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1. Introduction

Heart valves are thin, complex, layered connective tissues that direct blood flow in one di‐
rection through the heart. There are four valves in the heart, located at the entrance to and
exit from the ventricular chambers. The normal function of the heart valves is essential to
cardiovascular and cardiopulmonary physiology. The opening and closing of valve leaflets
at precise times during the cardiac cycles contributes to the generation of sufficiently high
pressure to eject blood from the ventricles, and also prevents blood from flowing backwards
into the heart instead of forward towards the systemic circulation and the lungs.

The ability of heart valves to open and close repeatedly, as well as the maintenance of the
phenotypes of valvular cells, is made possible by their tissue microstructure, specifically the
composition and orientation of extracellular matrix (ECM). The ECM within heart valves is
primarily comprised of collagen, elastic fibers, and proteoglycans and glycosaminoglycans,
although other ECM components are present as well. Taken together, the ECM performs
several roles in heart valves. First, the ECM plays a biomechanical role: it is responsible for
the unique mechanical behavior of the valve tissue and thus the overall valve function. Sec‐
ond, the valvular cells are bound to and surrounded by the ECM that is located within the
immediate vicinity of the cell; this ECM is specifically known as the pericellular matrix
(PCM). The PCM influences cell function by serving as a source of ligands for cell surface
receptors, which transfers mechanical strains (experienced by the leaflet tissues) to the cells
and initiates intracellular signaling pathways. Third, the various types of ECM have differ‐
ent innate mechanical behaviors, for example with collagen being stiffer than elastic fibers,
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and a growing body of research has demonstrated that the phenotype and function of cells,
including valve cells, are influenced by the stiffness of the substrate to which they are ad‐
hered [1]. These two latter functions of the ECM are considered to be mechanobiological as
opposed to merely biomechanical since they affect cell behavior. Fourth, ECM has binding
sites for growth factors and other soluble molecules found in the extracellular space, and
thus the ECM serves as a reservoir for numerous bioactive factors than can affect cell behav‐
ior if they are released (such as when the ECM is degraded) or if a cell migrates close to this
ECM reservoir.

Overall, the heart valve field is beginning to appreciate that there are numerous interactions
between the ECM, valve cells, and valve mechanics. Given the complicated relationships
that are being demonstrated, it is not surprising that alterations to the normal arrangement
or composition of ECM, which frequently occur in valve disease, significantly and detrimen‐
tally impact valve function in a rather vicious cycle. For this reason, there has been an in‐
creasing effort to characterize the ECM within normal heart valves not only to elucidate
valve biomechanics and mechanobiology, but also to obtain a solid basis for comparison
with diseased valves.

This chapter will provide an overview of the ECM within heart valves, focusing on the aort‐
ic valve. After detailing the layered structure of the valve leaflets, each type of ECM compo‐
nent will be described and discussed in relation to its role in valve function and, in some
instances, valve dysfunction.

2. The aortic valve leaflets are layered structures

Aortic valve leaflets consist of three main layers: the fibrosa, spongiosa, and ventricularis.
Each layer has a distinct composition that aids in the normal mechanical and biochemical
behavior of the valve. In diseased states, however, the composition of the layered structures
can be altered compared to healthy tissues.

The fibrosa layer, close to the outflow surface, is mainly composed of collagen fibers with a
small amount of elastic fibers, which are the major stress-bearing components and provide
strength to maintain coaptation during diastole [2]. The circumferential alignment and ori‐
entation of collagen fibers contribute to the biological stress-strain relationship for aortic
valve leaflets (Figure 1). This bilinear stress-strain curve represents the high extension with a
low load and high elastic modulus with a high load applied [3]. Moreover, the particular ar‐
chitecture of collagen fibers contributes to the anisotropic mechanical behavior of the fibrosa
layer. It has been found that the fibrosa is 4-6 times stiffer in the circumferential direction
than in the radial direction [4].

The middle spongiosa layer of the leaflet predominantly consists of glycosaminoglycans and
proteoglycans, particularly hyaluronan, which form a foam-like structure and bind a large
amount of water. The spongiosa layer absorbs energy during compression, and facilitates
the arrangement of collagen fibrils in the fibrosa and elastin in the ventricularis during the
cardiac cycles [5].
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Figure 1. Schematic drawing of stress-strain relationships for collagen and elastin fibers during valve motion, repro‐
duced with permission [3]

The ventricularis layer, close to the inflow surface, is rich in elastin with a moderate amount
of collagen, which extends in diastole and recoils during systole [6]. The recoil of elastin re‐
stores the crimp of collagen fibrils and decreases the surface area of the stretched tissue from
the closing phase [5]. The thickness of the three layers varies from the base to the free edge
of the cusp [7].

It is worth noting that elastic fibers were found to span the whole leaflet, and connect or an‐
chor three discrete layers together [6,8]. In addition, elastin provides intrafibrillar connec‐
tions between collagen bundles in the fibrosa layer, whereas it forms a three-dimensional
interconnected network in the spongiosa layer [8]. During unloading, the intrafiber elastin,
which has high extensibility, helps the collagen fibers return to their wavy and crimped
state [6]. These interconnected structures of elastic fibers anchor the discrete layers together,
and prevent delamination, which therefore improves the continuity of material behavior of
the whole leaflet. Table 1 summarizes the key ECM components in the layers and their ma‐
jor functions.

Location Main Component(s) Major Function(s)

Fibrosa Collagen Stress bearing

Spongiosa Glycosaminoglycans and

proteoglycans

Conferring flexibility, dampening vibrations from closing, and resisting

delamination

Ventricularis Elastin Restoration of the wavy and crimped state of collagen fibers

Table 1. The key ECM components in each layer of the leaflet and their major functions

The structures of the leaflets described above provide the following critical functions [6,9–
11]: 1) anisotropic mechanical behavior withstanding circumferential stress and extending
radially; 2) bilinear biological stress-strain behavior allowing the leaflet to extend before
bearing load in the closed phase; 3) elastic recoil to fully open the valve and restore the layer
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structures for the next cycle. The particular shape of the leaflets and their unique macro- and
micro-structures cause the anisotropic mechanical behavior along the circumferential and
radial directions of the leaflets [9–11].

During the closed phase (diastole), the leaflets experience the maximum load. Collagen bun‐
dles in the fibrosa layer are the major stress-bearing component withstanding approximately
80 mm Hg pressure while the valve is closed and bulging back towards the ventricle [3].
Collagen fibrils are assembled into parallel collagen fiber bundles oriented along the circum‐
ferential direction in the leaflet, which are able to withstand such high tensile forces. How‐
ever, collagen fibers cannot be compressed, making the alignment of collagen (waviness and
crimping) important for decreasing the area of the stretched fibrosa layer. Although the col‐
lagen fibrils have limited extensibility (approximately 1-2% yield strain), the waviness and
crimping allows the fibrosa to withstand roughly 40% strain under loading. Straightening of
wavy fibers provides approximately 17% strain, whereas the crimping allows additional ap‐
proximately 23% strain [6]. In addition, the strains of the cusps in the closed phase are aniso‐
tropic, i.e., the strains differ in the radial and circumferential directions [11].

During valve opening, cusps become relaxed through recoil of the elongated, taut elastin.
This restores the wavy and crimped state of collagen fibers while decreasing the surface area
of the cusps. The GAG-rich spongiosa layer facilitates the rearrangements of the collagen
and elastic fibers during the cardiac cycle, dampens vibration from closing, and resists de‐
lamination between layers [6,8].

It is evident that normal aortic valve function is maintained, in part, by not only the compo‐
sition but also the arrangement and orientation of ECM components, particularly collagen,
elastin, and GAGs, in the leaflets. Furthermore, it is important to note that alteration of the
composition [12] and mechanics [13] of ECM in the aortic valve leaflets was found in dis‐
eased conditions. In calcific aortic valve disease (CAVD), collagen bundles and elastin fibers
in the fibrosa layer were disrupted and disorganized [14]; meanwhile, there was increased
proteoglycan deposition [12]. Matrix metalloproteinases (MMPs) [14,15] and the potent elas‐
tase cathepsin S [16], which are produced by macrophages, contribute to this ECM remodel‐
ing. Moreover, ECM proteins related to bone, i.e., osteocalcin and osteonectin, were present
in the calcified fibrosa layer [17]. These proteins promote mineralization, and their presence
suggests the osteoblastic differentiation of valve interstitial cells (VICs).

In addition, excessive myofibroblast differentiation from VICs, leading to ECM accumula‐
tion and fibrosis, was influenced by remodeling of ECM in the fibrosa and facilitated by
elastin degradation [18]. Furthermore, myofibroblast differentiation from VICs and calcifica‐
tion in vitro have been shown to be dependent on ECM composition [19].

Taken together, the macroscopic layered structure and the microscopic structure in each lay‐
er of the leaflets impart pronounced anisotropic mechanical behavior that allows the valve
to open and close during a great number of cardiac cycles throughout life. These structures
are tailored to fulfill the normal functions and maintain the homeostasis of the leaflets in a
healthy condition. However, abnormal alteration of composition and mechanics of ECM in
these structures may lead to calcific heart valve disease.
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3. Collagen comprises a significant portion of the aortic valve leaflet
fibrosa

Collagen is an essential component of the aortic valve’s layered structure and is vital for
maintaining the tissue’s mechanical integrity. Mainly responsible for tensile strength, colla‐
gen is a strong load-bearing protein created and regulated by VICs. Although present
throughout the entire valve, collagen is largely located in the fibrosa where it reduces high
tensile stresses. In addition to its central role in valve mechanics, collagen acts as a regulator
of VIC phenotype and calcification. Insight into the structure of collagen reveals its unique
mechanical properties that support aortic valve function.

Fibrillar collagens are high strength fibers that comprise nearly all of the valve’s collagen
content. Fibrillar collagens are groups of 3 coiled polypeptide chains that assemble together
in tightly packed parallel arrangements. These coils are approximately 300 nm long and join
together in a staggered banding pattern with a periodicity of 67 nm [20]. The aortic valve is
mainly composed of fibrillar collagen types I, III, and V. Each of these collagens is construct‐
ed from different types of alpha chains that govern the overall function of the collagen mole‐
cule. Together, these three collagen types work to provide the aortic valve with unique
mechanical properties suited for maintaining unidirectional blood flow.

Synthesis of fibrillar collagen is an essential mechanism for maintaining the valve’s mechan‐
ical integrity. This complex process originates within VICs and is completed in the valve
ECM. Production of collagen begins with the intracellular creation of polypeptide alpha
chains. There exist ten distinct polypeptide chains that consist of approximately 300 consec‐
utive Gly-X-Y amino acid sequences flanked by small terminal domains. The secondary
structure of collagen is created by folding alpha chains into a right-handed alpha helix with
the peptide bonds localized at the backbone of the helix and the amino acid side chains fac‐
ing outward. With slightly less than three residues per turn and a pitch of approximately 8.6
nm, glycine residues are positioned in such a way that the side chains of these residues al‐
low for the formation of the helix. The single hydrogen side chains of these glycine residues
allows for the formation of a triple helix structure [21].

The tertiary structure of collagen involves the formation of a left-handed triple helix con‐
structed in the C to N direction. These triple helices exist as both homotrimers and hetero‐
trimers of alpha chains. Collagen type III is a homotrimer of α1(III) while collagen type I is a
heterotrimer of α1(I) and α2(I). Additionally, collagen type V is a heterotrimer of α1(V) and
α2(V). Known as procollagen, the tertiary structure molecule is approximately 1.5 nm wide
and longer than 300 nm. For creation of the final supramolecular structure, the procollagen
molecule is transported into the ECM for crosslinking and fibril formation. After modifica‐
tion in the extracellular space, procollagen is converted into tropocollagen, which undergoes
fibrillogenesis where the triple helices are packed together into bundles. Crosslinking of the
fibrils ensures the stability of the complex [21].

The arrangement of collagen fiber bundles is crucial to the proper functioning of the aortic
valve. Collagen fibers are organized into multilayer structures linked by thin membranes
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containing variably aligned collagen. Ranging from 10 to 50 μm in size, these membranes
are believed to be much more extensible than the collagen fiber bundles they connect. These
multilayer structures can easily slide past one another during valve movement, providing
the combination of flexibility and tensile strength necessary for the required mechanics dur‐
ing valve opening and closing [22].

Collagen constitutes approximately 90% of the protein content of the valve insoluble matrix
[23]. The vast majority of the valve’s content is composed of collagens type I, III, and V. To‐
gether, these fibrillar collagens account for 60% of the valve’s dry weight [24]. There is ap‐
proximately 74% collagen type I, 24% collagen type III, and 2% collagen type V distributed
throughout the valve [25–27]. Whereas collagen type I mainly exists in the fibrosa, collagen
type III is expressed ubiquitously throughout all three layers [25].

Collagen fibers mainly function to reduce stress on the leaflets during systole and diastole.
While elastin controls initial valve opening and closing, collagen fibers reduce peak stresses
in the leaflet matrix by an estimated 60%. These fibers have an important role in stabilizing
leaflet motion [28]. Throughout leaflet movement, collagen fibers adjust position to resist
tensile forces. As transvalvular pressure increases, the ventricularis expands in the circum‐
ferential direction, causing collagen fibers to become highly aligned. This is believed to in‐
crease the cuspal stiffness of the valve during diastole and prevent overextension of the
valve [29].

The heterogeneous distribution of collagen throughout the aortic valve provides high
strength in areas of greater stress while also allowing the valve to achieve a large degree of
flexibility. Within the fibrosa, the primary tensile load-bearing layer, collagen fibers are
highly aligned in the circumferential direction, resulting in tissue anisotropy. The arrange‐
ment of these fibers corresponds to the direction of highest tensile stress. In contrast, the
ventricularis endures smaller tensile forces involved with initial opening and closing of the
valve [30]. In addition to circumferentially oriented collagen, the largest and strongest colla‐
gen fiber bundles are localized in the areas of greatest tensile stress along the lower part of
the commissure and coapting regions [22]. This unique arrangement and positioning of col‐
lagen reduces high tensile loads on the valve while allowing flexibility to open and close.

Comparisons between the fibrosa and ventricularis indicate that the fibrosa has a greater
elastic modulus in the circumferential direction but a similar elastic modulus in the radial
direction. These mechanical differences are largely the result of the number of aligned colla‐
gen fibers in each direction. With fewer collagen fibers, the ventricularis is approximately
half as stiff as the fibrosa in the circumferential direction. In the radial direction, however,
each layer contains approximately the same amount of collagen fibers and has similar elastic
moduli [31]. Taken together, the multilayer valve structure causes aortic valves to be less
stiff and more extensible radially than circumferentially [32].

Collagen achieves high strength and extensibility with the aid of additional mechanisms
that contribute to the valve’s mechanical properties. These include collagen cross-links, col‐
lagen crimp, and layer corrugations. Collagen cross-links function to increase the strength of
aligned collagen. In the circumferential direction, the number of collagen cross-links per col‐
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lagen molecule directly corresponds to the elastic modulus. However, this relationship does
not apply to the radial direction, possibly due to the presence of elastin [31]. When there is
no mechanical stress on the leaflet, the fibrosa exists as a number of folds in the radial direc‐
tion known as corrugations. Large extensibility is achieved through these collagen corruga‐
tions in combination with collagen crimp. When stress is applied to the leaflet, initial
extension is accomplished by straightening of the collagen crimp. Further stress causes the
corrugations to unfold in the radial direction [30]. Together, collagen crimp and corruga‐
tions allow the fibrosa to extend further in the radial direction when compared to the cir‐
cumferential direction.

Throughout the lifetime of the aortic valve, collagen synthesis and degradation are responsi‐
ble for maintaining adequate valve strength and extensibility. Constant turnover of collagen
allows the valve to adapt to regional changes in tensile strength. In vitro studies show that
VICs respond to cyclic mechanical loading as a way to balance collagen synthesis and degra‐
dation. Cyclic stretch of valve leaflets stimulates VIC collagen type III production. In partic‐
ular, the amount and duration of the stretching can have an effect on the amount of collagen
produced [27]. Additionally, VICs in culture express collagen type I and collagen type III
mRNA for new matrix synthesis [33]. New collagen production is localized to specific re‐
gions of the valve depending on the collagen type that is produced. Collagen type I synthe‐
sis occurs in the fibrosa around, but not within, areas of mature collagen. Collagen type III
synthesis, however, mainly occurs outside of the fibrosa [34]. Collagen degradation is also
an important function of VICs and acts as an essential control to collagen production. Stud‐
ies have shown that VICs seeded into collagen scaffolds express MMPs that degrade the
scaffold in a heterogeneous manner [33]. Thus, VICs continuously regulate the mechanical
properties of the surrounding ECM through collagen synthesis and degradation.

Aside from its mechanical functions, collagen has been shown to regulate VIC phenotype
and calcification potential. In vitro studies were unable to induce calcification in VICs cul‐
tured on collagen proteins in standard media. It is believed that collagen actively inhibits
VIC calcification [19]. Other studies have shown that scaffold collagen content also affects
VIC proliferation. Specifically, one study reported that VICs adhered and spread on colla‐
gen surfaces but were not able to proliferate [35]. Another study showed that VIC prolifera‐
tion decreased on scaffolds containing higher collagen content [36]. An in vitro study
indicated that matrix stiffness regulates VIC differentiation to myofibrogenic or osteogenic
phenotypes in calcific conditions [37].

4. Elastic fibers comprise a significant portion of the ventricularis layer of
the aortic valve leaflets

Elastic fibers are macromolecular assemblies of several different molecules. The majority of
the elastic fiber consists of elastin, an insoluble protein generated by lysyl oxidase crosslink‐
ing of soluble tropoelastin monomers (approximately 70 kDa). The elastin tends to be locat‐
ed in the inner core of the elastic fiber and is surrounded by a fine mesh of microfibrils.
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These microfibrils are predominantly fibrillin-1, but to a lesser extent Fibrillin-2. Microfibril
associated glycoproteins (MAGPs), fibulins, and other proteins are also present in the micro‐
fibrillar sheath [38]. At the light microscope level, one can observe the fine elastic fibers by
histological staining with Voerhoff’s stain or related methods, but when tissue sections are
viewed with transmission electron microscopy, there is a clear distinction between the elec‐
tron-dense elastin core and the microfibrillar sheath [39].

The unique mechanical behavior of the elastic fiber is conferred primarily by the mechan‐
ical function of elastin and fibrillin. Crosslinked elastin is remarkable for its ability to un‐
dergo high amounts of deformation when subjected to small amounts of load, as well as
to recoil back to its original dimensions, when the load is removed, with very little loss of
energy. Fibrillin-1, the most widely studied of the microfibrillar components, is also high‐
ly extensible. Fibrillin and the other microfibrillar components also coordinate, in a com‐
plicated manner  still  under  investigation [38],  to  aid in  the cross-linking of  tropoelastin
and assemble  the  final  elastic  fiber.  Interestingly,  fibrillin  is  not  always  associated with
elastic fibers.  Fibrillin can often be found by itself,  in which it  may independently func‐
tion as a mechanical, load-bearing but highly extensible scaffold [40]. Numerous domains
in fibrillin exist for binding integrins, heparan sulafate proteoglycans, and growth factors,
which point to substantial roles for alone fibrillin and mature elastic fibers in mediating
cell signaling and adhesion [41].

In semilunar heart valves, elastin is found primarily within the ventricularis layer on the in‐
flow side of the leaflet, but is also abundant in the middle spongiosa layer. A thin, frequent‐
ly imperceptible layer of elastic fibers, the aterialis, is found atop the collagen-rich fibrosa
layer. These elastic fibers merge with the intima of the adjacent arterial well, but the overall
function of the arterialis has not been well characterized [42].

In the ventricularis, elastic fibers are present in dense and continuous sheets across the
whole of the leaflet. These fiber sheets are the most significant contributor to the mechanical
properties of the ventricularis [6,30], which can be demonstrated when all ECM components
but elastin are removed when using NaOH digestion. After this treatment, the digested ven‐
tricularis matches the mechanical behavior of the undigested ventricularis radially, indicat‐
ing a strong presence of elastin in the radial direction [30]. The elastic fibers within the
ventricularis undergo considerable, continual stretch from the initial stage of closure, when
blood flow vortices are starting to push the leaflets towards the valve orifice, to the final
coapted position of the leaflets. The extension of these elastic fibers accommodates the un‐
folding of the fibrosa layer, which is normally corrugated in the unloaded position. During
this unfolding process, the elastic fibers are bearing the loading of the entire leaflet [43].
Even at high strains, when the collagen in the fibrosa is considered to dominate mechanical
properties, the elastin in the ventricularis still plays a significant role. This effect was shown
when separated ventricularis was preloaded to mimic its intact configuration; the separated
ventricularis was shown to bear load before the separated fibrosa [44]. It has been speculat‐
ed that this response acts as a safety mechanism to prevent radial overextension of the aortic
valve leaflet. Then, when the pressure across the valve is reduced, the elastic fiber sheet in
the ventricularis recoils and retracts the leaflets back toward the annular attachment to the
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arterial wall, a process that involves the re-folding of the corrugations in of the fibrosa. This
action restores the original shape and orientation of collagen quickly and consistently to pre‐
pare for the next cycle of valve closing. Although the elastic sheet in the ventricularis has
fibers that are also oriented circumferentially as well as radially, elastin does not appear to
play an important role in the mechanical behavior of the leaflet in the circumferential direc‐
tion. Valve leaflets exposed to cyclic circumferential stretch and cultured under flow for 48
hours maintained a constant concentration of elastic, suggesting that elastogenesis was not
activated during the duration of stretch [45]. However, it is speculated that connections be‐
tween the elastic fiber and collagen networks facilitate the radial extensibility of the ventri‐
cularis layer and the overall leaflet [43]. There are also some elastic fibers in the fibrosa,
which surround and connect the collagen fibers, thus preserving collagen crimp and the
characteristic corrugated nature of the fibrosa [6,46,47].

The elastic fiber structure in the spongiosa has been characterized much less than in the ven‐
tricularis, partly due to the difficulty in isolating its structure from the rest of the leaflet [30].
This elastic structure, however, has been observed during microdissection separating the
leaflet [30,48], with scanning electron microscopy (SEM) [6,46], micro-computed tomogra‐
phy (micro-CT) [6], immunohistochemistry (IHC) [25], and autofluorescence imaging
[49,50], which all have shown a fine elastic fiber network emanating from the ventricularis
and connecting to the fibrosa. We have recently reported that the thickness of this elastic fi‐
ber network in the spongiosa is significantly thicker in the hinge and coaptation region than
in the belly region of the aortic valve leaflet [8]. We also found two distinct patterns of spon‐
giosa elastic fibers within the leaflet: (i) a rectilinear pattern in the hinge and coaptation re‐
gion; and (ii) a radially oriented stripe pattern in the belly. Overall, it is believed that the
elastic fibers in the spongiosa contribute to valve function in three ways. First, they connect
the elastic fibers in the ventricularis to collagen in the fibrosa, which allows coupling of the
mechanics of the two layers and matrix components, while using elastic recoil to exert pre‐
load on the fibrosa. Second, they distribute stress between collagen and elastic fibers, partic‐
ularly at low strains. Third, they passively allow relative movement and shear between the
outer layers [5,6,48].

Given the presence of a thick, rectilinearly-arranged structure of elastic fibers in the spongio‐
sa of the hinge and coaptation regions, it is speculated that this elastin structure plays a role
in leaflet flexure [5,30]. Flexure of the leaflet towards the outflow direction compresses the
fibrosa and applies tension to the ventricularis. Rather than undergoing compression, how‐
ever, the fibrosa may attempt to buckle separately from the leaflet, thereby exaggerating its
corrugated configuration. The leaflet would subsequently bend at the troughs of this corru‐
gation, where the second moment of inertia would be locally reduced, albeit temporarily.
Buckling would only occur with shearing between the fibrosa and ventricularis, which is al‐
lowed by both the compliant elastic fibers in the spongiosa connecting the two outer layers
as well as by GAGs in the spongiosa lubricating the outer layer movement [5,30,51,52]. Re‐
coil from the elastic fibers in the spongiosa would then return the fibrosa to its original con‐
figuration so it could undergo the next cycle of loading [5,30]. At the hinge, where bending
occurs in the opposite direction, it is speculated that the elastic fiber-rich ventricularis com‐
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presses readily without buckling, most likely due to the tensile preload already exerted on
the ventricularis, but that leaflet deflection may be limited by the stiff fibrosa, which would
not allow the leaflet to bend [4,53]. Limited flexure at the hinge would allow the leaflet to
absorb pressure from reverse blood flow in diastole, but prevents distention of the leaflet.
Thus, our finding of a thicker spongiosa and elastic fiber structure in flexural regions pro‐
vides evidence of a significant role for elastin in flexure [8]. In addition, the thick network of
elastic fibers that we have observed in the spongiosa of the coaptation region may play a
role in dampening vibrations that result from valve closing [5].

5. The middle layer, the spongiosa, is comprised mainly of
glycosaminoglycans and proteoglycans

Glycosaminoglycans and proteoglycans (GAGs and PGs, respectively) comprise a signifi‐
cant part of the aortic valve leaflets. PGs and GAGs are mainly found in the spongiosa layer
of the valve, located between the ventricularis and fibrosa, where they play a vital role in
maintaining normal valve function. Previous work has shown that GAGs and PGs serve to
not only provide mechanical support to the tissue but also aid in the normal biological func‐
tions of the valve [54]. Therefore, it is crucial to fully understand the function of GAGs and
PGs in both the normal and possible diseased states of tissues.

GAGs are composed of long and unbranched chains of repeating disaccharides, which con‐
sist of a hexosamine and either, depending on the GAG type, uronic acid or galactose. There
exist the following families of GAGs with each group being defined by its composition: hya‐
luronan (HA), heparin, heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate
(DS), and keratan sulfate (KS) (Table 2) [55–58].

GAGs are primarily formed in the lumen of the Golgi apparatus. The formation process oc‐
curs, except in the case of HA, with glycosyltransferases alternatively adding a uronic acid
or galactose with a hexosamine to a protein core. The attachment to the protein core varies
based on the GAG type. Heparin, HS, CS, and DS are attached to a serine residue, connected
to the protein core, via xylose. KS can attach to the protein core either by an asparagine resi‐
due at the N-terminus or linked to serine or threonine at the O-terminus. HA does not attach
to a protein core. It is synthesized by the addition of sugars to the non-reducing termini of
the forming polysaccharide by HA synthase, without a protein backbone. In all cases, modi‐
fications can be made to the resulting polysaccharides. Two noteworthy changes include
sulfation of the chains and epimerization of the uronic acid. These changes do not occur,
however, with HA. Sulfation and epimerization modifications can give a more distinct char‐
acteristic to the GAG chains. The epimerization of the uronic acid of CS leads to the produc‐
tion of DS. Epimerization also occurs on heparin and HS. Sulfation can occur in CS, DS,
heparin, HS, and KS. N-sulfation takes place in heparin and HS; whereas, O-sulfation can
take place in heparin, HS, CS, and DS. In addition to epimerization and sulfation, phosphor‐
ylation of the xylose linkage—occurring among CS, DS, heparin, and HS to their respective
protein cores—can take place [54,58,59]. Through gel electrophoresis, it has been found that
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HA comprises approximately half of the total GAG content in aortic valves [60]. It is impor‐
tant to note that all GAGs, with the exception of HA, exist in vivo as components of PGs.

Glycosaminoglycan Uronic acid Galactose Hexosamine

Hyaluronan Glucuronic - N-acetylglucosamine

Heparin Glucuronic

Iduronic

- N-acetylglucosamine

Heparan sulfate Glucuronic

Iduronic

- N-acetylglucosamine

Chondroitin sulfate Glucuronic - N-acetylgalactosamine

Dermatan sulfate Glucuronic

Iduronic

- N-acetylgalactosamine

Keratan sulfate - + N-acetylglucosamine

Table 2. List of glycosaminoglycans and their composition [59]

 

 α β α β

Protein core

Glycosaminoglycan

Figure 2. Proteoglycan structure

PGs are formed when GAGs are added to a protein core through a covalent linkage (Figure 2).
During PG synthesis, a protein core moves from the endoplasmic reticulum of a cell to the
Golgi apparatus, where GAGs are then added to the protein core [55]. PGs can be found in in‐
tracellular organelles, on the cell surface, and in the extracellular matrix (ECM) [59]. PGs
found in the ECM can be divided into three categories: PGs found within the basement mem‐
brane, hyalectans or PGs that interact with HA and lectins, and small leucine-rich PGs (SLRPs)
or PGs that contain a leucine motif and have considerably low molecular weights. These PGs
can be further classified by the type of protein backbone they contain, as well as the amount,
type, and sulfation pattern of the GAGs that are attached to the backbone. More than thirty
PGs have been characterized [61]. For example, well-characterized PGs that exist in cardiovas‐
cular tissue include decorin, biglycan, and versican. Decorin and biglycan have a core protein
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size of 40 kDa and are a part of the SLRP family of PGs. They contain CS and DS GAG chains
[61]. Versican is a large, chondroitin sulfate proteoglycan. It interacts with HA, and therefore
is a hyalectan PG [62]. Other significant PGs in mammalian tissues include perlecan—a base‐
ment membrane protein that contains HS and CS, aggrecan—a hyalectan containing CS, and
syndecans—a family of cell surface heparan sulfate proteoglycans containing HS and CS [61].

GAGs, and in turn PGs, have a significant role in aortic valve tissue behavior. GAGs have
been shown to enhance the viscoelastic properties of the valve leaflets through binding of
water molecules [63]. The sulfation and carboxylation on the GAGs make them highly nega‐
tively-charged polysaccharides. This negative charge draws in water molecules. Once the
tissue becomes hydrated, it acts like a sponge for the valve leaflets. As noted previously,
GAGs and PGs are highly abundant in the middle layer of the aortic valve leaflet. One of the
main functions of this cushioned layer, the spongiosa, is to provide a barrier between two
other layers, the ventricularis and fibrosa, of the valve. This barrier allows for proper shear‐
ing between the layers as well as compressibility of the leaflet without compromising the
leaflet’s overall structural or biological integrity when mechanical stimuli are applied to
aortic valve leaflets [63,64]. The mechanical competency that GAGs provide is crucial to the
aortic valve leaflets. The aortic valve leaflets serve to ensure unidirectional blood flow from
the left ventricle to the aorta. In order to guarantee normal blood flow, the leaflets must
open and close properly. Therefore, the flexibility that GAGs provide to the leaflet is crucial
to the normal valve’s function. In addition, the space that GAGs occupy and form in the ma‐
trix serve to organize other molecules within the structure. The structure and hydration that
GAGs provide also allow for biological cues to occur within the valve. Moreover, GAGs are
known to aid in cell migration, proliferation, act as receptors for signaling molecules, bind
growth factors, and serve in the recruitment of various cell types [54].

It is believed that GAGs/PGs likely play an active role in aortic valve tissue disease. Re‐
search has shown regional variation of decorin, biglycan, versican and HA in, near, and dis‐
tal to regions of calcification in diseased aortic valves, suggesting the occurrence of
remodeling in the tissue during an unhealthy state [65]. In addition, although the exact cau‐
sation of calcific aortic valve disease is unknown, it is speculated that it may be due, at least
in part, to an inflammatory process [17]. Interestingly, GAGs are thought to play an active
role, quite often in the case of cellular injury, in many inflammatory processes for a variety
of cell types and have shown to alter in structure and localization in these processes [66]. In
addition, some researchers believe that lipid binding due to the unique structure of GAGs
may be critical to the accumulation of lipids in calcified aortic valves, a characteristic that is
hypothesized to aid in valvular calcification [67]. Although the specific mechanisms under‐
lying calcific aortic valve disease are not quite understood, the complex nature and distin‐
guishable differences of GAGs in both healthy and diseased tissue give rise to the possibility
of GAGs being a key factor in valve calcification.

GAGs are very complex disaccharides that highly dictate the behavior of PGs. These poly‐
saccharides are vital in maintaining mechanical, structural, and biological integrity of the
aortic valve. Although there is growing interest in further elucidating the role of GAGs in
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healthy tissues, the exact role of GAGs in diseased aortic valves needs further investigation,
as well.

6. Minor ECM components in heart valves also play significant roles in
normal valve function and in pathological states

The extracellular matrix of heart valves contain a number of minor components that per‐
form a variety of functions. They are important in valve development, function, and pathol‐
ogy. The study and further characterization of these minor ECM components not only
facilitates the development of targeted therapies but would also aid in the microenviron‐
mental mimicry needed for potential tissue engineering applications.

Vitronectin is a glycoprotein that is approximately 75 kDa in size and is present in both se‐
rum and the ECM as an adhesive substrate [68]. It is involved in the inhibition of the com‐
plement system [68] and is associated with the regulation of hemostasis [69]. Vitronectin
also promotes cellular attachment to ECM and is involved in cellular migration [68]. This
glycoprotein, along with fibronectin, is found in moderate amounts in aortic, pulmonary,
and mitral valves, localizing around valve endothelial cells (VEC) on the inflow layer [25]. In
addition, both fibronectin and vitronectin have been shown to associate with collagen fibers
in chordae tendinae [70].

Fibronectin is a dimer glycoprotein which consists of two ~250 kDa subunits and is a com‐
ponent of the extracellular matrix [71]. There are many various isoforms of fibronectin,
which is the result of alternative mRNA splicing [71]. In addition to being an insoluble ECM
component secreted primarily by fibroblasts, soluble fibronectin is also found in the plasma
[71]. Fibronectin acts by binding to integrins, collagens, fibrin, and heparin sulfate proteo‐
glycans [71], which allows it to participate in wound healing [72,73] and act as a critical
player in embryogenesis [74]. Although not a major ECM component in heart valves, valve
interstitial cells (VIC) secrete fibronectin in response to valve damage, providing a means for
cell migration [75].

Additionally, fibronectin, along with osteonectin and periostin, confers stiffness to the fibro‐
sa layer [76]. Periostin is a component of the ECM that acts as a ligand for α-V/β-3 and α-
V/β-5 integrins and is known to support adhesion and epithelial migration [77]. It is present
in the extracellular matrix of several types of tissues and is upregulated in several types of
cancers [78]. Recombinant periostin has been shown to promote cardiomyocyte proliferation
and angiogenesis after a myocardial infarction [79]. It has been shown previously that peri‐
ostin plays a role in murine embryonic valve development and remains present in the
valves throughout the lifespan even when there is no pathological calcification [80]. A recent
study involving chick cardiac development suggests that the presence of periostin in the de‐
veloping heart may provide a means of organizing other ECM molecules in order to facili‐
tate early epithelial-mesenchymal transition (EMT) [81]. However, the overexpression of
periostin and osteopontin can lead to valve calcification.
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Osteopontin is a phosphoprotein, meaning that it contains chemically bound phosphoric
acid. Originally found in bone, it also contains the arginine-glycine-aspartate (RGD) motif
more commonly attributed to fibronectin and is also a constituent of ECM in other tissues
[82]. It is secreted by various tissues such as fibroblasts [82] and immune cells, including
dendritic cells, macrophages, and neutrophils [83]. Osteopontin is known to interact with
various surface receptors that make it a crucial player in bone remodeling [84], wound heal‐
ing, inflammation, and immune responses [83]. It is also known to be involved in vascular
remodeling during endothelial injury [82]. Osteopontin is present in valves calcified as a re‐
sult of disease as well as in calcified bioprosthetic heart valves [85]. The calcification process
of aortic valves closely resembles osteoblast differentiation in regards to expression of genes
characteristic of bone formation, such as osteopontin and osteocalcin [86].

Osteocalcin is a small, non-collagenous protein that is considered a late-stage marker for
bone formation and is one of a small group of proteins that are osteoblast-specific [87,88]. It
is present in general circulation [87] and its capacity for binding hydroxyapatite and calcium
suggests that it is largely involved in mineral deposition [88], but it also has recently been
shown to act in a hormone-like manner by enhancing insulin secretion [87]. Its traditional
role as a product of bone indicates that valve calcification may actually be a result of active
bone formation in the valve tissue [86]. This bone formation may be the result of VEGF se‐
cretion by endothelial cells during neoangiogenesis occurring in response to inflammation,
as seen in rheumatic valve calcification [89]. Additionally, increased serum levels of osteo‐
calcin were shown to be indicative of aortic valve disease in patients [90].

In addition to the matrix proteins, matrix metalloproteinases (MMPs) and their inhibitors
(TIMPs) are also found in heart valves. They assist in tissue development and remodeling
and can be used as indicators of disease. It is also believed that the ECM degradation result‐
ing from MMP activity serves to release growth factors bound to ECM components and thus
alter the microenvironment chemically, as well as structurally [91]. Calcified leaflets from
stenotic valves have been shown to express levels of MMP-2 that are similar to those of nor‐
mal valves but express higher levels of MMP-3, MMP-9, and TIMP-1 [14]. MMP-1, produced
by activated myofibroblasts and macrophages, is also prevalent in calcific aortic valve steno‐
sis and may be related to high TNF-α levels resulting from inflammation [92].

7. The basement membrane supports valve endothelial cells and acts as a
barrier between circulating blood and subendothelial components

The basement membrane is a myriad of proteins, proteoglycans, and glycoproteins that not
only supply a substrate to anchor the valve endothelial cells, but also has a large array of
biological activities that regulate spatial organization, sequester growth factors, modulate
angiogenesis and migration, and regulate the diffusion of nutrients through it towards the
underlying valve interstitial cells [93]. The major constituents of the basement membrane are
laminin, perlecan, collagen type IV and VIII, nidogen, and the glycoprotein SPARC (secreted
protein, acidic and rich in cysteine). Each of these constituents play a role in the overall func‐
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tion of the basement membrane. In addition, MMPs contribute to the biological activity that
occurs within the basement membrane. Understanding basement membrane composition
and behavior, during both healthy and diseased states of the aortic valve, may lead to a bet‐
ter understanding of calcific aortic valve disease.

Laminins belong to a family of heterotrimeric glycoproteins composed of combinations of α,
β, and γ chains that form a cross-like structure averaging between 400-900 kDa in size
[94,95]. Laminins play an integral role in the formation of the supportive ECM network. The
unique cross-like shape allows laminin molecules to bind with neighboring laminins and
ECM via the three short chains, and use the long alpha chain as a cell anchoring site [96]. In
addition to their structural contributions to the basement membrane, laminins are essential
for proper biological activity. These glycoproteins have been shown to promote cell adhe‐
sion, migration, differentiation, and maintenance of cellular phenotype [94,97,98]. Dysfunc‐
tion in laminin expression has been linked to diseases with improper tissue formation such
as muscular dystrophy, epidermolysis bullosa, and various nephritic syndromes [94,99].

Although laminin is not as ubiquitous as collagen, this basement membrane component has
been highly investigated as an ECM substrate for in vitro cultures. However, this glycopro‐
tein may influence valve cell types differently. In vivo and in vitro studies have shown that
laminin interacts with endothelial and epithelial cells, and can help maintain physiological
functionality of the cells [97,100,101]. However, VICs cultured on laminin have been found
to support high quantities of calcific nodule formation in the presence of TGF-β, when com‐
pared to subendothelial ECM components collagen type I and fibronectin [19,102]. The vari‐
ous regions of laminin protein have been reported to mediate specific cell responses. The G-
domains of laminin α chains are associated with heparin binding and cell adhesion, whereas
regions along the laminin β chains promote cell differentiation [98,100,101]. The peptide se‐
quence YIGSR from the laminin β-1 chain has been shown to promote endothelial cell adhe‐
sion and proliferation, however, it also influences other cell types including smooth muscle
and tumor cells [98,101]. VICs cultured on YIGSR were also shown to promote calcific nod‐
ule formation, although less than those seeded on fibronectin derived RGDS peptides. How‐
ever, when the 67-kDa laminin cell receptor was blocked, the YIGSR seeded VIC cultures
significantly increased in nodule formation and gene expression for various myogenic and
osteogenic markers, suggesting that disruption in laminin binding may be linked to valve
calcification [103]. IKVAV, another peptide sequence derived from the laminin α1-chain, has
been linked to promoting angiogenesis, cell migration and spreading [97,98,104]. Though
most work with this peptide has been done with endothelial and tumor cells, its ability to
promote angiogenesis may also be a future area of interest in studying how angiogenesis
mediates valve tissue calcification. Furthermore, laminin influence on cell activity varies be‐
tween cell types, and may promote VIC activation and tissue calcification in diseased states.

Perlecan (Pln) is one of the more abundant heparan sulfate proteoglycans and is found in
several tissues including in the endochondral barrier in bones [105]; however, it is primarily
localized in vascular basement membranes. It has a major role in regulating the develop‐
ment of blood vessels, the heart, cartilage, and the nervous system. Physiologically, perlecan
plays a prominent role in regulating cellular proliferation, differentiation, organization, and
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mediating inflammation [106]. Perlecan derives its functionality from five protein subdo‐
mains which share their sequence homology with several other proteins [107]. Domain 1
contains an SEA (Sperm protein, Enteokinase, Agrin) module and three SGD (Ser-Gly-Asp)
tripeptide sequences to which three heparan sulfate (HS) glycosaminoglycans attach. These
HS can bind and sequester several important growth factors for determining endothelial
quiescence in a process known as matricrine signaling. The SEA section is unique to perle‐
can, and it has no known function other than to influence the O-linked glycosylation of the
SGD domain. Interestingly, it has been shown that several factors that determine the activity
of these sugar chains vary greatly by the cell source that is producing them [108]. These fac‐
tors can include the ratio of heparan sulfate to chondroitin sulfate, the length of the chains,
and the sulfation level of the chains which all affect how the chains modulate the bioactivity
of nearby growth factors. Domain II contains 4 low-density lipoprotein receptor sequences
and one immunoglobulin-like repeat. Domain III contains three laminin-like domain mod‐
ules and eight epidermal growth factor-like repeats. Domain IV, the largest domain, con‐
tains many N-CAM-like Ig repeats. Domain V has been demonstrated to be the major cell-
binding domain of perlecan due to the laminin and agrin homologies that it contains.
Domain V can also be glyocosylated, which can contribute along with domain I to the matri‐
crine signaling capabilities of perlecan, which could potentially contribute to the develop‐
ment of CAVD [109].

Matricrine signaling occurs when the ECM modulates cell behavior by controlling the local
levels of growth factor concentrations by sequestering or releasing them when the underly‐
ing matrix is intact or degraded, respectively [109]. Proteoglycans, like perlecan, and their
GAG chains are the major sites for matricrine signaling due to their heparan sulfate and
chondroitin sulfate chains electrostatically binding free growth factors. Their role in the
pathology of CAVD is widely unexplored despite their presence in normal valves and their
increased production in diseased valves [67]. It is known that PGs and GAGs play an inte‐
gral role in the progression of atherosclerosis via sequestering of inflammatory molecules
and lipids [110–113] and mediating angiogenesis into the vessel supplying an entry way for
additional inflammatory entities. Both of these factors are seen histologically in CAVD, but
their role is merely speculative at this moment.

Collagens in the basement membrane can form lateral, axial, and linear connections with
surrounding ECM. Of the basement membrane collagens, collagen IV (COL IV) is the most
abundant and essential for network formation. Only found in basement membrane tissues,
COL IV molecules are approximately 400 kDa, and composed of two α1, and one α2 [115–
117]. COL IV proteins have many biologically active domains that can influence specific cel‐
lular responses, as well as have specific affinities to other molecules such as BMP-4, fibro‐
nectin, Von Hippel Lindau protein, and factor IX [115,117]. Mapping of COL IV protein
reveals 3 major integrin motifs that are located in strategic regions to promote cell activity or
protein degradation when activated [115]. During angiogenesis and tumor invasion, COL IV
is degraded by MMP-2 and MMP-9 enzymes to allow for cell migration and infiltration into
the matrix. Studies have found that the cleavage sites also overlap with many integrin bind‐
ing domains such as α1β1, resulting in the availability of αvβ3 integrin binding sites known to
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promote neutrophil binding [115,118]. Collagen IV networks are highly adhesive to all cells
types except erythrocytes [115,119]. Furthermore, cell binding has been found to be en‐
hanced in the presence of various ECM molecules such as perlecan, SPARC, and von Wille‐
brand factor (vWF) [115,118,119]. Interestingly, COL IV also has numerous anti-angiogenic
domains that are activated after MMP degradation at the non-collagenous (NC) 1 domain,
thereby limiting angiogenesis or migration of endothelial and tumor cells [115]. The changes
in COL IV bioactivity depending on the domain region and cleavage state can greatly affect
the functionality of surrounding cells. Dysfunctional COL IV expression or mutations in the
heterotrimer formation have been found to be extremely detrimental and cause matrix dis‐
orders such as Goodpasture’s syndrome or Alport syndrome [94,115]. Therefore, additional
studies should be done to investigate how the highly bioactive COL IV meshworks may
promote the onset of calcification in valve tissues.

COL VIII has also been found to play a network forming role, maintaining the sheet-like
structure ECM, while sequestering various integrin binding sites and growth factors. COL
VIII is smaller than COL IV, and can form tetrahedral and hexagonal assemblies [117,118].
Though work on COL VIII in regards to valve tissues has been limited, vascular basement
membrane studies have found that COL VIII plays a large role in interacting with subendo‐
thelial cells such as smooth muscle cells and fibroblasts. In vitro, COL VIII promotes fibro‐
blast proliferation and migration [114]. Furthermore, COL VIII may be linked to
atherogenesis, a pathology similar to CAVD, as its expression in cells is upregulated during
vessel injury [114,120]. This collagen has even been found to interact with elastic fibers in
liver tissues, suggesting it may have a bridging function between the basement membrane
components and subendothelial ECM [118]. Therefore, COL VIII could play an integral role
in mediating valve interstitial and endothelial cell communication. Recent studies have
found after enzyme cleavage at the NC1 domain, the resulting C-terminal fragment known
as vastatin will prevent endothelial cell proliferation and induce cell apoptosis [120]. While
some work has investigated using vastatin as an anti-angiogenic agent, further studies are
needed to elucidate how it may affect the functionality of surrounding cells and ECM, espe‐
cially in older valve tissue.

Similar to perlecan, nidogen is a 150 kDa glycoprotein that has sequence homologies with
other basement membrane proteins. It consists of two amino (G1, G2) and one carboxyl (G3)
terminal globular domains that are connected by a rod domain composed primarily of endo‐
thelial growth factor repeats [121]. Nidogen binds collagen type IV, perlecan, and laminin.
This binding contributes to the hypothesis that nidogen is important in basement membrane
assembly; although some recent animal studies have demonstrated that nidogen may not be
necessary for basement membrane formation [121]. The role of nidogen in CAVD is unex‐
plored, but it may play a role in maintaining valvular basement membrane functionality by
regulating infiltration of inflammatory agents [93].

SPARC positive neovascularisation is a documented histological change in CAVD [122]. Se‐
creted protein acidic and rich in cysteine (SPARC), also known as osteonectin, is a small
basement membrane protein. It interacts with cells, binds to other members of the basement
membrane, growth factors, various proteases, and is found in newly developing neovessels.
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Intact SPARC protein inhibits cellular proliferation and has anti-angiogenic activity in vitro
[123]. However, enzymatic degradation of SPARC can release matricryptic fragments with
the KGHK motif that may induce angiogenic activity both in vitro and in vivo [124]. SPARC
has been observed lining blood vessels in early to mid stage calcified valves suggesting the
presence of a fully formed basement membrane lining these vessels [125]. However, the
presence of the other constituents of the basement membrane is merely speculative at this
point as the studies investigating their presence during CAVD have not been completed.

8. Summary

In conclusion, the last several years have witnessed significant acceleration in the number of
studies characterizing specific types of extracellular matrix in heart valves, although there is
still much to be learned. The basement membrane of heart valves, and its role in regulating
valvular endothelial cell function, are particularly understudied. The broad scope of cell-ma‐
trix and matrix-matrix interactions within heart valves, and how these are regulated by the
local, dynamic signaling environment, is another subject that merits further investigation.
We expect that insights gained from these research endeavors will lead to novel treatments
for valve diseases in the future.
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