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1. Introduction

Osteoporosis is a disease entity characterized by the progressive loss of bone mineral density
(BMD) and the deterioration of bone microarchitecture, leading to the development of frac‐
tures. Its classification encompasses two large groups, primary and secondary osteoporosis [1].

Primary osteoporosis is the disease’s most common form and results from the progressive loss
of bone mass related to aging and unassociated with other illness, a natural process in adult
life; its etiology is considered multifactorial and polygenic. This form currently represents a
growing worldwide health problem due in part, to the contemporary environmental condi‐
tions of modern civilization. Risk factors that are considered as “modifiable” also play an
important role and include physical activity, dietary habits and eating disorders. Furthermore,
there is another group of associated risk factors that are considered “non-modifiable”,
including gender, age, race, a personal and/or family history of fractures that in turn, indirectly
reflect the degree of genetic susceptibility to this disease [2-4]. Secondary osteoporosis
encompasses a large heterogeneous group of primary conditions favoring osteoporosis
development. Table 1 summarizes some of the disease entities associated to primary and
secondary osteoporosis.

1.1. Genetic aspects of primary osteoporosis

This form of osteoporosis results from the interaction of several environmental and genetic
factors, leading to difficulties in its study. It is not easy to define the magnitude of the effect of
genetic susceptibility since it is a trait determined by multiple genes whose products affect the
bone phenotype; moreover, the environmental factors compromising bone mineral density are
also difficult to analyze. However, in spite of these barriers, research suggests that inherited
factors affect BMD in ranges between 40 – 70% in the spine, 70 – 85% in the hip and 50 – 60%
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in the wrist. Bone density studies in monozygotic (MZ) and dizygotic (DZ) twins suggest that
spinal and femoral neck BMD concordance is higher (6-8:1) in MZ versus DZ twins. Other
studies have estimated that fracture predisposition heritability per se ranges between 25 – 35%
and up to 40% of patients with osteoporotic fractures have a positive family history of fractures,
thus reflecting the great influence of genetic factors in this disease. On the other hand, the
geometry and length of the femoral neck, the bone’s properties on ultrasound, growth speed
and bone remodeling variations are also dependent on genetic factors. The genes associated
with the bone phenotype are distributed throughout the human genome and located in
practically all chromosomes; their products fulfill specific functions and contribute in different
manners to the genetic control of the bone tissue phenotype [5-12]. Some of these genes and
their products are presented in Table 2 [13-23].

It is important to mention that the mechanisms conditioning the hereditary susceptibility
to  osteoporosis  are  determined,  among  other  factors,  by  the  presence  of  mutations  or
genetic polymorphisms (natural genomic variations) in one or several genes involved in
bone phenotype genetic control.  These polymorphisms follow a well-defined inheritance
pattern and their distribution is different among racial groups and populations. There are
several reports in the world literature, of associations between specific genetic variants and

Type of osteoporosis Causes

Primary Multifactorial, polygenic. Senile/Involutional

Secondary Drugs compromising bone quality: anticonvulsants, antidepressants,

anticoagulants, antacids with aluminum, aromatase inhibitors, barbiturates,

cimetidine, corticosteroids, glucocorticoids, birth control pills, cancer drugs,

gonadotropin releasing hormone (GnRH), loop diuretics, methotrexate,

phenobarbital, phenothiazines, among others.

Other entities: nephropathies, malabsorption syndromes, neoplasias,

rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, any process

leading to decreased mobility or prolonged immobility.

Metabolic diseases: diabetes, hyperthyroidism, hyperparathyroidism.

Hypogonadism: Turner and Klinefelter syndromes.

Behavioral disorders: anorexia nervosa, depression, prolonged physical

inactivity, malnutrition, high caffeine intake, smoking and/or chronic

alcoholism.

Monogenic diseases: osteogenesis imperfecta, glioma syndrome, osteoporosis.

Table 1. Osteoporosis classification.
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osteoporosis development or the risk of fractures;  these risks may vary according to the
fractures’ anatomic location [3, 4, 24-30]

Product Function Genes

Matrix components COL1A1, COL1A2, OPN

Hormones and their receptors ESR1, ESR2, AR, VDR, PTHR1, CASR, PTH, CYP1A1, PRL, LEP,

LEPR, INS, INSR

Participants in osteoblastogenic proccesses ALOX12, ALOX15, BMP4, BMP7, IGF-1 LRP5, LRP6, SOST

Participants in osteoclastogenic proccesses P53, RANK, RANK-L

Citokines and their receptors IL1α, IL1β, IL6, TNF, TNFR2

Other MTHFR, APOE

Table 2. Genes involved in bone metabolism.

2. Mendelian diseases and osteoporosis

The description in the literature of some genetic diseases of monogenic inheritance and whose
phenotype includes the loss or increase in bone mineral density and even fractures, has
suggested and even proved that bone phenotype has an important genetic component. These
diseases include idiopathic osteoporosis, osteogenesis imperfecta in all its variants, osteopet‐
rosis, pycnodysostosis and the osteoporosis syndrome associated to pseudoglioma, among
others. In some cases of severe osteoporosis, mutations in the estrogen and even the androgen
receptor genes have been detected.

2.1. Idiopathic juvenile osteoporosis

This is an unusual variety of osteoporosis whose frequency has not been precisely determined.
This disease may develop in females and males, usually around 7 – 10 years of age; children
present difficulty in gait, pain in the lower extremities, ankles, knees, occasionally in the hip
and fractures tend to develop particularly in long bones. Radiologically, it is characterized by
diffuse osteopenia, metaphyseal fractures – especially of the femur -, and vertebral collapse
that may lead to severe kyphoscoliosis or collapse of the thoracic cage. This disease is consid‐
ered potentially reversible whereby in most cases, there is almost complete recovery of the
bone tissue; growth, however, may be compromised.

In these patients, it  is important to exclude other disease entities or conditions manifest‐
ing secondarily as osteoporosis. A differential diagnosis must be made with other genetic
diseases, particularly the different variants of osteogenesis imperfecta; this is relatively easy
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due to its  clinical  characteristics,  lacking in idiopathic  osteoporosis.  The genetic  basis  of
this disease has of yet, not been established but it is possible that genetic mutations with
preferential  tissue  expression in  bone and with  great  impact  on the  tissue’s  phenotype,
may explain some of these cases [31, 32].

2.2. Osteogenesis imperfecta

Osteogenesis imperfecta, also known as “brittle bone disease”, has an estimated incidence of
approximately 1 in 20 000 births. It has great phenotypic variability, different patterns of
inheritance and a wide clinical spectrum ranging from very mild forms of the disease to severe
cases with an unfavorable prognosis. It is caused by the defective synthesis of one of the two
alpha chains of type I collagen (COL1A1 and COL1A2), leading to anomalies in these protein’s
structure; it is normally constituted by 3 coiled sub-units, two α1 chains and one α2 chain. This
type of collagen is considered the most abundant component of structural protein in bone as
well as in ligaments, tendons, sclerae and skin. Quantitative or qualitative defects in this
protein lead to bone fragility and hence, to an increased risk of fractures.

The genes encoding the α1 and α2 chains are located in the 17q21.31-q22 and 7q22.1 chromo‐
somes, respectively. Aside from brittle bones, these patients may also present long bones with
no curvatures, severe deformities preventing appropriate gait and even standing, conductive
deafness due to malformations of the auditory canal, dentinogenesis imperfecta, joint hyper‐
laxity and intervertebral disc herniation. Patients with severe forms of the disease have a long
history of fractures on mild impact and variable bone deformities. The most severe variants
may even lead to fractures in utero and pre or perinatal death. Tables 3 and 4 shows different
forms of the disease [33-35].

2.3. Osteoporosis – Pseudoglioma Syndrome (OPPG)

This  syndrome  is  an  autosomal  recessive  disease  characterized  by  bone  and  visual
abnormalities including short stature, osteoporosis development during infancy, spontane‐
ous  fractures,  scoliosis,  platyspondyly  and  long  bone  deformities.  A  crucial  associated
finding is  the presence of  pseudoglioma that  may be associated to microcephaly,  blind‐
ness  during  childhood,  cataracts  and  iris  atrophy.  Occasionally,  some  patients  present
interventricular  septal  defects  and  mental  retardation.  This  disease  is  conditioned  by
mutations of the LRP5 gene,  located on chromosome 11q13.4 and that encodes the low-
density  lipoprotein  receptor-related  protein  5  (LRP5).  It  was  initially  believed  that  this
entity  was  another  variant  of  osteogenesis  imperfecta  (OI)  but  the  study of  collagen in
patients  with  OPPG  established  that  this  protein  was  normal  and  the  hypothesis  was
discarded; however, this is still the most relevant differential diagnosis [36-41].

2.4. Neuromuscular disorders

Muscular dystrophies, peripheral neuropathies and muscle atrophies of hereditary origin,
represent broad groups of diseases that aside from their characteristic clinical stigmata, can be
associated with osteoporosis as one of their complications. As the disease progresses in these
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patients, there is increased difficulty and limitation in walking and periods of immobility
become progressively more prolonged leading to the gradual loss of the mechanical stimuli
that bone needs to maintain its strength and hence, favoring the development of osteoporosis.
As all Mendelian diseases, these neuromuscular abnormalities follow different inheritance
patterns and present phenotypic variability [42-44].

2.5. Inborn errors of metabolism

This group of genetic diseases encompasses a great number of inborn defects with repercus‐
sions in several aspects of carbohydrate, amino acid, protein, vitamin, mineral, complex
molecule, neurotransmitter and energy metabolism. The genetic basis of most of these entities
hinges on gene mutations encoding proteins, particularly enzymes, leading to partial or
complete blockade of one or several metabolic processes. In these diseases, symptoms arise
for different reasons, including: a deficit of the products generated by the compromised
enzymatic reaction, accumulation of the precursor immediate to the defect, an increase in
alternative products due to increased activation of alternate metabolic pathways or inhibition
of these alternate pathways due to the accumulated substrate. In most cases, inheritance of
these diseases is autosomal recessive and less frequently, X-linked recessive.

In cases of metabolic errors, osteoporosis tends to develop for different reasons: in some cases,
it is secondary to nutritional deficiencies, progressive neurologic or muscular impairment or
as a consequence of the therapeutic measures taken in the management of the primary disease:
their secondary effects directly compromise bone quality (steroids, antiseizure drugs, etc.). The
number of monogenic diseases whose phenotype may include osteoporosis is large and are
shown in Tables 3-5, according to their Mendelian inheritance pattern [45-56].

Disease Gene Product Genomic

Location

Reference

Hutchinson-Gilford progeria

syndrome; HGPS

LMNA Prelamin-A/C

precursor (LMNA)

1q22 57, 58

Osteogenesis imperfecta, Type I; OI1 COL1A1 Collagen, type I, alpha

1 (COL1A1)

17q21.33 33, 34

Osteogenesis imperfecta, Type II; OI2 COL1A1 Collagen, type I, alpha

1 (COL1A1)

17q21.33 33, 59

COL1A2 Collagen, type I, alpha

2 (COL1A2)

7q21.3

Osteogenesis imperfecta, Type III; OI3 COL1A1 Collagen, type I, alpha

1 (COL1A1)

17q21.33 33, 60

COL1A2 Collagen, type I, alpha

2 (COL1A2)

7q21.3

Marfan syndrome; MFS FBN1 Fibrillin 1 (FBN1) 15q21.1 61, 62
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Disease Gene Product Genomic

Location

Reference

Loeys-Dietz syndrome,

Type 1A; LDS1A

TGFBR1 Transforming growth

factor-beta receptor,

Type I (TGFBR1)

9q22.33 63, 64

Loeys-Dietz syndrome,

Type 1B; LDS1B

TGFBR2 Transforming growth

factor-beta receptor,

Type II (TGFBR2)

3p24.1 65, 66

Loeys-Dietz syndrome,

Type 2B; LDS2B

TGFBR2 Transforming growth

factor-beta receptor,

Type II (TGFBR2)

3p24.1 63, 65

Loeys-Dietz syndrome, Type 3; LDS3 MADH3/

SMAD3

Mothers against

decapentaplegic

homolog 3

(Drosophila) (SMAD3)

15q22.33 67, 68

Ehlers-Danlos syndrome, Type I COL5A2 Collagen, type V,

alpha 2 (COL5A2)

2q32.2 69, 70

COL5A1 Collagen, type V,

alpha 1 (COL5A1)

9q34.3

COL1A1 Collagen, type I, alpha

1 (COL1A1)

17q21.33

Ehlers-Danlos syndrome, Type II COL5A1 Collagen, type V,

alpha 1 (COL5A1)

9q34.3 70, 71

COL5A2 Collagen, type V,

alpha 2 (COL5A2)

2q32.2

Pseudohypoparathyroidism,

Type IA; PHP1A

GNAS GNAS complex locus

(GNAS)

[Gs, alpha subunit,

included]

20q13.32 72, 73

Pseudohypoparathyroidism,

Type IC; PHP1C

GNAS GNAS complex locus

(GNAS)

[Gs, alpha subunit,

included]

20q13.32 73, 74

Pseudopseudohypopara-thyroidism;

PPHP

GNAS GNAS complex locus

(GNAS)

[Gs, alpha subunit,

included]

20q13.32 73, 75

Epiphyseal dysplasia, multiple, 1;

EDM1

COMP Cartilage oligomeric

matrix protein

(COMP)

19p13.11 76, 77
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Disease Gene Product Genomic

Location

Reference

Prader-Willi syndrome; PWS NDN

SNRPN /PWCR

Necdin homolog

(mouse) (NDN)

Small nuclear

ribonucleoprotein-

associated protein N

(SNRPN/PWCR)

15q11.2

15q11.2

78, 79

Hajdu-Cheney syndrome; HJCYS NOTCH2 Neurogenic locus

Notch homolog

protein 2 (NOTCH2)

1p12-p11 80, 81

Nephrolithiasis/osteoporosis,

hypophosphatemic, 1; NPHLOP1

SLC34A1 Sodium-dependent

phosphate transport

protein 2A

(SLC34A1/ .NPT2A)

5q35.3 82, 83

Nephrolithiasis/osteoporosis,

hypophosphatemic, 2; NPHLOP2

SLC9A3R1/

NHERF

Na(+)/H(+) exchange

regulatory cofactor

NHE-RF1 (SLC9A3R1/

NHERF)

17q25.1 84-86

Cardiomyopathy, dilated, with

hypergonadotropic hypogonadism

LMNA Prelamin-A/C

precursor (LMNA)

1q22 87, 88

Dyskeratosis congenita, autosomal

dominant, 1; DKCA1

TERC Telomerase RNA

component (TERC)

(RNA)

3q26.2 87, 88

Dyskeratosis congenita, autosomal

dominant, 2; DKCA2

TERT Telomerase reverse

transcriptase (TERT)

5p15.33 89, 90

Dyskeratosis congenita, autosomal

dominant, 3; DKCA3

TINF2 TERF1-interacting

nuclear factor 2

(TINF2)

14q12 91, 92

Pigmented nodular adrenocortical

disease, primary, 1; PPNAD1

PRKAR1A cAMP-dependent

protein kinase type I-

alpha regulatory

subunit (PRKAR1A/

TSE1)

17q24.2 93, 94

Pigmented nodular adrenocortical

disease, primary, 2; PPNAD2

PDE11A Dual 3',5'-cyclic-AMP

and -GMP

phosphodiesterase

11A (PDE11A)

2q31.2 95, 96

Hyperostosis corticalis generalisata,

benign form of worth, with torus

palatinus

LRP5 Low density

lipoprotein receptor-

11q13.2 97, 98
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Disease Gene Product Genomic

Location

Reference

related protein 5

(LRP5)

Van Buchem disease,

Type 2; HVB2

LRP5 Low density

lipoprotein receptor-

related protein 5

(LRP5)

11q13.3 99, 100

Osteopetrosis, autosomal dominant

1; OPTA1

LRP5 Low density

lipoprotein receptor-

related protein 5

(LRP5)

11q13.3 101, 102

Osteopetrosis, autosomal dominant

2; OPTA2

CLCN7 H(+)/Cl(-) exchange

transporter 7 (CLCN7)

16p13.3 103, 104

ACTH-independent macronodular

adrenal hyperplasia; AIMAH

GNAS GNAS complex locus

(GNAS)

[Gs, alpha subunit,

included]

20q13.32 105, 106

Hyper-IgE recurrent infection

syndrome, autosomal dominant

STAT3 Signal transducer and

activator of

transcription 3

(STAT3)

17q21.2 107, 108

Coronary artery disease, autosomal

dominant 2; ADCAD2 or CADO

LRP6 Low density

lipoprotein receptor-

related protein 6

(LRP6)

12p13.2 109, 110

Avascular necrosis of femoral head,

primary; ANFH

COL2A1 Collagen, type II,

alpha 1 (COL2A1)

12q13.11 111, 112

Spondyloepimetaphyseal dysplasia

with joint laxity Type 2; SEMDJL2

KIF22 Kinesin-like protein

KIF22 (KIF22)

16p11.2 113, 114

Spondyloepiphyseal dysplasia,

Maroteaux type (pseudo-Morquio

syndrome, Type 2)

TRPV4 Transient receptor

potential cation

channel, subfamily V,

member 4 (TRPV4)

12q24.11 115, 116

Hypophosphatasia, adult ALPL Alkaline phosphatase,

liver/bone/kidney or

alkaline phosphatase,

tissue-nonspecific

isozyme (ALPL)

1p36.12 117, 118
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Disease Gene Product Genomic

Location

Reference

Cleidocranial dysostosis; CLCD RUNX2 Runt-related

transcription factor 2

(RUNX2)

6p21.1 119, 120

Trichorhinophalangeal syndrome,

type I; TRPS1

TRPS1 Zinc finger

transcription factor

Trps1(TRPS1)

8q23.3 121, 122

Table 3. Autosomal dominant diseases with bone mineral density loss.

Disease Gene Product Genomic

location

Reference

Vitamin D hydroxylation-deficient

rickets, Type 1A; VDDR1A

CYP27B1 25-hydroxy-vitamin

D-1 alpha

hydroxylase,

mitochondrial

(CYP27B1)

12q13 123, 124

Hemochromatosis; HFE HFE (C282Y y

H63D)

Hereditary

hemochromatosis

protein (HFE)

6p22.2 125, 126

BMP2 [HFE

hemochromatosi

s, modifier of]

Bone morphogenetic

protein 2 (BMP2)

20p12.3

Beta-Thalassemia beta-

Thalassemia:HBB

Hemoglobin subunit

beta (HBB)

11p15.4 47, 48

Thalassemia,

Hispanic gamma-

delta-beta: LCRB

Locus control region,

beta (LCRB)

11p15.5

Osteoporosis-pseudoglioma

syndrome; OPPG

LRP5 Low density

lipoprotein receptor-

related protein 5

(LRP5)

11q13.2 127, 128

Homocystinuria due to cystathionine

beta-synthase deficiency

CBS/HIP4 Cystathionine beta-

synthase (CBS)

21q22.3 45, 46

Homocysteinemia MTHFR (C677T) Methylenetetrahydro

folate reductase

(MTHFR)

1p36.6 129, 130

CBS Cystathionine beta-

synthase (CBS)

21q22.3

MS/MTR Methionine synthase

(MTR/METH)

1q23
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Disease Gene Product Genomic

location

Reference

Homocysteinemia MTHFR (C677T) Methylenetetrahydro

folate reductase

(MTHFR)

1p36.6 33, 131, 132

CBS Cystathionine beta-

synthase (CBS)

21q22.3

MS/MTR Methionine synthase

(MTR/METH)

1q23

Osteogenesis imperfecta, Type IX;

OI9

[Osteogenesis imperfecta type II-B, III

or IV PPIB related]

PPIB Peptidyl-prolyl cis-

trans isomerase B

(PPIB)

15q22.31 35, 133

Propionic acidemia PCCA Propionyl-CoA

carboxylase alpha

chain, mitochondrial

(PCCA)

13q32.3 134, 135

PCCB Propionyl-CoA

carboxylase beta

chain, mitochondrial

(PCCB)

3q22.3

Ehlers-Danlos syndrome, type VI;

EDS6

PLOD1 Procollagen-lysine,2-

oxoglutarate 5-

dioxygenase 1

(PLOD1)

1p36.22 69, 136

Hypertrophic osteoarthropathy,

primary, autosomal recessive, 1;

PHOAR1

HPGD 15-hydroxy-

prostaglandin

dehydrogenase [NAD

+] (HPGD)

4q34.1 137, 138

Pituitary adenoma, ACTH-secreting;

CUDP

AIP AH receptor-

interacting protein

(AIP)

11q13.2 139, 140

Gaucher disease, Type I; GDI GBA Glucosylceramidase

(GLCM/GBA)

1q22 49, 50

Paget disease, juvenile; JPD TNFRSF11B Tumor necrosis factor

receptor superfamily,

member 11b

(TNFRSF11B)

8q24.12 141, 142

Pycnodysostosis; PKND CTSK Cathepsin K 1q21.3 143, 144

Lipodystrophy, congenital

generalized, type 4; CGL4

PTRF Polymerase I and

transcript release

factor (PTRF)

17q21.2 145, 146
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Disease Gene Product Genomic

location

Reference

Niemann-Pick disease, Type A SMPD1 Sphingomyelin

phosphodiesterase 1,

acid lysosomal

(SMPD1/ASM)

11p15.4 147, 148

Niemann-Pick disease, Type B SMPD1 Sphingomyelin

phosphodiesterase 1,

acid lysosomal

(SMPD1/ASM)

11p15.4 147, 149

Lathosterolosis SC5DL Lathosterol oxidase

(SC5DL)

11q23.3 150, 151

Mucopolysaccharidosis Type IVA

(Morquio syndrome A)

GALNS N-acetyl-

galactosamine-6-

sulfatase (GALNS)

16q24.3 152-154

Mucopolysaccharidosis Type IVB

(Morquio syndrome B)

GLB1 Beta-galactosidase1

(BGAL)

3p22.3

Fibromatosis, juvenile hyaline; JHF ANTXR2 Anthrax toxin

receptor 2

(ANTXR2)

4q21 155, 156

Aromatase deficiency CYP19A1 Cytochrome P450

19A1 (CYP19A1)

15q21.2 157, 158

Diastrophic dysplasia SLC26A2 Sulfate transporter 2

(S26A2)

5q32 159, 160

Desbuquois dysplasia; DBQD CANT1 Soluble calcium-

activated

nucleotidase 1

(CANT1)

17q25.3 161, 162

Torg-winchester syndrome MMP2 72 kDa type IV

collagenase (MMP2)

16q12.2 163, 164

Geroderma osteodysplasticum; GO GORAB RAB6-interacting

golgin (GORAB)

1q24.2 165, 166

Lysinuric protein intolerance; LPI SLC7A7 Y+L amino acid

transporter 1 (YLAT1)

14q11.2 167, 168

Cerebroretinal microangiopathy with

calcifications and cysts; CRMCC

CTC1 CST complex subunit

CTC1

17p13.1 169, 170

Exudative vitreoretinopathy 4; EVR4 LRP5 Low density

lipoprotein receptor-

related protein 5

(LRP5)

11q13.2 171, 172

Nestor-Guillermo progeria syndrome;

NGPS

BANF1 Barrier to

autointegration

factor 1 (BANF1)

11q13.1 173, 174
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Disease Gene Product Genomic

location

Reference

Dyskeratosis congenita, autosomal

recessive, 1; DKCB1

NOLA3 / NOP10 H/ACA

ribonucleoprotein

complex subunit 3

(NOP10/ NOLA3)

15q14 175, 176

Macrocephaly, alopecia, cutis laxa,

and scoliosis

RIN2 Ras and Rab

interactor 2

(RIN2)

20p11.23 177, 178

Hypertrophic osteoarthropathy,

primary, autosomal recessive, 1;

PHOAR1

HPGD 15-

hydroxyprostaglandin

dehydrogenase

[NAD+] (PGDH)

4q34.1 137, 179

Multiple joint dislocations, short

stature, craniofacial dysmorphism,

and congenital heart defects

B3GAT3 Galactosylgalactosylx

ylosylprotein 3-beta-

glucuronosyltransfera

se 3

(B3GAT3)

11q12.3 180, 181

Hyalinosis, infantile systemic; ISH ANTXR2 Anthrax toxin

receptor 2

(ANTXR2)

4q21.21 182, 183

Ovarian dysgenesis 1; ODG1 FSHR Follicle stimulating

hormone receptor

(FSHR)

2p16.3 184, 185

Epiphyseal dysplasia, multiple, with

early-onset diabetes mellitus

EIF2AK3 Eukaryotic translation

initiation factor 2

alpha kinase 3

(EIF2AK3)

2p11.2 186, 187

Cerebrooculofacioskeletal syndrome

1; COFS1

ERCC6 DNA excision repair

protein ERCC-6

10q11.23 188, 189

Wilson disease; WND ATP7B Copper-transporting

ATPase 2 (ATP7B)

13q14.3 190, 191

Werner syndrome; WRN WRN/RECQL2 Werner syndrome

ATP-dependent

helicase (WRN /

RECQL2)

8p12 192, 193

Rothmund-thomson syndrome; RTS RECQL4 ATP-dependent DNA

helicase Q4 (RECQL4)

8q24.3 194, 195

Schwartz-Jampel syndrome, Type 1;

SJS1

HSPG2 Basement

membrane-specific

heparan sulfate

proteoglycan core

protein (HSPG2)

1p36.12 196, 197
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Disease Gene Product Genomic

location

Reference

Perrault syndrome; prlts HSD17B4 Peroxisomal

multifunctional

enzyme type 2

(HSD17B4)

5q23.1 198, 199

Glycogen storage disease Ia; GSD1A G6PC Glucose-6-

phosphatase,

catalytic subunit

(G6PC)

17q21.31 200, 201

Glycogen storage disease Ib; GSD1B SLC37A4 Glucose-6-phosphate

translocase

(SLC37A4)

11q23.3 200, 201

Cranioectodermal dysplasia 1; CED1 IFT122 Intraflagellar

transport protein 122

homolog (IFT122)

3q21.3 202, 203

Cerebrotendinous xanthomatosis;

CTX

CYP27A1 Sterol 26-hydroxylase,

mitochondrial

(CYP27A1/CP27A)

2q35 204, 205

Arthropathy, progressive

pseudorheumatoid, of childhood;

PPAC

WISP3 WNT1-inducible-

signaling pathway

protein 3 (WISP3)

6q21 206, 207

Genitopatellar syndrome; GTPTS KAT6B Histone

acetyltransferase

KAT6B

10q22.2 208, 209

Congenital disorder of glycosylation,

Type IIk; CDG2K

TMEM165 Transmembrane

protein 165

(TMEM165/TM165)

4q12 210, 211

Cutis laxa, autosomal recessive, Type

IA; ARCL1A

FBLN5 Fibulin-5 (FBLN5) 14q32.12 212, 213

Cutis laxa, autosomal recessive, Type

IIB; ARCL2B

PYCR1 Pyrroline-5-

carboxylate reductase

1, mitochondrial

(PYCR1/P5CR1)

17q25.3 166, 214

Cutis laxa, autosomal recessive, Type

IIIB; ARCL3B

PYCR1 Pyrroline-5-

carboxylate reductase

1, mitochondrial

(PYCR1/P5CR1)

17q25.3 212, 215

Niemann-Pick disease, Type B SMPD1 Sphingomyelin

phosphodiesterase

(SMPD1)

11p15.4 149, 216

Trichothiodystrophy, photosensitive;

TTDP

ERCC3 TFIIH basal

transcription factor

2q14.3 217, 218
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Disease Gene Product Genomic

location

Reference

complex helicase XPB

subunit (ERCC3)

GTF2H5 General transcription

factor IIH, subunit 5

(GTF2H5)

6q25.3

ERCC2 TFIIH basal

transcription factor

complex helicase XPD

subunit (ERCC2)

19q13.32

Cerebral autosomal recessive

arteriopathy with subcortical infarcts

and leukoencephalopathy; CARASIL

HTRA1 Serine protease

HTRA1

10q26.13 219, 220

Weill-Marchesani syndrome 1; WMS1 ADAMTS10 A disintegrin and

metalloproteinase

with thrombospondin

motifs 10

(ADAMTS10/ATS10)

19p13.2 221, 222

Laron syndrome GHR Growth hormone

receptor (GHR)

5p13-p12 223, 224

Mandibuloacral dysplasia with type A

lipodystrophy; MADA

LMNA Prelamin-A/C

precursor (LMNA)

1q22 225, 226

Keutel syndrome MGP Matrix Gla protein

(MGP)

12p12.3 227, 228

Hypophosphatasia, childhood ALPL Alkaline phosphatase,

liver/bone/kidney or

alkaline phosphatase,

tissue-nonspecific

isozyme (ALPL / PPBT)

1p36.12 229, 230

Fanconi-Sickel syndrome; FBS SLC2A2 Solute carrier family

2, facilitated glucose

transporter member

2 (SLC2A2 / GTR2)

3q26.2 231, 232

Lactose intolerance, adult type MCM6 DNA replication

licensing factor

MCM6

2q21.3 233, 234

Trichohepatoenteric syndrome 1;

THES1

TTC37 Tetratricopeptide

repeat domain 37

(TTC37)

5q15 235, 236

Costello syndrome HRAS GTPase HRas (HRAS/

RASH) (HRAS / RASH)

11p15.5 237, 238
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Disease Gene Product Genomic

location

Reference

Adrenal hyperplasia, congenital, due

to 21-hydroxylase deficiency

CYP21A2 Steroid 21-

hydroxylase

(CYP21A2)

6p21.33 239, 240

Table 4. Autosomal recessive diseases with bone mineral density loss.

Disease Gene Product Genomic
location

Reference

Hypophosphatemic rickets, X-linked
dominant; XLHR or HYP

PHEX Phosphate-regulating
neutral
endopeptidase
(PHEX/PEX)

Xp22.11 241, 242

Androgen insensitivity syndrome; AIS AR Androgen receptor
(AR)

Xq12 243, 244

Fragile X mental retardation
syndrome

FMR1 Fragile X mental
retardation protein 1
(FMR1)

Xq27.3 245, 246

Fabry disease GLA Galactosidase, alpha
(AGAL)

Xq22.1 51, 52

Occipital horn syndrome; OHS ATP7A Copper-transporting
ATPase 1 (ATP7A)

Xq21.1 247, 248

Menkes disease ATP7A Copper-transporting
ATPase 1 (ATP7A)

Xq21.1 249, 250

Dyskeratosis congenita, X-linked;
DKCX

DKC1 H/ACA
ribonucleoprotein
complex subunit 4
(DKC1)

Xq28 251, 252

Hyperglycerolemia
(glycerol kinase deficiency; GKD)

GK Glycerol kinase (GK) Xp21.2 253, 254

Premature ovarian failure 2B; POF2B FLJ22792 /
POF1B

Protein POF1B Xq21.1-
q21.2

255, 256

Terminal osseous dysplasia; TOD or
ODPF

FLNA Filamin-A (FLNA) Xq28 257, 258

Table 5. X-linked recessive diseases with bone mineral density loss.

2.6. Genetic diseases of chromosomal origin and osteoporosis

Within the different categories of genetic diseases, we can include numeric or structural
chromosomal abnormalities. Two of the most common chromosomal diseases are Turner’s
syndrome and Klinefelter’s syndrome, both associated to X chromosome aneuploidy; in the
first case, there is complete or partial absence of an X chromosome and less frequently, it can
be caused by structural anomalies in the short arms of the X chromosome. In Klinefelter’s
syndrome, there is an additional X chromosome and occasionally, there may be more than one
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extra X chromosome. In both syndromes, the phenotypic spectrum includes gonadal dysgen‐
esis, in Turner’s syndrome there are fibrous bands instead of ovaries and in Klinefelter’s, the
testicles are hypoplastic, leading in both cases to hypogonadism and a partial or complete
deficit in the sex hormones that would normally be produced by the ovaries and testicles. Due
to their lack, the development of normal secondary sexual characteristics is stunted and the
various metabolic processes dependent on the hormones are also compromised. One of these
metabolic processes occurs in bone [259-262].

Undoubtedly, bone metabolism is complex and the processes of osteoblastogenesis, osteo‐
clastogenesis and remodeling must occur in a balanced manner; it is important to mention that
the entire family of steroid hormone receptors (estrogen, androgen, vitamin D and retinoids),
are expressed in bone, both in osteoblasts and osteoclasts as well as in chondrocytes. Within
this microenvironment, the action of these hormones on their receptors is key to appropriate
skeletal development; as a matter of fact, individuals with genetic mutations encoding any of
these receptors develop, among other manifestations, bad quality bone mass. These hormones
and their receptors play a pivotal role in female and male bone growth and may also favor
epiphyseal closure at the end of the growth period. It is known that one of effects of steroid
hormones on bone metabolism is resorption inhibition since they promote osteoclast apoptosis
and decrease the frequency of remodeling unit activation. Therefore, the integral treatment of
both entities includes hormone replacement that to a certain extent, will improve bone mass
and will prevent or delay the development of osteoporosis [263, 264].

3. Conclusion

Bone metabolism and the large amount of processes that it involves, such as osteoblastogen‐
esis, osteoclastogenesis and bone remodeling, must be kept in constant balance. Each one
of  these aspects  of  the physiology of  bone shows a particular  gene expression patterns,
which  may  even  differ  according  to  conditions  and  tissue  needs.  As  previously  men‐
tioned the number of genes involved is very large and sometimes their expression might
be  modified  by  multiple  environmental  conditions.  It  is  important  to  mention  that  the
expression  of  these  genes  is  ubiquitous  and  is  not  restricted  to  the  bone  tissue,  which
explains  why the  phenotypic  characteristics  of  a  large  number  of  monogenic  and some
polygenic entities include alterations on bone mineral  density and on the microarchitec‐
ture of this tissue; this includes several degrees of osteopenia,osteoporosis or increased bone
mineral density. Even a good number of these genes have been identified through the study
of human disease whose phenotype includes altered bone mineral density. Without a doubt,
the investigation of several processes that regulate bone metabolism will continue generat‐
ing new knowledge that will allow better understanding of bone physiology and physiopa‐
thology  of  multiple  diseases  and  possibly  new  therapeutic  options  in  diseases  which
compromise the quality and function of the bone.

Topics in Osteoporosis44



Nomenclature

OPN-Osteopontin

ESR1-Estrogen Receptor Alpha

ESR2-Estrogen Receptor Beta

AR-Androgen Receptor

VDR-Vitamin D Receptor

PTHR1-Parathohormone Receptor

PTH-Parathormone

CASR-Calcium Sensing Receptor

CYP1A1-Cytochrome P450, Subfamily A, Polypeptide 1

PRL-Prolactin

LEP-Leptin

LEPR-Leptin Receptor

INS-Insulin

INSR-Insulin Receptor

ALOX12-Arachidonate 12-Lipoxygenase

ALOX15-Arachidonate 15-Lipoxygenase

BMP4-Bone Morphogenetic Protein 4

BMP7-Bone Morphogenetic Protein 7

IGF-1-Insulin-Like Growth Factor 1 (Somatomedin C)

SOST-Sclerostin

P53-Protein 53

RANK-Receptor Activator Of Nf-Kb2

RANK-L.-Receptor Activator Of Nf-Kb2 Ligand

IL1β-Interleucin 1 Beta

IL6-Interleucin 6

TNF-Tumor Necrosis Factor

TNFR2-Tumor Necrosis Factor Receptor

APOE-Apolipoprotein E
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