leaf rust affects 

wheat, the protein concentration usually decreases, (i.e. the pathogen causes more damage 

on the accumulation and partitioning of N in the grain than on the accumulation and 

partitioning of dry matter) leading to a modification of the rheological properties of flour [74, 

79, 107]. On the other hand, when wheat is affected by necrotrophic pathogens as tan spot, 

protein concentration increases [108]. Finally, hemibiotrophic pathogens such Septoria leaf 

blotch may cause both effects, depending on the genotype and environmental conditions. 

Controlling Septoria leaf blotch usually reduced protein concentration [79]. Liaudat [109] 

found increases in protein concentration when severity of Septoria leaf blotch increases. In the 

same study, the disease control with fungicide produced decreases in protein concentration 

and this reduction was more significant when strobilurins were applied.  

5. The effect of fungicides on mycorrhizae 

Arbuscular mycorrhizal fungi (AMF), which form symbiotic associations with root systems 

of most agricultural species, have been suggested as widespread potential bioprotective 

agents, inducing local and systemic resistance to some diseases. The knowledge of these 

fungi populations could also be an interesting contribution for the integrated disease 

management. Arbuscular mycorrhizae are associations between fungi that belong to the 
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phylum Glomeromycota [110] and most plant species [111]. Whereas there are numerous 

studies on the biocontrol effect of arbuscular mycorrhizae, there are relatively few on the 

effects of fungicides on these beneficial associations.  

Arbuscular mycorrhizae are considered beneficial to plants, although their positive effects 

are variable because mycorrhizal symbioses reflect complex interactions among the plant, 

the fungi, and the environment [112, 113]. In agriculture, research dealing with mycorrhizal 

fungi is valuable both for determining appropriate management strategies and as a 

background to achieve successful inoculations [114]. The interaction between the fungus 

and its host plant mainly consists of nutrient transfer (the plant provides the arbuscular 

mycorrhizal fungi with photosynthates while the fungus delivers nutrients to the plant). The 

increased nutrient uptake from the soil, particularly of phosphorus and nitrogen, is the main 

benefit attributed to mycorrhizal symbiosis [115, 116]. However, other benefits are 

enhancement of resistance to root parasites [117], improvement of drought tolerance [118] 

and mitigation of environmental stresses such as salinity [119]. Another important role 

attributed to arbuscular mycorrhizal fungi is improving soil stability, which may diminish 

erosion [120, 121, 122, 123]. Recent studies have found evidences of bioprotectional effect of 

arbuscular mycorrhizal fungi against fungal pathogen, mainly those causing soil-borne 

diseases [124, 125, 126]. Arbuscular mycorrhizal fungi may control plant pathogens or 

contribute to activate plant defence responses through direct or indirect mechanisms, such 

as: improving plant nutrition and damage compensation [115], anatomical alterations in the 

root system [127], microbial changes in the rhizosphere and enhancing the attenuated plant 

defence responses by altering the host’s signalling pathways [128]. Nevertheless, the 

knowledge about the induction of plant defence responses, the genetic, biochemical and 

signalling factors, their mechanisms and pathways involved, is still low [129].  

The studies related to the effect of arbuscular mycorrhizal fungi on reduction of root 

diseases produced by fungi have mainly focused on those rots produced by species of 

Phythium, Phytophtora, Fusarium, Verticillium, Pyrenochaeta, Gaeumannomyces, Sclerotium, and 

Rhizoctonia [130]. Regarding foliar diseases, Gernns et al. [131] reported a compensation 

mechanisms between mycorrhizal plants and biotrophic fungal diseases. They found that 

mycorrhizal barley-plants were more susceptible to the obligate biotrophic shoot pathogen 

Erysiphe graminis f. sp. hordei, however, mycorrhizal plants suffered less than non-

mycorrhizal plants in terms of grain number, spikes yield and thousand-grain weight. As 

mentioned before, other bioprotective effect of arbuscular mycorrhizal fungi on wheat is 

that found against take-all disease caused by Gaeumannomyces graminis [132, 133].  

On the other hand, little is known about the effect of fungicides on mycorrhizal colonization, 

sporulation or spore germination. The effect of fungicide on arbuscular mycorrhizal fungi 

may be direct on the fungal growth or indirect, through changes in the physiology of the 

host plant, reductions in the disease levels and/or modifications in the soil environment. 

Considering the fungal component of mycorrhizal plants, is reasonable to infer that some 

fungicides might affect mycorrhizal colonization. Fungicides comprise a huge variety of 

compounds that differ in their effect on the host physiology, mode of action, spectrum of 

activity, application methods and formulation. Several studies have shown that fungicides 
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can affect mycorrhizal associations in a negative, neutral or even in a positive manner [134]. 

Consequently, it is difficult to generalize about the effects of fungicides on arbuscular 

mycorrhizal fungi. It is fundamentally important to distinguish the foliage fungicide 

applications, to those which are directed to the soil, or those which are applied on seeds.  

In field crops, in the Pampas region, the application of fungicides to the soil is not usual. 

However the so-called "seed treatment" make contact with soil, and then, direct effects of 

fungicides on the external hyphae and / or spores impacting the functionality of the 

symbiosis are expected. Thiram is one of the classic fungicides used for seed treatments, 

with preventive and contact action, belonging to the dithiocarbamate group. Inhibitory 

effects on root colonization and spore production of dithiocarbamates applied as soil or seed 

treatments have been widely reported in the literature [135, 136, 137, 138]. Among the 

triazole compounds, triadimenol is widely used for seed treatments in wheat. Triazoles act 

as inhibitors on the biosynthesis of ergosterol, a major component of fungal 

membranes. Since the relative amount of ergosterol in the Glomeromycota is low compared 

to other groups of fungi, the negative effect of triazole application on arbuscular 

mycorrhizal fungi is generally low [139, 140]. The active ingredient metalaxyl is a widely 

used systemic seed treatment used for different crops. It has been found that metalaxyl 

applications increased mycorrhizal colonization and plant growth [141, 142]. This fungicide 

is specific controlling plant pathogenic oomycetes, and has no effects on other groups of 

fungi. Therefore, it has been suggested that its favorable effect on mycorrhizal colonization 

is primarily indirect, through reductions in populations of antagonistic organisms to 

arbuscular mycorrhizal fungi [143]. However, Giovannetti et al. [137] documented direct 

effects of this fungicide, since the application of metalaxyl stimulated spore germination and 

hyphal growth in the pre-symbiotic phase of Glomeromycota in vitro. Although these 

studies show interesting trends, conditions of sterile culture media are markedly different to 

those occurring in field soil, because of a large number of factors, including fungicide 

absorption by the soil. Within the classical fungicides for seed treatment, which are being 

gradually replaced by modern ones, there are those belonging to the group of benzimidazoles 

such as benomyl and carbendazim. Benomyl and other benzimidazoles decompose to methyl 

benzimidazole carbamate (carbendazim), and the latter compound interferes with the division 

of the nuclei of sensitive fungi. The deleterious effect of benomyl or carbendazim (the latter 

still used in seed treatment) on the arbuscular mycorrhizal fungi is widely known. 

Benzimidazoles specifically bind to beta-tubulin, thereby inhibiting the tubulin function, 

which is crucial for fungal growth [144, 145, 146, 147, 148]. Venedikian et al. [149] found that 

mycorrhizal colonization may be less inhibited by carbendazim applications than spore 

germination and hyphal growth in agar medium. This suggests that different growth phases of 

these fungi can tolerate different fungicide concentrations [150, 151, 152]. 

Regarding fungicide foliar applications, negative effects of triazole at high doses or repeated 

applications on mycorrhizal colonization have been reported [153, 154]. However, in a 

wheat crop in Argentina, Schalamuk et al., 2011 (unpublished) found that triazole 

applications did not reduce mycorrhizal colonization. When considering the evaluation of 

the effects of foliar fungicides on arbuscular mycorrhizal fungi it should be taken into 
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account not only the effect of the compound per se, but also the reduction in disease 

generated by increasing green leaf area and photosynthate supply to the roots . On the other 

hand, the strobilurins group, with mesostemic and trans-laminar action, is rapidly 

spreading in the Argentinean agricultural region. Fungicides of this group possess a broad-

spectrum action, inhibiting mitochondrial respiration. Diedhiou et al. [154] found that 

strobilurins, despite its broad spectrum, did not negatively affect mycorrhizal colonization 

of crops when applied to control foliar pathogens at recommended doses. Schalamuk et al. 

[155] found similar results in wheat. Since the mode of action of this group of foliar 

fungicides is not fully systemic, it is questionable if strobilurin applications would present a 

detrimental effect on arbuscular mycorrhizal fungi.  

Concerning the effect of fungicide application on the diversity of Glomeromycota, the 

information on this topic is low, although it is recognized that there are differences in 

sensitivity to fungicides among different groups or isolates among Glomeromycota taxa 

[150].  

6. Conclusions 

The grain production region has experimented severe tillage changes in the past twenty 

years in Argentina, mostly due to the increased interest in maintaining soils covered with 

plant residues and the increase used of N fertilization necessary to achieve high yield and 

grain quality. 

In the wheat/soybean system under no tillage, as in wheat following wheat, the inoculum of 

necrotrophic fungi usually survives until the next wheat season. Therefore, the use of 

fungicides is essential to decrease the severity of necrotrophic diseases. 

The results of experiments carried out in Argentina indicates that sowing wheat following 

wheat in no tillage is possible without significant yield losses if effective disease 

management practices including moderately resistant cultivars, N fertilization and 

fungicides are applied. 

N fertilization increases the severity caused by leaf rust whereas decreases the severity 

caused by tan spot 

Increased yields by disease management are associated mainly with an increase in thousand 

grain weight  while other yield components such as number of spikes.m-2 or grains.spike-1 

are usually not affected by disease severity. However, preventing early wheat infection by 

Septoria tritici could result in an increase of spikes.m-2 and grains.spike-1.  

Some studies determined that grain number was not affected by foliar diseases when they 

appeared after anthesis. Grain weight was strongly, poorly or not affected by foliar diseases 

and was not associated individually with both, the sink size and the source size. However, 

when the grain weight response due to fungicide application was plotted against the 

healthy area absorption per grain, a significant negative association was found for the 

Argentine experiments. 
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Further experiments carried out in Argentina with wheat cultivars inoculated with the 

causal agent of tan spot or Septoria leaf blotch or leaf rust determined that there was an 

interaction pathogen × N fertilization × fungicide. This interaction was caused by the fact 

that tan spot severity decreases with N fertilization, but increases for Septoria leaf blotch 

and leaf rust. Fungicides (combination of triazoles and strobilurins) were effective in 

controlling the three foliar diseases, but mainly leaf rust. In addition the control produced 

by the fungicide was higher when the severity increases. 

It is difficult to generalize about the effects of fungicides on arbuscular mycorrhizal fungi, 

because they may have positive, negative or neutral effects. In a wheat crop in Argentina it 

was found that neither triazole nor strobilurins applications reduce mycorrhizal 

colonization. 

Further studies should be done with different cultivars to determine the effect of tolerance 

and its control mechanisms, in addition to N fertilization and fungicide applications on 

yield and quality when wheat is affected by necrotrophic or biotrophic pathogens. 

Furthermore, field experiments on the effect of fungicides on mycorrhizal fungi in wheat in 

Argentina are recent and should be intensified. 

Author details 

María Rosa Simón 

Cerealicultura, Department of Agricultural and Forestry Technology,  

National University of La Plata, La Plata, Argentina 

María Constanza Fleitas and Santiago Schalamuk 

Cerealicultura, Department of Agricultural and Forestry Technology,  

National University of La Plata, La Plata, Argentina 

CONICET, Argentina 

7. References 

[1] Slafer GA, Rawson HM (1994) Sensivity of wheat phasic development to major 

environmental factors: A re-examination of some assumptions made by physiologists 

and modellers. Australian Journal of Plant Physiology. 21: 393-426. 

[2] Campos M (2008) Variedades y modelos generales de producción en el movimiento 

CREA. In: Satorre E, editor. Producción de Trigo. CREA. pp. 73-118. 

[3] Satorre E, Slafer GA (1999) Wheat production systems of the pampas. In: Satorre E, 

Slafer GA, editors. Wheat: ecology and physiology of yield determination. Food 

Product Press. pp. 333-348. 

[4] Trigo E, Cap E, Malach V, Villarreal F (2009) The case of zero-tillage technology in 

Argentina. International Food Policy Research Institute, Discussion Paper. 40 p.  

[5] Stone PJ, Savin R (1999) Grain quality and its physiological determinants. In: Satorre E, 

Slafer GA, editors. Wheat: ecology and physiology of yield determination. Food 

Product Press. pp. 85-119.  



Recent Advances on Integrated Foliar  
Disease Management with Special Emphasis in Argentina Wheat Production 25 

[6] Serrago RA, Miralles DJ, Bancal MO (2005) Foliar diseases in wheat: effect on biomass 

generation and in its physiological components. 7th International Wheat Conference. 27 

de Noviembre al 2 de Diciembre, Mar del Plata, Argentina. pp 308. 

[7] Ermácora CM (2008) Principales enfermedades en trigo: Criterios para su manejo y 

control. Satorre E, editor. Producción de Trigo. CREA. pp. 51-58. 

[8] Scholes JD, Rolfe SA (1995) How do biotrophic pathogens affect the photosynthetic 

metabolism of their host? In: Walters ER, editor. Physiological responses of plants to 

pathogens: Aspects Applied Biology. pp. 91-99. 

[9] Binghan IJ, Walters DR, Foulkes MJ, Paveley ND (2009) Crop traits and the tolerance of 

wheat and barley to foliar disease. Annals of  Applied Biology. 154: 159-173. 

[10] Agrios GN (2005) Plant Pathology. 5th Edition. 922 p. 

[11] Gooding MJ, Davies WP (1997) Wheat production and utilization: systems, quality and 

the enviroment. Wallingford: CAB International. 

[12] Perelló A, Cordo C, Simón MR (1996) A new disease of wheat caused by Alternaria 

triticimaculans in Argentina. Agronomie. 16: 107-112. 

[13] Perelló A, Moreno MV (2004) Relevamiento de enfermedades foliares del trigo e 

identificación de sus agentes causales. VI Congreso Nacional de Trigo y IV Simposio 

Nacional de Cultivos de Siembra Otoño-Invernal, Bahía Blanca, Argentina. 20-22 

October 2004. pp. 257-258. 

[14] Perelló A, Sisterna M (2006) Leaf blight of wheat caused by Alternaria triticina in 

Argentina. Plant Pathology. 55: 303. 

[15] Wegulo SN (2011) Tan spot of cereals. The plant health instructor. In: The American 

Phytopathology Society Net. Available:  

http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/TanSpot.aspx. 

Accessed: 2012 Mar 25. 

[16] Ponomarenko A, Goodwin SB, Kema GHJ (2011) Septoria tritici blotch (STB) of 

wheat. Plant health instructor. In: The American Phytopathology Society Net. 

Available: http://www.apsnet.org/edcenter/intropp/ lessons/ fungi/ascomycetes/Pages/ 

Septoria.aspx. Accessed: 2012 Mar 25. 

[17] Crop Compendium (2012) Bayer Crop Science. Available: http://compendium. bayer 

cropscience.com/bayer/cropscience/cropcompendium/bcscropcomp.nsf/id/Puccinia 

triticina.htm. Accessed: 2012 Mar 25. 

[18] Windauer LB, Gil A, Guglielmini AC, Benech-Arnold RL (2003) Bases para el control y 

manejo de enfermedades en cultivo para granos. In: Satorre EH, Benech-Arnold RL, 

Slafer G, de la Fuente EB, Miralles DJ, Otegui ME, Savin R, editors. Producción de 

Granos. pp. 651-683. 

[19] Arregui MC, Puricelli E (2008) Mecanismos y modo de acción de fungicidas. Dow 

Agroscience. 208 p. 

[20] Bartlett DW, Clough MJ, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) 

Review, the strobilurin fungicides. Pest Management Science. 58: 649-662. 

[21] Heaney SP, Hall AA, Davies SA, Olaya G (2000) Resistance to fungicides in the QoI-

STAR cross-resistance group: current perspectives. In: Proceedings BCPC Conference: 

Pest and Diseases, Famham, Surrey, UK. pp. 755-762. 



 

Fungicides – Showcases of Integrated Plant Disease Management from Around the World 26 

[22] Bertelsen JR, de Neergaard E, Smedegaard-Petersen V (2001) Plant Pathology. 50: 190-

205. 

[23] Wu YX, Von Tiedemann A (2001) Physiological effects of azoxystrobin and 

epoxiconazole on senescence and the oxidative status of wheat. Pesticide Biochemistry 

& Physiology. 71:1-10. 

[24] Menéndez FJ, Satorre EH (2005) Evaluating wheat yield potential determination in the 

Argentine Pampas. 7th International Wheat Conference. 27 de Noviembre al 2 de 

Diciembre, Mar del Plata, Argentina. pp. 297. 

[25] Zamora MS, Carrasco N, Molfese M, Seghezzo ML, Miravalles M (2005) Effect of 

Environment and Genotype on Quality traits of Bread Wheat. 7th International Wheat 

Conference. 27 de Noviembre al 2 de Diciembre, Mar del Plata, Argentina. pp. 282. 

[26] Kou Y, Wang S (2010) Broad-spectrum and durability: Understanding of quantitative 

disease resistance. Current Opinion in Plant Biology. 13 (2):181-185.  

[27] Adhikari TB, Yang X, J. R. Cavaletto JR, Hu X, Buechley G, Ohm HW, Shaner G, 

Goodwin SB (2004) Molecular mapping of Stb1, a potentially durable gene for 

resistance to Septoria tritici blotch in wheat, Theoretical and Applied Genetics.109 (5): 

944–953.  

[28] Adhikari TB, Cavaletto JR, Dubcovsky J, Gieco JO, Schlatter AR, Goodwin SB (2004) 

Molecular mapping of the Stb4 gene for resistance to Septoria tritici blotch in wheat, 

Phytopathology. 94 (11):1198–1206. 

[29] Goodwin SB (2007) Back to basics and beyond: increasing the level of resistance to 

Septoria tritici blotch in wheat. Australian Plant Pathology. 36 (6):532–538 

[30] Adhikari TB, Wallwork H, Goodwin SB (2004) Microsatellite markers linked to the Stb2 

and Stb3 genes for resistance to Septoria tritici blotch in wheat. Crop Science, vol. 44, no. 

4, pp. 1403–1411,  

[31] Arraiano LS, Worland AJ, Ellerbrook C, Brown JKM (2001) Chromosomal location of a 

gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid 

wheat ’Synthetic 6x’. Theoretical and Applied Genetics. 103 (5): 758–764. 

[32]  Brading PA, Verstappen ECP, Kema GHJ, Brown JKM (2002) A gene-for-gene 

relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch 

pathogen. Phytopathology. 92 (4): 439–445. 

[33] Lovell DJ, Parker SR, Hunter T, Royle DJ, Coker RR (1997) Influence of crop growth and 

structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter 

wheat. Plant Pathology. 46 (1): 126–138. 

[34] Adhikari TB, Anderson JM, Goodwin SB (2003) Identification and molecular mapping 

of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology. 

93 (9): 1158–1164. 

[35] Chartrain L, Sourdille P, Bernard M, Brown JKM (2009) Identification and location of 

Stb9, a gene for resistance to Septoria tritici blotch in wheat cultivars courtot and tonic,” 

Plant Pathology. 58 (3): 547–555. 

[36] Chartrain L, Berry ST, Brown JKM (2005) Resistance of wheat line Kavkaz-K4500 

L.6.A.4 to Septoria tritici blotch controlled by isolate-specific resistance genes. 

Phytopathology. 95 (6): 664–671. 



Recent Advances on Integrated Foliar  
Disease Management with Special Emphasis in Argentina Wheat Production 27 

[37] Chartrain L, Joaquim P, Berry ST, Arraiano LS, Azanza F, Brown JKM (2005) Genetics of 

resistance to Septoria tritici blotch in the Portuguese wheat breeding line TE 9111. 

Theoretical and Applied Genetics.110 (6): 1138–1144. 

[38] McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Somers DJ, 

Anderson OA (2007) V Catalogue of gene symbols for wheat Supplement. 

http://wheat.pw.usda.gov/ggpages/wgc/2007upd.html. Accessed: 2012 Jul 25. 

[39] Arraiano LS, Chartrain L, Bossolini E, Slatter HN, Keller B, Brown JKM (2007) A gene in 

European wheat cultivars for resistance to an African isolate of Mycosphaerella 

graminicola. Plant Pathology. 56 (1): 73–78. 

[40] Ghaffari SMT, Faris JD, Friesen TL, Visser RGF, van der Lee TAJ, Robert O, Kema GHJ 

(2011) New broad-spectrum resistance to Septoria tritici blotch derived from synthetic 

hexaploid wheat. Theoretical and Applied Genetics. 124 (1) 125–142. 

[41] Simón MR, Ayala FM, Cordo CA, Roder MS, Borner A (2004) Molecular mapping of 

quantitative trait loci determining resistance to Septoria tritici blotch caused by 

Mycosphaerella graminicola in wheat. Euphytica, 138 (1): 41–48. 

[42] Ghaffari SMT, Robert O, Laurent V, Lonnet P, Margalé E, van der Lee TAJ, Visser RGF, 

Kema GHJ (2011) Genetic analysis of resistance to Septoria tritici blotch in the French 

winter wheat cultivars Balance and Apache. Theoretical and Applied Genetics.123 (5): 

741–754. 

[43] Eriksen L, Borum F, Jahoor A (2003) Inheritance and localisation of resistance to 

Mycosphaerella graminicola causing Septoria tritici blotch and plant height in the wheat 

(Triticum aestivum L.) genome with DNA markers. Theoretical and Applied Genetics. 

107 (3): 515–527. 

[44] Lamari L, Strelkov SE, Yahyaoui A, Orabi J, Smith RB (2003) The identification of two 

new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-

to one relationship in tan spot of wheat. Phytopathology. 93: 391-396. 

[45] Mcintosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Somers DJ, 

Anderson OA (2008) Catalogue of gene symbols for wheat: 2008 Supplement. Annual 

Wheat Newsletter. 54: 219 p. 219. Available from Internet: http://wheat.pw.usda.gov/ 

ggpages/wgc/2008upd.pdf . Accessed: 2012 Jul 25. 

[46] Samsampour D, Maleki Zanjani B, Pallavi JK, Singh A, Charpe A, Gupta SK, Prabhu KV 

(2010). Identification of molecular markers linked to adult plant leaf rust resistance 

gene Lr48 in wheat and detection of Lr48 in the Thatcher near-isogenic line with 

gene Lr25. Euphytica. 174 (3): 337-342.  

[47] Johnson R (2000) Classical plant breeding for durable resistance to diseases. Journal of 

Plant Pathology. 82 (1):  3-7. 

[48] Bulos M, Echarte M, Sala C (2006). Occurrence of the rust resistance gene Lr37 from 

Aegilops ventricosa in Argentine cultivars of wheat. Electronic Journal of Biotechnology. 

9 (5). 

[49] Vanzetti LS, Campos P, Demichelis M, Lombardo LA, Aurelia PR, Vaschetto LM, 

Bainotti CT, Helguera M (2011) Identification of leaf rust resistance genes in selected 

Argentinean bread wheat cultivars by gene postulation and molecular markers. 

Electronic Journal Biotechnology. 14(3): 9-9. Available from Internet:  



 

Fungicides – Showcases of Integrated Plant Disease Management from Around the World 28 

http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-

34582011000300009&lng=es. Accessed: 2012 Jul 25. 

[50] Alvarez R, Steinbach HS (2009) A review of the effects of tillage systems on some soil 

physical properties, water content, nitrate availability and crops yield in the Argentine 

Pampas. Soil and Tillage Research. 104:1-5 

[51] Fontanetto H, Vivas H (1998) Labranzas en el centro de Santa Fe. In L. Panigatti et al. 

editors. Siembra directa. Hemisferio Sur, Buenos Aires, Argentina. pp. 275-286. 

[52] Méndez MJ, Buschiazzo DE (2010) Wind erosion in agricultural soils under different 

tillage systems in the semiarid Pampas of Argentina. Soil and Tillage Research 61: 179-

186 

[53] García FO, Ambroggio M, Trucco V (2000) No-tillage in the Pampas of Argentina: a 

success story. Better Crops Int. 14: 24–27. 

[54] Duczek LJ, Sutherland KA, Reed SL, Bailey KL, Lafond GP (1999) Survival of leaf spot 

pathogens on crop residues of wheat and barley in Saskatchewan. Canadian Journal of 

Plant Pathology. 21:165-173 

[55] Reis M, Carmona M (1995) Mancha amarilla de la hoja del trigo. Ed. Bayer Crop 

Science, Buenos Aires, Argentina 14 Pp. 

[56] Utermark M (1995) Sobrevivencia de Drechslera teres en el rastrojo de cebada. In: VI 

Reunión Nacional de Investigaciones de Cebada. Latu, Montevideo, Uruguay. 6-7 

September 1995, p. 52-53. 

[57] Cordo CA, Simón MR, Chidichimo HO, Fernández L, Kripelz NI (2005) Mineralización 

de los residuos de trigo provenientes de distintos sistemas de labranza: efecto sobre la 

pérdida de peso y dinámica del nitrógeno. XIII Congreso Latinoamericano de 

Fitopatología. III Taller de la Asociación Argentina de Fitopatólogos. Villa Carlos Paz, 

Córdoba, Argentina, 19-22 April 2005. p. 348. 

[58] Krupinsky JM, Bailey KL, Mc Mullen MP, Gossen BD, Turkington TK (2002). Managing 

plant disease risk in diversified cropping systems. Agronomy Journal. 94:198-209. 

[59] Bailey KL, Gossen BD, Lafond GP, Derksen DA (1995) Plant diseases in cereal and pulse 

crops with conservation tillage. In: Lafond GP, Plas HM, Smith EG, editors. PARI 

(Parkland Agriculture Research Initiative) Factbook: Bringing Conservation Technology 

to the Farm, Lethbridge, AB, Canada. pp. 45-47. 

[60] Bailey KL, Johnston AM, Kutcher HR, Gossen BD, Morrall AA (2000). Managing crop 

losses from diseases with fungicides, rotation, and tillage in the Saskatchewan 

Parkland. Canadian Journal of Plant Science 80:169-175.  

[61] Fernandez  MR, Conkey BG, Zentner RP (1998) Tillage and summer fallow effects on 

leaf spot diseases of wheat in the semiarid Canadian Prairies. Canadian Journal of Plant 

Pathology. 20:376-379. 

[62] Fernandez  MR, Conkey BG, Zentner RP (1999) Effects of tillage method and fallow 

frequency on leaf spotting diseases of spring wheat in a semiarid Canadian prairies. Soil 

and Tillage Research. 50: 259-269. 

[63] Krupinsky JM, Tanaka DL, Merril SD, Liebig MA, Lares MT, Harson JD (2007) Crop 

sequence effects on leaf spot diseases of no-till spring wheat. Agronomy Journal. 99:912-

920. 



Recent Advances on Integrated Foliar  
Disease Management with Special Emphasis in Argentina Wheat Production 29 

[64] Sutton JC, Vyn TJ (1990) Crop sequences and tillage practices in relation to diseases of 

winter wheat in Ontario. Canadian Journal of Plant Pathology. 12:358-368. 

[65] Stover RW, Frand LJ, Jordahl JG (1996) Tillage and fungicide management of foliar 

diseases in a spring wheat monoculture. Journal of Production Agriculture. 9:261-265. 

[66] Krupinsky JM, Tanaka DL (2001) Leaf spot diseases on winter wheat influenced by 

nitrogen, tillage and haying after a grass-alfalfa mixture in the conservation reserve 

program. Plant Disease. 85:785-789. 

[67] Jorgensen LN, Olsen LV (2007) Control of tan spot (Drechslera tritici-repentis) using 

cultivar resistance, tillage methods and fungicides.Crop Protection. 26:1606-1616.  

[68] Krupinsky JM, Tanaka DL, Lares MT, Merril SD (2004) Leaf spot diseases of barley and 

spring wheat as influenced by preceding crops. Agronomy Journal. 96:259-266. 

[69] Krupinsky JM, Halvorson AD, Tanaka DL, Merrill SD (2007) Nitrogen and tillage effects 

on wheat leaf spot diseases in the northern Great Plains. 99:562-569. 

[70] Carmona M, Cortese P, Moschini R, Pioli R, Ferrazini M, Reis E (1999) Economical 

damage threshold for fungicide control of leaf blotch and tan spot of wheat in 

Argentina. In: XIV th International Plant Protection Congress, Jerusalem, Israel, 25-30 

July 1999. pp.119. 

[71] Roth GW, Marshall HG (1987) Effects of timing of nitrogen fertilization and a fungicide 

on soft red winter wheat. Agronomy Journal. 79:197-200. 

[72] Varga B, Svecnjak Z, Macesic D, and Uher D (2005) Winter wheat cultivar responses to   

fungicide application are affected by nitrogen fertilization rate. Journal of Agronomy 

and Crop Science. 191: 130-137. 

[73] Carignano M, Staggenborg SA, Shroyer JP (2008) Management practices to minimize 

tan spot in a continuous wheat rotation. Agronomy Journal. 100:145-153. 

[74] Gooding MJ (2006) The effect of fungicides on the grain yield and quality of wheat. 

Actas del Congreso "A Todo Trigo". 18 y 19 de Mayo de 2006, Mar del Plata, Argentina. 

pp 45-52. 

[75] Gooding MJ, Dimmock JPRE, France J, Jones SA (2000) Green leaf area decline of wheat 

flag leaves: the influence of fungicides and relationships with mean grain weight and 

grain yield. Annals of Applied Biology. 136: 77-84 

[76] Blandino M, Reyneri A (2009) Effect of fungicide and foliar fertilizer application to 

winter wheat at anthesis on flag leaf senescence, grain yield, flour bread-making quality 

and DON contamination. European Journal of Agronomy. 30: 275-282. 

[77] Dimmock JPRE, Gooding MJ (2002) The effects of fungicide on rate and duration of 

grain filling in winter wheat in relation to maintenance of flag leaf green area. Journal of 

Agricultural Science. 138: 1-16. 

[78] Gooding MJ, Smith SP, Davies WP, Kettlewell PS (1994) Effects of late season 

applications of propiconazole and tridemorph on disease, senescence, grain 

development and the wheat breadmaking quality of winter wheat. Crop Protection. 

13:362-370.  

[79] Herrman TJ, Bowden RL, Loughin T, Bequette RK (1996) Quality response to the control 

of leaf rust in Karl hard red winter wheat. Cereal Chemistry. 73:235-238. 



 

Fungicides – Showcases of Integrated Plant Disease Management from Around the World 30 

[80] Puppala V, Herrman TJ, Bockus WW, Loughin TM (1998) Quality response of twelve 

hard red winter wheat cultivars to foliar disease across four locations in central Kansas. 

Cereal Chemistry. 75:94-99. 

[81] Kelley KW (2001) Planting date and foliar fungicide effects on yield components and 

grain traits of winter wheat. Agronomy Journal. 93:380-389. 

[82] Simón MR, Perelló AE, Cordo CA, Struik PC (2002) Influence of Septoria tritici on yield, yield 

components, and test weight of wheat under two nitrogen fertilization conditions. Crop Science. 

42: 1974-1981. 

[83] Serrago R, Carretero R,  Bancal MO, Miralles DJ (2010) Grain weight response to foliar 

diseases control in wheat (Triticum aestivum L.). Field Crops Research. 120: 352-359 

[84] Simón MR, Perelló AE, Cordo CA, Struik PC (2003) Influence of nitrogen supply on the 

susceptibility of wheat to Septoria tritici. Journal of Phytopathology.151: 283-289. 

[85] Howard DD (1994) Nitrogen and fungicide effects on yield components and disease 

severity in wheat. Journal of Production Agriculture. 7: 448-454. 

[86] Krupinsky JM (1999) Influence of cultural practices on Septoria/Stagonospora diseases. 

In: M. van Ginkel et al., editors. Septoria and Stagonospora Diseases of Cereals. A 

compilation of Global Research, CIMMYT, México. pp. 105-110. 

[87] Johnston HW (1979) Effects of cycocel (CCC) and fungicide sprays on spring wheat 

grown at three nitrogen levels. Canadian Journal of Plant Science. 59: 917-92 

[88] Leitch MH, Jenkins PD (1995) Influence of nitrogen on the development of Septoria 

epidemics in winter wheat. Journal of Agricultural Science. 124:361-368. 

[89] Lovell JD, Royle DJ (1999) Interactions between crop canopy structure and development 

of Mycosphaerella graminicola (Septoria tritici) in wheat. In: Arseniuk E, Goral T, Czembor 

P, editors. Proceeding International Workshop on Septoria of Cereals, 4th, Bonie, 

Poland. 4–7 July Ihar Radziko, Poland. p. 253-257. 

[90] Simón MR, Cordo CA, Perello AE (1998). Evolución de la mancha de la hoja en dos 

condiciones de fertilización nitrogenada. IV Congreso Nacional de Trigo 4:18, Mar del 

Plata, Argentina. 11-13 Nov. 1998.  

[91] Annone JG (2004) Cuantificación del efecto supresivo de la fertilización nitrogenada 

sobre la expresión de síntomas de mancha amarilla en cultivares de trigo de ciclo 

intermedio-largo y precoz en siembra directa. VI Congreso Nacional de Trigo, Bahía 

Blanca. pp. 175-176. 

[92] Huber DM, Lee TS, Ross MA, Abney TS (1987) Amelioration of tan spot- infected wheat 

with nitrogen. Plant Disease. 71:49-50.  

[93] Simón MR, Terrile I, Ayala F, Pastore M, Cicchino M, Corries F, Miguez E, Golik S, 

Cordo CA, Perelló A, Chidichimo H (2004) Influencia del sistema de labranza, 

fertilización nitrogenada, genotipo y control con fungicidas 1. En la intensidad de las 

enfermedades foliares del trigo. In: VI Congreso Nacional de Trigo y IV Simposio 

Nacional de Cultivos de Siembra Otoño- Invernal, Bahía Blanca, Argentina, 20-22 

October 2004. pp. 177-178. 

[94] Simón MR, Ayala F, Terrile I, Golik S, Perelló A, Cordo CA, Chidichimo, H. 

(2011).Integrated foliar disease management to prevent yield loss in Argentinean wheat 

production. Agronomy Journal 103: 1441-1451. 



Recent Advances on Integrated Foliar  
Disease Management with Special Emphasis in Argentina Wheat Production 31 

[95] Bockus W W, Davis MA (1993) Effect of nitrogen fertilizers on severity of tan spot of 

winter wheat. Plant Disease. 77:508-510.  

[96] Cox WJ, Bergstrom GC, Reid WS, Sorrells ME, Otis DJ (1989) Fungicide and Nitrogen 

effects on winter wheat under low foliar disease severity. Crop Science 29:164-170. 

[97] Roberts RK, Walters JT, Larson JA, English BC, Howard DD (2004) Effect of disease, 

nitrogen source, and risk on optimal nitrogen fertilization timing in winter wheat 

production. Agronomy Journal. 96:792-799. 

[98] Mascagni HJ Jr, Harrison SA, Russin JS, Desta HM, Colyer PD, Habetz RJ, Hallmark 

WB, Moore SH, Rabb JL, Hutchinson RL, Boquet DJ (1997) Nitrogen and fungicide 

effects on winter wheat produced in the Louisiana Gulf Coast region. Journal of Plant 

Nutrition, 20:1375-1390. 

[99] Boquet DJ, Johnson CC (1987) Fertilizer effects on yield, grain composition, and foliar 

disease of double crop soft red winter wheat. Agronomy Journal 79: 135-141. 

[100] Daniel DL, Parlevliet JE (1995) Effects of nitrogen fertilization on disease severity and 

infection type of yellow rust on wheat genotypes varying in quantitative resistance. 

Journal of Phytopathology. 143: 679-681. 

[101] Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of 

cereals. Weed Research 14: 415-421. 

[102] Shanner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of 

slow-mildewing resistance in Knox wheat. Phytopathology. 72:154-158.  

[103] Pastore M, Simón MR (2012) Incidence of Septoria leaf blotch, tan spot and leaf rust on 

yield of wheat in different N fertilization conditions (unpublished).  

[104] Dong H, Sears RG, Cox TS, Hoseney RC, Lookhart GL, Shogren MD (1997) 

Relationships between protein composition and mixograph and loaf characteristics in 

wheat. Cereal Chemistry. 69: 132–136. 

[105] Stone PJ, Savin R (1999) Grain quality and its physiological determinants. In: Satorre E, 

Slafer GA, editors. Wheat: ecology and physiology of yield determination. Food 

Product Press. pp. 333-348. 

[106] Godfrey D, Hawkesford MJ, Powers SJ, Millar S, Shewry PR (2010) Effects of crop 

nutrition on wheat grain composition and end use quality. Journal of Agricultural and 

Food Chemistry. 58: 3012-3021. 

[107] Schalamuk S, Serrago R, Carretero R, Tinghitella G, Castro E, Miralles DJ (2007) Foliar 

diseases and nitrogen affect bread making quality in wheat. 1ª Conferencia 

Internacional de la International Association for Cereal Science and Technology-ICC en 

Latinoamérica. 23-26 de Septiembre de 2007. Bolsa de Comercio de Rosario, Argentina. 

pp.78. 

[108] Rees RG, Platz GJ, Mayer RJ (1982) Yield losses in wheat from yellow spot: comparison 

of estimates derived from single tillers and plots. Australian Journal of Agricultural 

Research. 33: 899-908. 

[109] Liaudat JP (2011) Influencia de la mancha de la hoja sobre componentes de 

rendimiento y concentración de proteínas en tres partes de la espiga de trigo con 

diferentes dosis de fertilización nitrogenada y aplicación de fungicidas. Tesis de Grado. 

Facultad de Ciencias Agrarias y Forestales, UNLP. La Plata, Argentina. 59 pp. 



 

Fungicides – Showcases of Integrated Plant Disease Management from Around the World 32 

[110] Schüβler A, Schwarzott D, Walter C (2001) A new fungal phylum, the Glomeromycota: 

Phylogeny and evolution. Mycological Research. 105:1413-1421. 

[111] Harley JL (1991) Arbuscular Mycorrhizal Fungi: the state of the art. In : Norris JR, 

Read DJ, Varma AK, editors. Techniques for the study of mycorrhiza. Methods in 

Microbiology, Academic Press. London. pp. 1-23. 

[112] Brundrett, MC, Beegher N,  Dell B, Groove T Malajczuk N (1996) Working with 

mycorrhizas in forestry and agriculture. ACIAR. Monograph 32. 374 p. 

[113] Johnson NC, Gram JH, Smith FA (1997) Functioning of mycorrhizal associations along 

the mutualism–parasitism continuum. New Phytologist. 135:575-586. 

[114] Sieverding E (1991) Vesicular–arbuscular mycorrhiza management in tropical 

agrosystems (GTZ No. 224). Eschborn, Germany: Deutche Gesellschaft für Technische 

Zusammenarbeit. 371 p.  

[115] Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. New York, Elsevier. 787 p. 

[116] Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, 

Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal 

symbiosis. Nature. 435: 819-823. 

[117] Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? 

Ecology. 82: 3057-3068. 

[118] Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal 

symbiosis. Mycorrhiza. 11: 3-42. 

[119] Ruiz-Lozano JMR, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular-

mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum. 98: 767-772. 

[120] Cuenca G, De Andrade Z, Escalante G (1998) Arbuscular mycorrhizae in the 

rehabilitation of fragile degraded tropical lands. Biology and Fertility of Soils. 26:107-

111. 

[121] Rillig MC, Wright SF, Shaw MR, Field CB (2002) Artificial climate warming positively 

affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual 

grassland. Oikos. 97: 52-58. 

[122] Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian 

Journal of Soil Science. 84: 355-363. 

[123] Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) 

Ecology of mycorrhizae: a conceptual framework for complex interactions among 

plants and fungi. Annals Review of Phytopathology. 41: 271-303. 

[124] Singh R, Adholeya A, Mukerji KG (2000) Mycorrhiza in control of soil-borne 

pathogens. In: Mukerji KG, Chamola, BP, Singh J, editors. Mycorrhizal Biology. Kluwer 

Academic/Plenum Publishers, New York, USA, pp. 173-196. 

[125] St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on 

plant diseases and pests. In: Hamel C, Plenchette C, editors. Mycorrhizae in crop 

production: applying knowledge. Haworth Press, Binghampton, NY, USA. pp. 67-122. 

[126] Khaosaad T,  Garcia-Garrido JM, Steinkellner S,  Vierheilig H (2007) Take-all disease is 

systemically reduced in roots of mycorrhizal barley plants. Soil Biology and 

Biochemistry 39:727-734. 



Recent Advances on Integrated Foliar  
Disease Management with Special Emphasis in Argentina Wheat Production 33 

[127] Wehner J P,  Antunes PM, Powell JR,  Mazukatow J. Rillig MC (2010). Plant pathogen 

protection by arbuscular mycorrhizas: A role of fungal diversity? Pedobiologia. 53: 197-

201. 

[128] Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Current 

Opinion in Plant Biology. 10: 393-398. 

[129] Haneef Khan Md, Meghvansi MK, Panwar Vipin, Gogoi HK, Singh L (2010) 

Arbuscular mycorrhizal fungi-Induced signalling in plant defence against 

phytopathogens. Journal of Phytology. 2/7 53-69. 

[130] Linderman RG (1994) Role of VAM fungi in biocontrol. In: Mycorrhizae and Plant 

Health. Pleger FL, Linderman RG editors. APS Press, St Paul, MN. pp. 1-26. 

[131] Gernns H, von Alten H, Poehling HM (2001) Arbuscular mycorrhiza increased the 

activity of a biotrophic leaf pathogen — is a compensation possible? Mycorrhiza. 

11:237-243. 

[132] Graham JH, Menge JA (1982) Influence of vesicular-arbuscular mycorrhizae and soil 

phosphorous on take-all disease of wheat. Phytopathology. 72:95-98. 

[133] Falahian F, Ardebili ZO, Fahimi F, Khavarinejad R (2007) Effect of mycorrhizal fungi 

on some defense enzymes against Gaeumannomyces graminis in wheat. Pakistan Journal 

of  Biological Sciences. 10: 2418-2422. 

[134] Samarbakhsh S, Rejali F, Ardakani MR, Paknejad F, Miransari M (2009) The combined 

effects of fungicides and arbuscular mycorrhiza on corn (Zea mays L.). Growth and yield 

under field conditions. Journal of Biological Sciences 9: 372-376. 

[135] Vijayalakshmi M, Rao AS (1993) Influence of fungicides on vesicular-arbuscular 

mycorrhizae in Sesamum indicum L. Microbiological Research 148: 483-486 

[136] Sreenivasa MN, Bagyaraj DJ (1989) Use of pesticides for mass production of vesicular–

arbuscular mychorrhizal inoculum. Plant and Soil 119: 127–132. 

[137] Giovannetti M, Turrini A, Strani P, Sbrana C, Avio L, Pietrangeli B (2006) Mycorrhizal 

fungi in ecotoxicological studies: Soil impact of fungicides, insecticides and herbicides. 

Prevention Today 2: 47-61. 

[138] Hernández Dorrego A, Mestre Parés J (2010) Evaluación del efecto de varios 

fungicidas sobre la simbiosis micorrícica entre dos especies de Glomus presentes en 

inóculos comerciales y plántulas de Allium porrum L. Spanish Journal of Agricultural 

Research 2010, 8(S1), S43-S50. 

[139] Schmitz O, Danneberg G, Hundeshagen B, Klingner A, Bothe H (1992) Quantification 

of vesicular-arbuscular mycorrhiza by biochemical parameters. Journal of Plant 

Physiolory 139:106–114. 

[140] Frey B, Valarino A, Schuepp H, Arines J (1994) Chitin and ergosterol content of 

extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus 

Glomus intraradices. Soil Biology and Biochemistry  26: 711-717. 

[141] Groth DE, Martinson CA (1983) Increased endomycorrhizal colonization of maize and 

soybeans after soil treatment with metalaxyl. Plant Disease. 67:1377-1378. 

[142] Sukarno N, Smith SE, Scott ES (1996) The effect of fungicide on vesicular-arbuscular 

mycorrhizal symbiosis. II. The effects on area of interface and efficiency of P uptake and 

transfer to plant. New Phytologist 132: 583-592. 



 

Fungicides – Showcases of Integrated Plant Disease Management from Around the World 34 

[143] Hetrick BAD, Wilson GWT (1991) Effects of mycorrhizal fungus species and metalaxyl 

application on microbial suppression of mycorrhizal symbiosis. Mycologia. 83: 97-102. 

[144] Boatman N, Paget D, Hayman DS, Mosse B (1978) Effects of systemic fungicides on 

vesicular-arbuscular mycorrhizal infection and plant phosphate uptake. Transaction of 

the British Mycological Society. 70: 443-450. 

[145] Hale MG, Sanders FE (1982) Effects of benomyl on vesicular-arbuscular mycorrhizal 

infection of red clover (Trifolium pratense L.) and consequences for phosphorus inflow. 

Journal of Plant Nutrition 5: 1355-1367. 

[146] Thingstrup I, Rosendahl S (1994) Quantification of fungal activity in arbuscular 

mycorrhizal symbiosis by polyacrylamide gel electrophoresis and densitometry of 

malate dehydrogenase. Soil Biology and Biochemistry. 26: 1483–1489. 

[147] Schweiger PF, Jakobsen I (1998) Dose-response relationships between four pesticides 

and phosphorus uptake by hyphae of arbuscular mycorrhizas. Soil Biology and  

Biochemistry 30: 1415-1422. 

[148] Køller R, Rosendahl S (2000) Effects of fungicides in arbuscular mycorrhizal fungi: 

Differential responses in alkaline phosphatase activity of external and internal hyphae. 

Biology and Fertility of Soils 31:361-365. 

[149] Venedikian N, Chiocchio V, Martinez A, Menendez A, Ocampo JA, Godeas A (1999) 

Influence of the fungicides carbendazim and chlorothalonil on spore germination, 

arbuscular mycorrhizal colonization and growth of soybean plants. Agrochimica, 43, 

105-109. 

[150] Dodd JC, Jeffries P (1989). Effect of fungicides on three vesicular-arbuscular 

mycorrhizal fungi associated with winter wheat (Triticum aestivum L.). Biology and 

Fertility of  Soils 7:120-128. 

[151] Ocampo JA (1993) Influence of pesticides on VA mycorrhiza. En: “Pesticide-plant 

pathogen interactions in crop production: Beneficial and deleterious effects”. (Editor J. 

Altman), pp 213-216. CRC Press, Boca-Raton Florida.  

[152] Schriener RP, Bethlenfalvay GJ (1997) Plant and soil response to single and mixed 

species of arbuscular mycorrhizal fungi under fungicide strees. Applied Soil Ecology. 

7:93-102. 

[153] Kling M, Jakobsen I (1997) Direct application of carbendazim and propiconazole at 

field rates to the external mycelium of three arbuscular mycorrhizal fungal species: 

effect on 32P transport and succinate dehydrogenas activity. Mycorrhiza. 7:33-37. 

[154] Diedhiou PM, Oerke EC, Dehne HW (2004) Effect of the strobilurin fungicides 

azoxystrobin and kresoximmethyl on arbuscular mycorrhizal. Journal of Plant Diseases 

and Protection. 111, 545-556. 

[155] Schalamuk S, Velázquez MS, Simón MR, Cabello MN (2011) Effects of triazole and 

strobilurin fungicide on arbuscular mycorrhizal colonization in wheat (unpublished).  


