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1. Introduction 

The development of the mammary gland occurs in four distinct phases: embryogenesis, 

puberty, pregnancy, and a post-lactational phase involving profound levels of cell death and 

tissue remodeling. This post-lactational phase is termed post-lactational involution. During 

embryogenesis, a solid epithelial bud is generated in the embryonic ectoderm. As this bud 

continues to grow in cell number, the epithelial bud invaginates into the underlying 

mesenchyme forming the nascent mammary epithelium. The mammary epithelium grows 

as solid epithelial cords, lengthening distally and branching to form the rudimentary 

epithelial network. At puberty, ductal elongation continues in a proximal-to-distal direction, 

and side branches appear along the ducts. The side branches also lengthen distally, and 

continue to branch. This pattern of distal growth and branching fills the mouse mammary 

fat pad with an extensively branched epithelium by the end of puberty [6]. Similar to what is 

seen during embryonic mammary development and patterning, the mammary ducts 

developing during puberty originally appear in solid epithelial cords. Apoptosis canalizes 

the luminal space within the ducts, allowing a patent conduit for milk to traverse through 

the breast epithelium [1, 7]. Ultimately, the rodent mammary epithelium is comprised of a 

continuous, branching network leading from the nipple to primary ducts and smaller 

ductules that terminate in terminal end buds (TEBs), blunt ends or alveoli. The inner 

luminal cells are separated from the basement membrane by an outer myoepithelial layer. 

Myoepithelial cells secrete basement membrane components to which the epithelium 

attaches, and that physically separates the epithelium from the stromal compartment.  

Many morphological similarities exist between the mouse mammary gland and the human 

breast, although some distinctions exist. In the human breast, the cluster of epithelial acini 

arising from a single terminal duct, referred to as the terminal duct lobular unit (TDLU), is 

thought to be the milk-producing unit of the mammary gland. Therefore, the post-pubertal 
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human breast harbors cells capable of milk production even in the absence of pregnancy 

whereas the rodent mammary gland does not. However, profound expansion and 

differentiation of the TDLU population in the human breast is still required in order to 

render lactation successful.  

This expansion of the alveolar epithelium during pregnancy occurs in response to both local 

and systemic factors that drive mammary alveolar proliferation. In rodents, the entire 

secretory epithelium of the mammary gland develops during the gestation period of 

approximately three weeks, signifying a rapid 10-fold increase in epithelial content of the 

mammary gland. The mammary gland produces colostrum and then milk upon partuition. 

However, once offspring are weaned, the milk-producing lobuloalveolar cells are no longer 

necessary. Rather than being maintained, these secretory cells undergo programmed cell 

death in an exquisitely controlled and rapid process, while leaving the ductal epithelium 

intact. Dying cells are cleared from the post-lactational mammary gland rapidly and without 

causing acute inflammation, removing up to 90% of the total mammary epithelial content 

within the time span of just one week in rodent models.  This returns the mammary gland to 

an almost pre-pregnant state, so that the changes in the mammary gland that accompany 

pregnancy, lactation and involution may again occur with each successive pregnancy.  

The process of involution is complex requiring two distinct phases, the initiation of 

extensive cell death to remove the milk-producing epithelial cells, followed by the 

controlled influx of macrophages and other immune cell types to breakdown extracellular 

matrix, remodel blood vessels, replenish the adipocyte population in the mammary fatpad, 

and to phagocytically remove dead cells, residual milk, and debris.  This review will focus 

primarily on the events controlling cell death that occur within the first days of post-

lactational involution.  

2. Body 

2.1. Signaling mechanisms that control post-lactational apoptosis in the breast  

In recent years, molecular regulation of post-lactational involution has been studied 

primarily in the mouse mammary gland, due in large part to the relatively rapid gestation 

and nursing period in mice, and to the extensive use of genetically engineered mouse 

models.  These models, coupled with advances in transcriptional profiling have provided a 

detailed analysis of the dynamic cellular and molecular events occurring during the earliest 

days of involution, when the majority of programmed cell death occurs.  

2.2. Milk stasis 

Using teat-sealing to block milk delivery in a single mouse mammary gland, investigators 

demonstrated that a complex multi-step process initiating massive epithelial apoptosis is 

triggered by local stimuli produced in the sealed mammary gland, but not by changing 

levels of circulating hormones that are available to the remaining nine mouse mammary 

glands [8, 9]. These studies revealed that milk stasis is a primary trigger of post-lactational 



 
Apoptosis and Clearance of the Secretory Mammary Epithelium 3 

cell death in the mammary gland [8]. Accumulation of milk within the secretory luminal 

space might initiate cell death by causing a mechanical stretch of these cells, or of cell-cell 

junctions [10]. It is clear that mechanical stress, including cell stretching, can initiate 

biological responses in several epithelial and endothelial cell types, and may activate 

signaling pathways known to trigger cell death in the post-lactational mammary gland. For 

example, cell stretching induces STAT3 phosphorylation, inhibition of the survival factor 

AKT, and expression of Leukemia Inhibitory Factor (LIF), each of which are critical during 

early post-lactational involution for the induction of cell death, as discussed below. Another 

potential explanation of milk stasis-induced cell death is that accumulation of milk 

components, such as calcium, may trigger cell death [11]. In support of this hypothesis, 

transcription of the plasma membrane protein calcium-ATPase 2 (PMCA2), which 

transports 60–70% of milk calcium [12], is dramatically and rapidly reduced during 

involution, perhaps due to self-limiting negative feedback in an effort to control potentially 

toxic divalent cation levels [13]. Loss of the gene encoding PMCA2 (Atp2b2) in mice caused 

precocious alveolar cell death at lactation. Interestingly, PMCA2 expression is also regulated 

by enforced shape changes in mammary epithelial cells [13]. Stanniocalcin-1 (STC-1), a 

newly discovered mammalian hormone that accumulates nearly 3-fold upon milk stasis 

[14], has recently been implicated as an inducer of post-lactational involution [15]. 

2.3. STAT3 

Transcriptional profiling studies of the mouse mammary gland at specific time points 

during lactation and post-lactational involution demonstrated that a specific subset of genes 

is dramatically induced within 12 hours of pup withdrawal, presumably in response to milk 

accumulation [4, 16]. It was hypothesized that this gene subset may represent potential 

‘master regulators’ of programmed cell death in the post-lactational mammary gland. This 

idea has been largely confirmed using genetically engineered mouse models that disrupt 

key expression events, resulting in a delay in post-lactational programmed cell death.  

The transcription factor Signal Transducer and Activator of Transcription (STAT) 3 was 

conditionally deleted in the mammary epithelium of genetically engineered mice, revealing 

its critical role in initiating the earliest events in post-lactational apoptosis [17-19]. While it 

has been known for some time that STAT3 regulates the expression of pro-inflammatory 

genes involved in the acute phase response (the early inflammatory response to tissue 

injury) [20, 21], and that many inflammation-related genes are expressed during post-

lactational involution [4, 22, 23], these studies were the first to demonstrate the molecular 

similarities that exist between the involuting mammary gland and the traditional wound 

healing scenario [23], despite the fact that involution-induced transcriptional responses are 

directed primarily by epithelial cells, while wound healing-induced transcriptional 

responses are directed by cells of the immune system.  

STAT3 is widely expressed, and is activated by tyrosine phosphorylation in response to 

numerous cytokines and growth factors [e.g. interleukin-6 (IL-6), IL-10, IL-17, IL-23, EGF] 

and tyrosine kinases (c-Src, Met, ErbB-2) [24]. Tyrosine phosphorylation of STAT3 allows 
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STAT3 dimers to translocate from the cytoplasm to the nucleus, where STAT3 binds to 

sequence-specific DNA elements in the promoters of STAT3 target genes. STAT3 activates 

gene transcription of many inflammation related genes, and can also repress the 

transcription of others. Although STAT3 transcriptional activity is associated with cell 

survival in several cell types including lymphomas and solid tumor epithelial cells [25-28], 

STAT3 takes on a different role in the post-lactational mammary gland, where STAT3 is 

required to initiate cell death. In the absence of STAT3, cell death was abrogated for at least 

6 days after pup withdrawal, despite milk stasis [18, 19]. Conversely, loss of suppressor of 

cytokine signaling (SOCS)-3, a negative regulator of STAT3, accelerated involution by 

increasing the rate of cell death following pup withdrawal [29, 30].  

A number of genes regulated by STAT3, such as CAAT/enhancer binding protein (C/ebp)δ, 

oncostatin M (OSM), OSM receptor (OSMR), and insulin-like growth factor (IGF) binding 

protein (IGFBP)-5, are also required in the post-lactational mammary epithelium to initiate 

cell death [31, 32]. OSM, a cytokine normally produced by macrophages but in this case 

produced by the mammary epithelium, is required during post-lactational involution, since 

OSMR knockout mice exhibited delayed involution [33].  Loss of C/ebpδ, a transcription 

factor involved in the acute phase response, also delayed mammary gland involution [31]. 

Because STAT3, and many target genes activated by STAT3, are critical triggers of cell death 

during post-lactational involution, it is likely that STAT3 lies at the apex of a transcriptionally-

activated signaling cascade that is required to initiate cell death in the post-lactational 

mammary epithelium. This role of STAT3 as an apoptosis inducer lies in contrast with 

observations that STAT3 is frequently activated in several cancer entities [28], correlating 

with heightened malignancy [34, 35]. Further, constitutive STAT3 activity promotes tumor 

formation in skin [36] and lung [37, 38]. The apparent discrepancy may be related to tissue 

specificity of STAT3 activity, or the activity of STAT3 in the tumor microenvironment (for 

example, in inflammatory cells) versus its role in the epithelial compartment of the tumor.  

2.4. NF-B 

Although the role of STAT3 in the induction of post-lactational apoptosis is clear, STAT3 

alone is insufficient to induce involution in the absence of nuclear factor-B (NF-B) 

signaling [39]. NF-κB comprises a family of five structurally and functionally related 

transcription factors [40]. Based on their transactivation properties, NF-B proteins are 

divided into two classes: Class I consists of RelA/p65, RelB, and c-Rel, while Class II includes 

NF-B1/p50 and NF-B2/p52. Each can dimerize in almost any combination but only class I 

proteins possess the C-terminal transactivation domains required for NF-B-mediated 

transcription of target genes. Under basal conditions, NF-B dimers are sequestered in the 

cytoplasm bound to the protein Inhibitor of B (IκB). Several signaling pathways can activate 

the IB kinases (IKKs) that phosphorylate IB, thus liberating NF-B dimers and allowing 

their nuclear translocation, where they bind to specific DNA sequences in target genes.  

Among this family of transcription factors, two NF-B subunits, RelA (p65) and p50 are 

expressed at different levels in the mammary epithelium throughout mammary gland 
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development. Furthermore, NF-B activity as measured in vivo using a transgenic NF-kB 

reporter model demonstrated two major peaks of NF-B-mediated trans-activation: one that 

occurs during pregnancy, and another that occurs during involution [41]. These data are 

consistent with reports showing that NF-B induced transcription of pro-survival genes [42-

45], and other reports showing that NFB activated transcription of pro-apoptotic genes [46-

48]. Therefore, it is possible that NF-B might drive cell growth and survival in the breast 

epithelium in some cases, but may regulate breast epithelial cell death in others. In support 

of the idea that NF-B might promote cell death, increased NF-B activity is rapidly induced 

after weaning, with strong increases seen within one hour of milk stasis in mouse mammary 

glands. NF-B activity remains elevated through the first four days of murine post-

lactational involution. Furthermore, loss of NF-B signaling in a genetically engineered 

mouse model of conditional IKK-β disruption decreased post-lactational NF-B signaling, 

resulting in decreased caspase-3 cleavage and delayed post-lactational apoptosis [39], 

confirming the importance of NFB signaling in post-lactational cell death of the secretory 

epithelium. Conversely, constitutively active IKK-β increased NF-B signaling, thus causing 

accelerated induction and higher rates of apoptosis during post-lactational involution [49]. 

Even in the absence of milk stasis, constitutively active IKK-β was capable of inducing 

apoptosis in the mouse secretory mammary epithelium, and therefore interfered with 

successful lactation by nursing dams.  

2.5. Akt/PI3K 

Intense interest in survival signaling pathways has revealed that phosphatidyl inositol 3-

kinase (PI3K) is a potent regulator of cell survival [50, 51]. Cancer cells frequently utilize 

PI3K signaling to promote cell survival under conditions of hypoxia, nutrient stress, or even 

to escape the cytotoxic effects of therapeutic anti-cancer treatments. It is clear, however, that 

non-transformed cells also use the PI3K signaling pathway to promote cell survival, and 

that increased PI3K signaling can interfere with physiological cell death [52]. PI3K is a 

heterodimer comprised of p110 (the catalytic domain) and p85 (the regulatory domain) [50, 

53]. Under basal conditions, p85 represses the catalytic activity of p110. However, SH2 

domains in p85 interact with phosphorylated tyrosines within YxxM motifs of receptor 

tyrosine kinases (RTKs) such as the insulin-like growth factor (IGF)-1 receptor (IGFR) or 

adaptor proteins, such as the insulin receptor substrate proteins.  This relieves p85-mediated 

inhibition of p110, allowing p110 to phosphorylate phosphatidyl inositol 2-phosphate 

(PIP2), thus generating PIP3, a powerful membrane-associated second messenger that 

recruits pleckstrin homology (PH)-domain containing proteins to the cell membrane. PDK1 

and Akt are two PH-domain containing proteins recruited to the membrane in response to 

RTK activation [52, 54, 55]. PDK1 is a serine-threonine kinase that phosphorylates Akt, 

another serine-threonine kinase that stimulates cell survival by interacting with members of 

the Bcl2 family of apoptosis regulators [56-58], which are also involved in the induction of 

cell death during involution [59-61]. For example, mammary-specific loss of the Bcl2 family 

member Bax, a known cell death inducer, decreased apoptosis during early involution [60, 

62-64], while overexpression of Bax within the secretory mammary epithelium increased 
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post-lactational apoptosis and promoted precocious STAT3 activity [7, 65]. Loss of the anti-

apoptotic protein Bcl-xL in the mammary gland during post-lactational involution 

accelerated cell death [66, 67]. By inactivating Bax and activating Bcl-xL, Akt activity 

increases cell survival in the secretory mammary epithelium. 

The role of PI3K/Akt signaling in suppressing post-lactational apoptosis is supported by 

genetically engineered mouse models that result in increased PI3K/Akt signaling. For 

example, a mouse model in which mammary-specific expression of myristoylated p110 

[68], a modified p110 that is restricted to the cell membrane, resulted in aberrantly elevated 

PI3K activity in the mammary epithelium and delayed post-lactational involution. Similarly, 

mammary-specific transgenic overexpression of Akt1 or Akt2 promoted cell survival and 

delayed post-lactational involution in mice [69, 70]. Conversely, ablation of Akt1, but not the 

ablation of Akt2 or Akt3, promoted apoptosis and accelerates involution [71], demonstrating 

isoform-specificity in the gene-dosage effects of Akt (overexpression versus ablation), and 

highlights the importance of Akt1 in the post-lactational mammary gland. Other studies 

demonstrated that Akt signaling is sustained during lactation by prolactin signaling [72-74]. 

This observation was confirmed in an independent transgenic mouse model of mammary-

specific STAT5 activation, in which STAT5 activity, when aberrantly sustained through 

post-lactational involution, upregulated Akt1 transcription and impaired apoptosis. These 

studies suggest that high levels of prolactin-induced STAT5 activity, as seen during 

lactation, maintains Akt1 expression and activity to promote cell survival, but when 

lactation ceases STAT5-induced Akt expression must be depleted in order for cells to 

undergo apoptosis [75]. 

Like prolactin signaling, other ligand-activated signaling cascades are capable of driving 

PI3K/Akt signaling during lactation, and if not turned off, can delay post-lactational 

apoptosis. For example, cell signaling initiated by IGF-1, which activates IGFR thus causing 

tyrosine phosphorylation of insulin receptor substrate proteins [76], potently activates the 

PI3K/Akt signal transduction cascade in the mammary epithelium during lactation. 

Overexpression of IGF-1 in the mouse mammary gland delayed post-lactational involution, 

suggesting that suppression of IGF-mediated cell survival is required for apoptosis to occur, 

and supporting the idea that PI3K signaling must be interrupted to initiate post-lactational 

apoptosis [77]. IGF-1 bio-availability is tightly controlled by IGF binding proteins (IGFBPs), 

which can sequester IGFs in the extracellular microenvironment of the mammary 

epithelium [78]. Consistent with the ability of IGF-1 to interfere with post-lactational cell 

death, one of the earliest transcriptional events during post-lactational involution is the 

upregulation of IGFBP-2 mRNA (4-fold), IGFBP-4 (6-fold) and IGFBP-5 mRNA (50-fold) 

[79]. This profound increase in IGFBP-5 is also seen at the protein level, and is conserved 

across several species. Increased expression of IGFBPs may limit IGF1-induced signaling, 

thus limiting IGF1-induced PI3K/Akt signaling [77, 80, 81]. Transgenic overexpression of 

IGFBP-5 in the mouse mammary gland increased caspase-3 cleavage (an indicator of 

apoptosis) and decreased the expression of the pro-survival factors Bcl-2 and Bcl-xL [80-84], 

suggesting that IGFBP-5 is pro-apoptotic. An IGF-1 analogue which binds weakly to IGFBP-

5 partially overcame IGFBP-5-induced cell death during post-lactational involution, 
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suggesting that IGFBP-5 was acting, at least in part, by inhibiting IGF action. Conversely, 

Igfbp5 null mammary glands exhibit delayed post-lactational apoptosis [78].  

2.6. TGFβ3 

While prolactin, IGF-1, and several RTK-activating ligands can activate PI3K/Akt signaling 

to promote cell survival, other ligands are capable of inducing cell death during post-

lactational involution, such as leukemia inhibitor factor (LIF) [85-87], serotonin [88], Fas 

ligand (FasL) [89] TRAIL [90], and transforming growth factor (TGF)-β3. Transcripts 

encoding TGF-β3, but not TGF-β1 or TGF-β2, substantially increase in the milk-producing 

cells during post-lactational involution [91, 92]. This rapid induction of TGF-β3 transcription 

in the secretory mammary epithelium occurs as early as 3 hours after pup withdrawal in 

response to milk stasis [93], and is among the most rapid gene expression changes occurring 

in response to post-lactational involution, suggesting that TGFβ3 might be an initiating 

signal for cell death during involution. It would be interesting to determine the impact of 

mechanical stress on expression from the TGFβ3 promoter. Consistent with the proposed 

role for elevated TGF-β3 in inducing apoptosis during involution, transgenic over-

expression of TGF-β3 in the secretory cells of the mouse mammary gland accelerated 

apoptosis during early post-lactational involution. Conversely, loss of TGFβ3 reduced post-

lactational apoptosis by nearly 70% [93], suggesting that autocrine TGF-β3 signaling initiates 

cell death following pup removal. 

The importance of the TGFβ3-induced signaling pathway for post-lactational apoptosis has 

been further investigated in genetically engineered mouse models. For example, loss of the 

TGFβ-regulated transcription factor Smad3 decreased post-lactational apoptosis by nearly 

40% [94]. Similarly, loss of TGF-β receptor type II  (TβRII) in the mammary epithelium, or 

transgenic expression of dominant negative (DN) TβRII decreased apoptosis during early 

post-lactational involution [95-97], consistent with a critical role for TGF-β3 signaling 

through TβRII and Smad3 to induce apoptosis during early involution. However, there is 

some discrepancy regarding the role of TGFβ signaling during involution, as transgenic 

expression of constitutively active TβRI decreased apoptotic cells in the mammary gland 

[98]. Perhaps elevated TβRI signaling activates signaling pathways not normally active 

under physiological conditions. 

2.7. Stromal-epithelial interactions 

The signaling pathways described above focus on those events occurring within the 

secretory epithelium that are responsible for initiating cell death during post-lactational 

involution. However, it is becoming more apparent that stromal cells contribute substantially 

to post-lactational apoptosis [99-103]. This was recently demonstrated in a transgenic mouse 

model referred to as MAFIA (macrophage Fas-induced apoptosis) [104]. Macrophages from 

MAFIA mice express a modified Fas receptor that, in response to a dimerization-inducing 

small molecule (AP20187), triggers Fas-mediated apoptosis. Depletion of macrophages 

immediately prior to weaning impaired apoptosis within the secretory mammary epithelium, 

despite milk stasis and STAT3 activation [105]. These results demonstrate that macrophages 
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are necessary to initiate apoptosis in the mammary epithelium. The underlying mechanism 

remains unclear at this point. However, it is possible that macrophages respond to signals 

emanating from mechanically stressed epithelia by producing factors that may activate the 

signaling pathways necessary for induction of apoptosis, or repress signaling pathways that 

may otherwise limit apoptosis. The transcriptional signatures generated from mouse 

mammary glands during involution were derived from whole tissue RNA, which would 

include not only epithelia but also the dynamic stromal components of the mammary gland. 

Therefore, it is possible that many expression events detected during early post-lactational 

involution are occurring within macrophage populations.  

Mast cells are also heavily recruited to the mammary gland during post-lactational 

involution [106], and like macrophages, are critical for epithelial apoptosis during mammary 

gland involution [107]. Specifically, mast cells produce plasma kallikrien (PKaI), the primary 

activator of plasminogen in the mammary gland. Expression of PKaI rapidly increases 

during involution, and while PKaI, plasminogen, and other serine proteases undoubtedly 

have a major role in tissue remodeling during later stages of involution, evidence suggests 

that PKaI also drives epithelial apoptosis. Inhibition of mast cell-derived PKaI during post-

lactational involution impaired epithelial cell death, suggesting that mast cells are vital for 

triggering apoptosis in the post-lactational mammary gland. Interestingly, in the absence of 

STAT3 within the mammary epithelium, mast cells and macrophages are not recruited to 

the mammary gland during post-lactational involution [108], suggesting that recruitment of 

stromal cells to the involuting mammary gland is initiated by early apoptotic signaling 

events occurring within the epithelial compartment (Fig. 1).  

2.8. Lysosomal membrane polarization  

Although most studies suggest that mammary gland involution occurs by apoptosis, it has 

been proposed recently that several morphological features of the involuting mammary 

gland may resemble necrosis rather than apoptosis [109]. These include cytoplasmic 

swelling, lack of membrane blebbing, and lack of nuclear fragmentation. Using mice 

deficient for both caspase 3 and 6, it was shown that mammary gland involution could 

proceed in the absence of these two classical activators of apoptosis, suggesting that perhaps 

alternative mechanisms of programmed cell death may exist in the post-lactational 

mammary gland. The authors proposed that STAT3 activity could upregulate expression of 

lysosomal cathepsins, which may leak from lysosomes to activate cell death pathways [110, 

111]. In support of this idea, cathepsin L is upregulated strongly with the onset of mammary 

involution [112]. Mice treated with a specific cathepsin L inhibitor during the first three days 

of involution demonstrated reduced cell death as compared to untreated mice [112]. 

Cathepsin-induced cell death can be simulated by ectopic addition of reactive oxygen 

species (ROS) to cultures of mammary epithelial cells.  Interestingly, the ROS nitric oxide 

(NO) can trigger mammary gland involution after weaning [113] in mice. While the role of 

apoptotic cell death in the mammary gland is widely accepted, investigators should be 

aware of alternative cell death pathways that contribute to programmed cell death during 

involution. 
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Figure 1. Apoptosis in the post-lactational mammary epithelial cell (MEC) is initiated by three 

molecular signals that are each required: TGF3, NFB, and STAT3. Their loss impairs post-lactational 

apoptosis, despite continued milk stasis. Apoptotic MECs are cleared from the mammary gland by 

efferocytosis, or the phagocytic engulfment of dying cells. In the post-lactational mammary gland, 

MECs and macrophages engulf neighboring apoptotic cells. The phagocyte uses cell surface receptors to 

recognize, bind, and engulf apoptotic cells. These receptors include MerTK, Axl, v3 integrin and 

others. Intracellular signaling pathways that regulate cytoskeletal rearrangements (such as Rac 

signaling) are necessary for efferocytosis. Once engulfed into vesicles, apoptotic cells are degraded by 

the lysosomal pathway. Efferocytosis activates NF-B and STAT3, upregulating cytokines that are 

critical for post-lactational mammary remodeling. 

2.9. Pathologies of the breast due to aberrant regulation of apoptosis 

In the clinical setting, post-lactational involution of the secretory epithelium begins with 

milk stasis, at which point the secretory cells undergo apoptosis. Clearance of dying cells 

and residual milk is accomplished by phagocytes within the breast [114]. Regrowth of 

stromal adipose tissue and continued tissue remodeling returns the breast to a relatively 

quiescent state comprised of morphological structures similar to those found in nulliparous 

women. Rarely, the process of involution may be delayed. Failure to remove unnecessary 

lactational cells may result in symptomatic inflammatory tissue damage. Delayed involution 

in the human breast is characterized by the maintenance of secretory structures, loss of post-
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lactational apoptosis, and infiltration of the breast by inflammatory cells. Focal calcification 

may also be present [5]. Ductal distention of accumulated milk can be painful. Stagnant milk 

can be a source for infection and mastitis, to which the gland would respond with secretion 

of acute inflammatory cytokines and recruitment of leukocytes [115].  Similar to this clinical 

scenario, mouse models of delayed post-lactational cell death commonly develop mastitis 

[49, 108, 116].  

 

EMS 

receptor  

Bridging 

Molecule 

(BM) 

EMS Mammary Tissue and Cell Line 

Expression 

PSR - PS [117] Primary mouse mammary epithelia 

[117] 

TIMs - PS [118-124] unknown 

BAI1 - PS [125] unknown 

Stabilin-2 - PS [126, 127]. unknown 

ABCA1 unknown PS [128, 129] Bovine [130], mouse, human 

mammary [129] 

αvβ3 

integrin 

Vitronectin [131] 

Thrombospondin 

[132] 

MFG-E8 [133] 

PS [131, 132] Human MCF10A, MCF-7, and 

MDA-MB-231 cells [134] 

bovine [135], mouse mammary gland 

[136, 137] 

Tyro3 Gas6 [138] 

Protein S [139, 

140] 

PS [138] unknown 

Axl Gas6 [138, 141] PS [138, 141] Human breast [142] 

MerTK Gas6 [138] 

Protein S[140] 

PS [138, 140] Mouse mammary [116] 

CR3/CR4 unknown C3bi [143] unknown 

CD14 unknown ICAM [144] Bovine [145], canine [146], mouse [4], 

and human mammary [144, 147] 

CD68 unknown unknown Human, mouse mammary 

macrophages [148] 

CD163 unknown unknown Human breast [148] 

CD36 Thrombospondin 

[132] 

unknown MDA-MB-435, MDA-MB-231 human 

cells in mouse mammary [149] 

LRP β2GP1 [150] 
C1q [151] 

PS [150] 

Calreticulin 

[151] 

Rat mammary gland [152] 

Normal, transformed mammary 

epithelia [153] 

Marco 

[154] 

unknown unknown unknown 

Table 1. Key Factors Involved in Efferocytosis 
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Recent data garnered from mouse models of delayed post-lactational involution suggest that 

deregulation of post-lactational apoptosis may facilitate mammary tumor formation [34, 70, 

73, 155-157]. Observations made in human populations also suggest that altered post-

lactational involution may associate with tumor formation in the breast [100-102, 158].  This 

may reflect micro-environmental influences, or may be a function cell death-dependent 

removal of unnecessary breast epithelial cells in a regulated fashion. In many cancers, 

intrinsic cell deaths mechanisms become suppressed, contributing to the net growth of the 

transformed cell population. For example, activation of STAT5 in post-lactational mouse 

mammary glands delays apoptosis, and results in formation of mammary tumors that 

express estrogen and progesterone receptors (ER+PR+), as well as activated STAT3 and 

STAT5 [159]. Moreover, post-lactational transcriptional programs initiated by NF-κB and 

STAT3 not only support cell death, but also enhance tumor formation and progression by 

inducing expression of pro-tumorigenic cytokines [23, 24, 28, 34, 160-162]. Indeed, the 

transiently increased risk of developing breast cancer in the five years following a 

pregnancy may be greatly influenced by a deregulated tumor microenvironment developed 

in the post-lactational breast [101]. 

While post-lactational involution and age-related lobular involution are distinct processes, 

recent studies indicate that both are related to breast cancer development. Clinical studies 

show that completion of lobular involution may reduce future breast cancer incidence [163-

166]. With aging, there is a gradual loss of breast epithelial tissue that typically begins in 

peri-menopause, which then accelerates during menopause. Lobular involution is 

characterized by the apoptosis-mediated decrease in the size and complexity of the ductal 

tree and of the TDLU. This is distinct from post-lactational involution, which occurs very 

rapidly by comparison. However, similar mechanisms controlling apoptosis of the breast 

epithelium may occur in these two distinct models of involution.  

Lobular involution, like post-lactational involution, may inversely correlate with breast 

cancer risk, since premenopausal women who underwent partial or complete lobular 

involution had a substantially decreased incidence of breast cancer, while postmenopausal 

women who showed delayed lobular involution were found to have a correspondingly 

elevated breast cancer incidence [164]. While much remains to be learned about how lobular 

involution is regulated, some clinical studies and animal models suggest that IGF-1 may 

inhibit involution of lobules in the breast [163]. Clinically, a cross-sectional study among 472 

women demonstrated that higher IGF-1 levels associated with incomplete lobular 

involution, supporting the idea that IGF-1/PI3K/Akt-induced survival pathways prevent 

physiologic cell death, leading to pathological consequences.  

2.10. Introduction to efferocytosis in the breast 

Following apoptosis, one final event is needed to truly complete the life of the cell. This final 

step is phagocytic engulfment of apoptotic cells or ‘efferocytosis’. The term ‘efferocytosis’ 

was recently coined by Hensen et al. to distinguish phagocytic apoptotic cell removal from 

phagocytic pathogen removal [167]. While both processes are executed by phagocytes, they 
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result in distinctly different biological responses, one characterized by a dampened acute 

inflammatory response and upregulation of tolerogenic and wound healing effectors 

(efferocytosis), while the other is characterized by a pro-inflammatory response (pathogen 

removal). 

Efferocytosis is a carefully regulated process involving recruitment of phagocytes to the 

apoptotic cell, recognition of the apoptotic cell by the phagocytes, engulfment of the 

apoptotic cell by the phagocyte, and final breakdown of apoptotic cell components. If 

disrupted, apoptotic cells will undergo necrotic lysis, leading to acute inflammation, tissue 

damage and autoimmunity. Therefore, efferocytosis is critical for tissue homeostasis. 

However, recent discoveries indicate that the normal process of efferocytosis may be 

undesirable under certain pathological conditions, such as in the tumor microenvironment.  

We will discuss apoptotic cell clearance in the normal post-lactational breast and in the 

breast tumor microenvironment.  

2.11. The process of efferocytosis 

In general, clearance of apoptotic cells is often executed by macrophages and dendritic cells 

(DCs), but can also be performed by fibroblasts, endothelial and epithelial cells. A cell that 

engulfs an apoptotic cell through phagocytic mechanisms is called an efferocyte, regardless 

of its origin. Studies performed in cell culture and in vivo demonstrate that MECs and 

macrophages are both capable of engulfing apoptotic MECs during post-lactational 

involution of the secretory mammary epithelium [114, 116, 168]. 

Macrophages, the ‘professional phagocytes’ of the immune system, must infiltrate the 

mammary gland in response to the physiological presence of apoptotic cells during 

involution. Large quantities of bone marrow-derived and spleen-derived macrophages 

infiltrate the post-lactational mouse mammary gland in response to STAT3 activation and 

apoptosis of the mammary secretory epithelium. It is thought that apoptotic cells may 

release soluble chemo-attractants, or ‘find me’ signals, which recruit macrophages to the 

post-lactational mammary gland.  For example, Monocyte Chemo-attractant Protein-1 

(MCP-1/CCL2) is released from apoptotic cells in an NF-κB-dependent manner [169]. 

Interestingly, MCP-1 expression is strongly induced in the mammary gland at day 2 of 

involution, a time point that follows NF-B-induced cell death, and that precedes 

macrophage influx in the post-lactational mammary gland. These observations are 

consistent with NF-B-induced apoptosis followed by NF-B-induced expression of an 

efferocyte chemo-attractant, although this has not yet been demonstrated. Additional 

chemokines including CX3CL1, CCL6, CCL7, CCL8, and CXCL14, are induced during post-

lactational involution and may be signals that recruit macrophages to the involuting 

mammary gland to clear the accumulating apoptotic cell burden [170, 171] [4, 16]. 

Histological evidence of apoptotic cells within cytoplasmic vacuoles of mammary 

macrophages confirms that mammary macrophages engulf apoptotic cells during 

involution. Once present within the mammary gland, the macrophage identifies apoptotic 
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cells, scanning for signals that are present on the apoptotic cell but not a healthy cell, often 

referred to as an ‘eat me’ signal (EMS, Table 1).  The earliest and most recognized EMS is 

surface exposure of phosphatidylserine (PS). Healthy cells actively maintain PS on the inner 

plasma membrane leaflet. At the onset of apoptosis, PS is presented to the outer leaflet thus 

acting as a marker for a dying cell that requires engulfment [172-174]. EMSs are recognized 

by macrophages that express EMS receptors on their cell surface. EMS receptors may bind 

directly to the EMS on the dying cell. For example, the PS receptor (PSR), a transmembrane 

protein expressed by macrophages [128] and MECs [129], directly binds PS. Brain 

angiogenesis inhibitor 1 (BAI1) also binds PS directly, and is important for macrophage-

mediated efferocytosis [125], but has not yet been studied in the mammary gland. Stabilin-2 

and members of the T cell immunoglobin and mucin (TIM) family of receptors also directly 

bind PS [118-124, 126, 127], demonstrating mechanistic redundancy in the efferocytic 

pathways. It should be noted, however, that PS is an insufficient EMS, as macrophages fail 

to recognize live cells in which PS is forced to the outer leaflet [173, 175].  

While some EMS receptors bind apoptotic cell EMSs directly, other EMS receptors bind an 

extracellular bridging molecule that simultaneously binds the EMS and the EMS receptor 

(Table 1). For example, the bridging ligand milkfat globule epidermal growth factor-like 8 

(MFG-E8) binds to PS on apoptotic cells [133, 176, 177], while binding αvβ3 and αvβ5 

integrins expressed by macrophages. Growth arrest specific gene 6 (Gas6) and Protein S 

[178, 179] are bridging molecules that bind to the EMS receptors MerTK, Axl, and Tyro3 

[180] expressed by macrophages, while simultaneously binding PS on the apoptotic cell.  

Once the apoptotic cell is bound to the macrophage, intracellular signaling pathways must 

remodel the actin cytoskeleton to drive phagocytic ingestion of the apoptotic cell. Most of 

these events have been mapped out in Caenorhabditis elegans (C. elegans), which are discussed 

in detail within comprehensive reviews by Reddien et al. and Ravichandran et al. [181, 182].  

In mammalian macrophages, intracellular signaling networks that regulate actin 

cytoskeletal dynamics are required for apoptotic cell engulfment. For example, a protein 

complex comprised of CrkII, DOCK180, and ELMO causes activation of the Rac GTPase, a 

master regulator of actin cytoskeletal dynamics. Actin-dependent membrane extensions 

physically engulf the apoptotic cell [183-187].  Rac-mediated actin rearrangements are 

countered by RhoA [188], which prevents the formation of cell extensions needed for 

efferocytosis [189].  The engulfed apoptotic cell is then consumed by the efferocyte, 

primarily through lysosomal degradation.  Many signaling factors that drive apoptotic cell 

engulfment also enhance lysosomal degradation of apoptotic cells. For example, Rac is 

essential for maturation of phago-lysosomes in macrophages [190-193]. 

In addition to efferocytosis in the mammary gland, macrophages are also critical for 

cytokine modulation and extracellular matrix remodeling during the second phase of 

involution, underscoring the important role of macrophages in the post-lactational breast. 

Given their known role as professional phagocytes and their massive influx to the post-

lactational mammary gland, it is perhaps not surprising that efferocytosis by macrophages 

occurs in the post-lactational breast. What is more surprising is that apoptotic cell clearance 

occurs on a profound scale prior to the influx of macrophages to the involuting mammary 
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gland. Recent evidence demonstrated that MECs are the primary efferocytes of the breast 

during the earliest stages of post-lactational involution, the first three days prior to the 

influx of macrophages. The ability of MECs to act as efferocytes ensures a rapid response to 

the massive level of apoptosis that occurs during post-lactational involution. Loss of MEC-

mediated efferocytosis impairs post-lactational homeostasis, resulting in chronic mammary 

inflammation, scarring and inhibition of future lactation.   

Interestingly, MECs utilize many of the same EMS receptors used by macrophages to 

recognize apoptotic MECs. For example, MerTK is critical for MEC-mediated efferocytosis 

during post-lactational involution. MerTK loss from the mouse mammary epithelium causes 

apoptotic cell accumulation and milk stasis [116], despite the presence of wild-type 

macrophages. Interestingly, mRNA and protein expression of MerTK is dramatically 

upregulated by post-lactational day 1 within the luminal mammary epithelium. Similarly, 

the integrins αvβ3 and αvβ5 are expressed in the early post-lactational mammary epithelium. 

The αvβ5 bridging ligand, MFG-E8, is simultaneously induced [194], increasing the physical 

interaction between MFG-E8 and PS [136] and driving the clearance of membrane-coated 

milk components from the involuting mammary gland [195]. 

2.12. Physiological and pathological consequences of efferocytosis 

After the efferocyte removes the apoptotic cell, transcriptional events in the efferocyte result 

in cytokine, chemokine and growth factor production. The combined profile of the factors 

produced by the efferocyte promotes wound healing through enhanced tissue remodeling, 

angiogenesis, proliferation and resolution of acute inflammation. The efferocytosis-induced 

wound healing cytokine profile contrasts sharply to the cytokine profile produced in 

response to phagocytosis of pathogens, which is characterized by acute inflammatory 

cytokines [196]. In fact, efferocytosis is thought to be a key step in resolving or dampening 

acute inflammatory cytokine expression following tissue injury or pathogen exposure, 

resulting in repair and homeostasis [197].  Microarray analyses of mammary glands 

harvested at early post-lactational involution time points displayed a pronounced wound 

healing expression signature [3, 4, 158, 168, 198, 199], consistent with transcriptional changes 

that result from efferocytosis.  The prominent role of efferocytosis in re-establishing 

mammary homeostasis following widespread apoptosis of the secretory epithelium was 

shown by experiments in which loss of efferocytosis resulted in apoptotic cell accumulation, 

sustained milk stasis within ductal lumens, inflammation and scarring [116]. These 

pathological changes impaired lactation in future pregnancies.  

Although key to re-establishing homeostasis in the post-lactational mammary gland [116], 

recent evidence indicates that efferocytosis may support a more malignant tumor 

microenvironment [101, 102, 105, 106, 158, 198, 200-202]. Researchers are beginning to 

address the overlapping roles of efferocytic and metastasis-promoting cytokines. In 

agreement with this idea, mouse studies show that breast tumors grew more rapidly, 

invaded more readily, and formed distant metastases more efficiently when implanted in 

the post-lactational mammary gland as compared to implantation into a nulliparous 
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mammary gland [101].  One explanation for this observation is that post-lactational 

efferocytosis promotes breast tumor malignancy through production of wound healing 

cytokines, which are known to drive breast cancer growth and invasion. In support of this 

idea, MFG-E8 [203] and its receptor vβ3/5, as well as Gas6 and its ligand MerTK [116, 204] 

are frequently overexpressed in breast cancers. One recent study demonstrated that the pro-

tumorigenic cytokine IL-6 induces expression of MerTK, enhancing the ability of 

macrophages to engulf apoptotic cells and increasing production of wound healing 

cytokines such as IL-4 and IL-10 [205].  Recently published data implicates MerTK in breast 

cancer metastasis [206]. 

This observation has clinical relevance to pregnancy associated breast cancers (PABCs), 

defined as breast cancers that arise during the 5 years following a pregnancy. PABCs are 

among the most malignantly aggressive breast cancers, and are thus associated with poor 

prognosis. A better understanding of the processes outline above will undoubtedly expand 

the therapeutic options for these patients. 

3. Conclusion 

Altogether, these data support the hypothesis that targeting mediators of efferocytosis may 

limit pro-tumorigenic cytokine production. Moreover, it is becoming increasingly apparent 

that many factors within the mammary gland cooperate to ensure apoptosis and apoptotic 

cell clearance, highlighting the complexity of these processes and the need for more detailed 

investigations. Due to the dominant role of apoptosis and efferocytosis in maintaining tissue 

homeostasis, especially during post-lactational involution, the mammary gland provides an 

ideal platform for future study. 
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