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1. Introduction 

Thanks to achievements in photonics technologies optical networks have gained a notably 

increase in capacity per single fiber during the last decade [1]. Demand for greater 

transmission speed has been increasing exponentially because of the impulsive spread of 

Internet services (see Fig. 1) [2]. At the same time, the radical improvement of the capability 

of digital technologies has made feasible expanding multimedia services [1]. Therefore 

bandwidth intensive applications and exponential Internet traffic growth are continuing to 

drive the further penetration of optical fiber into the optical access systems [2].  

 

Figure 1. System capacity (per fiber) and network traffic [3]  

A new generation access network becomes indispensable to upgrade the systems [4, 5]. The 

passive optical network (PON) has the feasibility to lead the deployment of new high-
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capacity and future-proof broadband networks [6]. The use of wavelength division 

multiplexing (WDM) in the access networks is further defensible in terms of video services 

support. WDM solutions are forging ahead towards higher data transmission rate and lower 

channel spacing to utilize available bandwidth more effectively [7]. 

The main reasons behind the implementation of new generation systems are to meet 

demand of capacity, user density requirements and scalability, while ensuring that the cost 

per unit bandwidth is lowest possible [3, 8]. The novel concept is WDM-direct in which 

multiple wavelengths are directly connected to each optical network unit (ONU) [9, 10]. 

Increasing spectral efficiency is important for building efficient WDM-direct systems, since 

this allows the optical infrastructure to be shared among many channels, and thus reduces 

the cost per transmitted information bit in a fully loaded system [11]. High performance 

optical filters are groundwork for realization of high speed dense WDM (DWDM)-direct 

systems where coherent and incoherent crosstalk between adjacent channels becomes a 

main source of degradation: adjacent channels interfere with each other upon detection, and 

the resulting beating gives rise to signal distortions, provided that the beat frequencies lie 

within the bandwidth of the detection electronics [12, 11]. 

Proposed approach for increasing the transmission capacity is to reduce the channel spacing 

of a DWDM-direct system to the minimum while keeping the mature and well developed 

optical filter technologies like fiber Bragg grating (FBG). To realize proposed approach 

limitating factors must be taken into account. One part of these factors is related to efficient 

bandwidth of FBG which in proposed approach is determined employing optical signals 

(transmission speed 2.5 Gbit/s and 10.3125 Gbit/s which conform 2 Gigabit Ethernet (GE) 

and 10 GE of Ethernet hierarchy) with different wavelength offset value within filter pass-

band. Other part of factors is related to evaluation of the minimal channel spacing for 

concrete FBG in DWDM-direct system. 

2. Optimal complex tranfer function for access systems 

A FBG is periodic variation of the refractive index along the propagation direction in the 

core of optical fiber that reflects particular wavelengths of light and transmits all others. 

Low channel spacing and high data transmission rate sets strict requirements for DWDM 

filter characteristics and any imperfections in their parameters, such as amplitude and phase 

responses, becomes critical. Understanding and distracting of those optical filter 

imperfections to high speed DWDM-direct systems are of great importance [7].  

Low channel isolation from adjacent channels is one of these imperfections in optical filter 

parameters. To ensure high channel isolation we need to inscribe FBG filters with complex 

apodization profiles. Changes in apodization profiles emerge in different filter bandwidth at 

-3 dB and -20 dB level and suppression of undesirable side lobes in optical filter amplitude 

response. Performance of three different apodization profiles and their influence on 

DWDM-direct systems main parameters: channel spacing and data transmission rate have 

been evaluated numerically. 
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2.1. Simulation method 

To numerically evaluate impact of different FBG apodization profiles on high speed 

DWDM-direct system combination of two different simulation programs was used: Bragg 

Grating Filters Synthesis 2.6 (BGFS 2.6) simulation program for mathematical description of 

FBG optical filter and OptSim 5.2 simulation program to simulate high speed DWDM-direct 

systems. In the BGFS 2.6 simulation program different FBG optical filters with defined 

apodization profiles were realized. This simulation program is based on Transfer Matrix 

Method (TMM). TMM is used to create a numerical periodic non-uniform FBG filters. It is 

applied to solve the coupled mode equations and to obtain the spectral response of the fiber 

Bragg grating. In this approach, the grating is divided into uniform sections. Each section is 

represented by a 2x2 matrix. By multiplying these matrices, a global matrix that describes 

the whole grating is obtained (see Fig. 2. and equation 1): 

 

Figure 2. Transfer matrix method used to obtain the spectral characteristics of a fiber Bragg grating (

n - average index of refraction, z - section length, 0 0, , ,M MR S R S - electromagnetic waves 

amplitudes) 
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The reflection coefficient of the entire grating is defined as: 

 0

0

.
S

R
   (2) 

The main drawback of this method is that M may not be made arbitrarily large, since the 

coupled-mode theory approximations are not valid when uniform grating section is only a 

few grating periods long. Thus, it requires z >> T [13, 14].  

OptSim 5.2 simulation program uses method of calculation that is based on solving a 

complex set of differential equations, taking into account optical and electrical noise, linear 

and nonlinear effects. Two ways of calculation are possible: Frequency Domain Split Step 

(FDSS) and Time Domain Split Step (TDSS) methods. These methods differ in linear 

operator L calculations: FDSS does it in frequency domain, but TDSS calculates linear 

operator in the time domain by calculating the convolution product in sampled time. The 

first method is easy to realize, but it may cause severe errors during simulation. In our 

simulation we used the second method, TDSS, which despite its complexity grants a precise 



 

Current Trends in Short- and Long-Period Fiber Gratings 170 

result. The Split Step method is used in all commercial simulation tools to perform the 

integration of the fiber propagation equation: 

 
     ,

, ,
A t z

L N A t z
z


 


 (3) 

where  ,A t z -the optical field; L-linear operator that stands for dispersion and other linear 

effects; N – operator that is responsible for all nonlinear effects. The idea is to calculate the 

equation over small spans of fiber z by including either linear or nonlinear operator. For 

instance, on the first span z  only linear effects are considered, on the second – only 

nonlinear, on the third – again only linear [15]. Us it is noticed before, in numerical 

investigation are used two simulation programs: BGFS 2.6 – to realize FBG filters amplitude 

and phase responses and OptSim 5.2 to numerically evaluate high speed DWDM-direct 

systems. Realized FBG filter parameters were recorded in data file, which after simple 

mathematical calculations were used in OptSim 5.2 simulation program to build user 

defined optical filters.  

2.2. Simulation scheme and results 

Simulation scheme (see Fig.3.) consists of transmitter, transmission line and receiver. 

Number of channels is chosen to evaluate influence of nonlinear optical effects (NOE): self – 

phase modulation (SPM), cross – phase modulation (XPM), four – wave – mixing (FWM) to 

used optical filters performance. 

 

Figure 3. Simulation scheme for DWDM-direct transmission realization with FBG optical filters 

The transmitter consists of pseudo-random data source with 231-1 bit sequence, non return to 

zero (NRZ) code former, continuous wavelength (CW) laser source and LiNbO3-based 

external Mach Zehnder modulator (MZM). The data source produces a pseudo-random 

electrical signal, which represents the information we want to transmit via optical fibre. 

Then we use a code former to form NRZ code from incoming pseudo-random bit sequence. 

The NRZ has long been the dominant code format in fibre optical transmission systems, 

because of a relatively low electrical bandwidth for the transmitters and receivers and its 

insensitivity to the laser phase noise [16]. The optical pulses are obtained by modulating CW 

laser irradiation in MZM with previously mentioned bit sequence. Then formed optical 
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pulses are sent directly to a different length standard single mode fibre (SSMF). The utilized 

fibre has a large core effective area 80 μm2, attenuation α = 0.2 dB/km, nonlinear refractive 

coefficient nk = 2.5·10-20 cm/W and dispersion 16 ps/nm/km at the reference wavelength λ = 

1550 nm. Receiver block consists of optical filter, PIN photodiode (typical sensitivity -17 

dBm) and Bessel – Thomson electrical filter (4 poles, 7.5 GHz -3dB bandwidth). To simulate 

insertion loss (polarization dependent loss: 0.1 dB, ripple insertion loss: 0.2 dB, splice and 

connector loss: 0.1dB) of optical filter we used optical attenuator. 

The main idea of our simulations is to demonstrate FBG filters with different apodization 

profiles (see Fig. 4.) influence on high speed dense WDM communication systems. 

Investigation of high performance optical band-pass filters are groundwork for realization 

of high speed dense WDM communication systems. 

The main problem is to ensure high channel isolation between adjacent channels. To realize 

channel isolation performance evaluation of FBG optical filter we used eye diagram, bit 

error rate (BER) and optical signal spectrum in different system configurations (different 

channel spacing and data transmission speed). We have chosen three different apodization 

profiles (see Fig.4.): rectangular, cosinusoidal and Gaussian, four channel spacing values: 

200 GHz, 100 GHz, 50 GHz and 25 GHz and two data transmission speeds: 2.5 Gbit/s and 

10. 3125 Gbit/s. 

 

Figure 4. Amplitude response of 55 GHz FBG optical filters with different apodization profiles shown 

in inset  

The results of BER dependence on channel spacing using FBG with rectangular, 

cosinusoidal and Gaussian apodization profiles are presented in Fig. 5. As we can see 

systems with 2.5 Gbit/s data transmission speed performance is better (BER values are 

lower) than systems with 10. 3125 Gbit/s data transmission speed. This can be explained by 

greater influence of chromatic dispersion on higher data transmission speed optical pulses. 

In addition, from results we can see that BER values are higher at 25 GHz channel spacing 

due to greater NOE influence and crosstalk. At both data transmission speeds and all 

channel spacing values, the worst performance showed the FBG optical filter with 

rectangular apodization profile. This is mainly because of great undesirable side lobes in 

optical filter amplitude response. These imperfections in filter amplitude response reduced 

channel isolation.  
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Figure 5. BER dependence on channel spacing using FBG with rectangular, cosinusoidal and Gaussian 

apodization profiles: a – 2.5 Gbit/s; b – 10.3125 Gbit/s data transmission speed. BER values measured at 

the worst channel. 

As one could see from simulation results the influence of FBG filters with different 

apodization profiles on high speed DWDM-direct systems is enormous. To ensure high 

channel isolation and thus realize systems high performance FBG filter must be used with 

cosinusoidal or Gaussian apodization function because of narrow bandwidth at -20 dB level. 

FBG with rectangular apodization profile showed the worst performance which resulted in 

whole system degradation because of imperfections (great side lobes) in amplitude response. 

3. Fiber Bragg grating characterization methods 

Optical filters in optical transmission systems are a special subgroup of physical 

components defined in such a way that they select or modify parts of the spectrum of the 

signal [17, 18]. Signals and physical components can be expressed mathematically by 

complex functions describing amplitude and phase [17]. Amplitude transfer function 

describes loss dependency as function of wavelength for optical filter, but phase transfer 

function is responsible for introduced wavelength dependent amount of delay. There are 

different methods for transfer funtion characterization. Focus is related to the techniques 

which are for evaluation of phase transfer funtion and its related parematers. 

3.1. Jones matrix eigenanalysis 

Polarization mode dispersion (PMD) decreases transmission systems bandwidth and is a 

fundamental parameter of both: optical fiber and passive optical components. The difference 

between group delays for two principle states of polarization (PSP) is the differential group 

delay (DGD) [19]. The PMD value is the average of DGD values. DGD varies randomly with 

wavelength and time which stands for dispersive effects. Moreover a second-order effect of 

PMD can lead to optical pulses length changes [20]. As a consequence an optical component 

with birefringence devoid of chromatic dispersion (CD), can exhibit optical pulses length 

changes owing to the second-order effects of PMD [21]. PMD is characterized by a Jones 

Matrix as a function of wavelength [22]. Jones Matrix is common to represent the 

polarization state of an optical signal or the transfer matrix of a passive optical device. The 

transfer matrix of an optical device specifies the relationship between the input and output 
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Jones vectors of the optical signal [20]. This transfer matrix can be characterized by 

measuring three output Jones vectors in response to three known input Jones vectors. It is 

worthwhile to note that although it is measured with a few specific polarization states of the 

optical signal, a Jones Matrix describes a passive optical device such as an optical filter and 

is independent of the input launching condition of the optical signal [22]. Two basic 

equations for this DGD estimation are given below. Thus, the two Eigen-values can be 

calculated from the products of Jones Matrix employing (4). 

 
1,2

211 22 11 22
11 22 12 21( )

2 2

m m m m
m m m m

 
        (4) 

Where
1,2

 is Eigen-values and 11m , 12m , 21m , 22m  - products of Jones Matrix [22]. Therefore 

DGD can be expressed as the group delay difference as the function of the optical frequency: 
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
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Where, 1g and 2g is group delays for two principle states of polarization, 1 2( / )Arg  

denotes the phase angle of 1 2/   [22]. Equation (5) shows the principle of Jones Matrix 

technique for DGD measurement. An important practical issue is to choose the frequency 

step size   for the measurement. For a small step size the measurement would take a long 

time and instability of devices would have strong impact on the results. For a big step size 

the output optical signal state of polarization would rotate for more than 45o over each 

frequency step which leads to inaccurate results [19].  

The Jones Matrix technique has a number of advantages compared to other DGD 

measurement methods [21]. First, it needs only a small wavelength window to perform a 

measurement. From this point of view method is more suitable for evaluation of detailed 

wavelength dependency of DGD and PMD. Second, Jones Matrix measurement can be made 

fast using automated procedures of polarization controller and a polarimeter. Third, the 

accuracy of the Jones Matrix technique is considered the best compared to other techniques 

[22]. Therefore Jones matrix Eigen-analysis (JME) is a measurement technique for accurately 

measure the DGD and PMD of any passive optical component [19]. 

In this research N7788B component analyser of Agilent Technologies was utilized to 

perform measurements of FBG with 55 GHz full width half maximum (FWHM) bandwidth. 

This technology is based on the JME which is the standard method for measuring DGD and 

PMD of passive optical devices [23].  

Measurement scheme (see Fig.6) consists of LiNbO3 polarization controller, polarimeter, 

tunable laser source and device under test (DUT): FBG with 55 GHz FWHM bandwidth. 

Fig.7 shows measured amplitude transfer function and DGD as function of wavelength for 

FBG with 55 GHz FWHM bandwidth. Results show that DGD value within filters pass-band 

does not exceed 70 picoseconds.  
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Figure 6. DGD measurement scheme [24] 

 

Figure 7. Measured amplitude transfer (a) function and differential group delay (b) of 55 GHz FBG 

DGD and PMD value increases at the edges of the optical filter amplitude transfer function 

which could be a degradation factor for optical signal transmitted through device [25]. 

Therefore the relative bandwidth available to each broadband access systems channel is 

reduced, meaning that the channel experiences the effect of the edge of the pass-band of the 

filter transfer function, where the dispersion effects is expected to be most significant [17]. 

3.2. Modulation phase shift method 

Agilent Technologies 86038B photonic dispersion and loss analyzer was employed for 55 

GHz FBG filter parameters evaluation and numerous parameters were obtained: 

attenuation, group delay (GD) and chromatic dispersion as functions of wavelength. Test 

equipment is based on the modulation phase shift (MPS) method. In the conventional MPS 

method, light from a sinusoidal source is intensity modulated before being launched into 

the device under test [24]. MPS method obtains the group delay response of a device under 

test by measuring the change in phase of a sinusoidal radio frequency (RF) modulation 

envelope as the wavelength is changed [23].  

 

Figure 8. MPS method scheme for 55 GHz FBG measurements 
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See MPS method realization in Fig.8. The optical light source is a tunable distributed 

feedback laser. Light from a laser is sent to external MZM and is amplitude modulated 

(typically in the 100 MHz to 1.25 GHz range). After propagating through the DUT, the 

transmitted signal is detected by a PIN photodiode. A RF network analyzer is employed to 

provide a modulating signal of frequency mf  and to measure electrical phase difference 

between input and output signals [26, 27]. In practice, the wavelength is swept and the 

change in the group delay   for each wavelength increment is calculated from the 

measured change in phase according to (6): 

  
1

.
360o

mf


 


     (6) 

Where the first factor is defined as the fractional cycle of RF phase shift and the second 

factor represents the period of the RF signal. The subscript   indicates that the change in 

group delay being measured was produced in response to an incremental change in 

wavelength. In (6) we can notice how the group delay and the measured electrical phase 

present opposite slopes [20, 27].  

The attribute called dispersion is defined by: 

 D







 (7) 

Where   is the change in group delay in seconds corresponding to a change in 

wavelength   in meters. In real world applications, the dispersion parameter is given in 

units of picoseconds per nanometer. Combining (6) and (7), we obtain: 

 
360o

mD f          (8) 

Equation (8) specifies that the amount of phase change obtained in response to a wavelength 

step is the product of total device dispersion, wavelength step and modulation frequency. 

This equation provides several key insights into the capabilities of the MPS measurement 

method. In order to achieve accurate measures it is important to have a stable wavelength 

step size, which completely depends on the tunable laser stability [20, 27].  

Fig. 9 shows measured attenuation, GD and CD as function of wavelength for FBG with 55 

GHz FWHM bandwidth. The insertion loss is 5,3 dB while its bandwidth at -1 dB level is 50 

GHz and its bandwidth at -20 dB level is equal to 75 GHz. The group delay variation is 

limited to 50 ps in the pass-band and the dispersion at the center wavelength is equal to 0 

ps/nm. The maximum dispersion in the bandwidth at -3 dB level is found to be within the 

range of -500 ps/nm to 500 ps/nm. 

3.3. Efficient bandwidth measurement method 

The main idea of our experiments is to evaluate efficient bandwidth of FBG with 55 GHz 

FWHM bandwidth. Efficient bandwidth of passive device provides limitations which are 
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required to take into consideration for realization of DWDM-direct transmission system for 

broadband access.  

 

Figure 9. Measured attenuation (a), group delay (b), chromatic dispersion (c) and differential group 

delay (d) as function of wavelength for 55 GHz FBG filter 

3.3.1. Method setup 

Efficient bandwidth measurement scheme (see Fig. 10) was realized to investigate FBG with 

55 GHz FWHM bandwidth with 2 GE and 10 GE optical signals. The efficient bandwidth 

measurement scheme consists of typical optical transmission system elements. The 

transmitter consists of pseudo-random data generator with 231-1 bit sequence, non-return to 

zero code former, continuous wavelength laser source and LiNbO3-based external Mach 

Zehnder modulator.  

 

Figure 10. Efficient bandwidth measurement scheme 

The data source produces a pseudo-random electrical signal, which represents the 

information. Then a code former is used to form NRZ code from incoming pseudo-random 

bit sequence. The optical pulses are obtained by modulating CW laser irradiation in MZM. 

Formed optical pulses are sent directly to a DUT at different CW laser central wavelength 

offset values. Receiver block consists of optical attenuator, PIN photodiode and Bessel – 



 
Fiber Bragg Grating Technology for New Generation Optical Access Systems 177 

Thomson electrical filter (4 poles, 7.5 GHz -3dB bandwidth). Attenuator with 10 dB rated 

value was used to simulate loss of 20 km optical fiber, splicing and connectors in direct 

access systems. Oscilloscope and optical spectrum analyser (OSA) was used to perform 

measurements of eye diagram and optical power spectral densities, accordingly. 

3.3.2. Results for 2.5 GE and 10 GE transmission speed 

The bit error rate measurement is a simple method for systems performance evaluation. The 

error counting in a practical system for realistically low BER values (< 10-12) can be a long 

process. Therefore the International Telecommunications union (ITU) has created the eye 

diagram masks for different bit rates with a definite BER value [28]. 

Fig. 11 shows the eye diagrams and optical power spectral densities of 2 GE optical signals 

after FBG with 55 GHz FWHM bandwidth for different laser central wavelength offset 

values (-0.2 nm, -0.1 nm, 0 nm, 0.1 nm, 0.2 nm). Offset value was changed within FBG device 

pass-band with 0.1 nm step. This value was chosen to fit DWDM systems wavelength grid 

defined in ITU-T G.694.1 recommendation. As we can see from results greater optical signal 

amplitude and phase distortions are at the edges of the band-pass optical filter. On Fig.11.a 

and Fig.11.e are shown eye diagrams for -0.2 nm and +0.2 nm offset values and there are 

signal waveform degradation. From these results FBG efficient bandwidth is 0.4 nm or 50 

GHz and is the same as FWHM bandwidth.  

Fig. 12 depicts out the eye diagrams and optical power spectral densities of 10 GE optical 

signals after FBG with 55 GHz FWHM bandwidth for different laser central wavelength 

offset values (same as in Fig. 11). On Fig.5.a and Fig.5.e are shown eye diagrams for -0.2 nm 

and +0.2 nm offset values and there are signal and mask crossing which means that defined 

BER value is exceeded. The results show that efficient bandwidth is 0.2 nm or 25 GHz and is 

0.2 nm or 25 GHz lower than FWHM bandwidth for this transmission speed. 

 

Figure 11. Eye diagrams (a-e) and optical power spectral densities (f) of 2GE optical signal after FBG 

with 55 GHz FWHM bandwidth for different CW laser wavelength offset shown in inset 
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Figure 12. Eye diagrams (a-e) and optical power spectral densities (f) of 10GE optical signal after FBG 

with 55 GHz FWHM bandwidth for different CW laser wavelength offset shown in inset 

4. Realization of new generation access system 

Optical band-pass filter performance must be evaluated to increase spectral efficiency of 

overall optical transmission system [8]. Due to this, detailed investigation has been done 

into the FBG filter influence on the optical signals in DWDM-direct. For this purpose we 

have created the DWDM-direct measurement scheme and determined minimal channel 

interval for 55 GHz FBG filter at which the bit error ratio is sufficiently low. This evaluation 

was carried out employing eye diagrams and optical power spectral densities of the 

received optical signal. 

4.1. Measurement setup 

DWDM-direct scheme (see Fig. 13) is composed of three parts: a transmitter, an optical fiber, 

and a receiver. The transmitter consists of a pseudo-random data source with 231-1 bit 

sequence (Anritsu MU181020A), a non-return-to-zero code former (Anritsu MU181020A), a 

tunable continuous wavelength laser source (Agilent 81989A, 81949A), and an Avanex 

LiNbO3-based external MZM. The data source generates a pseudo-random electrical signal 

which contains the information to be transmitted via optical fiber. Then a code former is 

used to form an NRZ code from the incoming pseudo-random bit sequence. The optical 

pulses are obtained by modulating CW laser light in MZM with the generated bit sequence. 

After optical modulation the formed optical pulses are sent directly to a 20 km SSMF 

(G.652.d). The utilized fiber has a large core effective area of 80 μm2, attenuation α = 0.2 

dB/km, nonlinear refractive coefficient nk = 2.5·10–20 cm/W, and dispersion 16 ps/nm/km at 

the reference wavelength λ = 1550 nm. The receiver block consists of an optical filter (55 

GHz FBG), a PIN photodiode, and a Bessel–Thomson’s electrical filter (4 poles, 7.5 GHz -3dB 

bandwidth, Anritsu MP1026A) [16]. 
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Figure 13. Realized DWDM– direct system for broadband access 

In this research the minimal channel interval for DWDM-direct systems with 55 GHz FBG 

filter has been determined employing measured eye diagrams an optical power spectrum 

densities. A high-frequency oscilloscope Anritsu MP1026A was used to perform the eye 

diagram measurements and the optical spectrum analyzer ADVANTEST Q8384 was 

employed to get optical power spectral densities. 

4.2. Spectral efficiency enlargement 

Fig. 14 shows the eye diagrams and optical power spectral densities of a 2.5 Gbit/s DWDM-

direct system realized with 55 GHz FBG after 20 km of SSMF for different channel intervals 

from 25 GHz to 125 GHz with 25 GHz (0.2 nm in a wavelength range) step. The step value 

was chosen to fit DWDM wavelength grid defined in ITU-T G.694.1 recommendation. Both 

signal detection in the 2.5 Gbit/s DWDM system, 55 GHz FBG, was observed with a 25 GHz 

channel interval. To reduce undesirable adjacent signal, the channel interval was increased, 

which gave lower BER values for the detected signal. As a result, the adjacent channel was 

suppressed more efficiently, because the steepness of a 55 GHz FBG device is very good and 

the adjacent channel’s isolation is ~35 dB. As one can see from the results (Fig. 14b), a 50 

GHz channel interval is sufficient to ensure the appropriate BER value for adequate system's 

performance. The results for greater channel intervals (75 GHz, 100 GHz and 125 GHz, Fig. 

14c–e) are also shown to demonstrate DWDM-direct system's stability in the employed 

spectral range. 

The eye diagrams and optical power spectral densities of a 10 Gbit/s DWDM-direct system 

for broadband access after 20 km of SSMF for the same channel intervals as in the previous 

case are shown in Fig. 15. Due to a higher transmission speed, the optical power spectral 

density is broader, which results in stronger influence of CD on the signal quality. This leads 

to greater degradation of the optical signal, which emerges as a larger standard deviation 

and jitter for “0” and “1” levels in eye diagram. Similar to the above, a 50 GHz channel 

interval is sufficient to ensure the appropriate BER value for normal performance of the 

system at 10 Gbit/s transmission speed; the spectral efficiency is in this case improved from 

0.18 bit/s/Hz to 0.2 bit/s/Hz. 
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Figure 14. Eye diagrams (a–e) and optical power spectral densities (f) of 2.5 Gbit/s DWDM-direct system 

realized with a 55 GHz FBG after 20 km of SSMF for different channel intervals (shown in insets).  

 

Figure 15. Eye diagrams (a–e) and optical power spectral densities (f) of 10 Gbit/s DWDM-direct 

system realized with a 55 GHz FBG after 20 km of SSMF for different channel intervals (shown in 

insets). 

4.3. Channel number enlargement: numerical evaluation 

Simulation scheme is shown in Fig. 3. Channel count of simulation scheme depends on 

simulation setup. Two, four and eight channels were chosen balancing between total 

capacity on one hand and physical limitations on the other. 
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The main idea of simulations is to demonstrate the possibility of channel number 

enlargement for FBG filter with 55 GHz FWHM bandwidth in DWDM-direct transmission 

system for broadband access. 

Fig.16.a-c. depicts out power spectral densities and eye diagrams of 2.5 Gbit/s DWDM-direct 

transmission system with different channel count after 20 km of SSMF and Fig.16.d. shows 

BER dependence on distance for 50 GHz FBG. We can see that adjacent channel isolation 

value (~ 30 dB) for 55 GHz FBG is sufficient to realize reliable transmission at eight channel 

case. In this case influence of adjacent channel caused impairments is minimized by proper 

optical band-pass filter parameter selection.  

 

Figure 16. Power spectral densities and eye diagrams of 2.5 Gbit/s DWDM-direct a) two channels, b) 

four channels, c) eight channels system after 20 km of SSMF and d) BER vs. Distance with 55 GHz FBG 

optical filter. Results obtained at the worst channel. 

Fig.17.a-c. depicts out power spectral densities and eye diagrams of 10 Gbit/s DWDM-direct 

transmission system with different channel count after 10 km of SSMF and Fig.17.d. shows 

BER dependence on distance for 55 GHz FBG. Transmission at higher data speed is more 

affected by chromatic dispersion of optical fibre and total power budget of system is 

reduced because of greater excess loss in MZM and lower receiver sensitivity for 

appropriate BER threshold. 
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Figure 17. Power spectral densities and eye diagrams of 10 Gbit/s DWDM-direct a) two channels, b) 

four channels, c) eight channels system after 10 km of SSMF and d) BER vs. Distance with 55 GHz FBG 

optical filter. Results obtained at the worst channel. 

5. Conclusions 

As we can see from the results, the proper selection of optical filter amplitude transfer 

functions is of great importance. In this investigation influence of adjacent channel caused 

impairments is minimized by proper optical band-pass filter parameter selection. Reliable 

transmission is realized for 2.5 Gbit/s and 10 Gbit/s DWDM-direct with 55 GHz FBG for 20 

km of SSMF. 

Results show that DGD value within filters pass-band does not exceed 70 picoseconds for 

FBG with 50 GHz FWHM bandwidth. DGD value increases at the edges of the optical filter 

amplitude transfer function which could be a degradation factor for optical signal 

transmitted through device. Furthermore efficient bandwidth was evaluated for FBG 

devices employing optical signals with different transmission speed. Efficient bandwidth of 

55 GHz FBG device was 0.4 nm or 50 GHz for 2GE optical signal and 0.2 nm or 25 GHz for 

10GE optical signal. 
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We have realized a DWDM-direct system for broadband access that includes FBG filter with 

55 GHz FWHM bandwidth. From the measurement results we found the minimal channel 

interval for the 55 GHz FBG to ensure reliable data transmission, and therefore were able to 

increase the spectral efficiency of the whole DWDM-direct system for broadband access. In 

2.5 Gbit/s and 10 Gbit/s DWDM-direct systems with 55 GHz FBG the detection of both 

signals were observed for a 25 GHz channel interval. To achieve single-channel detection 

and suppression of the adjacent channel’s power level the channel spacing was increased to 

50 GHz. As a result the spectral efficiency of the 10 Gbit/s DWDM system with 55 GHz FBG 

was raised from 0.18 bit/s/Hz to 0.2 bit/s/Hz. 
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