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1. Introduction

1.1. Physiology

Insulin-like  growth  factors  are  single  chain  polypeptides.  There  are  two  principle  IGFs
referred to as IGF-I and IGF-II. IGF-1 is a polypeptide hormone with a molecular weight of
7.6-kDa structurally similar to insulin. In 1957, it is identified by Salmon and Daughaday.
Because of the its ability to stimulate the sulfation of the cartilage proteoglycans, it  was
regarded as a sulphation factor [1]. The IGF-1 gene is on the long arm of chromosome 12q23–
23. IGF-1 gene contains 6 exons [2, 3]. The alternate extension peptide at carboxy terminal,
encoded by exons 5 and 6 determines the subforms of IGF-1: IGF-1B and IGF-1A. The most
abundant isoform of the IGF-1 (153 aminoacid) is IGF-1A [4, 5]. IGF1B peptide (195 amino
acids) is a less abundant IGF1 isoform. IGF-2 is also a peptide with 67 amino acids and
molecular weight of 7.4-kDa. IGF-2 is encoded by a gene on the short arm of chromosome
11 at position 15.5. This gene consists of nine exons [6]. In the plasma, 99% of IGFs are bound
to a family of binding cysteine-rich proteins.  There are six binding proteins (IGFBP-1 to
IGFBP-6) [7]. They act as carriers for IGFs in the circulation, regulate the bioavailability of
IGFs to  spesific  tissues and modulates  the biological  activities  of  IGF proteins.  Six  IGF-
binding proteins (IGFBPs) can inhibit or enhance the actions of IGFs [8]. Potentiation of IGF
activity by some of the IGFBPs, described for IGFBP-1 and IGFBP-3, is also documented for
IGFBP-5. Each of IGFBPs is the product of a seperate gene. These genes share a common
structural organization in which four conserved exons are located within genes ranging from
5 kb (IGFBP-1) to more than 30 kb (IGFBP-2 and IGFBP-5) [9]. IGFBPs contain N terminal
and  C  terminal  domains  which  are  similar  in  aminoacid  sequence.  Post-translational
modifications of IGFBP, including glycosylation, phosphorylation and proteolysis modify
the affinities of the binding proteins to IGF. IGFs mediate their action on target cells by three
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receptors that bind IGFs with differing affinities. These receptors are type 1 IGF receptor,
type 2 IGF receptor and Insulin receptors. The type 1 IGF receptor (IGF-1R), structurally
homologous to the insulin receptor, exhibits four transmembrane spanning subunits and an
intracellular  tyrosine  kinase  domain [10].  The  IGF-1R and IR are  both  synthesized as  a
precursor that is  glycosylated on the extracellular regions,  dimerized and proteolytically
processed to yield separate α and β chains [11]. IGF-1R binds insulin, IGF-1, or IGF-2. IGF1R
binds to IGF1 with greater affinity than IGF-2. IGF-1R affinity for insulin is lower than for
IGF-1. Type 2 IGF receptor is structurally and functionally different from the IGF-1R. The
receptor is a 250-kDa protein with a large extracellular domain, which binds M6P, lysoso‐
mal  enzymes,  and  IGF-2  [12].  IGF-2R  binds  to  IGF-2  with  high  affinity  whereas  IGF-1
binding is weak and insulin does not bind at all [13]. Binding of IGF-1 and IGF-2 to the
cognate IGF-1R stimulates the intrinsic tyrosine kinase activity of this receptor [14]. Upon
IGF binding, the tyrosine kinase activity of IGF-1 receptor leads to the phosphorylation of
several substrates, including the insulin receptor substrate family of proteins (such as Insulin
receptor substrate 1 (IRS-1), SHC (Src homology 2 domain containing) transforming protein
1  (Shc)  and  some  others.  Once  phosphorylated,  these  docking  proteins  activate  down‐
stream intracellular signaling through the Phosphatidylinositol 3-kinase (PI3K) or Growth
factor receptor-bound protein 2 (GRB2)/ Son of sevenless homolog (SOS )/ v-Ha-ras Harvey
rat  sarcoma viral  oncogene  homolog  (H-Ras)  pathways  that  ultimately  leads  to  cellular
proliferation [15,16].

Ligand binding to IGF-1R activates the tyrosine kinase higher concentration of the anti-
apoptotic proteins bcl-2 and bcl-Xl, a lower level of the apoptotic proteins bax and bcl-xs
activates phosphatidylinositol 3-kinase (P13-K), and activates protein kinase B (PKB/Akt) that
also prevent apoptosis. Activation of PI 3-kinase generates inositol triphosphate activation of
protein tyrosine kinase-B activate mTOR, p70/S6 kinase and GSK-3β results in protein glucose
uptake, glycogen synthesis. Most IGF-1 is secreted by the liver and is transported to other
tissues, acting as an endocrine hormone. IGF-1 is also secreted by other tissues, including
cartilagenous cells, and acts locally as a paracrine hormone. In response to GH, IGF-1 synthesis
is increased in connective tissues. Growth hormone released from the anterior lobe of the
pituitary binds to receptors on the surface of liver cells which stimulates the synthesis and
release of IGF-1 from them. STAT5B is a transcription factor mediating effect of GH on liver.
Low IGF-1 and IGFBP-3 levels in cirrhosis occurs due to decreased hepatic synthesis [17, 18].
IGFBP-3 that binds 95% of circulating IGFs is also produced by the endothelial lining and
Kupffer cells in the liver.

2. Factors affecting IGF system

IGF-1 peaks during puberty.  Advanced age is  associated with a progressive decrease in
serum IGF-1 because GH secretion declines; 14% per decade of life [19, 20]. During lifetime,
GH production is reduced nearly 30-fold. This decrement in IGF-1 is attributable to increased
somatostatinergic  tone  and  a  generalized  reduction  in  the  pulses  of  GH-releasing  hor‐
mones and GH-releasing peptides [21].  Although GH may be responsible for the decre‐
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ment it is not the only factor responsible for the increment in childhood. Serum estradiol
concentrations correlate with IGF-1 in both men and women [22]. Stimulated and spontane‐
ous GH secretion is higher in young women than in postmenopausal women or young men,
with the difference strongly correlated with circulating estradiol levels [23, 24, 25]. Use of
oral estrogen resulted in a significant reduction in IGF1 levels but no effect of transdermal
estrogen was shown in patients with hypopitutiarism [26]. Transdermally delivered estrogen
stimulates  IGF-1  production.  When delivered  orally,  estrogen  reduces  IGF-1  [27].  IGF-1
mRNA expressed by endometrium. Progesterons increases IGF-1 expression İn the endome‐
trial  stroma.  There  is  circumstantial  evidence  to  suggest  a  positive  association  between
circulating levels of testosterone and IGF-1. Administration of testosterone to younger men
with  hypogonadism  and  boys  with  isolated  gonadotropin-releasing  hormone  deficiency
increases serum IGF-1 [28]. Endogenous testosterone levels correlate with IGF-1 in hypopi‐
tuitary women with unsubstituted growth hormone deficiency [29]. Serum dehydroepian‐
drosterone concentrations decline with age, and absolute concentrations in postmenopausal
women correlate with serum IGF-1 [30]. Thyroxine is also another hormone affecting IGF-1
levels. In patients with T4 deficiency due to primary and central hypothyroidism IGF-1 and
ALS are low at baseline. In most of these T4-treated patients, T4 therapy increased IGF-1
and ALS concentrations [31]. The major effect of thyroid hormones on IGF-1 and IGFBP-3
in  vivo  has  been  considered  to  occur  by  increased  expression  and  secretion  of  growth
hormone by the pituitary gland [32]. IGFBP-3 also increases with thyroxine replacement in
primary  hypothyroidism [33].  One  key  function  of  IGF-1  is  the  stimulation  of  anabolic
processes and body growth. Protein and energy content of the diet influence plasma IGF-1
concentrations  [34].  IGF-1  is  reduced  in  conditions  of  energy  restriction,  such  as  short-
term fasting [35] and malnutrition [36]. Zinc deficiency is a common component of protein-
calorie malnutrition.  IGF-1 synthesis can be impaired by zinc deficiency.  A reduction in
circulating IGF-1 concentrations has been proposed as a potential mechanism for growth
retardation induced by zinc deficiency [37]. Significant elevation in the IGF-1 level after zinc
supplementation occurs [38]. Similarly, nutritional deprivation results in a major decrease
in IGF-1 mRNA that  can be restored with refeeding.  In the population of  healthy well-
nourished men, greater dietary intakes of protein, zinc, red meat, and fish and seafood were
associated  with  higher  IGF-1  concentrations  [39].  The  anabolic  effect  of  PTH  may  be
mediated by local growth factors. PTH has been shown to stimulate IGF-1 production at the
transcriptional and polypeptide levels [40]. Low IGF-1 and IGFBP-3 levels occurs in liver
cirrhosis due to decreased synthesis and low IGF-1 levels may be involved in the develop‐
ment  of  cirrhotic  complications  including  malnutrition,  insulin  resistance,  impaired
immunity, and osteoporosis [41].

Any factors affecting IGFBP concentrations in blood and extracellular fluids also affects the
IGF levels and its avaibility to tissues. Binding of IGF-1 to ALS and IGFBPs form ternary
complexes. Acid Labile Subunit (ALS) is a liver-derived protein that exists in a ternary complex
with IGFBP-3 also with IGFBP-5. Formation of the ternary complexes restricts the IGFs to the
circulation prolongs their half-lives and allows them to be stored at high concentration in
plasma. ALS is a single-copy gene, and was mapped to bands A2-A3 of mouse chromosome
17 and to the short arm of human chromosome 16 at p13 3 [42, 43]. ALS has no affinity for free
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IGF-1 or IGF-2 and very low affinity for uncomplexed IGFBP-3. Main binding protein of IGFs
is IGFBP-3 and its synthesis is mainly determined by growth hormone. IGFBP-3 is the most
abundant form of the IGFBPs. IGFBP-3 concentrations decreases in patientes with growth
hormone deficiency and increaes by GH secretion. Testesterone administration adminstration
increases IGFBP-3 levels in serum. IGFBP-3 level is also affected by thyroid hormone levels.
Low IGFBP-3 levels were found in hypothyroid patients and IGFBP-3 levels are increased by
thyroxine replacement in hypothyroid patients. The IGFBP-1 that is present in the circulation
is also synthesized in the liver. At concentrations higher than IGF-1, IGFBP-1 inhibit DNA
synthesis, glucose transportation [44]. Postprandial increase in serum insulin concentrations
results in a four- to five-fold decrease in IGFBP-1 [45]. Intrauterine growth retardation
correlates with high levels of serum IGF binding protein-1 (IGFBP-1). Overexpression of
IGFBP-1 may affect body growth and skeletal formation as well as biomineralization. IGFBP-1
overexpression may also reduce carbohydrate resources necessary for growth and survival
[46]. IGFBP-1 play roles in the endometrial and ovarian physiology. The IGFBP-2 that is present
in the circulation originates from hepatocytes, GH is a main determinant of IGFBP-2 levels in
circulation. IGF-1 is a potent stimulant of IGFBP-2 concentrations in serum. IGFBP-2 gene
transcription is increased in starved rodents and plasma concentrations are increased in fasted
humans [47]. IGFBP-2 has mostly inhibitory effects. IGF-1 stimulated collagen synthesis is
inhibited by IGFBP-2.

The serum concentrations of intact IGFBP-4 are quite low. IGFBP-4 level is increased with low
bone turnover and low parathyroid hormone levels. Sunlight exposure, vitamin D or its active
metabolites also may regulate serum IGFBP-4. It may play a role in bone metabolism. IGFBP-5
circulates as incomplete fragments, intact IGFBP-5 is at very low levels. Its concentration are
also regulated with GH ang IGF-1. IGFBP-6 inhibits the effects of IGF-2 in several tissues and
cell types. IGFBP-6 differs from the other IGFBPs, it has a markedly higher affinity for IGF-2
than for IGF-1, whereas the other IGFBPs bind the two IGFs with similar affinities and IGFBP-2
has a slight IGF-2 binding preference [48, 49, 50].

However,  IGF bioactivity  in  tissues  is  not  determined by the  circulating levels  of  IGFs,
IGFBPS, ALS. Proteases that digest IGFBPs are also important in determining the acions of
IGFs at tissue level. In addition IGFBPs have their own separate roles in the extravascular
tissue compartment.

3. IGFs and bone

Osteoblasts and preosteoblasts secrete IGF-1. Several bone trophic factors, estrogens, PTH
stimulate the synthesis of the IGF-1 while glucocorticoids, FGF, PDGF, TGF-B decreases IGF1
expression.

IGF-1 released from the bone matrix during bone remodeling stimulates osteoblastic differ‐
entiation of recruited mesenchymal stem cells by activation of mammalian target of rapamycin
(mTOR), thus maintaining proper bone microarchitecture and mass. It is well known that both
BMD and serum concentration of IGF-1 decrease with age, in age-related osteoporosis in
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humans, it is found that bone marrow IGF-1 concentrations were 40% lower in individuals
with osteoporosis than in individuals without osteoporosis [51]. As compared to healthy
controls, total bone mass was found lower in men with GH deficiency and The total BMD was
found positively related to plasma IGF-1 and median of GH values [52]. GH deficiency in
adulthood is associated with reduced BMD. IGF-1 may be an early marker for low bone mass
[53]. Short term treatment with recombinant human IGF-1 in healthy postmenopausal women
resulted in increases in bone turnover markers [54]. However, certain effects of the long-term
treatment with IGF-1 is unknown.

4. IGFs and growth

Linear bone growth at the epiphyseal plate occurs by a process that is similar to endochondral
ossification. The epiphyseal plate between the epiphysis and the metaphysis grows by mitosis.
This process continues throughout childhood and the adolescent years until the cartilage
growth slows and finally stops. GH may act directly at the growth plate to amplify the
production of chondrocytes from germinal zone precursors and then to induce local IGF-1
synthesis, which is thought to stimulate the clonal expansion of chondrocyte columns in an
autocrine/paracrine manner [55, 56]. IGF-2 mRNA expression is higher in the proliferative and
resting zones than the hypertrophic zone. IGF-1 and GH receptors are expressed throughout
the growth plate. Molecular studies revealed that the causes of GH resistance are deletions[57]
or mutations [58] in the GH receptor gene, resulting in the failure to generate IGF-1 and a
reduction in the synthesis of several other substances,including IGFBP-3.

The expression of IGF-I, IGF-II, IGFBP-3, and ALS is tightly controlled by GH. STAT5B is a
transcription factor mediating effect of GH on liver. Six cases of homozygous mutations of the
signal transducer and activator of transcription STAT5B gene have also been described [59].
These mutations result in a type of dwarfism characterised by high serum GH values. Studies
revealed that these patients cannot generate IGF-1. Several cases have been reported of
mutations of the gene for the ALS, which encodes a protein which forms part of the ternary
complex that transports IGF-1 in serum [60, 61]. These cases have markedly low serum IGF-1
concentrations and modest growth failure. Syndrome of GH resistance (insensitivity) was
named by Elders et al as Laron dwarfism, a name subsequently changed to Laron syndrome
[62]. Long term treatment of patients with LS promotes growth and, if treatment is started at
an early age, there is a considerable potential for achieving height normalisation [63]. The
recently available recombinant human insulin-like growth factor I has shown promise as a
promoter of growth in children with Laron syndrome. Main adverse effects with IGF-1
treatment is hypoglycemia. Other adverse effects of IGF-1 treatment appear to be related to
hyperstimulation of lymphoid tissue growth: tonsillar growth, snoring, sleep apnea, recurrent
ear infections, thymic hypertrophy, and splenic enlargement [64, 65, 66, 67]. Injection site
hypertrophy has been observed, but is generally amenable to proper rotation of injection sites.
Arthralgias and myalgias have been reported in as many as 20% of recipients in uncontrolled
studies, but are usually transient. Benign intracranial hypertension has been reported in ~4%
of recipients. Although this number appears somewhat larger than that observed with GH
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treatment, it is usually transient, disappearing following temporary cessation of treatment.
Craniofacial growth, sometimes with coarsening of features, has been described in a number
of patients [64, 65, 66, 67].

5. IGFs and cancer

The IGF-1R can regulate cell-cycle progression through control of several cycle checkpoints.
It can facilitate G0-G1 transition through activation of p70S6K, leading to phosphorylation of
the S6 ribosomal protein and an increased ribosomal pool necessary for entry into the cycle
[68]. It can promote G1-S transition by increasing cyclin D1 and CDK4 gene expression, leading
to retinoblastoma protein phosphorylation, release of the transcription factor E2F, and
synthesis of cyclin E [69, 70]. Alterations in cyclin D1 expression to play a role in tumor
formation. IGF’s are also important for the development and progression of angiogenesis in
tumors. Tumor-induced neovascularization is one of the pathologic mechanisms lying
underlying cancer metastasis. IGF-1 and IGF-2 can induce angiogenesis by stimulating the
migration and morphological differentiation of endothelial cells [71, 72]. Hypoxia is a major
trigger for tumor-dependent angiogenesis. IGF-1 and IGF-2 can induce the expression of
hypoxia-inducible factor 1α and this can lead to the formation of the HIF-1/arylhydrocarbon
receptor nuclear translocator complex which is involved in transcriptional regulation of
hypoxia response element-containing genes such as VEGF [73], a major tumor-derived
angiogenic factor. The IGF system can cooperate with other tyrosine kinase receptors such as
the EGFR in the induction of angiogenesis [74].

Accumulating evidence has suggested that GH and IGF-1 may be important components of
the pathophysiologic mechanisms that underlie the growth of neoplasms, including colorectal
carcinoma [75, 76, 77, 78]. Many epidemiology studies have indicated that high levels of IGF
- I or altered levels of its binding proteins, or both, are associated with an increased risk of the
most common cancers, including cancers of the lung [79], colon and rectum [80], prostate, and
breast [81].

Patients with acromegaly, who have elevated levels of circulating GH and IGF-1, may be at
increased risk of developing colorectal adenoma and carcinoma [82, 83].

Two prospective epidemiologic studies [84, 85] have shown that higher plasma IGF-1 and
lower plasma IGFBP-3 concentrations are associated with an increased risk of colorectal
adenoma and cancer among both men and women. These observations suggest that the ratio
of circulating IGF-1/IGFBP-3 may be a marker of circulating and tissue IGF-1 bioavailability.
Cancer can cause proteolysis of insulin-like growth factor binding protein-3 and affect
concentrations of IGFBP-2. These changes in IGF system can affect distribution and clearance
of IGFs, thus bioavaibility of IGFs to spesific tissues. In vitro studies on human colon cancer
cells, which showed that IGF-1 promoted cell proliferation, IGF-1 receptors were frequently
overexpressed on colon cancer cells and IGF-1R blockade with a monoclonal antibody
inhibited cell proliferation [85]. A larger case-control study from Sweden reported a similar
positive association between IGF-1 level and prostate cancer risk [86]. In the Physicians’ Health
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Study, a prospective epidemiological study, the associations between IGF-1 and IGFBP-3 levels
and subsequent prostate cancer risk among 152 patients and 152 age-matched controls were
investigated. There was a significant linear trend between IGF-1 and prostate cancer risk [87].
Strong association between IGF-1 and IGFBP-3 levels and the risk of advanced prostate cancer
but no association with early stage disease was found. Measurement of IGF-1 and IGFBP-3
levels may predict the risk of advanced stage prostate cancer years before the cancer is actually
diagnosed and may be helpful in aiding decision making about treatment [88]. No trend in the
relative risk of prostate cancer with increasing IGF-1 was found in another study; rather, the
highest incidence of prostate cancer was in the lowest quartile of IGF-1, and the incidence in
the other quartiles of IGF-1 was slightly lower but not statistically significantly different from
incidence rates in the lowest quartile [89]. A multiethnic study was perforned to determine the
associations between prediagnostic levels of IGF-1 and IGFBP-3 and risk of prostate cancer. In
this study no association was observed for levels of IGF-1 or IGF-to-IGFBP-3 ratio and prostate
cancer risk [90]. In one metaanalyze including included both retrospective and prospective
studies and demonstrated that average 21% increase risk of prostate cancer per standard
deviation increase in IGF-1. A stronger association of IGF-1 was found in more aggressive and
advanced cancers in comparison to nonaggressive and localized ones [91]. Considerable
evidence has accumulated that suggests that the IGF system is involved in the pathophysiology
of prostate cancer. GH is believed to be the pituitary factor responsible for mammary ductal
morphogenesis [92, 93]. It has been reported that IGF-1 or amino-terminally truncated IGF-1,
des(1–3) IGF-1, mimic the action of GH on mammary development in hypophysectomized
gonadectomized rats [94, 95]. IGF-1 mRNA is localized to stromal fibroblasts surrounding
normal breast epithelium while high levels of IGF-2 mRNA are found in fibroblasts adjacent
to malignant epithelium [96, 97]. Malignant breast epithelial cells can induce expression of
IGF-2 in the stroma in vitro [98]. IGF-1R has been found on the surface of malignant breast
epithelial cells [99] and IGFs provide radioprotection and resistance of breast cancer cells to
chemotherapeutic agents [100, 101]. Some epidemiologic studies have associated high
circulating levels of IGF-1 with increased risk of breast cancer among premenopausal women.
In a meta-analysis, circulating levels of IGF-1 were not significantly higher in breast cancer
patients than in controls for all women and for the postmenopausal group but were signifi‐
cantly higher for the premenopausal group [102]. Literature on the relationship between breast
cancer risk and circulating concentrations of IGF-1 and IGFBP-3 showed an increased risk for
premenopausal women with increasing levels of IGF-1 and IGFBP-3. More prospective studies
are needed to clarify the association between IGF-1 and IGFBP-3 and breast cancer.

Overexpression of IGF-2 mRNA and peptide has been described in human pheochromocyto‐
mas [103, 104]. Despite to this finding, very little tumoral IGF-2 is released into the circulation,
unlike catecholamines [104]. IGF-1 also seems to be secreted by pheochromocytoma cells in an
autocrine or paracrine manner. In rat pheochromocytoma PC12 cells IGF-1R has been shown
to be important for the stimulation of cell replication [105]. Significant overexpression of the
IGF-1R in human pheochromocytomas was found. [106]. IGF-1 was 10 times more potent in
stimulating DNA synthesis than IGF-2, suggesting that these effects are mediated by the
IGF-1R [107, 108]. In Wilms' tumor, a childhood kidney neoplasm expresses IGF-2 mRNA and
protein [109]. Wilms' tumors contain receptors that recognize and respond to exogenous IGF
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[110]. Deletions or point mutations of the Wilms tumor suppressor gene-1 (WT-1) on chromo‐
some 11p13 are associated with Wilms’ tumors. WT1 binds to multiple sites in the promoter
region of the IGF-2 gene, and that it acts as a potent repressor of IGF-2 transcription [111]. A
molecular basis for the overexpression of IGF-2 in Wilms’ tumor may have autocrine effects
in tumor progression.

IGF-1R is expressed in pancreatic cancer cell lines and human pancreatic cancers and also IGF-1
is markedly overexpressed in these cancers [112]. The anti-IGF-1R antibody inhibited the action
of IGF-1 on cell proliferation. Moderately strong IGF-2R immunoreactivity was present in the
cytoplasm of islet cells and mild cytoplasmic immunoreactivity was evident occasionally in
ductal and acinar cells. In the pancreatic cancers, regions of strong IGF-2R immunoreactivity
were present in the duct-like cancer cells within the tumor mass often exhibiting nuclear
localization [113].

IGF-2R may contribute to the pathobiology of pancreatic cancer. Insulin-like growth factor 2
mRNA binding protein 3 (IGF2BP-3) was found to be selectively overexpressed in pancreatic
ductal adenocarcinoma tissues but not in benign pancreatic tissues. The highest rate of
expression was seen in poorly differentiated cancers. Overall survival was found to be
significantly shorter in patients with IGF2BP-3 expressing tumors [114]. Enhanced expression
of IGF-1 and IGF-2 mRNA transcripts has been demonstrated in gliomas, meniningiomas, and
other tumours [115]. Patients with malignant CNS tumours showed increased IGFBP-2
concentrations in CSF. Patients with CNS tumours and microscopically detectable malignant
cells in their CSF had the highest IGFBP-2 values [116]. The IGFs have important roles in the
normal ovary and exert intra-ovarian control in the replication and differentiation processes
of folliculogenesis. [117, 118]. The IGFs, their receptors and IGFBPs were identified in ovarian
tumours. IGFBP-2 levels are high in the sera of patients with epithelial ovarian cancer and they
may be useful as a possible tumour marker [119, 120]. Primary ovarian epithelial cell lines
derived from previously untreated ovarian cancers expressed all major components of the IGF
system and were able to demonstrate functional responses to exogenous IGFs [121]. Expression
of the IGF-2 gene was more than 300-fold higher in ovarian cancers compared with normal
ovarian surface epithelium samples. High IGF-2 expression was associated with advanced
stage disease at diagnosis, high-grade cancers and sub-optimal surgical cytoreduction.
Relative IGF-2 expression was regarded as an independent predictor of poor survival [122].
IGF-1 mRNA expression and peptide concentrations were also analyzed in epithelial ovarian
cancer. High levels of free IGF-1 peptide were associated with elevated risk of disease
progression. Women with high IGF-1 mRNA and peptide were found to be at greater risk for
disease progression compared to those with low in both [123].

6. IGFs and hypoglycemia

Hypoglyaemia from malignant tumours is rare. This is the only paraneoplastic syndrome
caused by the IGF2 overproduction. This phenomenon, referred to as non islet cell tumour
hypoglycaemia (NICTH). Hypoglycaemia secondary to mesenchymal tumours account for
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64% of the cases with hepatomas, adrenal carcinomas, and gastrointestinal malignancies
accounting for others [124, 125]. Endogenous IGFs which circulate in adults fail to exert their
immense potential hypoglycaemic activity because they are largely trapped within the
vascular space due to their sequestration in a high molecular weight protein complex. IGF-2
leads to an increased peripheral glucose uptake in different tissues as well as inhibition of
hepatic gluconeogenesis and lipolysis [126]. IGF-2 has also been shown to have high affinity
binding with the insulin receptor. The insulin receptor exon 11+ (IR-B) isoform is the form best
known for the classic metabolic responses induced upon insulin binding and this isoform has
low affinity for the IGFs. IGF-2 binds with high affinity to the insulin receptor exon 11− (IR-A)
isoform of the IR. Activation of IR-A leads to mitogenic responses similar to those described
for the IGF-1R [127]. IGF-2 gene can be expressed to produce proteins of various molecular
weights. The most active form, with regard to binding of IGF receptors, is 7.5kDa [128]. IGF-2
gene expression regulation, post-translational processing of the 156-amino acid IGF-2 precur‐
sor is abnormal in tumors [129]. Larger forms lack posttranslational cleavage plays role in
hypoglycemia. Incompletely processed IGF-II (Big-IGF-II) has a strongly reduced affinity for
ALS. Impaired formation of the 150 kDa complex, tumour-derived ‘big’-IGF-II primarily forms
smaller binary complexes with IGFBPs and a greater fraction may stay in the free unbound
form [130, 131, 132]. These smaller complexes have a greater capillary permeability and thus
are thought to increase IGF bioavailability to the tissues, resulting in hypoglycaemia through
action on the insulin receptors and IGF1R [133]. Patients whose underlying condition is one
of GH resistance, especially if it is complete and at the level of the GHR, having lost the counter-
regulatory effects of GH, are susceptible to hypoglycemia with the IGF-1 treatment [134].
Administration of IGF-I with meals may overcome with this problem.

7. IGFs and diabetes

Reduced IGF-1 levels have been proposed to have a role in diabetes [135]. In animal studies
deletion of IGF-1 gene expression in liver caused increased GH secretion and reduced insülin
sensitivity.  A  positive  association  between  low  IGF-1  levels  and  glucose  intolerance/
diabetes in a sample of 615 subjects aged 45-65 years was found [136]. In contrast, recent‐
ly Rajpatak et al did not find an independent association between IGF-1 and diabetes among
922 subjects aged >/=65 yrs from the Cardiovascular Health Study [137]. In a study was to
evaluate  the  association  between  IGF-1  level  and insulin  resistance,  both  low and high
normal IGF-1 levels are found to be related to insulin resistance [138].  A study in 7,665
subjects showed that low and high baseline IGF-1 serum concentrations were both related
to a higher risk of developing type 2 diabetes within 5 years [139]. This U-shaped associa‐
tion seems to be likely in face of  a  higher  prevalence of  metabolic  syndrome or  type 2
diabetes in patients with GH deficiency [140]. A state of low IGF-1 levels, as well as with
acromegaly [141], a disease characterized by high IGF-1 levels, although endogenous GH
secretion may confound short-term glucose homeostasis in these patients. IGF-1 administra‐
tion reduces the GH hypersecretion of adolescents and adults with type 1 diabetes [142,
143]. IGF-1 administration increases systemic IGF-1 levels, resulting in reduced GH secretion
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and improves insulin sensitivity in adults with type 1 diabetes [144]. Also in patients with
types  2  diabetes,  glycemic  control  improves  with  IGF-1  treatment  [145].  In  one  study,
subcutaneous administration of  of  recombinant  human IGF-1 (for  6  weeks)  significantly
lowered  blood  glucose.  Glycosylated  hemoglobin,  which  was  10.4%  pretreatment,  de‐
clined  to  8.1%  at  the  end  of  therapy  and  this  improvement  in  glycemic  control  was
accompanied by a change in body composition with a 2.1% loss in body fat without change
in total body weight [146]. Paracrine or autocrine effects of IGF-1 may paly a role in the
pathogenesis of diabetic complications. Hyperglycemia and IGF-1 stimulate the endothe‐
lial  cell  migration,  and  tubular  formation  is  induced  by  a  combination  of  IGF-1  and
hyperglycemia [147]. Animal models have provided direct evidence that IGF-1 contributes
to the development of retinopathy induced by retinal ischemia. Active capillary prolifera‐
tion has been documented after implantation of intracorneal pellets containing IGF-1 [148].
The progression of retinopathy is slowed in diabetic patients with hypopituitarism who have
low serum IGF-1 levels [149, 150]. Patients with more rapid progression of their retinop‐
athy had the highest levels of IGF-1 in the vitreous [151]. However, Data concerning the
relationship between serum IGF-1 levels and diabetic retinopathy is contradictory. Some
studies have shown no association between serum IGF-I  levels  and the development or
progression of diabetic retinopathy. In patients with diabetic retinopathy IGF-1 reducing
treatment strategies with either somatostatins or pegvisomant have been tried. Glomerular
hypertrophy is thought to be one of the key early changes in the development of diabetic
nephropathy. IGF-I has been associated with renal/glomerular hypertrophy and compensa‐
tory  renal  growth.  Epithelial,  mesangial,  and  endothelial  cells  derived  from the  kidney
respond to IGF-1 binding with increased protein synthesis,  migration,  and proliferation.
Both GH and IGF-I increase renal plasma flow and glomerular filtration rate. Microalbumi‐
nuric patients display higher levels of urinary IGF-1, urinary GH, and plasma IGF-1 than
normoalbuminuric diabetic subjects [152]. Patients with microalbuminuria had higher levels
of urinary IGFBP-3 even when compared to patients without microalbuminuria matched for
metabolic control [152, 153, 154]. Hyperglycemic conditions limit the protective role of IGF-
I against podocyte apoptosis. IGFBP-3 can facilitate podocyte apoptosis. Podocyte structur‐
al changes also contribute to the pathogenesis of albuminuria in diabetes. IGF-1 binding to
its type 1 receptors stimulates mesengial cell proliferation [155]. Mesengial cell prolifera‐
tion is one of the factors that contributes diabetic nephropathy.

Higher IGF-1 bioavailability may protect against the onset of ischemic heart disease [156,
157].  Potential  beneficial  actions of IGF-1 in cardiovascular physiology include increased
nitric  oxide  synthesis  and  K+  channel  opening  [158,159]  and  this  may  explain  the  im‐
paired small-vessel function associated with low IGF-1 levels in patients with cardiovascu‐
lar syndrome X [159]. Higher IGF-1 bioavailability may offer improved metabolic control
and prevent vascular complications in type 2 diabetic patients. In contrast to this finding,
posttranslational phosphorylation of IGFBP-1 increases its affinity for IGF-1 and modify IGF
bioavailability. Low circulating levels of hpIGFBP-1 are found to be closely correlated with
macrovascular disease and hypertension in type 2 diabetes [160]. further studies are needed
to better  understand the true value of  the IGF-1/IGFBP axis  in macrovascular complica‐
tions of diabetes.
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