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1. Introduction

Skin is the largest organ of the body. It is organized into three main layers, epidermis, der‐
mis and subcutaneous layer. The epidermis, an outermost avascular layer, is formed by ker‐
atinocytes at the epidermal basal layer that differentiate into corneocytes at the outer layer
of the epidermis. The dermis lies below the epidermis separated by a basement membrane
and is composed mainly of fibroblasts. The primary function of skin is to constitute an effi‐
cient barrier to protect the organism both from water evaporation and from external aggres‐
sions. Skin is an excellent organ system to study DNA damage and repair since skin is
routinely exposed to external and internal aggressors which can induce DNA damage. Sun‐
light is the primary environmental inducer of damage in the skin. In particular ultraviolet
radiations (UVR) are known to induce damage on DNA bases by direct absorption of pho‐
tons. Typical damages from the direct effect of UVR are the cyclobutane pyrimidine dimers
(CPD) or the 6-4 photoproducts formation both created by dimerization of contiguous pyri‐
midines on the DNA [1]. Sunlight also induces significant damage to skin cells through the
generation of Reactive Oxygen Species (ROS) which damage DNA nucleobases and the sug‐
ar phosphate backbone. Depending on the attacking ROS (singlet oxygen and hydroxyl radi‐
cals through the formation of superoxide radicals), different modifications are generated to
DNA such as bulky (8-oxo- guanosine, as guanine is the most easily oxidized base, thymi‐
dine and cytosine glycol) and non bulky (cyclo purine and etheno adducts) base modifica‐
tions, spontaneous hydrolysis of a normal or damaged nucleobase leading to an abasic site,
(See review [2]). Finally ROS may also generate other forms of DNA damage such as single
strand breaks (SSB) or double strand breaks (DSB) when the free radical attack is located on
the poly- deoxy- ribose chain. Other external aggressors, such as cigarette smoke and pollu‐

© 2013 Kaur et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



tion, may favor DNA damage onset by depleting intracellular anti-oxidant molecules such
as glutathione and thus shifting the oxidative balance to favor oxidation by ROS. In addition
to external aggression, cells are also subjected to internal aggression from ROS generated by
oxidative metabolism or respiration as well as to the attack of genotoxic or photo-sensitizers
coming from the diet.

DNA integrity being one of the key parameters to maintain a healthy organism, living cells
have developed strategies not only to prevent DNA damage but also to efficiently repair any
damaged DNA. In human cells, DNA is repaired by different mechanisms: Base Excision Re‐
pair (BER), Nucleotide Excision Repair (NER), Single and Double stranded Breaks Repair
(SSBR and DSBR), Homologous Recombination (HR) and Mismatched repair. Basically, DNA
alterations without strand breaks are repaired mainly by excision repair mechanisms where
the damaged bases are removed from the DNA molecule by excision and then replaced with
the right bases. In the case of the Nucleotide Excision Repair (NER) an oligonucleotide frag‐
ment of approximately 25-30 nucleotides is removed around the damaged DNA and the gap
generated in the DNA duplex is filled by DNA synthesis using the opposite, normal DNA
strand as a template. To complete the process of NER, the last nucleotide incorporated is cova‐
lently joined to the extent DNA by ligation [3]. BER consists of four to five steps in which specif‐
ic enzymes play a role: excision of the damaged base by a glycosylase, incision of the resulting
abasic site, processing of the generated termini at the strand break, DNA synthesis and ligation
[4, 5]. A third mechanism called mismatched repair occurs when only one nucleotide mismatch
appears in the DNA double chain. This mechanism is particularly effective for the repair of
DNA error arising during replication due to the limited fidelity of the replicative machinery.
Finally, DNA double strand breaks can be repaired by a specific process called homologous re‐
combination and non homologous end joining [6].

The importance of the DNA repair process and its relevance in skin aging and skin cancer
has been highlighted by genetic disorders affecting genes responsible for DNA repair. For
example the genetic diseases Xeroderma Pigmentosum (XP), Cockayne syndrome (CS) and
Ataxia telangiectasia (AT) are rare autosomal recessive pathologies where different and spe‐
cific enzymes of the NER and BER pathways are deficient due to inactivating mutation in
their genes [7, 8]. These diseases are characterized at the level of the skin by extreme sensi‐
tivity to sunlight, resulting in sunburn, pigmentation changes, an early onset of the appear‐
ance of skin aging signs and a greatly elevated incidence of skin cancers in particular for XP
disorder [9]. These changes can be explained by long lasting DNA damages that induces
prolonged cellular inflammation through the activation of the NF-κB pathway [10-13] and
an acquired immune deficiency [14] as well as rapid accumulation of mutation leading to
cell apoptosis, senescence and cell tumorigenesis [15, 16][17, 18].

2. Inflammation and DNA repair

During tissue damage and the subsequent inflammation, a number of mediators are re‐
leased which have been shown to modulate DNA repair. The activation of the Melanocortin
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Receptor 1 (MCR1) by either its natural ligand, the α-Melanocyte stimulating Hormone
αMSH or synthetic analogs [17, 18] can enhance the DNA repair activity in cells. Also two
interleukins (IL), IL12 and IL23, known to display anti-tumor activity [19-22], have been
shown to accelerate the repair of UVB induced CPDs. Activation of detoxifying mechanisms
such as the NRf2 pathway may enhance also DNA repair [23]. Finally mono- and poly-
ubiquitilation as well as sumoylation play an important role in the regulation of DNA repair
(see review by[24]). Thus inflammatory mediators can directly affect the DNA repair proc‐
ess and therefore could be regulatory factors either enhancing or repressing DNA repair. Re‐
cent studies have identified that the NF-kB pathway, which is a key regulator in the
expression of inflammatory proteins, may be an important mediator in DNA damage and
the subsequent repair.

3. NF-κB signal transduction

NF-κB was first described in 1986 as a nuclear factor essential for immunoglobulin κ light
chain transcription in B cells [25]. Since that initial discovery, NF-κB has been found to be a
primary mediator involved in regulating immune responses, apoptosis and cellular growth,
as well as being present in inflammatory diseases such as arthritis and asthma, [26]. The NF-
κB family of transcription factors shares a high-conserved sequence of amino acids within
their amino terminus, which contains a nuclear localization sequence that is involved in the
dimerization with sequence-specific DNA binding and with the inhibitory IκB proteins.

In unstimulated cells, NF-κB-family proteins exists as heterodimers or homodimers that are se‐
questred in the cytoplasm in an inactive form by virtue of their association with a member of
the IκB family of inhibitory proteins, most notably IκBα, IκBβ and IκBγ [27, 28]. About 200 ex‐
tracellular signals can lead to activation through the dissociation of NF-κB from the IκB pro‐
teins.  These activating signals include viral  and bacterial  products,  oxidative stress,  pro-
inflammatory cytokines including IL-1 and TNF-α, and phorbol esters [29-33]. Ultraviolet (UV)
radiation from sunlight induces IL-1 and TNF-α and creates reactive oxygen species that then
leads to NF-κB-mediated inflammation [34, 35]. The kinase activity of IκK phosphorylates two
serine residues (Ser32 and Ser36) on IκB proteins, which results in the ubiquitination and deg‐
radation of IκB by the proteasome. The degradation of IκB reveals the nuclear localization se‐
quence of NF-κB [27, 28]. Free NF-κB can then translocate to the nucleus and bind to a NF-κB
consensus sequence present within the promoter region of target genes, thereby upregulating
the expression of hundreds of genes, including cytokines (Interleukin-1, -2, -6, etc.), TNF-α, im‐
munoreceptors (immunoglobin kappa light chain, MHC class I, etc.), cellular adhesion mole‐
cules (ICAM-1, VCAM-1, ELAM-1), and many others [33].

4. NF-κB and DNA damage

The NF-κB pathway has been shown to be regulated by ionizing radiation at both the
mRNA and protein levels by Brach et al., who demonstrated that NF-κB transcripts were
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transiently increased after irradiation, which was preceded by enhanced DNA binding ac‐
tivity of this transcription factor [36]. The causal role of NF-κB in DNA damage has been
hypothesized since suppression of the NF-κB pathway by a pharmacological inhibitor re‐
sulted in a significant reduction in DNA damage as determined by T-T dimer formation in
skin cells (Figure 1). Nuclear DNA double strand breaks (DSBs) are one of the most potent
DNA damage signals to activate NF-κB. This process can occur within 1–2 h after break in‐
duction through activation of the canonical inhibitor of κB (IκB) kinase (IKK) complex and
IκBa degradation [12]. NF-κB can be activated by Topoisomerase inhibitors (such as campto‐
thecin) potentially via the generation of double strand breaks as well [13]. Furthermore acti‐
vation of IKK following treatment with topoisomerase inhibitors was described to be
dependent on the zinc finger domain in NF-κB essential modulator (NEMO) [24]. DSBs can
trigger two independent signaling cascades that eventually lead to the induction of NF-κB
via NEMO [35]. In one case, DSBs can activate ATM, which in turn can bind to and phos‐
phorylate NEMO. In a parallel cascade, the p53-induced protein with a death domain
(PIDD) translocates to the nucleus leading to the SUMOylation of NEMO. Consequently, the
resulting activation of NF-κB favors cell survival by turning on the transcription of several
anti-apoptotic genes. In response to DSB, PIDD as well as ATM are capable of initiating cas‐
cades leading to pro- or antiapoptotic signals, NF-κB presumably being a part of the pro-
survival cascade [35]. Miyamoto et al., have summarized this model of NF-κB activation by
DNA damage as a ‘two signal’ model as it requires coincident NEMO SUMOylation and
ATM activation by double strand breaks to permit robust NF-κB activation [12]. Taken to‐
gether these findings suggest that NF-κB may be both have both causal and effector roles in
the development of DNA damage.

5. NF-κB and the DNA repair process

Although the mechanisms by which NF-κB affects DNA damage are not fully established,
one possibility is that NF-κB may either directly or indirectly regulate DNA repair processes
in cells. Protecting cells from apoptotic cell death following DNA damage is one of the ma‐
jor ways that NF-κB activation regulates the DNA repair process. Wang et al., have demon‐
strated that NF-κB functions as a positive modulator of cellular senescence, an intrinsic
tumor suppression mechanism, by showing that human fibroblasts lacking NF-κB activity
prematurely exit from senescence [37]. Others have shown that skin cells devoid of NF-κB
activity exhibit deregulated growth correlating with impaired cell-cycle control [38, 39]. It
has been proposed that the role of NF-κB in cellular senescence could be cell type specific,
differentially initiating senescence or acting further downstream in the DNA repair process
to maintain the senescent state [37]. DNA damage caused by chemical genotoxic agents,
such as camptothecin, has been described to activate the Ataxia Telangiectasia-Mutated
(ATM) kinase and NEMO (IκB kinase), leading to the inducing of NF-κB p50/p65 hetero‐
dimer [40]. In a parallel signaling pathway, ROS can be generated by genotoxic agents in
sufficient quantities to activate the NF-κB pathway. ROS can also act as signaling molecules
in immune responses, cell death and inflammation, where NF-κB is involved [40]. Depend‐
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ing on the relative degree of DNA damage, multiple mechanisms of NF-κB activation are
engaged. Physical genotoxic agents such as UVA or hydrogen peroxide lead to extensive ox‐
idative damage within the cytoplasm which can signal the activation of NF-κB pathway in
the absence of DNA damage.

 

(a) 

(b) 

Figure 1. Topical pretreatment of skin equivalents with an NF-κB inhibitor reduces UV-induced DNA damage
Human epidermal skin equivalents were pre-treated with vehicle or NF-κB inhibitor (4-hexyl-1,3-phenylenediol) for 2
hr prior to UV exposure, and DNA damage assessed by Thymine (T-T) dimer staining followed by blinded quantifica‐
tion. *P<0.05 using Student’s t-test.

Among the various types of DNA damage, repairing double strand breaks can be particular‐
ly challenging to cells [41, 42], and may contribute to genomic instability associated with
most cancers [42-45]. Wiesmuller et al., have shown that NF-κB is involved in double strand
removal and repair via a stimulatory action on homologous repair, involving the targets
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ATM and the tumor suppressor gene BRCA2 [46]. NF-κB is known to bind to the BRCA2
promoter and activate BRCA2 gene expression [47]. The role of NF-κB in ATM function and
DNA repair was demonstrated by Siervi et al., in T-cells where levels of ATM mRNA and
protein were significantly reduced by NF-κB blockade [48]. Activation of NF-κB by ATM re‐
sults in an anti-apoptotic signal in the cells. Wiesmuller et al. have also described that NF-κB
utilizes multiple mechanisms to enhance homologous recombination, including stimulation
of the activity of CtIP–BRCA1 complexes to trigger DNA end processing, and upregulation
of ATM and BRCA2 for strand transfer [46].

The nuclear factor p53 controls several physiological processes including DNA repair and
cell cycle arrest. Cross-talk between NF-κB and p53 has been established by multiple groups
([49, 50]; see review by [51]), including results that suggest NF-κB may have both anti- and
pro-apoptotic roles. Only a limited number of studies have investigated the role of NF-κB in
DNA damage and repair in skin cells (including: [38, 39, 52-55]). Evaluation of the p53-NFκB
cross-talk by Puszynski et al. in HaCat keratinocytes cells showed that inactivation of NF-κB
improved p53-mediated DNA repair and prevented arsenite-induced malignant transforma‐
tion of HaCaT cells [54]. Marwaha et al. have shown that in primary skin cells, such as der‐
mal fibroblasts and keratinocytes, treatment with T-oligos led to the up-regulation and
activation of p53, coinciding with decreased NF-κB DNA binding activity and inhibition of
transcription from NF-κB-driven promoter constructs [53]. Thyss et al. have demonstrated
that the sequential activation of NF-κB, Egr-1 and Gadd45 cascade induces UVB-mediated
cell death in epidermal cells [55], a process that was crucial in order to eradicate the cells
that bear the risk of becoming tumorigenic. In HaCat keratinocytes, hydroxytyrosol (main
component of olive oil described as an inhibitor of NF-κB), has been shown to significantly
reduce the DNA strand breaks caused by UVB, and also attenuate the expression of p53 and
NF-κB in a concentration-dependent manner [52]. And finally, pharmacological inhibition of
NF-κB increased the DNA repair capacity of primary human keratinocytes suggesting a po‐
tential inhibitory role of the NF-κB pathway on NER /BER in skin cells (Figure 2).

6. NF-κB and the decrease in DNA repair capacity of dermal fibroblasts:
A role in accelerating the skin aging process?

Aging of the dermal compartment of skin is generally associated with fibroblast aging. Indeed
in skin biopsies of aged donors, a general decrease in collagen synthesis activity is observed as
well as an accumulation of senescent cells that display a catabolic phenotype [56, 57]. We have
recently shown that there is a general decrease in DNA repair capacity in aging dermal fibro‐
blasts. Indeed, using two different types of DNA repair measurement that directly measure the
activity on human dermal fibroblasts nuclear extracts on plasmid [58] and oligonucleotides [59,
60] bearing specific damages, we showed that the level of NER and BER are dramatically re‐
duced in dermal fibroblasts from a group of female volunteers with age comprised between 40
and 50 years old compared to a results obtained in a younger group 20-30 years old for both
chronically UV-exposed skin or non-exposed skin site [61, 62]. Sauvaigo et al. also demonstrat‐
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ed that SSB repair decreased with aging in dermal fibroblasts [60]. This suggests that the depres‐
sion in the repair capacity of skin cells may contribute significantly to a lower resistance of aged
tissue to DNA damage and thus accelerate the aging process of the skin tissue. The decreased
DNA repair may also increase the occurrence of senescent cells as we have seen that on average
subjects with the low DNA repair activity display more severe signs of skin aging such as wrin‐
kle, overall photo-damage and firmness (Unpublished results).

Figure 2. Treatment of primary human keratinocytes with NF-κB inhibitors increased repair of UV-induced DNA
damage. Primary human keratinocytes were exposed to UV, followed by immediate treatment with the NF-κB inhibi‐
tors 4-hexyl-1,3-phenylenediol (Figure 2A) or BAY11-7082 (Figure 2B). DNA damage was assessed by Comet assay at
T= 0, 1 and 2 hours after treatment with NF-κB inhibitors

While the mechanisms contributing to the decreased DNA repair in aged skin are not
known, in parallel we have observed that in aging dermal fibroblasts there was an increased
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activation of the NF-κB pathways which directly induced a transcriptional repression of the
collagen gene expression [63]. Taken together, it could be hypothesized that the elevation of
NF-κB transcriptional activity may contribute to the decrease in DNA repair capacity of skin
cells and thereby lead to accelerated skin aging. Since NF-κB is activated by DNA damage,
there is a potential for a vicious circle to take place as more NF-κB may decrease the capacity
of the cell to repair damages and lead to a longer persistence of the DNA damages.

7. NF-κB and the development of resistance to alkylating agent-based
chemotherapy

In addition to the putative role of NF-κB and the decreased DNA repair capacity of skin
cells leading to skin aging, NF-κB regulation of DNA repair may also contribute to chemore‐
sistance. Studies of chemotherapeutic resistance have shown a significant correlation exists
between NF-κB activation and the decreased effectiveness of some chemotherapeutic agents.
Agents such as taxol and irradiation treatments upregulate the transcription factor NF-κB
which leads to promoting survival and chemoresistance in solid tumor cancers [64]. The
mechanism for this chemoresistance is through the activation NF-κB which can subsequent‐
ly mediate cell survival, proliferation, invasion, and metastasis [65].

Sphingosine kinase may be of therapeutic interest in the context of inflammatory disease
and drug resistant cancers. Sphingolipid metabolism has been shown to be aberrant in
breast cancer tumor samples, resulting from an increase of sphingosine kinase expression
[66]. The sphingosine kinase cascade pathway was first linked to the NF-κB pathway in 1998
via demonstration that TNF induced adhesion was mediated through sphingosine kinase
signaling, which links to downstream NF-κB activation [67]. Using a novel selective Sphk2
inhibitor, ABC294640, Antoon et al. demonstrated inhibition of NF-κB activation via inhibi‐
tion of Sphk2 [68]. In vivo testing in a well-established immunocompromised xenograft
model for tumor growth, demonstrated that this inhibitor showed lower proliferation of
cancerous cells, and no tumor growth when compared to control. This establishes the under‐
lying pathways including the inhibition of NF-κB activation, as viable target for otherwise
chemoresistant tumors [68]

Curcumin,  a  natural  phenol  that  is  present  in  turmeric  has  been shown to sensitize  tu‐
mor cells to several anti-cancer drugs via modulation of NF-κB and histone deacetylase.
Curcumin  suppresses  activation  of  NF-κB  through  IkB  kinase  (IKK)  activity  inhibition
[69].  In  a  xenograft  model,  curcumin  plus  paclitaxel  significantly  suppressed  the  inci‐
dence of breast cancer metastasis in lung tissue, and also demonstrated in these lung tis‐
sues  was  the  reduction  of  the  p65  subunit  of  NF-κB  [70].  By  combining  compounds
which can either directly or indirectly inhibit  the NF-KB signaling pathway concomitant
with chemotherapy, the resulting synergistic treatment may allow lower doses of the tox‐
ic chemotherapeutic agents to be used, improving patient responses [71]. These data help
to demonstrate that down regulation of the NF-κB pathway could lead to the tumor cells
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becoming  more  susceptible  to  current  chemotherapies,  and  allow  for  lower  doses  of
these therapies, leading to better patient outcomes.

8. Summary: The regulation of DNA damage and DNA repair by NF-κB

Skin is under continuous assault from a variety of damaging environmental factors includ‐
ing ultraviolet irradiation and atmospheric pollutants. Extrinsic factors, particularly sun‐
light, have been demonstrated to accelerate the intrinsic aging process by increasing free
radical production and decreasing antioxidant protections which can result in DNA damage
and can affect the repair of damaged DNA. The age-related accumulation of somatic dam‐
age is worsened by sun exposure, leading to an increased incidence of skin disorders, skin
cancer and potentially skin aging. New findings on the molecular mechanisms involved in
the regulation of DNA damage and the subsequent repair of damaged DNA in the skin can
help identify new targets to modulate DNA repair activity and thereby have a significant
effect on skin physiology. The NF-κB pathway is a key regulator of inflammatory mediators
in skin cells and has been reported to be the final common pathway for the conversion of
environmental insults into inflammation in the skin. Through the ability to regulate process‐
es that result in increased DNA damage and decrease the repair of damaged DNA, the NF-
κB pathway may be a primary pathway linking inflammation and DNA damage.

Figure 3. Model showing the effects of NF-κB on DNA damage and repair
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Pharmacological inhibition of NF-κB therefore may provide protection to skin from the nu‐
merous external aggressions encountered daily and reduce the DNA damage to oxidatively
challenged and aging skin by increasing endogenous DNA repair processes.
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