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resumo O interesse na biocatálise para a síntese de aminas quirais tem aumentado durante 

a última década. Tal interesse deve-se ao seu potencial para síntese de fármacos 

cardiovasculares, anti-hipertensivos e antieméticos tal como para a síntese de ácidos 

carboxílicos oticamente puros. 

Dois métodos têm sido reportados para a síntese de aminas quirais por ómega-

transaminases: a síntese assimétrica e a resolução cinética. Durante a resolução cinética o 

piruvato é consumido como aceitador de amina e convertido em L-alanina. A acumulação 

de piruvato da via glicolítica pode fazer-se por Engenharia metabólica, originando o 

aumento da velocidade da reacção para a formação da respectiva cetona. 

Piruvato descarboxilase (PDC) é a enzima responsável pela conversão de piruvato 

em acetaldeído que por sua vez é o percursor do etanol. Estudos anteriores mostram que a 

acumulação de piruvato é superior através da inibição ou deleção da PDC. Seguiram-se 

duas abordagens para inibir a PDC sendo uma a deleção de dois genes estruturais, PDC1 e 

PDC5, e a outra a deleção do gene THI2 que é responsável pela síntese do co-factor da 

PDC, tiamina. 

   Neste trabalho a ω-transaminase de Capsicum chinense foi expressa em estirpes 

de S. cerevisiae manipuladas metabolicamente, para acumulação de piruvato, de forma a 

melhorar a resolução cinética de uma mistura racémica de R,S-feniletilamina (R,S-PEA). 

Ambas as estirpes foram construídas com sucesso e confirmadas por PCR e 

comportamentos fenotípicos. Porém, apenas a estirpe com a deleção de THI2 foi isolada e 

mantida em glycerol com sucesso. A concentração de tiamina durante a cultura pré-

fermentativa demonstrou ser crucial para a acumulação de piruvato durante as 

fermentações. A concentração mínima de tiamina, de forma a obter um bom rácio entre 

obtenção de biomassa e acumulação de piruvato foi de 0.05 μM. Realizaram-se 

fermentações anaeróbicas e aeróbicas em meio Verduyn, contendo 20 g/L e 50 g/L de 

glucose, para confirmar o fenótipo de acumulação de piruvato e para verificar o efeito da 

concentração de tiamina. A acumulação máxima de piruvato atingida em meio Verduyn foi 

de 1.31 g/L. A acumulação de piruvato aumentou 5,7 vezes em comparação a estirpe 

controlo durante fermentações anaeróbicas contendo células obtidas em meio com a 

concentração mínima de tiamina. Após confirmação do fenótipo desejado, realizaram-se 

fermentações anaeróbicas e aeróbicas e verificou-se a resolução cinética de R,S-PEA em 

tampão fosfato. O fenótipo de acumulação de piruvato também foi observado em tampão 

fosfato, contudo, a resolução cinética não foi afetada possivelmente por uma concentração 

inicial de aminas demasiado baixa. 
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abstract The interest in biocatalytic approaches for the synthesis of chiral amines has 

increased during the last decades due to their potential in the synthesis of cardiovascular, 

antihypertensive and antiemetic drugs and for the preparation of optically pure carboxylic 

acids.  

Two methods have been reported for the synthesis of chiral amines by ω-

transaminases: asymmetric synthesis and kinetic resolution. During kinetic resolution 

pyruvate is required as amine acceptor and is further converted into L-alanine. 

Pyruvate is the end metabolite of the glycolytic pathway. In Saccharomyces 

cerevisiae, pyruvate is further catabolized using either pyruvate decarboxylase (PDC) that 

converts pyruvate into acetaldehyde that is the precursor of ethanol or via pyruvate 

dehydrogenase (PDH). The inhibition or deletion of PDC has been reported to promote 

pyruvate accumulation. In the present study, two approaches were followed to decrease the 

PDC activity: (i) deleting the major structural encoding genes, PDC1 and PDC5, or (ii) 

deleting THI2 which encodes the enzyme responsible for the synthesis of PDC’s co-factor 

thiamine. Both strategies were attempted in a S. cerevisiae strain carrying the ω-

transaminase from Capsicum chinense for the kinetic resolution of a R,S-phenylethylamine 

racemate (R,S-PEA). The desired strains were successfully constructed and confirmed 

through PCR and phenotypic behaviors. However, only the THI2 deleted strain expressing 

the heterologous ω-transaminase was successfully isolated. The thiamine concentration 

during growth prior to fermentation was crucial for the pyruvate accumulation during the 

fermentations. The minimal thiamine concentration to achieve a good ratio between pre-

growth and pyruvate accumulation was 0.05 μM. Anaerobic fermentations and aerobic 

cultivations were performed in Verduyn medium to confirm the pyruvate accumulative 

phenotype and screen the thiamine concentration effect with 20 g/L and 50 g/L of glucose. 

The maximum pyruvate titer of 1.31 g/L was achieved. The pyruvate titer was improved 

5.7 when compared to the control strain during anaerobic fermentations in Verduyn 

medium. After confirmation of the desired phenotype, kinetic resolution of R,S-PEA was 

performed in phosphate buffer under anaerobic and aerobic conditions. Despite increased 

pyruvate accumulation, the kinetic resolution was not improved possibly due to a low 

initial amine concentration. The reasons for such assumption are related with similar 

ethanol titers observed in kinetic resolution reactions and pyruvate accumulation 

fermentations and also the residual pyruvate accumulation during kinetic resolution 

reactions.   
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1. Introduction 

1.1.  Whole cell biocatalysts 

The application of cells as biocatalysts started in the ancient Egypt (3100 to 332 

B.C.)  through the production of beer and bread [1]. However, the discovery of 

microorganisms, and specially yeast as the responsible agent for fermentation, only 

occurred 200 years ago by Antoine Lavoisier, pioneer in fermentation research [2]. 

Whole cell biocatalysts have advantages over systems with purified enzymes, such 

as the availability of co-factors and their regeneration through metabolic pathways as well 

as the use of cheap carbon sources as co-substrates. Whole cell biocatalysis also provides a 

natural intracellular environment for the enzymes which results in higher activities due to 

higher stability. Additionally, whole cell biocatalysis avoids expensive protein purification, 

reducing the overall cost [3]. However, whole cell biocatalysis holds also drawbacks such 

as mass transfer problems of substrates from the media to the cytoplasm. This results in 

lower reactions rates since the substrates have to pass through the cell membrane [4]. Low 

reaction yields constitute another limitation for whole cell biocatalysis. Since cells harbor 

several enzymes with overlapping substrate specificity, the number of undesired side 

reactions can be higher, leading to lower yields. Also the need for sterile conditions and 

scale-up problems are major challenges for the development of successful industrial whole 

cell biocatalysis processes. 

The use of microorganisms as biocatalysts can be divided into two categories, 

fermentation and bioconversion. Fermentation starts with inexpensive carbon and nitrogen 

sources through which natural products are obtained as a result of the microorganism’s 

complex metabolism. Bioconversion is described as a one or few step conversion of a 

complex substrate that does not require living cells [5]. 

Improvement of whole cell biocatalysis was attempted after microorganisms were 

recognized to be responsible for fermentation by Buchner in 1907 [6]. In the early stage of 

fermentation technology such attempts consisted mainly in manipulating the process 

conditions such as temperature, pH, oxygen and substrates concentrations. Improving 

biocatalysis by manipulating the microorganism began in 1930 with the discovery that 

microorganisms can be mutated through physical and chemical treatments [7]. Strains with 
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the ability to achieve higher yields, growth rate and tolerance to lower oxygen 

concentration were obtained. Due to lack of technology and genetic knowledge, such 

attempts consisted mainly in random mutagenesis followed by the screening of the best 

mutant. Development of genetic engineering began in 1970’s due to industrial interest. 

The increased knowledge about genetics, metabolic pathways and expression of 

heterologous enzymes led to the publication of genome databases and allowed the 

development of a new approach for strain improvement termed metabolic engineering. One 

of the first reviews about this research field was published by Bailey in 1991 [8]. At that 

time, metabolic engineering was described as the improvement of cellular activities 

through recombinant DNA technology. Metabolic engineering started as the extension or 

transfer of existing pathways, shifting of metabolite flows and acceleration of rate 

determining steps. Such outcomes were achieved mainly by expression of heterologous 

enzymes and deletion or overexpression of native genes. One of the first applications of 

metabolic engineering was the manipulation of E. herbicola to produce 2-keto-L-gulonic 

acid [9]. The traditional process consisted of two different fermentations, one with E. 

herbicola and another with a Corynebacterium specie. By introducing the enzyme of 

Corynebacterium, which was responsible for the last step of the process, in E. herbicola it 

was possible to obtain the same product in a single fermentation using the engineered 

strain [9]. However, metabolic engineering is not so simple due to intrinsic and 

unpredictable challenges such as appearance of new compounds, proteolysis, improperly 

folding, no assembly with prosthetic groups, and no suitable location for substrate access 

or inhibitory environments. 

By comparing the early stage of metabolic engineering in the 90’s with the actual 

status, it is possible to observe a tremendous evolution. This is mainly due to technological 

breakthroughs which lowered the sequencing costs contributing to the increase in genome 

databases, easier and more efficient genetic tools, increased knowledge about metabolic 

pathways and also the discovery of until then unknown regulation networks. The evolution 

of metabolic engineering was noticed and reviewed by Nielsen in 2001[10]. A set of tools 

and logical principles of the metabolic engineering approach were covered. The evolution 

of metabolic engineering can be related to the evolution of the several -omics (genomics, 

proteomics, transcriptomics and metabolomics). It is now possible to understand the 

metabolism and the effects of manipulations. There has been a major development after the 
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review of Bailey has been written, as not only deletion and expression of genes has been 

described, but also the manipulation of transcription levels and factors. Additionally, 

manipulation and selection of promoters, RNA-antisense techniques and modulation of 

transcription factors were identified [11, 12].  

Even with the evolution of the metabolic engineering tools the principles remained 

the same. Such principles consist of the identification of the most probable targets, 

genetically construction of the corresponding strains, evaluation and characterization of the 

strains followed by a new round of target identification [10].  

  

1.2.  Saccharomyces cerevisiae as whole cell biocatalyst 

Saccharomyces cerevisiae is a unicellular yeast that divides by budding and can 

multiply both asexually and through mating [13].  

S. cerevisiae is found in nature on rotting fruit and vegetables where its preferred 

carbon sources, glucose and fructose, are easily accessible. It is a hypothesis that yeast 

produces aromatic compounds to attract wasps which thereby are used as transporters to 

new substrate sources [14]. 

S. cerevisiae is able to grow aerobically and anaerobically consuming a variety of 

carbon sources such as glucose, maltose, trehalose, fructose and galactose [15]. It is able to 

use ammonia and urea as a nitrogen source, and phosphore and sulphur are required in the 

growth media [16]. The doubling time is approximately 1,5-2,5 hours under its optimal 

growth temperature of 30ºC. The main characteristic of S. cerevisiae is the ability to 

produce high titers of ethanol due to its unusual metabolism. In most eukaryotes the only 

factor that controls the switch from a respiratory to a fermentative metabolism is oxygen 

depletion [17]. However, in S. cerevisiae this switch also occurs when the external carbon 

source concentration is high [18]. S. cerevisiae is therefore able to produce ethanol during 

the first growth phase in aerobic conditions due to its respiro-fermentative behavior. Once 

the primary carbon source is depleted, it starts to consume the ethanol produced in the first 

phase. This switch is nominated diauxic shift and leads to an environmental advantage 

since ethanol sensitive microorganisms are inhibited once S. cerevisiae starts producing 

ethanol [19]. 

Saccharomyces cerevisiae is a microorganism with a lot of research, since it is non-

pathogenic, inexpensive and simple to grow at a laboratorial and industrial scale. More 
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recently, the increasing number of sequenced genes and whole genomes [20] led to 

developments of bioinformatics tools and engineering techniques providing means to 

develop new strains of S. cerevisiae with desired phenotypes. Saccharomyces cerevisiae, 

as compared with other microorganisms used for biocatalysis, such as E. coli, presents 

higher robustness leading to longer glucose consumption and co-factor regeneration. This 

could lead to higher conversion rates compared to bacteria based biocatalysis [21]. 

However, there are also some drawbacks which have to be considered when using 

yeast as biocatalyst, for example substrates or products that are toxic to the cell, low co-

substrate yield for the cofactor recycling and the existence of several enzymes with 

overlapping substrate specificities. Several strategies have been found to minimize such 

drawbacks, like substrate modification [22], different carbon sources [23], use of inhibitors 

[24] and  biphasic systems using organic solvents or ionic liquids [25, 26]. 

One of the first industrial bioconversion processes  in which S. cerevisiae was used, 

consisted of a biological and chemical approach where acyloin-type condensation of 

benzaldehyde to obtain (1R, 2S)-pseudoephedrine was developed [27]. Since then 

S. cerevisiae has been applied in several kinds of reactions, such as reduction of carbonyl 

bonds[28, 29] and double carbon-carbon bonds[30, 31], oxidation and racemization [32-

34], hydrolase reactions [28] and formation of carbon-carbon bonds [35]. S. cerevisiae has 

also been applied for the production of functional proteins since it has the status of 

‘generally regarded as safe’ (GRAS) assigned by the USA´s Food and Drug 

Administration (FDA). Such proteins consist in antibody fragments and fusions [36, 37] as 

well as membrane protein drug targets [38]. 
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1.2.1. Saccharomyces cerevisiae background strain- CEN.PK 2  

Optimization of a yeast cell factory requires a multidisciplinary effort of geneticists, 

physiologists and biochemical engineers. To facilitate the interdisciplinary manipulations, 

the perfect strain would possess the features listed in Table 1. 

 

Table 1- Features of the perfect yeast cell factory strain (from van Dijken et al [39]) 

Desired properties of a yeast laboratorial strain 

Fast growth in defined mineral media without supplements other than vitamins 

Wide range of carbon and nitrogen sources for growth 

High biomass yield on carbon source 

Fast aerobic respiratory growth in glucose-limited chemostat cultures 

Growth in defined media under strictly anaerobic conditions 

High sporulation efficiency, spore viability, and mating efficiency 

High transformation efficiency 

Genetically stable 

Good production of heterologous proteins, both intra- and extracellularly 

 

In order to find a strain family which offers an acceptable compromise between the 

several requirements of different research disciplines, several strains were tested focusing 

on standard transformation tests and cultivations under well-defined conditions [39]. The 

CEN.PK2 family showed during such screenings to be a strain that possesses an acceptable 

equilibrium between the required properties [39]. The CEN.PK2 family was constructed as 

part of an interdisciplinary German research project (‘Stofflüsse in Mikroorganismen’) by 

the groups of Prof. M. Ciriacy, Prof. K.-D. Entian and Dr. P. Kötter [39]. The construction 

of the CEN.PK2 strains began with two laboratory strains and involved a series of crosses 

and backcrosses. The construction of isogenic strains (same genotype which can be 

reproduced indefinitely) involved the introduction of the HO gene in a haploid strain which 

allows to induce mating type switch [40]. After loss of the plasmid, sporulation of the 

resulting diploid strain yielded the desired isogenic haploid strains of opposite mating 

types. Besides these prototrophic haploid strains and diploid strains, isogenic haploid 

strains with all possible combinations of the auxotrophic markers ura3, his3, leu2 and trp1 

were constructed. 

The obtained CEN.PK2 family was stored in the European Saccharomyces 

cerevisiae archive for functional analysis (EUROSCARF) [41]. One of such strains, 

CEN.PK2-1C is the background strain used in the present study. 
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CEN.PK2-1C is a haploid strain with a MATa mating type and a genotype 

containing the mutations ura3-52, trp1-289, leu2-3, his3Δ1 and the expression of MAL2-8
c
 

and SUC2 [42]. The ura3-52 is a non-reverting URA3 mutation caused by a Ty insertion 

within the coding sequence of URA3 gene [43]. This mutation disrupts URA3 which 

encodes the orotidine 5-phosphate decarboxylase required for synthesis of pyrimidine 

ribonucleotides in yeast RNA and makes the strain uracil auxotrophic [44]. The trp1-289 

mutation consists of a point mutation of CAG to TAG in position 403 of the TRP1 ORF 

[45]. TRP1 encodes phosphoribosylanthranilate isomerase that catalyzes the third step of 

tryptophan biosynthesis [46]. A stop codon is created in the middle of the TRP1 ORF 

leading to tryptophan auxotrophy. The leu2-3 manipulation consists of several mutations 

such as GTC to GTT silent change at codon 56, GTT to GCT missense change at codon 69 

(change from valine to alanine), G insertions at nucleotide 249 and 792 making each a 

frameshift, GTT to GTC silent change at codon 299 and GAC to AAC missense change 

modifying an aspartate to asparagine [47, 48]. LEU2 encodes for β-isopropylmalate 

dehydrogenase (IMDH) which catalyzes the third step of leucine biosynthesis pathway. 

These mutations disrupt the activity of IMDH leading to a leucine auxotrophic strain. The 

his3Δ1 manipulation consists of the 187 bp HindIII-HindIII internal deletion of HIS3 [49]. 

HIS3 encodes the enzyme imidazoleglycerol-phosphate dehydratase which catalyzes the 

sixth step in histidine biosynthesis and through its inactivation the strain becomes histidine 

auxotrophic [50]. The insertion of MAL2-8
c 

allows the consumption of maltose in the 

presence of glucose since the expression of this allele results in a constitutive and non-

glucose-repressible AGT1/MAL11 expression [51]. The insertion of SUC2 allows the 

consumption of sucrose since SUC2 encodes invertase a sucrose hydrolyzing enzyme [52].  

With such genetic profile CEN.PK2-1C is a good strain to study the effect of gene 

deletions since it possesses mainly one copy of each gene due to its haploid nature. Also 

the four auxotrophic markers allow the expression/deletion of several genes without the 

need of marker regeneration, the use of antibiotics such as kanamycin or recombination 

markers like the Cre-Lox recombination technique.  
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1.3.  Saccharomyces cerevisiae central metabolism 

In yeast carbon metabolism, pyruvate is obtained from glucose through glycolysis. 

Pyruvate can be considered as the branch point in the yeast carbon metabolism because it 

can be redirected to different outcomes depending on the growth conditions.  

The enzymes responsible for pyruvate breakdown are pyruvate dehydrogenase 

complex (PDH), pyruvate decarboxylase (PDC) and pyruvate carboxylase (PYC) (Figure 

1) [53]. The pyruvate dehydrogenase complex is located in the mitochondrial matrix and 

converts pyruvate to acetyl-CoA, which is substrate of the tricarboxylic acid cycle (TCA 

cycle). In this pathway, a pyruvate transporter located in the inner mitochondrial 

membrane is required for pyruvate to be further oxidized [54]. After the oxidation of 

pyruvate to acetyl-CoA, the TCA cycle begins with the synthesis of citrate. Through citrate 

synthetase, oxaloacetate and acetyl-CoA are converted into citrate at the expense of a water 

molecule. Considering that oxaloacetate would only be obtained through the TCA cycle, 

regeneration of oxaloacetate in each turn of the cycle would be necessary. However, if 

oxaloacetate would only obtained through the TCA cycle it would lead to its shortfall since 

TCA cycle intermediates are important biosynthetic building blocks and are withdrawn 

from the cycle. PYC has the assimilatory function of converting pyruvate into oxaloacetate 

and provide the necessary oxaloacetate to avoid such shortfall. This enzyme, such as PDH, 

is also located in the mitochondrial matrix [55]. 

Besides the PDH pathway, yeast carbon metabolism has an alternative route to 

obtain acetyl-CoA. This alternative pathway consists of PDC, acetaldehyde dehydrogenase 

and acetyl-CoA synthetase [56] where acetyl-CoA is obtained in the cytosol and can enter 

the TCA cycle after being transported by carnitine acetyl transferase to the mitochondrial 

matrix. However, the major product obtained through this pathway is ethanol, which is 

obtained after the reduction of acetaldehyde by the alcohol dehydrogenase 1 (ADH 1) 

(Figure 1). Even if this pathway is less energy efficient, this bypass is important during 

growth with sugars as carbon source, since cytosolic acetyl-CoA is essential for lysine and 

lipid synthesis [57, 58]. 

The carbon fluxes through these pathways are affected mainly by the presence of 

oxygen and by glucose concentration. Under glucose limited aerobic growth conditions, 

pyruvate is converted by PDH to acetyl-CoA and then completely oxidized to CO2 (Figure 

1). In the absence of oxygen, pyruvate is converted by PDC to acetaldehyde leading to the 
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fermentative behavior of S. cerevisiae. Under aerobic conditions with high glucose 

concentrations S. cerevisiae shows a respire-fermentative behavior [59]. This effect is 

specific to S. cerevisiae and termed Crabtree effect. The reason for this respiro-

fermentative behavior has been reported as a selective advantage over competing 

organisms through ethanol production by repression of TCA cycle enzymes [60, 61] and 

electron chain components [62].   

 

Figure 1- Yeast central carbon metabolism.  
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1.3.1. Pyruvate accumulation and its industrial interest 

The accumulation of pyruvate in industrial processes has been studied since the late 

60´s [63]. Pyruvate is a precursor for drugs/agrochemicals synthesis, enzymatic production 

of amino acids (L-tryptophan, L-tyrosine and L-dihydro phenylalanine) and has a 

healthcare function as dietary supplement [64, 65]. 

Two strategies for pyruvate accumulation inside whole cell are higher flux through 

glycolysis and/or deletion of the pyruvate consuming enzymes [66]. The high fermentative 

potential of S. cerevisiae is due to the activity of PDC, which even under glucose limited 

conditions can consume up to 50% of the pyruvate obtained from glycolysis [67]. The 

inhibition of PDC is therefore the best target for pyruvate accumulation. Several 

approaches to inhibit PDC activity were reported and are summarized in Table 2. Pyruvate 

accumulation approaches can be divided into two categories: deletion of the structural 

genes encoding PDC or their inhibition through vitamin auxotrophy.  

 

Table 2- Reported pyruvate accumulation approaches. The theoretical maximal pyruvate 

yield (g pyruvate/ g glucose) is 0.98 g/g. 

 

One of the first to report about pyruvate accumulation was Yonehara et al [65] 

where Torulopsis glabrata, a glucose repression positive yeast strain [70] auxotrophic for 

the vitamins thiamine, nicotinic acid, pyridoxine and biotine, was grown under specific 

concentrations of these vitamins in order to accumulate pyruvate. The selection of these 

auxotrophies is connected to their co-factor function of pyruvate consuming enzymes: 

1) thiamine is a co-factor for PDC and PDH (Figure 2A), 2) nicotinic acid is a building 

block of the NAD
+
 co-factor for glycolytic enzymes, 3) biotin is a co-factor for PYC 4) 

pyridoxine is a co-factor of transaminases. The last named enzymes are not related to the 

Strain/ 
Reference 

Metabolic Engineering/Phenotype 
Pyruvate 

(g/L) 
Yield 

(g pyruvate/g glucose) 
Cell Amount 

(OD600) 

Obtained 
after 
(h) 

Torulopsis  
glabrata 

 [65] 
Wild-type with vitamin auxotrophies  57 (Not reported) 30 59 

S. cerevisiae 

[68] 

ΔPDC1 ΔPDC5 ΔPDC6, selected 
through spontaneous mutations to 

grow under glucose 
135 0.54 60 100 

Torulopsis  
glabrata 

 [66] 

ΔPDC, pyruvate decarboxylase 
negative 

82.2 0.55 ca 50  52 

S. cerevisiae 

[69] 
Δthi2, thiamine biosynthetic pathway 

deleted and optimized C:N ratio  
8.21 0.16 3.61 96 



Introduction                                                         MSc in Molecular Biotechnology 

10 

 

carbon metabolism but consume pyruvate as substrate. Fermentation with this strain and 

using 100 g/L glucose as carbon source yielded, pyruvate titer of 57 g/L after 59 hours. 

The most recent development in pyruvate accumulation by vitamin auxotrophy was 

reported by Xu et al [69]. Yeast usually takes up external thiamine to synthesize ThDP, but 

during external privation of thiamine it is able to synthesize the co-factor de novo (Figure 

2B). Three genes that positive regulate the synthesis and transport of thiamine were 

identified as THI2, THI3 and PDC2 by Nosaka [71]. In this work a hypothetical model of 

the yeast THI regulatory system was described. During thiamine starvation Thi3p, Thi2p 

and Pdc2p form a complex which activates the THI genes and results in the de novo 

thiamine synthesis. When thiamine is abundant, it binds to Thi3p inhibiting the formation 

of the THI activation complex (Figure 2C).  

 

 

Figure 2- Thiamine metabolism and THI regulatory system in S. cerevisiae. A) PDC thaimine dependence; 

B) thiamine metabolism in yeast; C) hypothetical model of THI regulatory system in yeast. From Xu et al [69] 

 

 THI2 defective mutants are not able to synthetize thiamine but are fully capable of 

its transport. Strains with THI3 deletion are unable to express all thiamine regulated genes, 

which indicates its role as a global regulator (Figure 2C). PDC2 is not only necessary for 

the expression of THI genes but also for the expression of PDC structural genes (PDC1 



Introduction                                                         MSc in Molecular Biotechnology 

11 

 

and PDC5). In the study of Xu et al, it was possible to identify the best knock out mutant 

for pyruvate accumulation as a strain with Δthi2 deletion. The highest pyruvate titer, 

8.21 g/L, was obtained after 96 hours during a batch culture in which urea and 0.04 μM 

thiamine were added and C:N ratio was optimized (Table 2).  

The alternative approach to accumulate pyruvate, deletion of PDC structural genes, 

was reported by van Maris et al [68]. In this work the three structural PDC genes were 

deleted (PDC1, PDC5 and PDC6). As reported by Flikweert et al [72], the obtained strain 

was unable to grow under excess of glucose due to the inability to synthesize cytosolic 

acetyl-CoA. Another reason for such glucose sensitive phenotype is related to redox 

imbalances. Due to a high glycolytic activity and a limited mitochondrial respiratory chain, 

the reoxidation of cytosolic NAD
+
 was reduced which inhibited key reactions in 

biosynthesis [73]. 

 A strain without PDC genes, needs provision of C2 carbon sources and bypass the 

need for PDC. To overcome this drawback an evolutionary adaptation through chemostat 

cultures was performed which led to the isolation of a S. cerevisiae C2 independent ΔPDC 

control strain. Transcriptional profiling of the evolved PDC negative strain showed that the 

total amount of hexose transporters (HXT) was four-fold lower than the reference 

strain [73]. By screening possible mutations in the transcriptional regulators of HXT, a 

mutation in MTH1 was identified. In the absence of glucose in wild type yeast, Mth1p 

forms a complex with Std1p and Rgt1p and represses the transcription of hexose 

transporters (Figure 3) [74]. However in the presence of glucose Mth1p/Std1p is 

phosphorylated and degraded, inhibiting the formation of the repression complex and 

thereby HXT genes are expressed and glucose is transported inside the cell. 
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Figure 3- Hexose transporters repression signalling pathway. From Gancedo [74]. 

 

By mutating MTH1 the degradation of Mth1p is decreased resulting in a lowered 

expression of hexose transporters. Therefore, the glycolytic activity was reduced which 

avoided the fast depletion of cytosolic NADH/NAD
+
 pool.  

 Application of the obtained strain in an aerobic batch starting with 100 g/L of 

glucose with two additional glucose pulses of 100 g/L, resulted in a pyruvate titer of 

135 g/L. However, it is important to notice that a high amount of cells (60 OD660 nm) was 

used during the cultivations which could explain the high pyruvate titer. 

The accumulation of pyruvate through PDC deletion was also reported in 

Torulopsis glabrata by Wang et al [66]. To obtain the reported pyruvate titer of 82.2 g/L, 

fermentations were performed in a media containing 150 g/L glucose and 0.033 μM of 

thiamine. However, the need for thiamine addition in his work is unclear since the need for 

its addition is only during vitamin auxotrophy.       
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1.4.  Production of Chiral Compounds  

During several decades, the chirality of pharmaceutical compounds has been 

neglected. Pharmaceutical compounds contained a racemic mixture, which means that they 

consisted of equal amounts of R and S enantiomers. Enantiomers show completely 

identical physical and chemical properties when present in an achiral environment. 

However, in a chiral environment such as in vivo, each enantiomer possesses different 

chemical, biological and pharmacological behaviors. Such properties can make one 

enantiomer the cure for certain diseases and the other having side or no effect. Due to this, 

an incident occurred in the 1960s with thalidomide. This drug was sold as sleeping pill and 

helped pregnant women with morning sickness. However, only the R form acted as 

sedative and possessed the desired effect. The S form led to limb abnormalities in the 

newborns, such as phocomelia, dysmelia, Amelia, bone hypoplasticity and other congenital 

defects [75]. The discovery of such effects led to an increase in the preparation of pure 

enantiomers since the 1980s [76]. The worldwide market share of single-enantiomer drugs 

in 2002 was 39% and represented an increase of 12% since 1996. Production of 

pharmacological racemates decreased since the 90’s because the use of enantiometric pure 

products allowed to reducing dosages and avoiding side effects (Figure 4) [77]. It was also 

reported in 2003 that the worldwide revenues from chiral production would increase from 

4.8 billion dollars to 14.9 billion dollars by 2009 [78]. However the forecast was not 

achieved since in April 2012 a report from bcc research showed that the global chiral 

technology market was worth nearly 5.3 billion dollars in 2011. 

 

Figure 4- Annual distribution of worldwide approved drugs according to chirality character (Adapted from 

[77]) 
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The most recent report on global chiral market indicates a compound annual growth 

rate (CAGR) of 14.2% between 2005 and 2015 [79], showing the increasing interest in 

developing more efficient methods to obtain pure enantiometric compounds. 

In the last decade several new biological chiral synthesis reports have been 

published. Some of them consist in the stereoselective reduction of ketones using enzymes 

preparations or whole cell biocatalysis. Such examples are the kinetic resolution of racemic 

bicyclononane-2,6-dione [80], 5,6-epoxy-bicycloheptane-2-one [81] and asymmetric 

reduction of bicycloctane-dione [21] using genetically engineered baker’s yeast. 

  

1.4.1. Chiral amines and ω-Transaminases 

Chiral amines are used in the pharmaceutical and fine chemicals industries, because 

of their potential in the synthesis of cardiovascular, antihypertensive and antiemetic drugs 

and for the preparation of optically pure carboxylic acids [82].  

Chiral amines can be obtained through chemical transformations, such as 

asymmetric hydrogenation of a Schiff base [83, 84]. However, such processes suffer from 

harsh reaction conditions, use of toxic transition metal catalysts and insufficient 

stereoselectivity since the enantiometric excess often does not exceed 60% [85, 86] (Figure 

5).  

 

 

Figure 5- Asymmetric hydrogenation of a Schiff base for chiral amines synthesis. 

 

These drawbacks do not exist with enzymatic reactions. On the contrary, they occur 

under mild conditions and offer stringent stereoselectivity making enzymatic approaches 

more sustainable. 



Introduction                                                         MSc in Molecular Biotechnology 

15 

 

One of these enzymes, ω-amino acid: pyruvate transaminase (ω-transaminase) has 

been identified and studied for the application in chiral amines production. ω-

transaminases belong to the subgroup III, which are able to transfer an amino group from a 

non-α position amino acid (such as 4-aminobutyrate) or an amine compound with no 

carboxylic group (such as phenylethylamine) to an amino acceptor (such as pyruvate) 

needing pyridoxal-5’-phosphate (PLP) as co-factor [87]. The first attempt of using ω-

transaminases for chiral amines synthesis was reported by Celgene Corporation [88]. 

The ω-transaminase reaction is constituted by an oxidative deamination of an amine 

donor and reductive amination of an amino acceptor [85]. The reaction starts by the 

formation of a Schiff base between PLP and a lysine of the ω-transaminase active site [85]. 

The amino group of the donor is transferred to the PLP-enzyme complex through the 

Schiff base generating a pyridoxamine-5’-phospate (PMP) and the respective ketone 

(Figure 6 I.). In the last step, the amino group of the PMP is transferred to an amine 

acceptor and the PLP-enzyme complex is regenerated [85] (Figure 6 II.).  

 

 

Figure 6- Thermodynamic favored ω-transaminases reaction (Adapted from [85, 89]). 
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ω-transaminases have the following advantages for the production of chiral amines: 

broad substrate specificity, high enantioselectivity and high turnover numbers. Comparing 

ω-transaminases to alternative enzymatic reactions, such as hydrolases and 

dehydrogenases, it can reach rapid reaction rates without additional co-factor regeneration 

dependence since its co-factor, PLP, is regenerated during the reaction (Figure 6) [82, 90]. 

The ω-transaminases co-factor regeneration independence could constitute a big 

advantage over dehydrogenases which use NAD
+
 or NADP

+
 as co-factors. NADP

+
 and 

NAD
+
 and their reduced forms are crucial in yeast metabolism where yeast keeps a 

balanced regeneration of such co-factors [91]. NADP
+
 is preferentially used in assimilatory 

pathways such as biomass synthesis and NAD
+
 is used in dissimilatory reductions such as 

reduction of acetaldehyde to ethanol or the reduction of the quinone pool of the respiratory 

chain [92]. By overexpression of a heterologous dehydrogenase, the redox balance of the 

required co-factor could be affected. This could result in growth issues since the affected 

pathways are crucial for biosynthetic precursors and energy obtainment. Transaminases do 

not require NAD
+
/NADP

+
 nor consume their co-factor PLP but regenerate it during the 

reaction. The NAD
+
/NADP

+ 
independence could result in a more active metabolism since 

there is no competition for co-factors between the enzymes of the yeast metabolism and the 

transaminase.   

 

Two approaches can be followed in order to obtain a pure chiral amine solution: 

kinetic resolution (Figure 7 A.) and asymmetric synthesis (Figure 7 B.). 

During asymmetric synthesis of chiral amines a suitable amine donor is required, 

such as L-alanine (Figure 7B). On the contrary, for the kinetic resolution of racemic 

amines a suitable amine acceptor is needed such as pyruvate (Figure 7A) [93]. During 

kinetic resolution the stringent stereospecificity for one of the enantiomers is taken as 

advantage in order to convert only one of the chiral amines to a ketone and obtain an 

enantiometric pure solution of the non-reacting enantiomer. The maximum yield of a 

single kinetic resolution is 50% and thereby the process efficiency is hampered by a cost 

increase due to the requirement of a amine racemization of the obtained ketone for an 

additional round of kinetic resolution.  

In asymmetric synthesis the pro-chiral ketone is provided and targeted to the 

stereoselectively aminated product [85]. 
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Theoretically it is possible to reach a conversion of 100% by asymmetric synthesis. 

However, the thermodynamic equilibrium has to be overcome since ketone formation, the 

reverse reaction of asymmetric synthesis, is favored and also product inhibition by the 

amine has been observed [93].  

In this way the generally faster reaction rate of the kinetic resolution compared to 

the asymmetric synthesis, renders the resolution approach more suitable conditions for 

industrial scale up, despite the lower maximal 50% reaction yield [88]. 

 

 

Figure 7- A. Kinetic resolution and B. asymmetric synthesis of chiral amines catalyzed by ω-

transaminases. 

 

Several approaches and improvements to overcome specific drawbacks of kinetic 

resolution and asymmetric synthesis of chiral amines were reported and are summarized in 

Table 3.   

During kinetic resolution of chiral amines using purified enzymes, stoichiometric 

amounts of pyruvate are required, increasing the overall cost of the process.  Truppo et al 

[93] developed a method in which the transaminase was coupled to an amino acid oxidase 

that catalyzes the conversion of L-alanine into pyruvate, to reduce the amount of pyruvate 

added to the kinetic resolution reaction and thereby also the cost. The alanine obtained 

after the transamination reaction is oxidized leading to regeneration of pyruvate in situ. 

The reaction with such setup achieved a conversion of 50% yielding a 99% enantiometric 

excess of R-phenylethylamine (see Table 3). 

 Another approach of kinetic resolution of chiral amines is using whole cells 

expressing the ω-transaminase. Such an approach was performed by Bea et al [82] that 

overexpressed an ω-transaminase from Vibrio fluvialis in Pichia pastoris.  
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  To overcome the thermodynamic hindrance during asymmetric synthesis, 

Koszelewski et al [94] coupled a lactate dehydrogenase to the transaminase reaction which 

drove the reaction towards the amine form by converting the obtained pyruvate into lactate 

(see Table 3). A high amount of L-alanine is though needed since there is no co-substrate 

regeneration.  

 

Table 3- Asymmetric synthesis and Kinetic resolution of chiral amines. 

 

 

 

 

 

Strain/ 
Reference 

Reaction 
Yield 
(%) 

Ee 
(%) 

Kinetic Resolution 
Alcaligenes 

denitrificans 

intrinsic  

ω-transaminase 

[90]  

56 99 

Codexis ATA-
117 

transaminase 
combined with 
an aminoacid 
oxidase[93]  

50 99 

ω-
transaminase 
from Vibrio 

fluvialis 
overexpressed 

in Pichia 
Pastoris[82] 

 

52.2 99 

Asymmetric Synthesis 

Codexis ATA-
117 

transaminase 
combined with 

a lactate 
dehydrogenase

[94] 
 

91 99 

Enzyme 
extract from 

Vibrio 
fluvialis[95]  

96.2 99 
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1.5.  Aims and Objectives  

The aim of the present study was (i) to genetically engineer a S. cerevisiae strain in 

order to increase the accumulation of pyruvate and thereby increase the reaction rate of a 

heterologously expressed aminotransferase and (ii) to evaluate the resulting strains for the 

kinetic resolution of (R,S)-phenylethylamine. 

In order to accumulate pyruvate two strategies were followed, both of them 

consisting in inhibiting the activity of PDC while coupling it to a lower PDH activity by 

high glucose concentrations or oxygen limitation [60].  

The first one consisted in deleting the major structural genes encoding PDC 

(namely PDC1 and PDC5). Pyruvate is not consumed further by cytosolic alcohol 

dehydrogenase and acetaldehyde dehydrogenase in such double knock-out. The 

fermentative behavior under anaerobic and high glucose concentration could thereby be 

removed, leading to the desired pyruvate accumulation.  

The second strategy consisted in deleting the thiamine biosynthetic gene THI2, 

which inhibits the synthesis of ThDP, a necessary co-factor of PDC (Figure 8). The 

expected phenotype of this strain was to accumulate pyruvate but without completely 

blocking the fermentative pathway of the yeast. The two strategies differed in the viability 

of the cells. The transaminase expressed in S.cerevisiae consisted of a putative 

aminotransferase from Capsicum chinense (CC-ωTA) [96] that had been reported as 

responsible to catalyze the formation of vanillylamine from vanillin [97]. 

CC-ωTA was chosen because this transaminase was reported to be active at a broad 

pH range including physiological pH [98].  
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Figure 8- Pyruvate accumulation approaches and their expected metabolic effect. 
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2. Material and Methods 

2.1. Microorganisms and Maintenance 

The background strain used in the study, was CEN.PK2-1C HXT7p_PAMT_PGKt 

(CEN.PK 2-1C+PAMT) which possesses the genomic integrated CC ω transaminase [98]. 

In addition a series of strains were constructed (Table 4 and Result Section).  

All strains were grown in YPD or YP EtOH, then the cell suspension was 

centrifuged at 3000 g for 5 minutes, and cells were washed with demineralized H2O and 

resuspended in 20% glycerol with YPD or YP EtOH and stored at -80ºC. All manipulated 

strains were grown at 30ºC on YNB plates containing aminoacids and maintained at 4ºC. 

 

Table 4- Strains used and constructed in the present study 

Strains Related characteristic Source or reference 

CEN.PK2-1C+PAMT 
Wild type with uracil, tryptophan and histidine 

auxotrophy 
Weber et al, 2013  

CEN.PK2-1C+PAMT 
Δpdc5 

CC ω-TA integrated, deleted PDC5 gene This work 

CEN.PK2-1C+PAMT 
Δpdc1 Δpdc5 

CC ω-TA integrated, deleted Pyruvate 
Decarboxylase  

This work 

CEN.PK2-1C+PAMT 
Δthi2 

CC ω-TA integrated, deleted thiamine biosynthetic 
gene 

This work 
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2.2. Media and Stock Solutions 

Acetophenone, racemic 1-phenylethylamine and pyruvate were purchased from 

Merck (Hohenbrunn, Germany), pyridoxal-5’-phosphate from AppliChem (Darmstadt, 

Germany) and all other chemicals from VWR (Leuven, Belgium).  

 

2.2.1. Culture Media 

2.2.1.1. YPD (Yeast Extract Peptone Dextrose) 

Table 5- Yeast Extract Peptone Dextrose[99] 

Compound 
YPD Glc Liquid YPD EtOH Liquid YPD Plates 

g.L-1 g.L-1 g.L-1 

Peptone from Casein 20 20 20 

Yeast Extract 10 10 10 

Glucose  20 - 20 

Ethanol - 15.8 - 

Agar - - 15 

 

2.2.2. Defined Media 

2.2.2.1. YNB (Yeast Nitrogen Base) supplemented with aminoacids 

Table 6-Yeast Nitrogen Base (aminoacids concentration followed by Pronk[100]) 

Compound 
YNB Glc Liquid YNB EtOH Liquid YNB Glc or (EtOH) Plates 

g.L-1 g.L-1 g.L-1 

Yeast Nitrogen Base 
w/o Amino acids 

6.7 6.7 6.7 

Potassium hydrogen 
phthalate 

10.2 10.2 10.2 

KOH 2.2 2.2 2.2 

Glucose  20 - 20 

Ethanol - 15.8 (15.8) 

L-Leucine 0.5 0.5 0.5 

L-Histidine 0.13 0.125 0.13 

Uracil 0.15 0.15 0.15 

L-Tryptophane 0.075 0.075 0.075 

Agar - - 15 
*Aminoacids were added depending on auxotrophic demand of the strain 
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2.2.2.2. Verduyn Mineral Media 

Table 7-Verduyn Mineral Medium [101] 

Compound 
Verduyn Mineral Media 

Compound 
Verduyn Mineral Media 

g.L-1 g.L-1 

(NH4)2SO4 5 EDTA 0,015 
MgSO4 ·7H2O 0,5 ZnSO4·7H2O 4.5x10-3 

KH2PO4 3 MnCl2·2H2O 1x10-3 
Biotin 5x10-5 CoCl2·6H2O 3x10-4 

Panthoteic acid calcium salt 1x10-3 CuSO4·5H2O 3x10-4 
Nycotin acid 1x10-3 Na2MoO4·5H2O 4x10-4 
Myo-inositol 0,025 CaCl2·2H2O 4.5x10-3 

Thiamine  ·HCl 1x10-3 FeSO4·7H2O 3x10-3 
Pyridoxol ·HCl 1x10-3 H3BO3 1x10-3 

Para-aminobenzoic acid 2x10-4 KI 1x10-4 

Compound 
Verduyn Mineral Media 

g.L-1 
 

  Glucose 20 
  Ethanol (15.8) 
  L-Leucine 0.5 
  L-Histidine 0.125   

Uracil 0.15 
  L-Tryptophan 0.075 
   

2.2.3. Buffers 

2.2.3.1. Verduyn Salt Solution 

Table 8-Verduyn Salt Solution 

Compound 
10x Verduyn Salt Solution 

g.L-1 

(NH4)2SO4 50 

MgSO4 ·7H2O 5 

KH2PO4 30 
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2.2.3.2. YNB Buffer 

Table 9- YNB Buffer 

Compound 
5x YNB Buffer 

g.L-1 

Potassium hydrogen 
phthalate 

51 

KOH 11 

 
*  pH  5.5  

 

2.2.4. Transamination Solution 

 Table 10- Transamination Solution 

 

 

2.3.  Strain Construction 

The work-flow for construction of the desired strains consisted in identifying the 

DNA sequences and chromosomal location of the genes to be deleted, constructing the 

deletion cassettes and preforming the respective yeast transformations.  

All sequence manipulations (primer design, predicted PCR’s and homology 

screening) were performed using the software GENtle. Primers were ordered from MWG-

Biotech AG (Ebersberg, Germany). PCR mixes were prepared according to the DNA 

polymerase kit protocol and the thermocycler programs are listed in Appendix I-. Phusion 

Hot Start II High-Fidelity DNA Polymerase mix (Thermo Scientific, USA) was used to 

avoid non-specific amplification and primer degradation and receive extreme fidelity. PCR 

reactions were performed using the C1000™ Thermal Cycler (BioRad, USA), and 

electrophoresis run in the Mupid-exU System gel electrophoresis equipment (Clontech, 

USA). Gels were analyzed using Bio-Rad ChemiDoc XRS System (BioRad, USA). 

Genomic DNA was extracted and the PCR fragments were purified using, respectively, 

Compound 
Transamination Solution 

g.L-1 

Glucose  20 or 50 

NaPO4 11.8 

RS-Phenylethylamine 3.03 

PLP 2.5x10-4 

 *pH  7.0 
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Pierce* Yeast DNA Extraction Kit (Thermo Scientific, USA) and Gene Jet Purification kit 

(Thermo Scientific, USA). All DNA quantifications were performed using BioDrop DUO 

(Bio Drop, UK). 

 

2.3.1. Deletion fragments 

It was necessary to amplify the downstream and upstream regions of each gene as 

well as the respective auxotrophic marker to perform the targeted deletion of the genes. 

This required the identification of each gene locus so that primers could be designed for 

the respective downstream and upstream region.  

After obtaining the location of the PDC1, PDC5 and THI2 ORF’s in CEN.PK 113-

7D (see sequences in Appendix II-), 300 to 600 bp upstream and downstream were 

selected for each gene (see sequences in Appendix III-). With these sequences and the 

sequence of the respective auxotrophic markers TRP1 and URA3 (see sequences in 

Appendix IV-), primers were designed in order to obtain and amplify those fragments 

(previous work performed by Ander Sandström). The up-/downstream sequences and the 

URA3 marker were amplified from  genomic DNA of CEN.PK 113-7D and TRP1 was 

amplified from a Mumberg vector from the laboratory collection (see primer list on 

Appendix V-) (Figure 9). The sequences used for primer design consisted of CEN.PK 113-

7D databases (http://www.sysbio.se/cenpk/).   

 

 

Figure 9- Primer location in the final constructs. The uncolored arrows represent the primers used for 

amplification of each deletion fragment. The marker sequences were amplified to include the respective promoter 

and terminatior. 

http://www.sysbio.se/cenpk/
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The pairs of primers PDC1_ds_r/PDC1_trp1_f, PDC1_trp1_r/PDC1_us_f, 

PDC5_ura_f/PDC5_us_r, PDC5_ura_r/PDC5_ds_f, THI2_trp_f/THI2_ds_r and 

THI2_trp_r/THI2_us_f were designed to create a minimal 30 bp homologous region which 

was crucial for the Overlap Extension PCR. 

 

 

Figure 10- Example of homology between pairs of primers (sequence alignment was performed in Clustal 

Omega). 

 

2.3.2. Overlap Extension PCR 

The deletion fragments were fused by overlap extension PCR to create the final 

deletion cassettes. In this type of PCR, the ≥30 bp homologous regions of the deletions 

fragments behave as ‘primers’, leading to the fusion of the several fragments.  

This method is divided into two stages, the first consisting of 30 fmol of each 

deletion fragment in the PCR mix which leads to 30 fmol of the deletion cassette. 

Secondly, the respective end primers are added in order to amplify the whole deletion 

cassette (Table 11). The PCR products were purified and recovered with the QIAquick ® 

Gel Extraction Kit (Qiagen, Germany). 

 

Table 11- Primer list for final amplification of the fragments obtained through Overlap Extension PCR 

Deletion Forward Primer Reverse Primer 

PDC1 PDC1_ds_f PDC1_us_r 

PDC5 PDC5_us_f PDC5_ds_r 

THI2 THI2_ds_f THI2_us_r 
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2.3.3. Yeast Transformation  

Single yeast colonies were picked and transformed as described by Gietz & 

Schiestl [102]. The amount of DNA used per transformation was 500 ng. The cells were 

resuspended in dH2O after heat treatment. CEN.PK 2-1C+PAMT Δpdc1 Δpdc5 cells were 

resuspended in YP for 3 hours to allow the cell membrane to recover in order to resist to 

ethanol stress. 

After the transformation process, the cells were streaked on YNB plates with 

aminoacids and 20 g/L glucose. The CEN.PK 2-1C+PAMT Δpdc1 Δpdc5 strain was plated 

on YNB with L-histidine and 2% ethanol (15.78 g/L). 

 

2.3.4. Deletion confirmation 

Colonies from each transformation plate were picked and genomic DNA was 

extracted to confirm that the deletion was successful after each transformation. Two PCR 

reactions were performed for each colony, the first primer set was composed by an end 

primer of the downstream sequence and a primer located at the junction of the marker and 

upstream sequence (resulting in PDC1_trp1, PDC5_ura3 and THI2_trp1 fragments) (Table 

12) (Figure 11 a)). The second primer set was composed by the end primers (resulting in 

WPDC1, WPDC5 and WTHI2 fragment), the same used for amplifying the deletion 

cassettes (Table 11) (Figure 11 b)). An example of the fragments that should be obtained in 

a Δpdc1 strain is shown in Figure 11. PCR programs are listed in Appendix I-.  

 

Table 12- PDC1_trp1, PDC5_ura3 and THI2_trp1 deletion confirmation fragments primer set. Each 

primer set is composed by an end primer of the downstream sequence and a primer located at the junction of the 

marker and upstream sequence. 

 

 

 

 

Deletion confirmation Forward Primer Reverse Primer 

PDC1_trp1 PDC1_ds_f PDC1_trp1_r 

PDC5_ura3 PDC5_ura3_f PDC5_ds_r 

THI2_trp1 THI2_ds_f THI2_trp1_f 
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Figure 11- PCR fragments for Δpdc1 strain confirmation. The PCR confirmation of each deletion was 

performed by amplifying two fragments: a) one that included the downstream and marker sequence, which means 

that only clones containing the deletion could possess this amplification; b) a second that would amplify the 

complete PDC1 gene, which means that clones with the deletion would amplify a fragment with different size than 

the control strain since the control possessed a intact PDC1 gene and the deleted strain would amplify a fragment 

containing the marker sequence.  

 

Besides the PCR confirmation also a phenotype screening was performed. For the 

Δpdc1 Δpdc5 strain the absence of growth in medium containing 20 g/L of glucose 

confirmed the double deletion. The deletion of THI2 was also confirmed by growth 

absence in medium lacking thiamine. 
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2.4.  Fermentations/ Cultivations 

Biomass required for the fermentations was obtained by picking single colonies 

from YNB agar plates and pre-growing them in falcon tubes of 50 mL containing 5 mL of 

medium. After reaching an OD of 2, the cells were centrifuged and resuspended in fresh 

medium and inoculated in 1L shake flasks containing a final medium volume of 100 mL.  

The cells were incubated in a rotary shake incubator with 180 rpm at 30ºC and 

harvested during mid-stationary phase to start the fermentations/cultivations. During the 

fermentation, samples were taken and observed under the microscope to detect any 

contamination. 

If not stated otherwise, the specific medium in which each strain was inoculated is 

listed in  

Table 13. 

All fermentations/cultivations were performed as biological duplicates. 

 

Table 13- Medium for pre- fermentation growth 

Strain Medium for pre-fermentation growth 

CEN.PK2-1C+PAMT       
Δthi2 

Verduyn w/o Thiamine + 20 g/L glucose + Uracil+ L-Histidine+ 
0.05 μM Thiamine 

CEN.PK2-1C+PAMT     
Δpdc1 Δpdc5 

YP+ 15.78 g/L ethanol 

 

2.4.1. Aerobic Cultivation for pyruvate accumulation 

After obtaining the required biomass in 1L shake flasks, the cells were centrifuged 

for 8 minutes at 3200 rcf and washed two times with 25 mL of dH2O. The OD620nm of the 

obtained solution was measured and the volume necessary to obtain a starting OD620nm of 2 

for the aerobic fermentation was harvested, centrifuged and resuspended in 25 mL of the 

fermentation medium in a 250 mL shake flask. The fermentation medium consisted of 

Verduyn mineral medium supplemented with aminoacids and 20 g/L of glucose. The 

medium for CEN.PK2-1C +PAMT Δthi2 did not contain thiamine.  

The OD620nm was measured over time using Ultrospec 2100 pro spectrophotometer 

(GE Healthcare Life Sciences, USA). At the same time samples were centrifuged and the 

supernatant stored at -20ºC for further analysis.  
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2.4.2. Anaerobic fermentation for pyruvate accumulation 

Cells required for the anaerobic fermentation were obtained as described in 2.4. The 

anaerobic fermentation started with an initial OD620nm of 20 in 10 mL medium in a small 

vial containing a magnetic stirrer and sealed with a rubber lid. A syringe filled with cotton 

was inserted in the rubber lid to avoid overpressure of CO2. The fermentation medium was 

the same as described in the aerobic cultivation under 2.4.1. Samples were recovered with 

a syringe to avoid oxygen to enter in the vial and compromise the anaerobic environment. 

The OD620nm was measured over time, samples were centrifuged and the supernatant stored 

at -20 ºC for further analysis. 

 

2.5.  Dry Weight measurements and OD620nm/Cell dry weight 

calibration curve 

Pall Life Science Supor® 450 47 mm 0.45μm pore filters were dried in a 

microwave at 350 W for 4 minutes and cooled down inside a desiccator. After weighing 

the filters (W0), they were used to filter the cell suspension with a Millipore filter holder 

under vacuum. Cells were washed with dH2O three times with the volume of the filtrate. 

The filters were put in a microwave for 8 minutes at 350 W and cooled down inside a 

desiccator. The filters were weighed (W1) and the dry weight per L of suspension was 

calculated through the following equation:                      
     

                      
 . 

Each dry weight measurement was performed in duplicate. 

Construction of a calibration curve between the OD620nm measurements during the 

fermentations and the respective cell dry weight was performed with the following 

procedure. Each strain was pre-grown and handled as described in 2.4 and 2.4.1. After 

obtaining a high cellular density solution (~25 OD620nm) serial dilutions were performed in 

order to obtain the OD620nm range measured during fermentations/cultivations. Duplicates 

of cell dry weight of each solution were measured as described before and a linear 

regression curve between the undiluted OD620nm values of each solution and respective 

mean of cell dry weight measurements was constructed (Calibration Curves can be seen in 

Appendix VI-).  
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2.6. Transamination biocatalysis 

Cells for the transamination biocatalysis were obtained as described in 2.4. The 

experiments were performed at the same conditions as described in 2.4.2. The buffer 

contained either 20 or 50 g/L D-glucose, 3.03 g/L of racemic RS-phenylethylamine, 0.1μM 

of PLP and 20 OD620nm biomass in 100 mM NaPO4 buffer at pH 7.0. Samples of 1 mL 

were taken and mixed with 100μL of HCl 1M to stop the reaction. The cells were 

discarded after centrifugation and supernatant stored at -20 ºC for further analysis. 

 

2.6.1. Amine and ketone extraction for HPLC analysis 

The samples were thawed, 30 μL of NaOH 10 M added to the sample and mixed 

thoroughly. After mixing, 200 μL of n-heptane including 0.1% butylamine was added and 

the solution mixed thoroughly for 1 minute. The samples were centrifuged for 5 minutes 

under 13000 rcf and the organic phase recovered. The procedure was repeated with 400 μL 

of n-heptane including 0.1% butylamine and the time for centrifugation increased to 10 

minutes. The recovered organic phase was used for HPLC analysis 

 

2.7.  HPLC analysis 

2.7.1. Metabolites and substrates 

The metabolites pyruvate, succinate, acetate, glycerol, ethanol and the substrate 

glucose were quantified using two Aminex® HPX-87H Ion Exclusion columns (Bio-rad, 

USA) with H2SO4 5 mM at 0.6 mL/min as mobile phase under 45 ºC. The volume injected 

per sample was 20 μL. The HPLC system consisted of a Waters 1525 Binary HPLC pump, 

autosampler (Waters 717 plus), CH-30 Column Heater (FIAtron
TM 

Systems Inc.), 

Shimadzu Refractive Index Detetctor RID-6A and absorbance detector (Waters 2487 Dual 

λ). An absolute calibration curve was performed for each metabolite covering the measured 

values. 
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2.7.2. Transamination products and substrates 

The transamination product acetophenone and the substrate R,S-phenylethylamine 

were quantified using a ChiralCEL® OD-H column with 0.1 % butylamine, 15% 

isopropanol and 85% n-heptane at 1mL/min as mobile phase under room temperature. 

Each sample was injected twice with a volume of 5 μL per injection. The HPLC system 

consisted of a Waters 1525 Binary HPLC pump, Waters 2707 autosampler and Waters 

2485 UV/Vis detector. An absolute calibration curve was performed for each compound 

covering the measured values. 
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3.  Results 

3.1. Engineering of yeast strains for pyruvate accumulation 

An overview of the strategy used for the construction of deletion cassette is 

presented in Figure 12. In short, the required deletion fragments to construct the deletion 

cassettes were amplified and purified in order to be fused through overlap extension PCR. 

The background strain was transformed with the deletion cassettes after confirming their 

successful construction through agarose gel electrophoresis. PCR amplification of the 

integrated deletion cassette in the genome of the transformed colonies and assessment of 

expected phenotypic behaviors were performed to confirm successful transformations. 

Results are presented below. 

 

Figure 12- Scheme of overall deletion cassette construction.  



Results                                                              MSc in Molecular Biotechnology 

34 

 

3.1.1. Construction of the deletion fragments  

The construction of the THI2 and PDC 1, 5 deleted strains began with amplification 

of several deletion fragments that were constituted either by the upstream and downstream 

sequence of each gene or the auxotrophic marker sequence flanked by homology regions 

for the up and downstream region of the gene to be deleted. 

All of the necessary deletion fragments were successfully amplified and gel 

purified. The expected fragment size is shown below each band. In all cases, the size was 

confirmed by comparison with the ladder (Figure 13). 

 

 

Figure 13- Deletion fragments amplified from genomic DNA. Fragments containing ‘_ds’, represent the 

downstream region of the respective gene. Fragments containing ‘_us’, represent the upstream region of the 

respective gene. Fragments containing ‘_trp1’ or ‘_ura3’, represent the auxotrophic marker sequence flanked by 

homology regions for the up and downstream region of the respective gene. The expected band size is below each 

band and was confirmed by comparison with the ladder.  

 

3.1.2. Construction of the integration cassettes for gene deletion 

An overlap extension PCR to fuse the deletion fragments was performed. After 

performing overlap extension PCR, the successful construction of the deletion cassettes 

was confirmed by electrophoresis as shown in Figure 14. 

The deletion cassettes were PCR amplified to obtain the required amounts for the 

transformation of CEN.PK2-1C+PAMT.  
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Figure 14- Gel purified deletion cassettes. PDC1_trp1c, PDC5_ura3c and THI2_trp1c represents the final 

deletion cassette for the, respectively, PDC1, PDC5 and THI2 gene. The expected band size of each cassette is 

below each band and was confirmed by comparison with the ladder.  

 

3.1.3. Transformation of yeast and strain confirmation 

3.1.3.1. Construction of CEN.PK 2-1C+PAMT ΔPDC1 ΔPDC5 

The construction of the pdc1 and pdc5 deleted strain started with the transformation 

of the control strain with the PDC1_trp1c deletion cassette. However, PCR amplification 

of the PDC1_trp1 and WPDC1 fragments demonstrated that the selected clone did not 

contain the desired PDC1 deletion. Since no successfully transformed clone was isolated, 

the construction of the desired strain started by transforming the control strain with the 

PDC5_ura3c deletion cassette. 

After transforming CEN.PK2-1C+PAMT with PDC5_ura3c deletion cassette, a 

strain lacking PDC5 was selected and confirmed by PCR amplification of PDC5_ura3 and 

WPDC5 (data not shown). The obtained Δpdc5 strain was transformed with PDC1_trp1 

deletion cassette. Several colonies were selected for genomic DNA extraction and 

amplification of PDC1_trp1, WPDC1, PDC5_ura3 and WPDC5 fragments were performed 

(deletion confirmation fragments are described in 2.3.4). The negative bands resulted from 

the amplification of the fragments from genomic DNA of the control strain CEN.PK2-

1C+PAMT, whereas the positive bands resulted from the amplification of the constructed 

deletion cassettes. The confirmation was done by comparing the band sizes with the 
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positive and negative bands. A successful transformation was confirmed when the colony 

amplification had the same band size as the positive. From the 10 selected colonies, six 

carried the expected deletions as shown on Figure 15 and Figure 16.  

 Three of those colonies were restreaked on new plates (colonies 2, 7 and 8) and 

new colonies were picked and grown in order to make glycerol stocks.  

 

 

 

Figure 15- Deletion confirmation of PDC1 in selected colonies by amplifying PDC1_trp1 and WPDC1 

fragments. The ‘Neg’ lanes represent the amplification of the deletion confirmation fragments from genomic DNA 

of the control strain, whereas the ‘Pos’ lanes represent the amplification of the deletion cassettes. Successful 

transformed clones represent bands with the same size as the positive amplifications. 
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Figure 16- Deletion confirmation of PDC5 in selected colonies by amplifying PDC5_ura3 and WPDC5 

fragments. The ‘Neg’ lanes represent the amplification of the deletion confirmation fragments from genomic DNA 

of the control strain, whereas the ‘Pos’ lanes represent the amplification of the deletion cassettes. Successful 

transformed colonies represent bands with the same size as the positive amplifications.  

 

At the beginning of the fermentations each of the glycerol stocked colonies were 

also inoculated in 20 g/L glucose containing medium to observe the predicted absence of 

growth in medium containing glucose. However, growth was observed after 48 hours. 

Genomic DNA of those cultivations was extracted and amplification of PDC1_trp1 and 

WPDC1 was performed to evaluate if growth was due to revertance of the mutation 

(Figure 17). The amplification of the PDC1_trp1 fragment could lead to the conclusion that 

the clones still possessed the deletion, since they possessed bands with the same size as the 

positive control (Figure 17, PDC1_trp1 gel). However, the amplification of WPDC1 

demonstrated that the clones did not possess the desired deletion since the obtained bands 

possessed the same size as the negative control (Figure 17, WPDC1 gel). A possible reason 

for the amplification of PDC1_trp1 fragments with the clone’s genomic DNA could be due 

to the existence of two copies of the gene. However, this would result in the existence of 2 

bands in the WPDC1 amplification since there would be one band for the deleted and 

another for the non-deleted copy. Yet, only one band was present in the WPDC1 

amplifications of the clones, which means that the bands present in the PDC1_trp1 
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amplifications could be due to contaminations. These results demonstrated that the glycerol 

stocked strains did not longer possess the desired deletion. 

Due to the difficulties in avoiding deletion reversion during the construction of the 

pdc1 and pdc5 deleted strain, the following part of the study focused in the second 

engineering strategy, based on thiamine auxotrophy. 

 

 

Figure 17- Amplification of PDC1_trp1 and WPDC1 fragments from glycerol stocked strain. The Neg 

lanes represent the amplification of the deletion confirmation fragments from genomic DNA of the control strain, 

whereas the Pos lanes represent the amplification of the deletion cassettes. Successful transformed colonies represent 

bands with the same size as the positive amplifications. Successful transformed clones represent bands with the same 

size as the positive amplifications. 

  

3.1.3.2. Construction of CEN.PK 2-1C+PAMT ΔTHI2 

A similar integration fragment was obtained for deleting THI2. After transforming 

CEN.PK2-1C+PAMT, several colonies were picked and inoculated in Verduyn medium 

without thiamine. The clones that did not grow were selected for a first assay of pyruvate 

accumulation. The pyruvate accumulation assays were performed in Verduyn medium 

under aerobic conditions with cells pre-grown in medium containing the normal thiamine 

concentration (3.32 μM) (Appendix VII-, Figure 35). The clone that had the highest 

pyruvate level was selected for further fermentations and confirmation by PCR 

amplification of THI2_trp1 was performed to assure that the selected clone had the desired 

genotype. The confirmation is shown in Figure 18 and the clone 34 was selected for further 

cultivations.  
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Figure 18- Confirmation of desired genotype through amplification of THI2_trp1 from CEN.PK2-

1C+PAMT Δthi2 clone 34 genomic DNA. The ‘Neg’ lane represents the amplification of the deletion confirmation 

fragments from genomic DNA of the control strain, whereas the ‘Pos’ lane represents the amplification of the 

deletion cassette. Genomic DNA of thi2 deleted clone 34 was extracted and THI2_trp1 fragment was amplified. The 

amplified band possessed the same size as the positive control.  
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3.2.  Assessment of the strain carrying a deletion of THI2 gene 

Pyruvate accumulation was assessed in both synthetic mineral media [101] and 

phosphate buffer whereas the transamination reactions were conducted only in phosphate 

buffer.  

 

3.2.1. Pyruvate accumulation during growth 

The first fermentations with the thi2 deleted strain were performed in Verduyn 

medium [101] containing 20 g/L of glucose. The objective was to assess the effect of 

thiamine concentration during pre-cultivation growth on pyruvate accumulation during the 

following cultivation. 

 Thi2 deleted clone 34 was inoculated in medium containing 0.05, 0.1 and 0.5 μM 

of thiamine to identify the minimal concentration of thiamine required for growth. Aerobic 

growth was observed at all levels including in the in medium containing 0.05 μM of 

thiamine, yet at a much lower rate.  

Clone 34 carrying thi2 deletion was selected and pre-grown together with the 

control strain having native THI2, in medium containing the standard (3.32 μM) and the 

lowest tested (0.05 μM) thiamine concentration. After obtaining biomass to start the 

cultivation, cells were transferred to Verduyn medium lacking thiamine but complemented 

with aminoacids. The clone was tested for both anaerobic (3.2.1.1) and aerobic (3.2.1.2) 

pyruvate accumulation. 

 

3.2.1.1. Anaerobic pyruvate accumulation after pre-growth with 

3.32μM and 0.05μM thiamine 

The control and thi2 deleted strain pre-grown in medium containing 3.32 μM 

thiamine displayed similar fermentation profiles (Figure 19). In contrast, higher pyruvate 

accumulation was observed for the thi2 deleted strain when cells were pre-grown with 

limited (0.05 μM) thiamine concentrations (Figure 20), which confirmed the expected 

phenotype and highlighted the importance of precultivation conditions on pyruvate 

accumulation.  
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Figure 19- Anaerobic fermentation of CEN.PK2-1C+PAMT Δthi2 clone 34 and its control in Verduyn 

medium pre grown in 3.32μM thiamine. 

 

 

Figure 20- Anaerobic fermentation of CEN.PK2-1C+PAMT Δthi2 clone 34 and control in Verduyn 

medium pre grown in 0.05μM thiamine. 

 

3.2.1.2. Aerobic pyruvate accumulation after pre-growth with 3.32μM 

and 0.05μM thiamine 

Aerobic pyruvate accumulation in Verduyn medium with cells pre-grown with 

3.32 μM thiamine showed a different trend than in anaerobic fermentations since some 

pyruvate accumulation was observed for the deletion strain as shown in Figure 21. 

The effect of decreasing the thiamine concentration during the pre-fermentation 

growth was similar to the one observed in anaerobic fermentations since the pyruvate 

accumulation was significantly increased in the deletion strain (Figure 22). 
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 Figure 21- Aerobic cultivation of CEN.PK2-1C+PAMT Δthi2 clone 34 and its control in Verduyn 

medium pre grown in 3.32μM thiamine. 

 

 

Figure 22- Aerobic cultivation of CEN.PK2-1C+PAMT Δthi2 clone 34 and its control in Verduyn 

medium pre grown in 0.05μM thiamine. 

 

All pyruvate titers and yields of the fermentations/ cultivations in Verduyn medium 

are summarized in Table 14. The pyruvate yield obtained by the thi2 deleted clone 34 in 

aerobic cultivations containing 20 g/L of glucose with cells pre-grown in 3.32 μM was 

compromised due to problems with the HPLC analysis of the deleted strain samples. 

 

Table 14- Pyruvate titer and yield (g pyruvate/g glucose) for CEN.PK2-1C+PAMT Δthi2 construct and its 

control in Verduyn medium, as a function of thiamine concentration during pre-cultivation. The theoretical maximal 

pyruvate yield (g pyruvate/ g glucose) is 0.98 g/g. 

Thiamine in       

pre-growth 

(μM) 

Aeration 
Pyruvate titer (g/L) Yield g pyruvate/g glucose 

Control ΔTHI2 34 Control ΔTHI2 34 

3,32 
Aerobic 0,17 0,66 0,01 -* 

Anaerobic 0,09 0,10 <0,01 <0,01 

0,05 
Aerobic 0,16 1,31 <0,01 0,38 

Anaerobic 0,17 0,96 <0,01 0,07 

* Glucose measurments not reliable, due to dilution issues 
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The comparison of the pyruvate titer for the control strain (Table 14) showed that 

pyruvate accumulation was not significantly affected by varying the thiamine 

concentration in the pre-fermentation growth medium in both aerobic and anaerobic 

conditions. 

Aerobic cultivations using cells pre-grown with no-limiting thiamine levels resulted 

in a 4-fold increased pyruvate accumulation for the Δthi2 strain clone 34 in comparison to 

the pyruvate accumulation of the control strain in the same conditions. 

Reducing the thiamine level during pre-cultivation, significantly improved pyruvate 

accumulation by the thi2 deleted strain under both aerobic and anaerobic cultivations. 

The highest pyruvate titer was obtained by thi2 deleted clone 34 (1.31 g/L) during 

aerobic cultivations, showing a 2-fold improvement compared to the same strain pre-grown 

in 3.32 μM of thiamine.  

The effect of varying the thiamine concentration in the pre-fermentation growth 

medium was more pronounced in anaerobic fermentations since pyruvate accumulation by 

CEN.PK2-1C+PAMT Δthi2 34 was 10-fold improved. Even by having a higher 

improvement in anaerobic fermentations, the thi2 deleted strain achieved the same 

pyruvate titer than in aerobic cultivations when cells were pre-grown in the minimal 

thiamine concentration. 

 

3.2.2. Pyruvate accumulation during incubation in phosphate buffer 

The desired pyruvate accumulative phenotype of the thi2 deleted strain was 

confirmed through cultivation in Verduyn medium with cells pre-grown with 0.05 μM of 

thiamine. As biocatalyst experiments are usually performed in buffered media that do not 

allow growth, similar experiments were performed using phosphate buffer and cells pre-

grown in 0.05 μM thiamine. Besides comparing the effect of oxygen during the 

fermentations, also the effect of varying the glucose concentrations was evaluated.  

Each experiment of pyruvate accumulation in phosphate buffer was performed 

simultaneously with the respective transamination reaction containing cells from the same 

pre-growth cultivation. Using cells from the same pre-growth cultivation in the two 

experiments allowed the comparison of pyruvate accumulation and transamination without 

having the risk that different pre-growth duration would compromise the comparison. 

However, aerobic and anaerobic experiments were split during the first replica and cells 
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used for the aerobic experiments were obtained from a different pre-growth cultivation 

than for the anaerobic experiments. As it will be shown in 3.2.2.1 and 3.3.2, the first 

experiment of aerobic pyruvate accumulation and transamination in 20 g/L and 50 g/L had 

neither metabolite formation nor transamination reaction. The lack of pyruvate 

accumulation and transamination reaction was thought to be due to a too long pre-growth 

duration in which the cells died. Since the anaerobic experiments were performed with 

cells from a different pre-growth cultivation no comparison was possible between the two 

aeration conditions. In order to assess if the reason for the lack of cellular activity during 

the first aerobic experiments was due to a too long pre-growth duration, enough biomass 

for all the aerobic and anaerobic experiments was grown and the pre-growth duration was 

optimized. The pre-growth optimization consisted in following the pre-growth over time 

through OD620nm measurements. Once the required biomass for all the experiments was 

obtained the cells were treated as described in 2.4.1 and 2.4.2 and the pyruvate 

accumulation incubation and transamination reactions were started. The pre-growth 

duration was reduced by more than 24 hours and by performing all experiments containing 

cells from the same pre-growth cultivation it was possible to compare pyruvate 

accumulation and transamination under aerobic and anaerobic conditions. 

Both rounds of experiments could therefore not be considered biological replica, 

since pre-growth duration was optimized between the first and second experiment. 

 

3.2.2.1. Aerobic pyruvate accumulation in phosphate buffer 

The effect of glucose concentration during aerobic pyruvate accumulation was 

screened by inoculating CEN.PK2-1C+PAMT Δthi2 clone 34 and a control strain in 

phosphate buffer containing 20 g/L or 50 g/L of glucose under aerobic conditions.  

The first experiment resulted in invalid data, as discussed in 3.2.2, since no 

metabolite formation was observed as shown in Figure 23. The aerobic cultivation 

containing 20 g/L of glucose had similar profile (data not shown). 
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Figure 23- First experiment of CEN.PK2-1C+PAMT Δthi2 34 aerobic cultivation in phosphate buffer 

containing 50 g/L glucose. 

 

A second attempt of aerobic cultivation containing 20 g/L or 50 g/L of glucose was 

performed after optimizing pre-fermentation growth duration as described in 3.2.2, 

resulting in the data shown in Figure 24 and Figure 25 respectively. However, the data 

respectively to the cultivation of the control strain CEN.PK2-1C+PAMT in phosphate 

buffer containing 20 g/L of glucose was not reliable due to problems during the HPLC 

analysis. 

 

 

Figure 24- Representative aerobic pyruvate accumulation of CEN.PK2-1C+PAMT Δthi2 in phosphate 

buffer containing 20 g/L glucose 

 

Figure 25- Representative aerobic pyruvate accumulation of CEN.PK2-1C+PAMT Δthi2 in phosphate 

buffer containing 50 g/L glucose 
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Pyruvate titers and yields obtained during aerobic incubation in phosphate buffer 

are summarized in Table 15. 

 

Table 15- Pyruvate titers and yields obtained in phosphate buffer containing 20 g/L or 50 g/L of glucose 

under aerobic conditions. Pyruvate accumulation results in 20 g/L of glucose with the control strain were unreliable 

due to issues in HPLC analysis. The theoretical maximal pyruvate yield (g pyruvate/ g glucose) is 0.98 g/g. 

Glucose 

g/L 

Pyruvate titer                                                                           

g/L 

Pyruvate yield                                                                                                                  

g pyruvate/g glucose 

Control ΔTHI2 34 Control ΔTHI2 34 

20 - 0.39 - 0.24 

50 0.14 0.12 <0.01 0.10 

 

Pyruvate titers and yields for the control strain in phosphate buffer with 20 g/L of 

glucose were not able to be compared since no reliable results were obtained as shown 

above. However, a higher pyruvate titer was achieved during aerobic cultivation in 

phosphate buffer with 20 g/L of glucose than with 50 g/L of glucose by the thi2 deleted 

strain. 

The desired effect of pyruvate accumulation through the thi2 deletion was not 

achieved during aerobic cultivations in phosphate buffer containing 50 g/L of glucose. The 

pyruvate yield of the thi2 deleted strain with 50 g/L of glucose however was higher than 

the control strain. 

Comparison of pyruvate titers achieved during aerobic cultivations in Verduyn 

medium or phosphate buffer showed that pyruvate accumulation was higher during 

cultivations in Verduyn medium as shown in Figure 26. 
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Figure 26- Comparison of pyruvate titers achieved during aerobic pyruvate accumulation in Verduyn 

medium and phosphate buffer. The * represent the unreliable pyruvate titer result of the control strain in phosphate 

buffer containing 20 g/L due to HPLC analysis issues. 

 

3.2.2.2. Anaerobic pyruvate accumulation in phosphate buffer 

The effect of glucose concentration during anaerobic pyruvate accumulation was 

screened by inoculating CEN.PK2-1C+PAMT Δthi2 clone 34 and the control strain in 

phosphate buffer containing 20 g/L (Figure 27) or 50 g/L of glucose (Figure 28) under 

anaerobic conditions.  

 

 

Figure 27- Representative anaerobic pyruvate accumulation of CEN.PK2-1C+PAMT Δthi2 clone 34 and 

its control in phosphate buffer containing 20 g/L glucose. 
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Figure 28- Representative anaerobic pyruvate accumulation of CEN.PK2-1C+PAMT Δthi2 clone 34 and 

its control in phosphate buffer containing 50 g/L glucose. 

 

Pyruvate and ethanol titers and yields are summarized respectively in Table 16 and 

Table 17. Since pre-growth duration was optimized between the two experiments as 

described in 3.2.2, the results could not be considered as biological replica and were 

treated separately. 

 

Table 16- Pyruvate titers and yields obtained in phosphate buffer containing 20 g/L or 50 g/L of glucose 

under anaerobic incubations. Control 1 and ΔTHI2 1 columns represent the first experiment whereas Control 2 and 

ΔTHI2 2 columns represent the second experiment in which pre-growth duration was optimized as described in 

3.2.2. The theoretical maximal pyruvate yield (g pyruvate/ g glucose) is 0.98 g/g. 

Glucose 

g/L 

Pyruvate titer                                                                           

g/L 

Pyruvate yield                                                                                                                  

g pyruvate/g glucose 

Control 

1 

Control 

2 

ΔTHI2 34 

1 

ΔTHI2 34 

2 

Control 

1 

Control 

2 

ΔTHI2 34 

1 

ΔTHI2 34 

2 

20 0,52 0,31 0,76 0,84 0,026 0,014 0,059 0,045 

50 0,53 0,17 0,67 1,46 0,011 <0,01 0,084 0,076 

 

Table 17- Ethanol titers and yields obtained in phosphate buffer containing 20 g/L or 50 g/L of glucose 

under anaerobic incubations. Control 1 and ΔTHI2 1 columns represent the first experiment whereas Control 2 and 

ΔTHI2 2 columns represent the second experiment in which pre-growth duration was optimized as described in 

3.2.2. The theoretical maximal ethanol yield (g ethanol/ g glucose) is 0.51 g/g. 

Glucose 

g/L 

Ethanol titer                                                       

g/L 

Ethanol yield                                                                                                                  

g ethanol/g glucose 

Control 

1 

Control 

2 

ΔTHI2 34 

1 

ΔTHI2 34 

2 

Control 

1 

Control 

2 

ΔTHI2 34 

1 

ΔTHI2 34 

2 

20 6,7 7,7 7,9 6,5 0,33 0,34 0,31 0,23 

50 18,6 19,5 9,9 16,5 0,39 0,35 0,34 0,29 

 

CEN.PK2-1C+PAMT Δthi2 clone 34 demonstrated an improved pyruvate 

accumulative phenotype of 2.7- and 8.6- fold in phosphate buffer containing, respectively, 
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20 g/L or 50 g/L of glucose in comparison to the control strain during the incubations in 

which the pre-growth duration was optimized. Besides the increased pyruvate titer, also the 

pyruvate yield was improved ~3- and 10- fold in 20 g/L or 50 g/L of glucose.  

Ethanol titers and yields in phosphate buffer containing 20 g/L of glucose were 

similar in both experiments between the control and the Δthi2 34 strain. On the contrary, 

CEN.PK2-1C+PAMT Δthi2 clone 34 reached a lower ethanol titer than the control strain in 

phosphate buffer containing 50 g/L in both experiments. However, ethanol yields were 

similar between the two strains. 

The comparison of all anaerobic pyruvate accumulation experiments are 

summarized in Figure 29.  

Comparing the pyruvate titers reached during anaerobic fermentations in phosphate 

buffer (Figure 29) significant variation between the two experiments of thi2 deleted strain 

in phosphate buffer containing 50 g/L of glucose was observed. The significant increase in 

pyruvate titer during the second experiment demonstrated the importance of pre-growth 

duration which could be related with an initial higher cellular viability. Yet, biological 

replicas would be required to confirm the effect of different pre-growth durations. 

 

 

Figure 29- Comparison of pyruvate titers during anaerobic fermentations in Verduyn and phosphate buffer 

for the control strain and thi2 deleted clone 34. The grey bars represent the second experiments in which the pre-

growth duration was optimized as described in 3.2.2. 
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3.3. Transamination using the thi2 deleted strain 

After confirming that strains carrying a deletion in THI2 gene displayed higher 

pyruvate accumulation than the parental strain, the effect of pyruvate accumulation on the 

kinetic resolution of R,S-PEA was evaluated in phosphate buffer under anaerobic and 

aerobic conditions with 20 g/L and 50 g/L glucose. The strain CEN.PK2-1C+PAMT Δthi2 

clone 34 was selected for the transamination biocatalysis due to its growth rate and high 

pyruvate titer.  

The second experiments of aerobic and anaerobic transamination incubations were 

all performed with cells from the same pre-growth cultivation in which the pre-growth 

duration was optimized as described in 3.2.2.  

 

3.3.1. Anaerobic transamination 

The anaerobic transaminations were performed under the same conditions as the 

pyruvate accumulation fermentations in chapter 3.2.2.2, to be able to relate the pyruvate 

accumulation directly with the kinetic resolution. A representative reaction profile and the 

R,S-PEA and ACP evolution over time during anaerobic kinetic resolution with 20 g/L or 

50 g/L of glucose is shown, respectively, in Figure 30 and Figure 31.  

 

 

Figure 30-Representative anaerobic kinetic resolution of R,S-PEA with CEN.PK2-1C+PAMT Δthi2 clone 

34 and its control strain in phosphate buffer containing 20 g/L glucose. Cells were pre-grown in Verduyn medium 

containing 20 g/L of glucose and 0.05 μM thiamine. 
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Figure 31- Representative anaerobic kinetic resolution of R,S-PEA with CEN.PK2-1C+PAMT Δthi2 34  in 

phosphate buffer containing 50 g/L glucose. Cells were pre-grown in Verduyn medium containing 20 g/L of glucose 

and 0.05 μM thiamine. 

 

The conversion rates and enantiometric excess obtained during anaerobic kinetic 

resolution of R,S-PEA with CEN.PK2-1C+PAMT Δthi2 clone 34 and the control strain in 

phosphate buffer containing 20 g/L or 50 g/L of glucose are summarized in Table 18. Since 

pre-growth duration was optimized between the two experiments as described in 3.2.2, the 

results could not be considered as biological replica and were treated separately. 

 

Table 18- Anaerobic transamination, comparison of conversion and enantiomeric excess in phosphate 

buffer containing 20 or 50 g/L of glucose. Control 1 and ΔTHI2 1 columns represent the first experiment whereas 

Control 2 and ΔTHI2 2 columns represent the second experiment in which pre-growth duration was optimized as 

described in 3.2.2. 

 

Taking in account the two experiments, the total conversions achieved by the 

control strain were slightly higher than thi2 deleted strain (see Table 18). 

Total conversion and enantiomeric excess obtained either by the control or thi2 

deleted strain did not reach interesting values during the first experiments. However, in the 

second experiment were pre-growth duration was optimized as described in 3.2.2, both 

parameters were improved for both of the strains. By optimizing the pre-growth duration 

an enantiomeric excess of 100% was achieved by both strains (except thi2 deleted strain in 

50 g/L of glucose), which means that no S-PEA remained in the reaction solution. Yet, the 

Glucose 

(g/L)  

Total conversion (%) Ee of R-PEA (%) 

Control 

1 

Control 

2 

ΔTHI2 34 

1 

ΔTHI2 34 

2 

Control 

1 

Control 

2 

ΔTHI2 34 

1 

ΔTHI2 34 

2 

20 36,78 51,34 44,07 48,81 57,25 100 78,7 100 

50 47,65 49,64 38,71 45,72 89,88 100 63,69 88,49 
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control strain achieved the R-PEA enriched solution faster than the thi2 deleted strain 

(Figure 30). 

Kinetic resolution of R,S-PEA under these conditions was therefore not improved 

by the deletion of the THI2 gene.   

 

3.3.2. Aerobic transamination 

Aerobic kinetic resolution was performed under the same conditions as in the 

pyruvate accumulating cultivations described in 3.2.2.1. Despite the lower pyruvate 

accumulation observed in3.2.2.1, aerobic transamination was performed in the attempt to 

observe the effect of oxygen.  

Aerobic kinetic resolution of R,S-PEA with CEN.PK2-1C+PAMT Δthi2 clone 34 

and the control strain in phosphate buffer containing 20 or 50 g/L of glucose was 

performed. During the first experiment no metabolite formation or transamination reaction 

was observed. As described in 3.2.2, such results lead to performing all the experiments 

with cells obtained from the same pre-growth optimized cultivation. 

The results from the second experiment are shown in Figure 32 and Figure 33. 

 

Figure 32- Aerobic kinetic resolution of R,S-PEA with CEN.PK2-1C+PAMT Δthi2 34  in phosphate 

buffer containing 20 g/L glucose. 

 

Figure 33- Aerobic kinetic resolution of R,S-PEA with CEN.PK2-1C+PAMT Δthi2 34  in phosphate 

buffer containing 50 g/L glucose. 



Results                                                              MSc in Molecular Biotechnology 

53 

 

The glucose measurements of the aerobic transaminations were unreliable since 

glucose concentrations were increasing over time as shown in Figure 32 and Figure 33.  

The conversion rates and enantiometric excess obtained during the second 

experiment of aerobic kinetic resolution of R,S-PEA with CEN.PK2-1C+PAMT Δthi2 34 

and the control strain in phosphate buffer containing 20 g/L or 50 g/L of glucose are 

summarized in Table 19. 

 

Table 19- Aerobic transamination, comparison of conversion and enantiomeric excess in phosphate buffer 

containing 20 or 50 g/L of glucose. In this table only the second experiment results were presented since during the 

first experiment no transamination reaction was observed. 

 

Even optimizing the pre-growth cultivation duration, both strains demonstrated low 

potential for kinetic resolution of R,S-PEA and no metabolite formation. These results were 

similar to the first experiment with cells whose pre-growth cultivation duration was not 

optimized. As discussed previously in chapter 3.2.2, the hypothesis to explain the results 

obtained in the first experiment was that the used cells were dead when the reaction started. 

However, by performing all the second experiments with cells of the same pre-growth 

cultivation this hypothesis could be declined, since all the second anaerobic experiments 

containing cells from the pre-growth optimized cultivation were successful and even 

demonstrated better results than the first experiment. Since all the second experiments in 

phosphate buffer obtained results except the transamination in aerobic conditions, it is 

possible to state that the presence of oxygen with R,S-PEA has a inhibitory effect on the 

cells. 

 

 

  

Glucose (g/L)  
Total conversion (%) Ee of R-PEA (%) 

Neg ΔTHI2 34 Neg ΔTHI2 34 

20 3.46 3.13 5.80 6.13 

50 15.42 8.30 8.76 10.92 
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4. Discussion 

4.1. Strain confirmation and selection 

Two strains were constructed to accumulate pyruvate by deletion of PDC structural 

genes (PDC1 and PDC5) and biosynthetic gene of PDC’s cofactor thiamine (THI2). The 

purpose was to improve kinetic resolution of R,S-PEA by increasing the amount of the co-

substrate pyruvate. In the following sub-chapters the construction of such strains will be 

discussed. 

 

4.1.1. Construction of the Δthi2 deleted strain 

The desired CEN.PK 2-1C+PAMT Δthi2 strain was obtained and confirmed by 

phenotypic, lack of growth in Verduyn medium without thiamine, and genotypic, PCR 

amplification of the THI2_trp1 fragment, behavior. The inability of growing in medium 

without thiamine is related to the enzymes that possess thiamine as co-factor. Besides 

PDC, other enzymes like acetolactate synthase, transketolase, E1 components of PDH, 2-

oxoglutarate dehydrogenase and α-Ketoisocaproate decarboxylase have thiamine as co-

factor [103]. PDH and 2-oxoglutarate dehydrogenase catalyze similar reactions, where 

PDH converts pyruvate into acetyl-CoA and 2-oxoglutarate dehydrogenase converts α-

ketoglutarate into succinyl-CoA. Both of the products are important intermediates during 

the TCA-cycle (Figure 1). By inhibiting the synthesis of succinyl and acetyl-CoA the cell 

is unable to regenerate co-enzymes aerobically or produce biosynthetic building blocks. 

Transketolase is another thiamine dependent enzyme which catalyzes the synthesis of 

erythrose-4-phosphate, an aromatic aminoacid precursor. By inhibiting the activity of 

transketolase through thiamine auxotrophy, yeast is unable to grow since it cannot produce 

aromatic aminoacids [104]. Another enzyme which leads to low biomass formation by 

thiamine auxotrophy is α-acetolactate synthase since it is responsible for the first step in 

isoleucine and valine biosynthesis [103]. Growing the Δthi2 strain in medium without 

thiamine would increase the pyruvate accumulation since even small amounts of this co-

factor allow pyruvate consumption by PDC. However, the media required for growing the 

strain without thiamine would need supplements of all aminoacids and biosynthetic 

precursors which are connected to thiamine. This media would be possible to prepare for a 

laboratorial scale yet its application in an industrial scale would be expensive and 
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operationally ineffective. The minimal concentration of thiamine to obtain biomass was 

screened to develop a more industrial feasible upstream process. The minimal thiamine 

concentration that allows biomass formation was 0.05 μM. However, this concentration 

only allowed obtaining small amounts of biomass per cultivation. This means that in order 

to obtain the required biomass for the start of the fermentations/cultivations a considerable 

amount of pre-fermentation growth cultivations was required.   

 

4.1.2. Construction of Δpdc1 Δpdc5 double deleted strain 

Another strategy for pyruvate accumulation in S. cerevisiae which has been 

evaluated in this study was a double knock-out of PDC1 and PDC5.  

In the first attempt of transformation, the control strain was transformed with each 

deletion cassette individually or simultaneously. Growth was observed in several 

transformation plates but only colonies solely transformed with the PDC5 deletion cassette 

were successfully confirmed through PCR amplification.  

After obtaining the CEN.PK2-1C+PAMT Δpdc5 strain a single colony was selected 

and transformed with the Δ PDC1 deletion cassette. The desired strain could not be isolated 

due to inconclusive PCR results and a high rate of false positive colonies on the 

transformation plates. 

The high rate of colonies that restored the auxotrophic marker without deleting the 

targeted genes can be explained by homologous recombination between the marker 

sequence within the deletion cassette and the disrupted marker in the strain (Figure 34). 

This is possible because the auxotrophic marker in the deletion cassette was amplified 

from genomic DNA with high similarity to the background strain. The similarity enables a 

homologous recombination between the marker sequence of the deletion cassette and the 

disrupted marker gene of the auxotrophic strain. The recombination between the marker 

sequences results in a strain that grows in media without the supplementation of the 

aminoacids but does not possess the desired deletion. 
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Figure 34- Possible mechanism for false positive colonies in ΔPDC strains. The high similarity between 

the marker sequence of the deletion cassette and the dirsupted marker of the strain allows the homologous 

recombination between the two marker sequence and restore the expression of the amino acid biosynhtetic gene. 

 

However, the most probable recombination should still be the one with the targeted 

gene since it has longer homologous sequences. At first, transformation plates were 

prepared with glucose as carbon source which would indirectly select only the false 

positive strains since the double deleted strains could not grew on glucose. The glucose 

sensitive phenotype was thought to be due to the inability of synthetizing cytosolic acetyl-

CoA which is required for lysine and fatty acid synthesis [58]. In an attempt to overcome 

such drawback, Van Maris et al overexpressed threonine aldolase, which converts 

threonine to glycine and acetaldehyde, in a ΔPDC strain [105]. The overexpression of 

threonine aldolase would provide the required acetaldehyde for the production of acetyl-

CoA. However, the strain was still unable to grow in high glucose concentrations. 

Therefore, the reasons for the glucose sensible phenotype of the ΔPDC strains are still 

unknown. Attempts to overcome this glucose sensible phenotype have been focused on 

directed evolutions followed by the analysis of transcriptome to identify possible genes 

related to adaptation [68, 73].  

Since not so much is known about the glucose sensitive phenotype of PDC deleted 

strains, the only alternative to increase the probability of isolating a PDC deleted strain was 

to change glucose by ethanol in the transformation plates. By providing ethanol as the only 

carbon source, the PDC deleted cells would be able to produce cytosolic acetyl-CoA and 

thereby grow. However, as expected growth on ethanol plates took some weeks to observe 

the formation of colonies. 
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Additionally, to increase the efficiency of selecting the PDC deleted strain the PCR 

method was changed from colony PCR to genomic DNA extraction followed by PCR 

amplification. This alternative approach was more time consuming but increased the 

quality of the PCR amplification by avoiding contamination of potential inhibitors of the 

DNA polymerase present in the cells. Also to increase the probability of obtaining the 

desired double deleted strain, the cells after being exposed to the transformation heat shock 

were incubated in yeast extract peptone (YP) solution during 3 hours. The purpose of the 

incubation in YP was to regenerate the cell membrane in order to handle the drastic 

exposure to ethanol. 

After improving the transformation and confirmation methods, the desired double 

deleted strain was obtained as shown in Figure 15 and Figure 16. The dual band from 

WPDC1 in Figure 15 colony 3, shows the importance of the amplification of 

WPDC1/WPDC5 fragments. In the specific case of colony 3 it is possible to see that one of 

the PDC1 locus was successfully deleted but that there was still one locus with a functional 

gene. The appearance of two bands was unexpected since haploid strains should only 

possess a single copy of each gene since they possess only one copy of each chromosome. 

The existence of two loci could be possibly explained by the existence of two PDC1 gene 

copies in the same chromosome due to the importance of the PDC1 gene for the viability 

of the cell. It is also to notice that if only the amplification of PDC1_trp1 would be used 

for strain confirmation the situation discussed above would never be noticed.  

 All of the selected colonies for PCR strain confirmation were streaked on a new 

plate. After screening and selecting the colonies containing the double deletions, single 

colonies from the streaked plate were pre-grown to prepare respective glycerol stocks. 

Each colony was inoculated in YP containing ethanol in order to obtain biomass required 

for the fermentations/cultivations. At the same time each colony was inoculated in 

Verduyn medium containing glucose as carbon source to confirm the glucose sensitive 

phenotype. However, after 48 hours growth was present in the 250 mL shake flasks. Since 

no growth was the expected result the DNA of the cells in those cultivations was extracted 

and PCR amplification of PDC1_trp1 and WPDC1 was conducted. Surprisingly the PCR 

demonstrated that the deletions were not present even if those were confirmed before 

streaking the colonies (Figure 17).  The occurrence of pyruvate decarboxylase activity in  

Δpdc1 Δpdc5 strains and consequent growth in glucose was discussed by Hohman [106]. 
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In this work the growth of Δpdc1 Δpdc5 strains in glucose is explained by the fusion of the 

PDC1 promoter with the PDC6 structural gene. The PDC6 gene is poorly expressed and 

its deletion has no effect in pyruvate decarboxylase activity [57]. However, PDC6 

sequence is 84% homologous to PDC1 showing that the null effect of PDC6 deletion in 

PDC activity is due to its low expression level and not inefficient protein activity [103, 

107]. It is also reported that the high expression of PDC1 compared to the other PDC 

genes is due to its promoter [106]. The fusion between the promoter of PDC1 and 

structural gene of PDC6 would result in a high expression of PDC6 which by having high 

structural homology with PDC1 would lead to the expression of an active PDC.  

However, in this case fusion between the PDC1 promoter and PDC6 structural 

gene was not the reason for growth in glucose media since PDC1 gene was intact leading 

to the expression of PDC (Figure 17). Reversing a gene knockout in the genomic DNA is 

uncommon. The loss of the deleted strain can then be explained by contamination during 

the handling of the strains, by recombination solely between auxotrophic markers as 

described above or growth of undeleted cells within the colony at the expense of nearby 

cells. However, the loss of the desired strain just by streaking the colony is still unclear and 

several attempts to find the desired strain were conducted. These attempts consisted in 

picking cells from the ‘mother’ colonies that were streaked and inoculating them in 10 mL 

of YP ethanol. After overnight growth half of the culture was used to extract the DNA and 

the other half was directly used for the glycerol stock avoiding the problem of picking a 

wrong colony from streaked plates. However, the isolation of the desired double knock-out 

strain was not successful due to problems with PCR amplification since the DNA quality 

was very low and selection of undeleted colonies from the plate. Nevertheless, it was 

possible to obtain PCR amplification of certain colonies which revealed intact PDC1. As a 

final attempt the colonies were grown in non-fermentable minimal media instead of an 

undefined rich media containing ethanol. The purpose was to avoid over-growth of 

undesired cells since the double deleted strain would grow at the same growth rate as the 

false positive colonies. The media consisted in YNB without amino acids (6,7 g/L) 

buffered with succinic acid (10g/L) and supplemented with glycerol (50 g/L), ethanol 

(20 g/L), glutamic acid (10 g/L) and aspartic acid (10 g/L) as carbon sources [108]. Yet no 

desired double deleted strain was found from all of the screened colonies.  
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Despite all the attempts and strategies no double deleted strain was successfully 

recovered and stored even having previously confirmed three colonies with the desired 

deletions.  Since the main issue for selecting the desired CEN.PK2-1C+PAMT Δpdc1 

Δpdc5 is the glucose sensitive phenotype, it would be interesting to start the construction 

of such strain by deleting MTH1. Deletion of MTH1 provides the ability of a PDC deleted 

strain to grow in glucose containing medium as described in chapter 1.3.1 avoiding growth 

issues and increase the number of desired colonies compared to the false positives colonies 

[73]. 

 

4.2. Pyruvate Accumulation with CEN.PK2-1C+PAMT ΔTHI2 

4.2.1. Pyruvate accumulation in Verduyn medium  

The first attempts to assess if the obtained CEN.PK2-1C+PAMT Δthi2 strains 

possess the desired pyruvate accumulative phenotype were performed in Verduyn medium 

lacking thiamine. The deleted strain cannot grow in media lacking thiamine which means 

that a pre-fermentation growth was necessary. The concentration of thiamine during pre-

fermentation growth is critical since even small amounts of this vitamin result in an active 

PDC making the effect of thiamine biosynthetic gene deletion unnoticeable [69]. Several 

concentrations of thiamine for the pre-fermentation growth medium were screened and the 

concentration of 0.05 μM of thiamine was the limit to obtain growth. Anaerobic and 

aerobic cultivations were carried out with cells pre-grown in Verduyn medium containing 

either the common thiamine concentration or the minimal concentration. The pyruvate 

accumulative phenotype of CEN.PK2-1C+PAMT Δthi2 clone 34 cells pre-grown in 

common thiamine concentration was only observed in aerobic cultivation. This result was 

unexpected since pyruvate accumulation should be higher in anaerobic conditions due to a 

low activity of PDH and PYC combined with the inhibited PDC. The high cellular density 

with which the anaerobic fermentations started, in contrast to the aerobic cultivations could 

be the reason for the results observed. Thiamine as a co-factor is not consumed which 

results in its accumulation inside of the cells. Even after washing the cells with 

demineralized water the amount of intracellular thiamine accumulated during pre-growth 

could provide the amount of vitamin to keep a part of the yeast population with an active 

PDC. This possibility is supported by the ethanol production rate measured during the 
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pyruvate accumulation fermentations under anaerobic conditions. As shown in Figure 19 

the ethanol production rate of the thi2 deleted strain is similar to the control strain. The 

similar ethanol production rate demonstrates that no thiamine shortage was present. On the 

contrary, anaerobic fermentations with the thi2 deleted cells pre-grown in the minimal 

thiamine concentration demonstrated increased pyruvate accumulation. This demonstrates 

the importance of thiamine concentration during pre-fermentation growth. 

The highest improvement in pyruvate accumulation by decreasing the thiamine 

concentration during pre-growth was observed during anaerobic fermentations (10-fold 

improvement in comparison to cells pre-grown in normal thiamine concentration) as 

described in 3.2.1.2. Yet, even with a higher improvement in anaerobic fermentations the 

thi2 deleted strain reached similar pyruvate titers than in aerobic cultivations. This can be 

explained by the lower pyruvate accumulation in anaerobic fermentations with cells pre-

grown in normal thiamine concentration than in the respective aerobic cultivations. The 

lower pyruvate accumulation with cells pre-grown in normal thiamine concentration under 

anaerobic conditions is due to a quick assimilation of pyruvate to convert acetaldehyde into 

ethanol and regenerate NAD
+
 in which for each pyruvate molecule consumed one 

molecule of NAD
+
 is regenerated. In aerobic conditions, the assimilation of pyruvate in the 

TCA cycle leads to an increased regeneration of NAD
+
 per molecule of pyruvate which 

thereby leads to lower pyruvate consumption. In this way, the thi2 deleted strain reaches 

the same pyruvate titer under anaerobic and aerobic conditions with cells pre-grown with 

the minimal thiamine concentration, but the effect of varying the thiamine concentration 

during pre-growth is more pronounced in anaerobic than in aerobic conditions, because 

anaerobically it accumulates less pyruvate with cells pre-grown in normal thiamine 

concentration.  

 However, more biological replicas would be needed to prove this hypothesis since 

these assumptions are based on a single experiment. Since in aerobic cultivations the initial 

cellular density was much lower this phenomenon would not occur leading to a partial 

pyruvate accumulative phenotype. 
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4.2.2. Pyruvate accumulation in phosphate buffer 

As it was proven that the desired pyruvate accumulating phenotype was possible, 

incubations were performed in phosphate buffer to assess if the desired phenotype was also 

present in the transamination solution. Incubations in phosphate buffer lacking R,S-PEA 

allowed measuring the pyruvate accumulation and directly relate its effect during the 

transamination reactions. Phosphate buffer does not provide the co-factors and salts 

required for yeast growth as Verduyn medium. However, the development of a biocatalytic 

process in this solution is in an economical and industrial point of view more profitable 

due to its low preparation cost and also providing simpler and faster downstream 

processes. 

The first experiments of pyruvate accumulation in phosphate buffer were performed 

with cells whose pre-growth cultivation were between 48-54 hours to assure that the cells 

were in mid-stationary phase and obtain the maximum biomass amount per cultivation. 

However, the first aerobic incubations did not present any metabolite formation which was 

thought to be due to the use of dead cells since the pre-growth cultivation could be too 

long. To assess such hypothesis and obtain a reference to compare if the cells were dead, 

pre-growth duration was optimized and biomass was obtained to start all the experiments 

with the same pre-grown cells, as described in 3.2.2.  

The pyruvate accumulation phenotype was present in both anaerobic incubations 

with the thi2 deleted strain in phosphate buffer as shown in Table 16. During the second 

experiment, higher pyruvate titers and yields (both 1.7-fold improved) were achieved by 

the thi2 deleted strain in phosphate buffer containing 50 g/L of glucose in comparison to 

the incubation in 20 g/L of glucose with the same strain. The reason could be a higher 

glycolytic flux creating an increase overflow in the pyruvate branch point. The obtained 

pyruvate titers did not reach the values previously reported by Xu et al. since in this work 

the maximum pyruvate titer reached was 8.21 g/L compared to the 1.46 g/L of pyruvate 

accumulated in this thesis. However, the variance can be explained due to a more complex 

fermentation media since it contained NH4Cl, KH2PO4, MgSO47H2O, urea and 0.04 μM of 

thiamine such as an optimized carbon-nitrogen ration [69]. By having thiamine during the 

pyruvate accumulation fermentation the cellular viability is increased since cytosolic 

acetyl-CoA is produced leading to generation of biosynthetic precursors. This leads to an 

increased number of cells with a higher viability resulting in higher carbon flow and 
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consequently higher pyruvate titers. However, the approach of having the minimal 

thiamine concentration during the pyruvate accumulation fermentation was not followed in 

this study since the preparation of media containing a specific concentration of thiamine is 

impractical and expensive for industrial purposes. Another drawback of providing thiamine 

during fermentations to accumulate pyruvate is the possibility to loose carbon to biomass, 

resulting in lower yields. 

 The thi2 deletion should have a direct effect in ethanol titers and yields since 

through inactivation of PDC no acetaldehyde is formed to be consumed by ADH. Ethanol 

titers were mainly lower for the thi2 deleted strain in comparison to the control strain, 

especially in incubations containing 50 g/L of glucose (Table 17). Even producing lower 

ethanol titers in fermentations containing 50 g/L of glucose, the deleted thi2 strain obtained 

yield values similar to the ones reached by the control strain (see Table 17). By achieving 

the same ethanol yield even producing less ethanol than the control strain, the thi2 deleted 

strain would have to re-direct the glucose consumption mainly for ethanol production and 

avoid consumption for other cellular requirements. This can be explained by the effect of 

thiamine auxotrophy in an overall view which is the lower biomass formation. The control 

strain enables the activity of several enzymes related to biomass formation by production 

of thiamine which would thereby lead to the consumption of glucose for biomass synthesis. 

However, the thi2 deleted strain does not have thiamine to maintain those enzymes active 

and thereby the glucose would be mainly consumed in ethanol formation. This can be 

based on the slower glucose consumption by the thi2 deleted strain in Figure 28 which 

shows the lower glucose demand.  

Comparing with the values reported by Xu et al [69], the ethanol titers and yield 

obtained by the thi2 deleted strain in this work were, respectively, 2.8- and 1.6-fold higher. 

However, the different conditions in which pyruvate was accumulated by Xu et al could 

explain the different ethanol titers. Xu et al performed the pyruvate accumulation under 

aerobic conditions with less biomass concentration (2.24 OD620nm). In aerobic conditions, 

glucose is consumed through respiration and, depending on the extracellular glucose 

concentration, partially consumed for ethanol production. By consuming glucose to fuel 

both of these pathways, the ethanol titers and yields are lower. 

Independent of the glucose concentration, pyruvate accumulation by thi2 deleted 

strain in phosphate buffer during aerobic cultivations, did not reach the titers obtained 
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during anaerobic fermentations (Table 15 and Table 16). This was unexpected since high 

pyruvate titers were achieved by Xu et al in aerobic conditions. Additionally, high pyruvate 

titers were observed during aerobic cultivations in Verduyn medium as discussed in 4.2.1, 

which would suggest that pyruvate accumulation would occur also in phosphate buffer.  

Performing transamination reactions in Verduyn medium lacking thiamine would be 

interesting since pyruvate accumulation observed in Verduyn medium during aerobic 

cultivations was much higher than in phosphate buffer. 

  

4.3.  Pyruvate accumulation effect in kinetic resolution of amines 

Total conversion and enantiometric excess of R-PEA were the two parameters 

analyzed during the kinetic resolution of R,S-PEA to evaluate the effect of the pyruvate 

accumulation. The total conversion shows the reaction rate of the transamination reaction 

by relating the total initial amount with the total final amount of amine. The theoretical 

maximum value for total conversion is 50 %, which would mean that all of the S-PEA was 

converted to ACP. The enantiometric excess is related to the purpose of the reaction which 

is to obtain a solution only containing R-PEA. The desired result is an enantiometric excess 

of >99% which would be a solution only containing R-PEA. Though, due to intrinsic 

problems during an industrial process it is difficult to reach an enantiometric excess of 

>99%. However, only amines for pharmaceutical applications require such high 

enantiomeric excess, which is mainly obtained through downstream purifications. 

During aerobic transaminations neither total conversion nor enantiometric excess 

demonstrated a good reaction rate or the obtainment of a commercial valuable 

enantiometric enriched amine solution. In the first experiment where the pre-growth 

duration was not optimized, no metabolite formation neither variation in the R,S-PEA 

concentration was observed. Such result was thought to be due to the use of dead cells 

since the pre-growth duration could be too long. To assess such hypothesis the pre-growth 

duration was optimized as described in 3.2.2 and all the second experiments were 

performed with cells from the same pre-growth cultivation. All the second anaerobic 

experiments with the pre-growth duration optimized cells resulted in improved results in 

comparison to the first experiment. However, the aerobic kinetic resolution with the same 

cells demonstrated some residual cellular activity as shown in Figure 32 and Figure 33. 

This demonstrates that the lack of metabolite formation and transamination reaction in 
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aerobic conditions is not due to cellular death during the pre-growth cultivations, since 

cells of the same pre-growth cultivation demonstrated pyruvate accumulation and 

transaminase activity under anaerobic conditions. However, since such assumptions were 

based on one experiment more replicas are required. A more accurate assessment would 

consist of viability assays during the transamination incubations. 

Better results were obtained during anaerobic transamination reactions which were 

also expected since higher pyruvate titers were obtained during the pyruvate accumulation 

incubations in phosphate buffer. It is possible to see that biocatalysis with the thi2 deleted 

strain resulted in higher ACP concentrations in comparison to the control strain, as shown 

in Figure 30 and Figure 31. The high ACP concentrations should mean better 

transamination rates however the total conversion and enantiometric excess did not show 

improvements in comparison to the control strain. The higher ACP values obtained by the 

thi2 deleted strain can be explained by differences observed during the organic extraction 

step. During organic extraction the samples from the control strain possessed a smeary 

phase between the aqueous and organic phase which complicates extraction resulting in 

lower volumes recovered. Additional centrifugations were performed to remove the 

smeary phase and even with some improvements the volume recovered was lower than in 

the thi2 deleted samples. The existence of the smeary phase could be due to a higher 

number of proteins since the control strain by producing biosynthetic precursors can lead 

to increase protein expression. This assumption can be grounded by the increase of the 

smeary phase over the sampling time. Also the high volatility of ACP could lead to lower 

concentrations in the control strain since control samples required additional 

centrifugations. 

Kinetic resolution with control strain reached the R-PEA enriched solution 2.7-fold 

faster than the thi2 deleted strain during the second experiment as shown in Figure 30 and 

Figure 31. This parameter is also important for an industrial process since this would 

represent higher productivities. It is also to notice that the thi2 deleted strain only reached 

high enantiomeric excess during the second experiment demonstrating the importance of 

pre-growth cultivation duration. 

Anaerobic kinetic resolution with 50 g/L of glucose catalyzed by the thi2 deleted 

strain showed lower total conversion and enantiometric excess in comparison to the 

reactions performed in 20 g/L with the same strain. The decrease of kinetic resolution in 
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phosphate buffer containing 50 g/L by the thi2 deleted strain was not expected since 

pyruvate accumulation was higher in phosphate buffer.  

Nevertheless, the obtained values showed that the control strain was not improved 

by deletion of thi2 and that it reached the R-PEA enriched solution faster than the 

constructed strain. The higher transamination biocatalysis observed by the control strain 

can be explained by its pyruvate accumulation shown in Table 16. The pyruvate pool 

measured during the second anaerobic pyruvate accumulation containing 20 g/L of glucose 

represents an extracellular pyruvate concentration of 0.31 g/L (3.52 mM). Taking into 

account that stoichiometric amounts of pyruvate are required for kinetic resolution and that 

the maximum S-PEA concentration to be converted is 12.5 mM, shows that the maximum 

pyruvate concentration measured is by itself already around a fourth of the total pyruvate 

required. This demonstrates that the control strain could possess the requirements to 

convert the 12.5 mM of S-PEA in an efficient way. Another observation that grounds the 

possibility that the control strain is already efficient in converting 12.5 mM of S-PEA is the 

minimal pyruvate accumulation observed during the biocatalysis. Pyruvate titers of 0.3 g/L 

and 0.7 g/L were measured during the second kinetic resolution reactions in phosphate 

buffer containing 20 g/L and 50 g/L of glucose respectively. By measuring extracellular 

pyruvate during transaminations, it implies that the cells are saturated in pyruvate and that 

they possess the required pyruvate for the transaminase activity and for metabolic 

pathways. The lack of pyruvate shortage in the control strain is also proven by ethanol 

titers. During the second transamination reactions the ethanol titer achieved was 6.2 g/L 

and 17.2 g/L in respectively 20 g/L and 50 g/L of glucose whereas in pyruvate 

accumulation fermentations the ethanol titers were 6.5 g/L and 16.5 g/L respectively. By 

having similar ethanol titers it is possible to state that no pyruvate shortage by the control 

strain is present in the kinetic resolution of R,S-PEA and thereby no improvement with the 

thi2 deletion could be observed. The metabolism of the control strain is more active than 

the thi2 deleted strain resulting in higher protein expression during pre-fermentation 

growth. The transaminase expression could thereby also be increased during pre-

fermentation growth leading to a faster reaction rate in comparison to the thi2 deleted 

strain as shown in Figure 30 and Figure 31. The quantification of transaminase expression 

by analyzing the transcriptome and the evaluation of cellular viability by flow cytometry or 

serial plating would assess if this hypothesis is correct. 
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A possible alternative to observe the effect of thi2 deletion in kinetic resolution 

using transaminases would be increasing the amine concentration to a value in which the 

control strain would show a shortage in pyruvate. The additional pyruvate accumulated by 

the thi2 deleted strain would in this way convert S-PEA that the control strain could not. 

Another advantage of such approach is the production of a more concentrated enriched 

amine solution by the thi2 deleted strain since the initial R-PEA concentration would also 

be higher. However, the screening of high PEA concentrations would be limited by its 

toxicity to the cells. 
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5. Conclusions 

The construction of the two desired strains was successful and confirmed through 

PCR. However, CEN.PK2-1C+PAMT Δpdc1 Δpdc5 was not possible to construct due to 

possible homologous recombination between the disrupted marker sequences of the strain 

and the marker sequence of the deletion cassette. Also issues during colony restreaking 

could explain the isolation of undeleted colonies. 

The first attempt to assess pyruvate accumulation of the thi2 deleted strain was in 

Verduyn medium where the effect of thiamine concentration during pre-fermentation 

growth was also assessed. Improvements by reducing the thiamine concentration during 

pre-growth was observed since pyruvate accumulation of thi2 deleted strain increased 2- 

and 10-fold in, respectively, aerobic  and anaerobic fermentations in Verduyn medium 

containing 20 g/L of glucose. 

Having the desired pyruvate accumulative phenotype of the thi2 deleted strain 

confirmed, fermentations and kinetic resolution were carried out in phosphate buffer. The 

maximum pyruvate titer of 1.46 g/L was achieved by CEN.PK2-1C+PAMT Δthi2 34 in 

phosphate buffer containing 50 g/L in comparison to the 0.17 g/L accumulated by the 

control strain under the same conditions. 

The kinetic resolution of R,S-PEA was not significantly improved by the thi2 

deletion. The total conversion and enantiomeric excess were similar between the control 

and the thi2 deleted strains. The similar results can be explained by a native sufficient 

pyruvate accumulation by the control strain. The lack of pyruvate shortage can be 

grounded by the pyruvate accumulation and ethanol titers achieved by the control strain 

during the transaminations. Another parameter in which the control strain showed better 

results was the time required to obtain the amine enriched solution. The control strain 

achieved high enantiomeric excess faster than the thi2 deleted strain. The higher reaction 

rate of the control strain can be explained by a more active metabolism due to an active 

PDC which leads to the production of biosynthetic precursors. The expression of 

transaminase could indirectly be increased during pre-fermentation growth leading to the 

faster conversion observed during the reactions.  

Through this thesis the improvement of pyruvate accumulation was achieved by 

deleting the thi2 but since the Δ PDC strain was not successfully isolated both of the initial 
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approaches could not be compared. The kinetic resolution of R,S-PEA was not improved 

by the thi2 deletion. However, the results suggested that the lack of improvements were not 

due to intrinsic problems with the constructed strains but to the use of an inadequate 

reaction set up. Further investigations are required to improve the kinetic resolution with 

the thi2 deleted strain.    
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6. Future Work 

According to the obtained results, additional biological replicas of the 

fermentations with the optimized pre-growth cultivation duration should be performed to 

increase the accuracy of the results. 

Since the desired CEN.PK2-1C+PAMT Δpdc1 Δpdc5 was not isolated, a different 

approach could be to begin the strain construction by deleting MTH1 in order to overcome 

the glucose sensitive phenotype and facilitate the strain selection. 

During the kinetic resolution of R,S-PEA the cellular viability and expression of 

transaminase should be followed to understand their relation with the deletion of THI2. 

The cellular viability could be followed by taking time point samples, stain them with 

Calcein AM, which is a dye that only stain viable cells and analyze those samples with 

flow cytometry. An alternative approach could consist in serial dilution plating of time 

point samples and counting the number of CFU’s over time. The expression of 

transaminase could be followed by real time PCR since it quantifies the amount of mRNA 

of a specific gene. 

As discussed in chapter 4.3, the lack of improvement during kinetic resolution of 

R,S-PEA by the thi2 deleted strain can be due to an amine concentration which is low 

enough for the control strain to convert it in an efficient way. Higher amine concentrations 

should therefore be screened to assess if by increasing the amine concentration the thi2 

deleted strain demonstrates the advantage of higher pyruvate accumulation in comparison 

to the control strain.  
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8. Appendix 

 

I- PCR Programs 

 

 

  
Desired Fragment 

Overlap Etension PCR  Deletion 
Cassettes 

Cycles Steps Temperature (ᵒC) Duration (s) 

1 Inital Denaturation 98 30 

16 

Denaturation 98 10 

Annealing 68-60 30 

Extension 72 60 

Primers are added to PCR mix 

1 Inital Denaturation 98 30 

20 

Denaturation 98 10 

Annealing 63-55 30 

Extension 72 60 

1 Final Extension 72 600 

 

 

 

 

 

 

 

 

 

  
Desired Fragment Deletion Fragments 

Cycles Steps Temperature (ᵒC) Duration (s) 

1 Inital Denaturation 98 30 

30 

Denaturation 98 10 

Annealing 65-50 30 

Extension 72 15(60*) 

1 Final Extension 72 600 

 
*PDC1_trp1, PDC5_ura3 and THI2_trp1 

 



Appendix                                                               MSc in Molecular Biotechnology 

78 

 

  
Desired Fragment 

Deletion Confirmation of PDC1 
PDC1_trp1 fragment 

Deletion Confirmation of PDC1 
WPDC1 fragment 

Cycles Steps Temperature (ᵒC) Duration (s) Temperature (ᵒC) Duration (s) 

1 Inital Denaturation 98 180 98 180 

30 

Denaturation 98 10 98 10 

Annealing 54-51 30 54-51 30 

Extension 72 60 72 80 

1 Final Extension 72 300 72 300 
 

  
Desired Fragment 

Deletion Confirmation of PDC5 
PDC5_ura3 fragment 

Deletion Confirmation of PDC5 
WPDC5 fragment 

Cycles Steps Temperature (ᵒC) Duration (s) Temperature (ᵒC) Duration (s) 

1 Inital Denaturation 98 180 98 180 

30 

Denaturation 98 10 98 10 

Annealing 54,6 30 52 30 

Extension 72 50 72 80 

1 Final Extension 72 300 72 300 

 

  
Desired Fragment 

Deletion Confirmation of THI2 
THI2_trp1 fragment 

Deletion Confirmation of THI2 
WTHI2 fragment 

Cycles Steps Temperature (ᵒC) Duration (s) Temperature (ᵒC) Duration (s) 

1 Inital Denaturation 98 180 98 180 

30 

Denaturation 98 10 98 10 

Annealing 54-51 30 54-51 30 

Extension 72 55 72 70 

1 Final Extension 72 300 72 300 
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II- DNA sequences of PDC1, PDC5 and THI2 from CEN.PK 113-

7D 

PDC1 

CTTATTGCTTAGCGTTGGTAGCAGCAGTCAACTTAGCTTGTTCAACCAAGTTTT

GTGGAGCATCGAAGACTGGCAACATNNNCTCAATCATTCTGATCTTAGAGTTGTCGTT

GAAAGACTTGTCTTGGGTCAACTTGTCCCATTCACCGGTGGTAGCGACTCTGTGGGTTT

CGTAGTCCTTAGCACCGAAAGTTGGCAACAAGGATAGGTGGTCCCAACCTTGAATTTC

GTTGTATTGAGCCTTTGGACCGTGAATCAACTTTTCAATGGTGTAACCATCGTTGTTCA

AGACGAACAAGTATGGCTTCAAGCCCCATCTGATCATGGTGGAGATTTCTTGAACAGT

CAATTGCAAAGAACCGTCACCAATGAATAAGATAACTCTCTTCTTTGGATCAATTTCTT

CAGCAGCGAAAGCAGCACCCAAGGTAGCACCAGTGGTGAAACCAATGGAACCCCATA

AGACTTGAGAGATACCGTAGGTGTTGTTTGGGAAAGTGGTTTGGTTGATACCGAAAGC

GGAGGTACCGGTTTCAGCAATGACAACATCACCTTCTTGCAAGAAGTTACCCAATTGG

TTCCACATCCATTCTTGCTTCAATGGGGTAGAAGCTGGGACAGCAGCGTTAGCTGGAG

TTCTAGCTGGGACAGCAACTGGCTTGTAACCCTTAGCGGCGTCAGCAATATTGGTCAA

CAACTTTTGCAAAACGAATTTCATTTGGACACCTGGGAAAGTGGCGTTTCTGATCTTCA

TGTGGTCGGAGTGGAATTCGACAATGTTCTTGGTCTTGTAAGAGTAAGAGAAAGAACC

GGTGTTGAAATCAGACAACAAAGCACCGACAGACAAAATCAAGTCAGCAGATTCAAC

GGCTTCCTTAACTTCTGGCTTGGACAAGGTACCGACGTAAACACCACCGTATCTTGGG

TGTTGTTCGTCAATGGAACCCTTACCCATTGGGGTGACGAAAGCTGGGAATTGAGTCA

AGTCAATCAACTTCTTAGTTTCAGCCTTGACGTCGTGTCTGGAACAACAAGCATCAGC

CAAGATAACTGGGTTCTTAGCATCCTTGACCAAAGCCAAGATGGTGTCAATGACTTCC

TTTTCGGATTCAGCATCGTTTGGCTTCAAAGACATGTCAATTGGAGTTTGCAACAACTT

AGCTGGGACGTTCAAGTCGACCAAGTTAGCTGGCAAACCTAAGTAGACTGGTCTTTGG

GTGACGTAAGTGGTTCTGATACATCTGTCAATTTCAGCTGGGGCGGTAGCAATGTCAG

TGATCATAGCAGTGGTTTCAGAAATGTTGGCAGACATTCTGTGGAAAACAGTGAAGTC

ACCGTTACCCAAGGTGTGGTGCAACAACAATTGCTTAGCTTGAGAAGAGATGGATGGG

ACACCAACAACGTGCAAAACACCGACGTGTTCAGCGTAAGAACCGGCAATACCGTTC

AAAGCAGACAATTCACCGACACCGAAGGTGGTGATGATACAAGACATACCCTTGATA

CGAGCGTAACCATCAGCGGCGTAAGCAGCGTTCAATTCGTTGGCGTTACCAGCCCATC

TCATACCTTCAACTTCGTAGATCTTGTCCAACAAGGACAAGTTGAAGTCACCTGGCAA

ACCGAAAACGGTGTTAACGTTGACTTGCTTTAATCTTTCGAACAAATATTTACCCAAA

GTAATTTCAGACA 

 

 

 

 

 

PDC5 

CAAGAAGAACAAAATGTCTGAAATAACCTTAGGTAAATATTTATTTGAAAGAT

TGAGCCAAGTCAACTGTAACACCGTCTTCGGTTTGCCAGGTGACTTTAACTTGTCTCTT

TTGGATAAGCTTTATGAAGTCAAAGGTATGAGATGGGCTGGTAACGCTAACGAATTGA

ACGCTGCCTATGCTGCTGATGGTTACGCTCGTATCAAGGGTATGTCCTGTATTATTACC

ACCTTCGGTGTTGGTGAATTGTCTGCTTTGAATGGTATTGCCGGTTCTTACGCTGAACA

TGTCGGTGTTTTGCACGTTGTTGGTGTTCCATCCATCTCTTCTCAAGCTAAGCAATTGTT

GTTGCATCATACCTTGGGTAACGGTGACTTCACTGTTTTCCACAGAATGTCTGCCAACA

TTTCTGAAACCACTGCCATGATCACTGATATTGCTAACGCTCCAGCTGAAATTGACAG

ATGTATCAGAACCACCTACACTACCCAAAGACCAGTCTACTTGGGTTTGCCAGCTAAC

TTGGTTGACTTGAACGTCCCAGCCAAGTTATTGGAAACTCCAATTGACTTGTCTTTGAA

GCCAAACGACGCTGAAGCTGAAGCTGAAGTTGTTAGAACTGTTGTTGAATTGATCAAG

GATGCTAAGAACCCAGTTATCTTGGCTGATGCTTGTGCTTCTAGACATGATGTCAAGG
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CTGAAACTAAGAAGTTGATGGACTTGACTCAATTCCCAGTTTACGTCACCCCAATGGG

TAAGGGTGCTATTGACGAACAACACCCAAGATACGGTGGTGTTTACGTTGGTACCTTG

TCTAGACCAGAAGTTAAGAAGGCTGTAGAATCTGCTGATTTGATATTGTCTATCGGTG

CTTTGTTGTCTGATTTCAATACCGGTTCTTTCTCTTACTCCTACAAGACCAAAAATATC

GTTGAATTCCACTCTGACCACATCAAGATCAGAAACGCCACCTTCCCAGGTGTTCAAA

TGAAATTTGCCTTGCAAAAATTGTTGGATGCTATTCCAGAAGTCGTCAAGGACTACAA

ACCTGTTGCTGTCCCAGCTAGAGTTCCAATTACCAAGTCTACTCCAGCTAACACTCCAA

TGAAGCAAGAATGGATGTGGAACCATTTGGGTAACTTCTTGAGAGAAGGTGATATTGT

TATTGCTGAAACCGGTACTTCCGCCTTCGGTATTAACCAAACTACTTTCCCAACAGATG

TATACGCTATCGTCCAAGTCTTGTGGGGTTCCATTGGTTTCACAGTCGGCGCTCTATTG

GGTGCTACTATGGCCGCTGAAGAACTTGATCCAAAGAAGAGAGTTATTTTATTCATTG

GTGACGGTTCTCTACAATTGACTGTTCAAGAAATCTCTACCATGATTAGATGGGGTTTG

AAGCCATACATTTTTGTCTTGAATAACAACGGTTACACCATTGAAAAATTGATTCACG

GTCCTCATGCCGAATATAATGAAATTCAAGGTTGGGACCACTTGGCCTTATTGCCAAC

TTTTGGTGCTAGAAACTACGAAACCCACAGAGTTGCTACCACTGGTGAATGGGAAAAG

TTGACTCAAGACAAGGACTTCCAAGACAACTCTAAGATYAGAATGATTGARGTTATGT

TGCCAGTCTTTGATGCTCCACAAAACTTGGTTAAACAAGCTCAATTGACTGCCGCTACT

AACGCTAAACAATAA 

 

THI2 

CTAGTCCTGCATGGCATATACATCCTTGTAAAATTGTTGATTACACTTCAGTTG

TAGCTGCCAGTACCGCAGTTGGGAACATGAAAGTGTGGTATCTTGACATGAGCAAAGT

TGTTGCAATATTGTATCTTTCCAACTATTCACTAGGCGCTCCGTGACCAAGACATGTAA

CTCCGACGTAAGCTCGTCCTGATAGGGATCCTCGAATAAGTCGGCATTCCCTAGTAAT

CCATTACAATGGTACAGAACGTCTAAATCTTGTGTATTGTTTATGATAAAGTTGACCAG

CGGATACATCGAAAATCTCAATAGCTTTTGCTGGAGAAACCACACTCTTAGAAGCTTT

GTCAAGTTGGGGCAGGTATATCCATGAATGATGACCAGCATTGTTATAGCTATGGATT

GCCAATCGACACAACTCCAACGAGCGATGCACTCTTTGAACAGGCACGAGGCCATATT

GATGTCCGGGTCGTCAATTATTTTCCCAAGGAAGCGTATGAATTCCGTGGTCAACGAG

TTCCTCATCTTATTGATGAACCACGTCGTGTATTCTTGTCGGTTCAATATCATGTTCCCG

TAGCAATTAAACCATAGGATCCCGAAAATTTTGCCTTGGATAATATCGATCAAAGAGG

TGCTGTCTTCTGGCGGCGATGACAGCGCTGCAGTAGTGGTTTCCTCTGCTGACGACATC

GAATGACCCGGCGACGGCAGCTGATCTGTAAGAGCAGAGGTAACTGCAGCCGGATTG

GCCCTGAAAACTGAGTAAGGCCCGTGTTTGGAGCAATTGAGGTTGACCACAGATATGT

CGTTTTCCACCATATTAAGCAATTCGTCCAACTTCTTGTCTATGCGCTTTTGAGTATAAT

CTCTATTTGTCATGCTACCAAAGACAGAGGCCACAGCGTTATTGTATATCTTCAATCTC

CGTACGCTTATGGTGAATGTATTATCGTTAGGAAGCGTAGTTTCCTTACTTGCCTCGTG

CACGCTGTCTTCGCAGTCACTTGTCGGGGGTGATAGTTGTCTAAAATGGGTCATTTGTT

TAAACCTTGATTTTGAGATTTTCTGGCACAATGGTTTCGATTTCGATTTGCGAGCCTGT

AATGAACTGATCAGTGAATGCTTGCGTACTTTGTAGATGTTCTCCTCTAACCACATAAG

TCTGATATCGTAACTACAATTATCTCCATGTTTGGCACACAGTGAACAGATTGGTCTAT

TCTCGTCGCATCTGCGTTTCTTGAATCTGCATGCCCAGCACCCAGTAAATGTCCTCCCC

TTGGTGGGGGGCACTTTGGAGGATGACGCTACTTTCTTGCTTCTCTGCTGCCTCTTACT

ATTGATCAT 
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III- DNA sequences of Up- and Downstream of PDC1, PDC5 and 

THI2 in CEN.PK 113-7D 

PDC1 

Upstream 
AAAAACTAATACGTAAACCTGCATTAAGGTAAGATTATATCAGAAAATGTGTT

GCAAGAAATGCATTATGCAATTTTTTGATTATGACAATCTCTCGAAAGAAATTTCATAT

GATGAGACTTGAATAATGCAGCGGCGCTTGCTAAAAGAACTTGTATATAAGAGCTGCC

ATTCTCGATCAATATACTGTAGTAAGTCCTTTCCTCTCTTTCTTATTACACTTATTTCAC

ATAATCAATCTCAAAGAGAACAACACAATACAATAA 

 

Downstream 
GCTAATTAACATAAAACTCATGATTCAACGTTTGTGTATTTTTTTACTTTTGAAG

GTTATAGATGTTTAGGTAAATAATTGGCATAGATATAGTTTTAGTATAATAAATTTCTG

ATTTGGTTTAAAATATCAACTATTTTTTTTCACATATGTTCTTGTAATTACTTTTCTGTC

CTGTCTTCCAGGTTAAAGATTAGCTTCTAATATTTTAGGTGGTTTATTATTTAATTTTAT

GCTGATTAATTTATTTACTTTCGTATTCGGTTTTGTACCTTTAGCTATGATCTTAGCTAA

TTGAAGAGGGTGGTGTGATCTTTAACCATACCTTATTATCTTTCAGCTGCTTACCATTTT

CTTATATTGATTTTTAGCGAAAGATTTTTATTCACAAGCTTTTTTTATCCTTAATGCTCG

AATACTACAACAAAACAAAAAACATTAAACAGTTTTTAATTTTGTGAACAAACTGAAT

TACAAGGCCTTACATCTTATTTAGAATATATTAAGAAACAGAGGCCAACATGCCTTCT

TAATTATATTGATATGGACCTCTGTCCTTCCTAAAAACGGGTTTTTGTTCGATGAAAAA

TCACCAGTAGAGCACCATATATGAATTTACAATCATTGTAGGGAAAAGAAAACTTGTT

CTGCTTCGCCAATTGATTTCATTTCTTTTTTTCCTTTGTTTTTG 

 

PDC5 

Upstream 

AAAAACTAATACGTAAACCTGCATTAAGGTAAGATTATATCAGAAAATGTGTT

GCAAGAAATGCATTATGCAATTTTTTGATTATGACAATCTCTCGAAAGAAATTTCATAT

GATGAGACTTGAATAATGCAGCGGCGCTTGCTAAAAGAACTTGTATATAAGAGCTGCC

ATTCTCGATCAATATACTGTAGTAAGTCCTTTCCTCTCTTTCTTATTACACTTATTTCAC

ATAATCAATCTCAAAGAGAACAACACAATACAATAA 

 

Downstream 

GCTAATTAACATAAAACTCATGATTCAACGTTTGTGTATTTTTTTACTTTTGAAG

GTTATAGATGTTTAGGTAAATAATTGGCATAGATATAGTTTTAGTATAATAAATTTCTG

ATTTGGTTTAAAATATCAACTATTTTTTTTCACATATGTTCTTGTAATTACTTTTCTGTC

CTGTCTTCCAGGTTAAAGATTAGCTTCTAATATTTTAGGTGGTTTATTATTTAATTTTAT

GCTGATTAATTTATTTACTTTCGTATTCGGTTTTGTACCTTTAGCTATGATCTTAGCTAA

TTGAAGAGGGTGGTGTGATCTTTAACCATACCTTATTATCTTTCAGCTGCTTACCATTTT

CTTATATTGATTTTTAGCGAAAGATTTTTATTCACAAGCTTTTTTTATCCTTAATGCTCG

AATACTACAACAAAACAAAAAACATTAAACAGTTTTTAATTTTGTGAACAAACTGAAT

TACAAGGCCTTACATCTTATTTAGAATATATTAAGAAACAGAGGCCAACATGCCTTCT

TAATTATATTGATATGGACCTCTGTCCTTCCTAAAAACGGGTTTTTGTTCGATGAAAAA

TCACCAGTAGAGCACCATATATGAATTTACAATCATTGTAGGGAAAAGAAAACTTGTT

CTGCTTCGCCAATTGATTTCATTTCTTTTTTTCCTTTGTTTTTG 

 

THI2 

Upstream 

TTGGTTCTAGTGCGGATATATATATAGGCTATATATATACGTGGTGAAATGAAA

TGAAAACGCTTTTAAAGTGTGCAGAAATTGTTATAGCTCTAACCCGTAGTATTAGTTCC

CCATATAATTCCGACCGAGAAAGGTGCACCCACTTGTCATACAAATTGTACATATATA
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TATATATATATATATATATATATATATATATANNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNATATATATATATATATATATA 

 

Downstream 

TCACCCTGGCAGATAGGAAACCCTATCTCCCAGTNNNNNNNNNNNNNNNNNN

NNNNNNNNATATATATATATATATATATATATATATATAATATAAAACAAAATATCAT

GAATTTCTATCTAAAGTAGTGGGAAAAAATATGTCGTTAAAAATGGGCATAATATCCA

AGCAAAGCTTTTGGCTTTTTTTTTCTTGAAATGAGTGAAGGGAAGGCTCAATAAGC 

 

IV- DNA sequences of auxotrophic marker  

TRP1- Phosphoribosylanthranilate isomerase, which catalyzes the third step in 
tryptophan biosynthesis 

GGGTAATAACTGATATAATTAAATTGAAGCTCTAATTTGTGAGTTTA

GTATACATGCATTTACTTATAATACAGTTTTTTAGTTTTGCTGGCCGCATCTT

CTCAAATATGCTTCCCAGCCTGCTTTTCTGTAACGTTCACCCTCTACCTTAG

CATCCCTTCCCTTTGCAAATAGTCCTCTTCCAACAATAATAATGTCAGATCC

TGTAGAGACCACATCATCCACGGTTCTATACTGTTGACCCAATGCGTCTCCC

TTGTCATCTAAACCCACACCGGGTGTCATAATCAACCAATCGTAACCTTCAT

CTCTTCCACCCATGTCTCTTTGAGCAATAAAGCCGATAACAAAATCTTTGTC

GCTCTTCGCAATGTCAACAGTACCCTTAGTATATTCTCCAGTAGATAGGGA

GCCCTTGCATGACAATTCTGCTAACATCAAAAGGCCTCTAGGTTCCTTTGTT

ACTTCTTCTGCCGCCTGCTTCAAACCGCTAACAATACCTGGGCCCACCACAC

CGTGTGCATTCGTAATGTCTGCCCATTCTGCTATTCTGTATACACCCGCAGA

GTACTGCAATTTGACTGTATTACCAATGTCAGCAAATTTTCTGTCTTCGAAG

AGTAAAAAATTGTACTTGGCGGATAATGCCTTTAGCGGCTTAACTGTGCCC

TCCATGGAAAAATCAGTCAAGATATCCACATGTGTTTTTAGTAAACAAATT

TTGGGACCTAATGCTTCAACTAACTCCAGTAATTCCTTGGTGGTACGAACAT

CCAATGAAGCACACAAGTTTGTTTGCTTTTCGTGCATGATATTAAATAGCTT

GGCAGCAACAGGACTAGGATGAGTAGCAGCACGTTCCTTATATGTAGCTTT

CGACATGATTTATCTTCGTTTCCTGCATGTTTTTGTTCTGTGCAGTTGGGTTA

AGAATACTGGGCAATTTCATGTTTCTTCAACACTACATATGCGTATATATAC

CAATCTAAGTCTGTGCTCCTTCCTTCGTTCTTCCTTCTGTTCGGAGATTACCG

AATCAAAAAAATTTCAAAGAAACCGAAATCAAAAAAAAGAATAAAAAAAA

AATGATGAATTGAA 

 

URA3- Orotidine-5'-phosphate (OMP) decarboxylase, converting OMP into uridine 
monophosphate (UMP) 

GGGTAATAACTGATATAATTAAATTGAAGCTCTAATTTGTGAGTTTA

GTATACATGCATTTACTTATAATACAGTTTTTTAGTTTTGCTGGCCGCATCTT

CTCAAATATGCTTCCCAGCCTGCTTTTCTGTAACGTTCACCCTCTACCTTAG

CATCCCTTCCCTTTGCAAATAGTCCTCTTCCAACAATAATAATGTCAGATCC

TGTAGAGACCACATCATCCACGGTTCTATACTGTTGACCCAATGCGTCTCCC

TTGTCATCTAAACCCACACCGGGTGTCATAATCAACCAATCGTAACCTTCAT

CTCTTCCACCCATGTCTCTTTGAGCAATAAAGCCGATAACAAAATCTTTGTC

GCTCTTCGCAATGTCAACAGTACCCTTAGTATATTCTCCAGTAGATAGGGA

GCCCTTGCATGACAATTCTGCTAACATCAAAAGGCCTCTAGGTTCCTTTGTT

ACTTCTTCTGCCGCCTGCTTCAAACCGCTAACAATACCTGGGCCCACCACAC
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CGTGTGCATTCGTAATGTCTGCCCATTCTGCTATTCTGTATACACCCGCAGA

GTACTGCAATTTGACTGTATTACCAATGTCAGCAAATTTTCTGTCTTCGAAG

AGTAAAAAATTGTACTTGGCGGATAATGCCTTTAGCGGCTTAACTGTGCCC

TCCATGGAAAAATCAGTCAAGATATCCACATGTGTTTTTAGTAAACAAATT

TTGGGACCTAATGCTTCAACTAACTCCAGTAATTCCTTGGTGGTACGAACAT

CCAATGAAGCACACAAGTTTGTTTGCTTTTCGTGCATGATATTAAATAGCTT

GGCAGCAACAGGACTAGGATGAGTAGCAGCACGTTCCTTATATGTAGCTTT

CGACATGATTTATCTTCGTTTCCTGCATGTTTTTGTTCTGTGCAGTTGGGTTA

AGAATACTGGGCAATTTCATGTTTCTTCAACACTACATATGCGTATATATAC

CAATCTAAGTCTGTGCTCCTTCCTTCGTTCTTCCTTCTGTTCGGAGATTACCG

AATCAAAAAAATTTCAAAGAAACCGAAATCAAAAAAAAGAATAAAAAAAA

AATGATGAATTGAA 

 

 

V- Primer list 

 

  

 

 

 

 

 

 

 

 

 

Name Sequence (5'-3') Length
Tm °C        (Santa 

Lucia)

PDC1_DS_f TAATCAAGGATACCTCTTTTTTTTTCCTTGGTTC 34 57

PDC1_DS_r TATATATATAGTAATGTCGGCGATTTAATCTCTAATTATTAGTTAAAGTTTTATAAG 57 57

PDC1_TRP1_f TAATAATTAGAGATTAAATCGCCGACATTACTATATATATAATATAGGAAGCATTTAATAG 61 59

PDC1_TRP1_r CAAAATAACACAGTCAAATCAATCAAAAACAACACTCAACCCTATCTCG 49 63

PDC1_US_f GGGTTGAGTGTTGTTTTTGATTGATTTGACTGTGTTATTTTGC 43 63

PDC1_US_r GTGGCATTTGCAAAATGCATAACCTATG 28 57

PDC5_US_f AAAAACTAATACGTAAACCTGCATTAAGGTAAG 30 55

PDC5_US_r ATTATATCAGTTATTACCCTTATTGTATTGTGTTGTTCTCTTTGAGATTG 50 60

PDC5_URA3_f CACAATACAATAAGGGTAATAACTGATATAATTAAATTGAAGCTC 45 57

PDC5_URA3_r CATGAGTTTTATGTTAATTAGCTTCAATTCATCATTTTTTTTTTATTCTTTTTTTTG 57 60

PDC5_DS_f TAAAAAAAAAATGATGAATTGAAGCTAATTAACATAAAACTCATGATTCAAC 52 59

PDC5_DS_r AAATGAAATCAATTGGCGAAGCAGAACAAG 37 58

THI2_DS_f TCACCCTGGCAGATAGGAAACCCTATCTC 29 60.5

THI2_DS_r ATATATATAGTAATGTCGGCTTATTGAGCCTTCCCTTCACTC 42 61

THI2_TRP1_f GAAGGCTCAATAAGCCGACATTACTATATATATAATATAGGAAGCATTTAATAG 54 60

THI2_TRP1_r CTATATATATATCCGCACTAGAACCAAAACAACACTCAACCCTATCTCG 49 63

THI2_US_f AGATAGGGTTGAGTGTTGTTTTGGTTCTAGTGCGGATATATATATAGG 48 63

THI2_US_r ATGTACAATTTGTATGACAAGTGGGTGCAC 30 58
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VI- OD620nm/Cell Dry weight regression curve 
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VII- Fermentations/Cultivations profiles 

 

Figure 35- Aerobic cultivation of ΔTHI2 colonies in Verduyn medium pre-grown in medium containing 

3,32 μM thiamine. 

 

 

Figure 36- Anaerobic fermentation of ΔTHI2 colonies in Verduyn medium pre-grown in medium 

containing 3,32 μM thiamine. 
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Figure 37- Aerobic cultivation of ΔTHI2 colonies in Verduyn medium pre-grown in medium containing 

0,05 μM of thiamine. 

 

 

Figure 38- Anaerobic fermentation of ΔTHI2 colonies in Verduyn medium pre-grown in medium 

containing 0,05 μM of thiamine. 
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