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1. Introduction

Non-invasive Brain-Computer Interfaces (BCIs) have been an active research area where
several different methods have been developed. They include Electroencephalography (EEG),
Near-infrared Spectroscopy (NIRS), functional-MRI (fMRI) among others [1]. Of those BCIs,
EEG is one of the most studied methods. This is mainly due to its fine temporal resolution,
ease of use, and relatively low set-up cost. Each BCI method naturally has its own advantages
and disadvantages. EEG is no exception.

One of the main disadvantages of an EEG-based BCI is its susceptibility to noise, which
motivates development of a variety of machine learning algorithms for decoding EEG signals,
and there have been significant advancements in the area [2].

One way of categorizing machine-learning algorithms for BCI is batch mode and sequential
(online) mode. In the batch mode learning, the collectively acquired EEG data from a subject
is divided into two subsets: training data and test data. The former is used for training the
machine-learning algorithm, whereas the latter is used to evaluate the algorithm's capability
to predict the subject's intention [2]-[4]. There are several facets in batch mode learning which
call for improvements:

1. First, it is non-trivial to decide how much data should be used for training and how much
data should be left for testing. It should also be noted that the number of necessary training
data may depend on each subject.

© 2013 Shigezumi et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



2. Second, with the batch mode learning, by definition, one cannot perform sequential
evaluations of predictive performance as time evolves.

3. Third, the batch mode learning presumes that the data is stationary, i.e., the subject's
physical condition and/or the environment around the subject does not change over the
period of the experiment.

In contrast, the sequential learning algorithm considered in this study starts learning with the
very first single trial datum and proceeds with the learning each time a single trial datum
arrives within a Bayesian framework.

This paper proposes a Bayesian sequential learning algorithm for steady-state visual evoked
potential (SSVEP) classification problems in a principled manner. In particular, the paper
performs the following:

a. Evaluation of the sequential posterior distribution of unknown parameters each time a trial
is performed.

b. Computation of the sequential predictive distribution of the class label at each trial based on
the posterior distribution obtained above.

c. Automatic hyperparameter learning, where hyperparameter in this study corresponds to the
search region volume in the unknown parameter space.

d. Sequential evaluation of the error between the true label and the predicted label.

e. Sequential evaluation of marginal likelihood which quantifies the reliability of the predic‐
tion at each trial.

f. Experiments are performed on a four class problem in addition to two class problem,
where the extension from the latter to the former is nontrivial.

g. Formulate the problem using nonlinear model to capture potential nonlinearities which
can be easily extended to more difficult problems.

2. Related work

There are three ingredients in this study: (i) SSVEP, (ii) Sequential (Online) learning, and (iii)
Sequential Monte Carlo implementations. The descriptions that follow will be given in terms
of these keywords. For the batch mode learning, we cite the survey paper reported in [2] instead
of citing individual papers.

Allison et al. [5] performed a demographic study of several different BCI methods and showed
that an SSVEP-based BCI spelling system was competitive for different age groups, as well as
different gender groups, with little experience, under noisy environments. It is also reported
that most subjects stated that they did not consider the flickering stimuli annoying and would
use or recommend such a BCI system. In [6], and also in [7], an SSVEP-based orthosis control
system with an LED light source is proposed. The flickering frequencies were 6 Hz, 7 Hz, 8
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Hz, and 13 Hz in the former, and 8 Hz and 13 Hz in the latter. Classification was performed
using the second- and third-order higher harmonics in addition to the fundamental frequency
component. In [8], an SSVEP-based speller is proposed. After Principal Component Analysis
(PCA), the probability of each frequency component is estimated using a particular informa‐
tion matrix. The speller introduces a selection based on a decision tree and an undo command
for correcting eventual errors. In [9], EEG signals are represented in the spatial-spectral-
temporal domain by a wavelet transform. It also uses a multi-linear discriminative subspace
by employing general tensor discriminant analysis (GTDA). The classification is conducted by
support vector machine (SVM). Reference [10] proposes a biphasic stimulation technique to
solve the issue of phase drifts in SSVEP in phase-tagged systems. The Kalman filter is used in
[11] to decode neural activity and estimate the desired movement kinematics, where the filter
gain is approximated by its steady-state form, which is computed offline before real-time
decoding commences. Canonical correlation analysis (CCA) is used in [12] to analyze the
frequency components of SSVEP, where the correlations between the target oscillation
waveforms, as well as their higher order harmonics, and those of the acquired SSVEP wave‐
forms are calculated. It is demonstrated that the scheme performed better than a fast Fourier
transform-based spectrum estimation method. CCA is used in an online manner by updating
the parameters each time data arrives. An online learning scheme called Stochastic Meta
Descent (SMD), which is a generalization of the gradient descent algorithm, is proposed in [13].
The paper also discusses various aspects of errors incurred in online learning algorithms.

The Subject Specific Classification Model is discussed in [14], where model Gaussian param‐
eters are updated online after an initial learning of the Subject Independent Classification
Model from a pool of subjects. The data was taken from P300, which is one component of EEG.

Martinez et al. [4] propose an SSVEP-based online BCI system with visual neurofeedback. The
algorithm is different from the one proposed in this paper. There is a report on Bayesian
sequential learning for EEG signals [6], where the Sequential Monte Carlo is used for imple‐
mentation. In addition to the task differences between [6] and this study, there are several
algorithmic distinctions between the two. First, the basis function used in the former is linear
with respect to the associated parameters, whereas the latter uses a basis function in which
parameters appear in a nonlinear manner. Second, the parameter that controls the size of the
parameter search region is fixed in the former, whereas it is learned automatically in the latter.
These two differences, at least within our experience, are important for achieving better
performance.

In addition, no extension for multi-class classification problems was performed in the former,
whereas both algorithmic extension and a learning experiment by using multi-class real EEG
data are performed in the latter. Our proposed algorithm is based on part of earlier work [16]
of the authors' research group for a different application. Preliminary results on a two-class
classification problem were reported by the present group in [17]. The current paper gives a
full account of the results by expanding several parts of that conference paper. First, a four-
class classification problem was formulated and tested experimentally. Second, the algorithm
was further improved by incorporating an Effective Sample Size and Rao-Blackwellisation.
Third, more detailed discussions are added.
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3. Subjects and data acquisition

Of Event Related Potentials used in BCI, the target quantities considered in this study are
SSVEPs, which are natural responses to visual stimulation at specific frequencies. These
frequency components and their higher-order harmonics can be observed in the occipital
region [4]. It is known that SSVEPs are often useful in research because of the reasonable signal-
to-noise ratio and relative immunity to artifacts [5].

In an attempt to perform two-class and four-class classification problems, we gathered two
sets of SSVEP data. The settings that we describe below for the two experiments are the same
except for the number of stimuli and their frequencies. EEG data were recorded by a Polymate
(Nihon Koden, Tokyo) with six active electrodes (O1, OZ, O2, O9, IZ, O10) according to the
international 10-10 system and referenced to the left earlobe with a digitization rate of 500 Hz.
Even though the highest flickering frequency was 10 Hz, we considered second and third order
harmonics in one of the experiments reported below. Our original intention was to examine
the harmonics higher than three even though they were not reported in this paper. In order to
have a wide margin for the Nyquist frequency we chose 500 Hz. Five volunteers (aged 21-23
years) participated in the present study. All subjects were healthy, with no past history of
psychiatric or neurological disorders.

Written informed consent was obtained from each subject on forms approved by the ethical
committee of Waseda University.

Each subject was seated in a comfortable chair 60 cm in front of the monitor in an electrically
shielded and dimmed room. The flow of task events is shown in Figure 1. The stimulus for the
two-class problem is illustrated in Figure 2, whereas that of the four-class problem is illustrated
in Figure 3.

Figure 1. Task flow for the four-class classification problem
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Figure 2. Monitor display for the two class classification problem
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Figure 3. Monitor display of the four-class classification problem

In the two-class problem, two flickering checkerboard stimuli (left and right) were presented
on the monitor, whereas in the four-class problem, four flickering checkerboard stimuli (left,
right, top, and bottom) were presented. In addition, a fixation cross was placed at the center,
which the subject was usually asked to fixate at.

In the two-class problem, the left stimulus was a checkerboard flickering with frequency of
4.29 Hz, whereas the right stimulus flickered at frequency of 6.00 Hz. In the four-class problem,
there were additional stimuli, one at the top with frequency of 7.50 Hz, and one at the bottom
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with frequency of 10.0 Hz. There were three reasons for selecting these particular frequencies.
First, it is known that SSVEPs are discernible in approximately the 4.0 Hz - 50 Hz band [18][19].
Second, higher harmonics of a particular frequency component should not overlap with the
fundamental frequency component. Such overlap could give rise to a problem when one
considers multi-class classification problem where multiple frequencies are involved as is
described in section 6. Third, since the monitor refresh rate is 60 Hz, choice of the flickering
frequencies were restricted by 60/positive integer. We chose 60/14=4.2857…. which we
approximated by 4. 29.

The subject usually fixated at a central fixation cross. When an arrow replaced the cross, the
subject should move his or her eyes to the checkerboard indicated by the arrow for 3.0 s, after
which a red circle is shown so that the subject would know when to rest for 5.0 s. This sequence
was one trial, and trials were repeated twenty times, constituting one session. The direction of
the arrow was selected at random. Each subject completed 600 trials, or 30 sessions. The
measurements were performed with a Polymate AP1124, a multi-purpose portable bio-
amplifier recording device, manufactured by TEAC Corporation, Tokyo, Japan. The device is
equipped with 24 channels with a maximum sampling frequency of 1 kHz. In addition to
electroencephalograms (EEGs), eyeball movement and other external signals can be measured.
The dimensions are W90 mm x H 44 mm x D 158 mm, the weight is 300 g, and the device is
powered by battery.

4. Algorithm

This section gives a description of the proposed sequential learning algorithm. It consists of
several aspects: (i) the basis function to fit the data, (ii) the likelihood function, (iii) sequential
parameter learning, and (iv) sequential hyperparameter learning. The actual predictive values
are given by the predictive distribution of the target class labels, which will be described in
4.3. In order to improve the learning capabilities, Rao-Blackwellisation will also be described.
We begin with a two-class classification problem followed by a multi-class classification
problem. A schematic diagram of the proposed algorithm is given in Figure 4.

4.1. Two-class classification problem

Let xk∈R d  be the feature vector at the  k-th trial, where d  represents the dimension of xk
which, in our paper, is the DFT spectrum of a single trial EEG. Let yk∈  {0,1} be the binary
class label of each trial, where 0 corresponds to the right flickering image and 1 corresponds
to the left flickering image. Our purpose here is to learn parameters associated with the ba‐
sis function, to be defined shortly, and predict the subject's intention given SSVEP data, each
time datum arrives.

4.1.1. Basis function and classifier

Consider the parameterized family of nonlinear basis functions f (∙ ) defined by:
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f (xk ;ωk )= ∑
j=1

h
vk , jσ(∑

i=1

d
uk ,ij xk ,i + uk ,0 j) + vk ,0,   (1)

where  uk : =  (uk ,0, ⋯ , uk ,d )T ∈R h (d +1), uk ,i : =  (uk ,i1, ⋯ , uk ,ih )T ∈R h ,

vk : =  (vk ,0, ⋯ , vk ,h )T ∈R h +1, ωk = (uk , vk ).

The function σ(∙ ) is a sigmoidal function defined by σ(a)= 1
1 + exp ( - a) , where h  represents the

number of hidden units.

 

∈ 	∈

(∙)( ; ) = ∑ , ∑ , , + , + , ,			 : = 	 ( , , ⋯ , , ) ∈ ( ) , : = 	 ( , , ⋯ , , ) ∈ := 	 ( , , ⋯ , , ) ∈ = ( , )
(∙) ( ) = 	( ) ℎ

	
( | , ) ∶= ;Φ ( ; ) ,

Φ Φ
Φ( ) ∶= ( ),
Φ( ) ∶= √ exp(− /2) .
( | , ) = ( , | , ) ,

Figure 4. Schematic diagram of the proposed algorithm
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Other popular basis functions often work as well. It should be noted that this basis function is
nonlinear with respect to  uk  as well as xk , which enables capturing of potential nonlinearities
involved.

In order to associate the quantity defined by (1) with the class label, consider:

P(yk | xk , ωk )∶ = Be(yk ;Φ( f (xk ;ωk ))), (2)

whereΦ is a function which monotonically maps the real numbers onto [0,1]. Several choices
of Φ are possible. One is:

Φ(u)∶ = 1
1 + exp(-u) , (3)

while another is:

Φ(u)∶ = 1

2π
∫-∞

u exp(-a 2 / 2)da. (4)

We tested both functions and found them to work equally well for our SSVEP learning. In what
follows, we will report our results with (4) by introducing a latent variable zk  and considering

P(yk | xk , ωk )= ∫P(yk , zk | xk , ωk )d zk , (5)

P(yk , zk | xk , ωk )= P(yk | zk )P(zk | xk , ωk ), (6)

P(yk | zk )∶ = Be(I (zk ≥0)),  (7)

P(zk | xk , ωk )∶ = N (zk ; f (xk ;ωk ), 1.0),  (8)

where I (A) represents an indicator function defined as 1 when A is true and 0 when A is false.

4.1.2. Parameter search stochastic dynamics

In order to perform sequential learning, we perform a sequential stochastic search of the
parameter ωk  each time trial data is acquired:

P(ωk | ωk -1, γk )∶ = 1
Zω(γk ) exp(- γk ωk - ωk -1

2

2
) (9)

where Zω represents the normalization constant. This amounts to searching for a new value
ωk  based on the previous value ωk -1, but in a random walk manner. This is a first-order Markov
process, so that the parameters of the distant past are naturally forgotten because of the noise,
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whereas the parameters of the immediate past tend to be taken into account with higher
weights. This stochastic parameter search is reflected in the posterior distributions (20) given
sequential data. Since this transition probability is Gaussian, it involves γk , which is the
reciprocal of the variance parameter. More specifically, if γk  is small, the parameter search
region for ωk  will be large, whereas if γk  is large, the search region will be small.

4.1.3. Automatic hyperparameter search stochastic dynamics

Our experiences tell us that automatic adjustment of γk  is often important in order to achieve
better performance. γk  is often called a hyperparameter since it controls the behavior of the
target parameter ωk . We perform the following automatic stochastic search of γk  :

P(γk | γk -1)∶ = 1

2πγk σh
exp(- (log γk - log γk -1)2

2σh
2 ), (10)

There are at least two reasons for this transition probability to be log-normal. One is that γk

needs to be positive, and another is to cover a large range of values in the hyperparameter
space. It should be noted that (10) is also a first-order Markov process, so that the hyperpara‐
meters of the immediate past are taken into account, whereas the hyperparameters of the
distant past tend to be forgotten. In order to explain the importance of such hyperparameter
learning, consider Figure 5. Letting θk ∶ = (ωk , γk ) the blue region represents the likelihood
function landscape in the θ-space, where the darker the blue color, the higher the likelihood
function value. The white diamonds represent samples θt -1

(i) ~ P(θt -1 | x 1:t -1, y1:t -1), the yellow

diamonds θt
*(i) ~ P(θt

(i) | θt -1, γt
(i)), γt

(i):large, and the light-green diamonds

θt
*(i) ~ P(θt

(i) | θt -1, γt
(i)), γt

(i):small. Now suppose that the likelihood function landscape in the
θ -space changed by a relatively large amount, as shown by the pink region, where the darker
the color, the higher the likelihood. The yellow diamonds are scarce in the pink region, so that
it is difficult to find θ samples that give rise to meaningful likelihood function values. This is
due to the fact that γt

(i) is large, so that the search region is restricted. If γt
(i) is relatively small,

on the other hand, then the green  θ samples might capture at least a part of the pink region
where the likelihood function values are meaningful. The proposed hyperparameter learning
scheme automatically learns appropriate γt

(i) values from the sequential data and lets the
algorithm find reasonable θ samples.

4.1.4. Rao-blackwellised SMC

In this paper, we implemented not only the standard SMC but also Rao-Blackwellised SMC
(RBSMC) for the purpose of performance improvement. Rao-Blackwellisation is a statistical
variance reduction strategy for the Monte Carlo method [25], [26]. It is a combination of
analytical integration (marginalization) and the Monte Carlo method. In order to explain this,
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recall the parameters associated with the basis function (1), write ωk ∶ = (uk ,  vk ), and decom‐
pose the stochastic search dynamics (9) into two parts:

P(uk | uk -1, γk )∶ = 1
Zuk

(γk ) exp(- γk uk - uk -1
2

2
),  (11)

P(vk | vk -1, δk )∶ = 1
Zvk

(δk ) exp(- δk vk - vk -1
2

2
), (12)

where there are two hyperparameters γk  and δk . The corresponding hyperparameter stochastic
search dynamics will be given by:

P(γk | γk -1)∶ = 1

2πγk σh
exp(- (log γk - log γk -1)2

2σh
2 ), (13)

P(δk | δk -1)∶ = 1

2πδk σh
exp(- (log δk - log δk -1)2

2σh
2 ). (14)

Figure 5. The proposed hyperparameter learning scheme automatically finds the appropriate region in the θ-space.
The blue region indicates the likelihood function landscape at time t - 1, whereas the pink region indicates the likeli‐
hood function landscape at time t . The darker the color, the higher the likelihood function value. The white diamonds
represent samples θt -1

(i) ~ P(θt -1 | x 1:t -1, y1:t -1), the yellow diamonds θt
*(i) ~ P(θt

(i) | θt -1, γt
(i)), γt

(i):large, and the light-green

diamonds θt
*(i) ~ P(θt

(i) | θt -1, γt
(i)), γt

(i):small. The proposed scheme automatically learns appropriate  γ values so that it
can capture appropriate θ samples in relatively high-likelihood regions in the θ-space.
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Since the basis function is linear with respect to vk , the Rao-Blackwellisation can be conducted
with the data augmentation of Zk  [26], where the likelihood function P(yk | xk , ωk ) is to be
integrated out with respect to vk , which, in turn, gives rise to smaller variances. A specific
implementation of this particular Rao-Blackwellisation will be given in subsection 5.2.

4.2. Multi-class classification problem

This section attempts to generalize the results of the previous section to multi-class problems.
Although we will restrict ourselves to a four-class problem, the method can, in principle, be
applied to cases with more than four classes.

Let xk∈R d  be the feature vector at the k-th trial, which is the power spectrum obtained through
DFT over the trial period, where d  stands for the dimension of xk . Let yk∈  {1,2, 3,4} denote
the class labels at each trial, where left corresponds to label 1, right to label 2, top to label 3,
and bottom to label 4. Our goal is to learn the parameters associated with the basis function
described below in an attempt to predict the subject's intention.

4.2.1. Basis function

Consider the basis function f q(∙ ) defined by (15), which is nonlinear with respect to not only
xk  but also the parameter vector ωk . There are  Q outputs associated with the basis function,
where Q is the number of class labels, which is four in this paper. We have:

f q(xk ;ωk )= ∑
j=1

h
vk , jqσ(∑

i=1

d
uk ,ij xk ,i + uk ,0 j) + vk ,0q,  (15)

where  uk : =  (uk ,0, ⋯ , uk ,d )T ∈R h (d +1), uk ,i : =  (uk ,i1, ⋯ , uk ,ih )T ∈R h ,

vk : =  (vk ,0, ⋯ , vk ,h )T ∈R Q(h +1), ωk = (uk , vk ).

4.2.2. Multinomial logistic model

This paper assumes the Multinomial Logistic Model for the target problems, where it is
assumed that the error �k ,q in each term follows an independently identically distributed logistic
distribution. By introducing a latent variable zk ,q, we write:

zk ,q ∶ = f q(xk ;ωk ) + Ck ,q + �k ,q, (16)

Ck ,q ∶ = - log ∑
i≠q

Q
exp( f i(xk ;ωk )), (17)

where Ck ,q represents the score of the term controlled by the outputs of the other class labels.
It follows from (15) that the probability of yk  belonging to class q is described by:
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P(yk =q | zk ,q)=
exp( f q(xk ; ωk ))
∑
i=1

Q
exp( f i(xk ; ωk ))

=σ( f q(xk ;ωk ) + Ck ,q), (18)

The predicted label ypred  is the label qmax that has the maximum value of P(yk =q | zk ,q). Using
(18), the likelihood function is described by:

P(yk | xk , ωk )∶ =∏
q=1

Q
P(yk =q | zk ,q)I (yk =q)(1 - P(yk =q | zk ,q))I (yk≠q), (19)

The function I (∙ ) is again an indicator described in 4.1. The generalization to the multi-class
problem (18)-(20) appears straightforward; however, our experience tells us that the multi-
class problems are much more difficult than the equations look. Experimental results are
reported in 6.4.

4.2.3. Parameter/hyperparameter search stochastic dynamics

We use the same standard Sequential Monte Carlo (SMC) used in 4.1.

4.3. Bayesian Sequential Learning

Letting θk ∶ = (ωk , γk , δk ),  x1:k : =  (x1, ⋯ , xk ), y1:k : = (y1, ⋯ , yk ), one can derive its sequential
posterior distribution at trial  k :

P(θk | x1:k , y1:k )=
P (yk | xk , θk )P (θk | x1:k -1, y1:k -1)

∫P (yk | xk , θk )P (θk | x1:k -1, y1:k -1)d θk
, (20)

The second factor in the numerator is the predictive probability for parameter θk , which is
given by:

P(θk | x1:k -1, y1:k -1)= ∫P(θk | θk -1)P(θk -1 | x1:k -1, y1:k -1)dθk -1,  (21)

P(θk | θk -1)= P(ωk | ωk -1, γk )P(γk | γk -1). (22)

At the k + 1-st trial, let the EEG data xk +1 be given. Then the prediction at the trial amounts to
computing the predictive probability for label P(yk +1):

P(yk +1 | x1:k +1, y1:k )= ∫P(yk +1 | xk +1, θk +1) P(θk +1 | x1:k , y1:k )dθk +1. (23)

5. Implementation

The Sequential Monte Carlo (SMC) is a powerful means of evaluating the posterior or predic‐
tive probabilities of Bayesian nonlinear or non-Gaussian models in a sequential manner. This
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study uses the SMC to evaluate equations (20) and (23) in an attempt to evaluate the SER. The
SMC first attempts to approximate the posterior distribution by an empirical distribution (delta
mass) weighted by normalized importance weights (importance sampling). In order to avoid
depletion of samples, caused by an increase in the variance of the weights, the SMC replaces
the weighted empirical distribution by unweighted delta masses (resampling).

There are several different methods of determining when resampling should be done. We tried
two of them. One method is to resample every step, and another is to perform resampling only
when the Effective Sample Size (EES [22]-[24]) becomes smaller than a threshold value:

ESS = 1

∑
i=1

n (
Ω
~

k

(i ))2 ,  
(24)

where  n is the number of samples, i is the index of a sample, and Ω
~

k  is the normalized

importance weight defined by Ω
~

k

(i)

.

The threshold value of ESS is often set at N / 2 ([23],[24]), which we adopted.

= ∑ ( ) ,	
	 Ω Ω( )/2

∗ ∶= ( , ) (∙)( ∗| : , : )

 

( | : , : )( | , ) ∶= ( , , )

Figure 6. Implementation of standard SMC.
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5.1. Standard SMC

Figure 6 gives an overview of the standard SMC, where θk
* ∶ = (ωk , γk ) and Q(∙ ) denote the

proposal distribution, which in this paper is set as P(θk
* | x1:k -1, y1:k -1). This choice is due to its

simplicity of implementation. Figure 6 demonstrates the case where resampling is done with
the ESS. If resampling is performed every step, then the ESS step is simply ignored.

5.2. Rao-blackwellised SMC

In the Rao-Blackwellised SMC implementation, the marginal likelihood P(yk | z1:k , u1:k ) is

used instead of the likelihood function P(yk | xk , ωk ), where Θk ∶ = (ωk , γk , δk ). This imple‐

mentation is described in Figure 7.

 

( | : , : )
( | : , : ) = Φ | 1 − Φ |

|

Figure 7. Implementation of Rao-Blackwellised SMC.

Here, the marginal likelihood P(yk | z1:k , u1:k ) can be written as:

P(yk | z1:k , u1:k )=Φ( zk |k -1

Sk
)yk (1 - Φ( zk |k -1

Sk
))1-yk (25)
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Details of updating zk |k -1 and Sk  are given in the Appendix.

6. Results

This section reports the results of learning experiments using the algorithms proposed in the
previous sections.

6.1. Observation data

As explained in 3, the six channels (O1, OZ, O2, O9, IZ, O10) located in the occipital eye field
were used for our classification problems. Data were taken in 600 trials from each of five
subjects (A, B, C, D, E). One trial lasted for 3.0 seconds. Data in the first 0.0-1.0 s was deleted
in order to eliminate the effect of eyeball movements on the EEG. The raw data were filtered
by 50.0 Hz notch filter. After Hanning windowing, DFT was performed by MAT‐
LAB_R2008a to obtain the feature vector x consisting of the power spectrum.

Figure.8 demonstrates the power spectrum of subject D taken from one trial when a stimulus
was presented at 6.0 Hz. The particular frequency component is relatively clear. Figure.9 is
from another trial of the same subject, where the target frequency component is not clearly
discernible.

Figure 8. Frequency spectrum of Subject D. The target frequency of 6.0 Hz is reasonably discernible.

The vertical lines in the two figures indicate (from the left) 4.29Hz, 6.0Hz, 8.58(4.29 ×  2) Hz,
12.0(6.0 ×  2) Hz, 12.87(4.29 ×  3) Hz and 18.0(6.0 ×  3) Hz, respectively. It should be noted that
even with SSVEP, the observed frequency components are not always identifiable by inspec‐
tion. It should also be noted that SSVEP can contain higher harmonics of the target frequency
[4] and that the classification accuracy may be improved by taking into account higher
harmonics [4]. In order to examine the effectiveness of the higher order harmonics for our
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classification problem, this section considers the following three settings: (i) the fundamental
frequency only, (ii) the second order harmonics, in addition to the fundamental frequency, and
(iii) second and third order harmonics, in addition to the fundamental frequency. Since the
number of channels is 6, the dimensions of our feature vectors are (i) 12, (ii) 24, and (iii) 36,
respectively.

It should be noted that while more frequency components give more information, the number
of parameters to be learned increases, so that learning becomes more difficult.

6.2. Experimental settings

This study examines several different versions of Sequential Monte Carlo for implementing
the target sequential learning, as displayed in Table 1, where standard SMC means no
hyperparameter learning and resampling is performed at every step. The abbreviated notation
will be used throughout the rest of the paper. Various experimental settings are summarized
in Table 2, where n denotes the number of samples; γ0 and δ0, the initial conditions for
hyperparameters γ and δ ; σh , the hyper-hyperparameter; and h , the number of perceptron
hidden units.

6.3. Performance evaluation criteria

We will propose three performance evaluation criteria. One is Sequential Error Rates (SE Rk )
defined by

SE Rk ∶ = 1
M ∑

k '=k -M +1

k
I (yk '≠ yk ', pred ),   (26)

Figure 9. Frequency spectrum of the same subject at in Figure.8. The target frequency component is difficult to ob‐
serve.
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where yk (y
k ') is the true class, and yk , pred (yk ', pred ) is the predicted class defined by (23).

Notation I (∙ ) stands for an indicator described in 4. This is the moving average of the
prediction error over a window of size M. We will also compute Cumulative Error (CE)

CE ∶ = ∑
k=1

K
I (yk ≠ yk , pred ), (27)

Abbreviation Algorithm

SMC Standard SMC

HP+SMC SMC with hyperparameter auto-adjustment

SMCESS SMC by calculating ESS

HP+SMCESS SMCESS with hyperparameter auto-adjustment

RBSMC Rao-Blackwellised SMC

HP+RBSMC RBSMC with hyperparameter auto-adjustment

RBSMCESS RBSMC by calculating ESS

HP+RBSMCESS RBSMCESS with hyperparameter auto-adjustment

SMCmulti Standard SMC for multi-class classification

HP+SMCmulti SMCmulti with hyperparameter auto-adjustmen

Table 1. Algorithm names and their abbreviations

Algorithm n γ0 δ0 σh h

SMC 1000 100.0 - - 10

HP+SMC 1000 100.0 - 0.01 10

SMCESS 1000 100.0 - - 10

HP+SMCESS 1000 100.0 - 0.01 10

RBSMC 1000 100.0 100.0 - 10

HP+RBSMC 1000 100.0 100.0 0.01 10

RBSMCESS 1000 100.0 100.0 - 10

HP+RBSMCESS 1000 100.0 100.0 0.01 10

SMCmulti 1000 100.0 - - 10

HP+SMCmulti 1000 100.0 - 0.02 10

Table 2. Experimental Settings. n denotes the number of samples; γ0 and δ0, the initial conditions for hyperparameters
γ and δ ; σh , the hyper-hyperparameter; and h , the number of perceptron hidden units.
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in order to make performance comparisons with the existing methods. Another quantity we
will be evaluating is the sequential marginal likelihood:

P(yk | x1:k , y1:k -1)= ∫P(yk | xk , θk ) P(θk | x1:k -1, y1:k -1)dθk (28)

which is the marginalization of the likelihood with respect to the current predictive distribu‐
tion. This quantifies the reliability of the prediction yk  with respect to (x1:k , y1:k -1 ). In order to

explain a rationale behind this, recall that given data y, the likelihood P(y | z) can be interpreted
as the degree of appropriateness of z in explaining y. This, in turn, can be interpreted as the
appropriateness of y in terms of z.

6.4. Experimental results

6.4.1. Two-class classification problem

a. Sequential Error Rate

Figure 10 shows the Sequential Error Rate of subject D over one session consisting of 600 trials.
The algorithm was implemented by Sequential Monte Carlo together with the proposed
hyperparameter learning (HP+SMC). Table 3 summarizes the Sequential Error Rates of
subjects A-E, which were averages over ten learning trials.

 

Figure 10. Sequential Error Rate of subject D with (HP+SMC), Sequential Monte Carlo together with the proposed hy‐
perparameter learning. The dotted line at 1/2 corresponds to a random classification.
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A B C D E

minimum error rate 0.00 0.010 0.00 0.00 0.00

maximum error rate 0.75 0.75 0.71 0.75 0.80

average over 600 trials 0.16 0.26 0.19 0.077 0.13

Table 3. Sequential Error Rate of the subjects (M=20, HP+SMC)

b. Trajectory of hyperparameter

In Figure 11, the γt-trajectory (blue) is superimposed on the Sequential Error Rates (red) of
Figure 10. The value of γt  is the posterior mean. Note that there was a significant dip in γt

around 380 and 480, due to the fact that the algorithm detected a sudden change in the data,
so that it automatically widened the search region in the parameter space. Eventually, the
algorithm re-started learning the parameters. This phenomenon was also discernible at around
475. The hyperparameter learning appeared functional.

Figure 11. Trajectory of hyperparameter γk  for Subject D with the SER in Fig.10 (HP+SMC) superimposed. The value of
γk  was its posterior mean

c. Sequential Marginal Likelihood (Reliability of the Predictions)

Figure 12 shows the negative log-Sequential Marginal Likelihood of subject D averaged over
the window M=20 as was in Figure 10. Even though Figure 10 and Figure 12 are similar, the
latter comes from the Bayesian concept where the latter appears slightly less abrupt. This
particular quantity can be applied to the change detection problem as is done in [27].
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Figure 12. Negative log-Sequential Marginal Likelihood of subject D with moving average M=20.

d. Cumulative Error

Figure.13 shows the Cumulative Error of subject D with different algorithms, and Table.4 gives
final Cumulative Errors of subjects A-E, that is, the Cumulative Errors at the last trial. These
values were the averages over ten experiments.

 

Figure 13. Cumulative Error (CE) of subject D. Different colors indicate different versions of the algorithms, as shown
in Table. I.The dotted straight line at 1/2 corresponds to a random classification.
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A B C D E

SMC 95.50 159.2 109.3 45.90 80.10

HP+SMC 90.70 151.4 113.7 42.50 75.20

SMCESS 96.20 170.5 108.3 44.60 80.30

HP+SMCESS 92.10 155.9 110.0 42.10 71.70

RBSMC 91.90 155.8 109.1 44.80 75.20

HP+RBSMC 88.80 158.4 109.3 41.20 73.90

RBSMCESS 91.00 157.1 107.6 43.50 76.00

HP+RBSMCESS 89.40 154.6 106.3 41.70 72.70

Table 4. Final Cumulative Error

e. Effective Sample Size

Figure 14 shows the ESS trajectories (moving average over 20 trials) of subject D with several
different methods.

 

Figure 14. Trajectory of ESS of subject D.

f. Computation Time

Table 5 summarizes the computation time of the various methods averaged over ten experi‐
ments. The middle column shows the time per trial, whereas the right-most column shows the
time needed for all trials. The par trial time does not contain the case where resampling is done
with the ESS.
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1 step (S) whole data (S)

SMC 0.120 72.0

HP+SMC 0.130 77.7

SMCESS - 57.4

HP+SMCESS - 63.9

RBSMC 0.320 192

HP+RBSMC 0.328 197

RBSMCESS - 145

HP+RBSMCESS - 121

Table 5. Computation time

g. Harmonic Frequency Components

Effects of the higher order harmonics were examined and are summarized in Table.6 for three
cases: (i) fundamental frequency only, (ii) second-order higher harmonics in addition to the
fundamental frequency, and (iii) second- and third-order higher harmonics in addition to the
fundamental frequency. The numbers in the table indicate the final Cumulative Errors. The
results were the averages over ten experiments.

A B C D E

(i) fundamental 90.70 151.4 113.7 42.50 75.20

(ii) fundamental+2nd 98.20 141.1 46.50 37.60 92.80

(iii) fundamental+2nd+3rd 78.20 131.3 44.30 45.70 104.0

Table 6. Effect of Harmonics (Cumulative Error)

6.4.2. Multi-class classification problem

a. Sequential Error Rate: Figure 15 shows the Sequential Error Rates (moving average
window size 20) of subject D for the the four-class problem with the HP+SMC algorithm,
and Table 7 gives various values related to the Sequential Error Rates of subjects A-E
averaged over 10 experiments.

A B C D E

minimum error rate 0.23 0.39 0.25 0.15 0.58

maximum error rate 0.74 0.82 0.60 0.72 0.85

average over 600 trials 0.46 0.60 0.47 0.36 0.72

Table 7. Sequential Error Rate of the subjects (M=20, HP+SMCmulti)
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b. Cumulative Error: Figure 16 shows Cumulative Errors of subject D for the four-class

problem with two different algorithms. One is a standard SMC without hyperparameter

learning (SMCmulti), and the other is the proposed SMC with hyperparameter learning

 

SMCHP + SMC

Figure 15. Sequential Error Rate of four-class classification for subject D, where the hyperparameter is learned togeth‐
er with SMC (HP+SMCmulti). The dotted line at 3/4 corresponds to random classification.

 

SMCHP + SMC

Figure 16. Cumulative Error of four-class classification for subject D with two different algorithms. One is the standard
SMC without hyperparameter learning, and the other is with the proposed hyperparameter learning. The dotted
straight line indicates a random classification.
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(HP+SMCmulti). The dotted line indicates a random classification. Table.8 summarizes
the CEs for subjects A-E. These are the values averaged over ten experiments.

A B C D E

SMCMULTI 283.2 363.1 285.1 224.0 434.1

HP + SMCMULTI 280.3 361.7 281.6 214.5 434.8

Table 8. Final Cumulative Error of four class classification

7. Discussion

7.1. Sequential error rate

We first observe that there are two errors involved in brain-computer interfaces in general,
and in this study in particular. One is the error made by the brain (subject), and the other is
the error made by the computer (algorithm), provided that the hardware behind the experi‐
ments is functional. Let us look at the Sequential Error Rate in Figure 10. It started decreasing
immediately after the experiment began, and it had already dropped to about 0.1 at around
the 20-th trial. At around the 80-th trial, the Sequential Error Rate became almost 0. One
possible interpretation of this is that, if we can assume that the subject does not make an error
during these 80 trials, then the SER trajectory represents the process of how the computer learns
the classification problem. Recall that there are h(d+2)+1 parameters in (1), which in this case
is 141. In addition, the hyperparameter γ needs to be learned. This means that the parameter/
hyperparameter landscape is vague at the beginning in a high dimensional space, so that the
computer searches for posterior samples in an attempt to find appropriate parameter values
for better classification. It should be noted that the hyperparameter γt  is relatively flat up to
trial 80 but slightly increases. Since γt  represents the reciprocal of the size of the parameter
search region, this period can be interpreted as the computer's early effort to search for
parameters by slightly narrowing down the parameter space search region.

At around trial 80, the SER dropped to almost zero, so that if the subject's EEG signals were
consistent with the previous ones, the computer algorithm did not need to seek different
samples in the parameter space. Therefore, the ups and downs after trial 80 could be inter‐
preted as the fact that the subject's EEG signals became slightly inconsistent with the previous
ones. During this period, the computer naturally needed to search for slightly different
posterior samples, so that some errors were incurred.

This was followed by several ups and downs between 0.2 and almost 0 until approximately
trial 310. The subject seemed to have obtained a reasonable amount of skill for the task, so that
the subject achieved almost 0. The Sequential Error Rate in the trials between 310 and 330, as
well as between 350 and 380, were almost zero. However, the subject's Sequential Error Rate
again increased at around trial 380. A sharp dip was observed in the hyperparameter trajectory,
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as demonstrated in Figure 11. One possible interpretation of this is that by trial 380, the
computer had found fairly good posterior samples for predictions so that the parameter search
region was narrowed down; however, a sudden change was observed and the computer
needed to quickly widen its stochastic parameter search region, which was indicated by the
sudden drop of hyperparameter γt  at around k=380. With this, the algorithm tried to learn
parameter values different from the previous ones and eventually found better parameter
values. The Sequential Error Rate again dropped to almost 0 at around trial 420, which lasted
for approximately 40 trials. A similar phenomenon was discernible after around trial 480. It is
important to notice that, in addition to the learning mechanism, a "forgetting" mechanism is
naturally built in. Namely, 9 and 10 are first-order Markov stochastic dynamical systems, so
that memories of the distant past are forgotten, whereas the more recent data are taken into
account with higher weights. Note, however, that the Sequential Monte Carlo algorithm took
into account several hundred parameter values instead of a single parameter value, which
endowed the predictions with robustness.

A question might arise as to why was the drop in γt  at around k=380 much more significant
than, for instance, that at around k=270, where the SER increase was more significant at the
latter than the former. Our interpretation is that at around k=270, γtis not too large, so that the
parameter search region is still reasonably large, whereas at around k=380, the parameter
search region was already sharp, and a more sudden change of the search region size was
needed.

7.2. Sequential marginal likelihood

Since Sequential Marginal Likelihood can be interpreted as the reliability of each prediction of
the subject, this quantity can also be used to evaluate subject’s performance with probabilistic
justification. Another potential application of this quantity is its use in change detection
problem such that a significant change of this quantity would indicate occurrence of change
in the subject’s signal quality or/and environmental change. It should be noted that the
sequential marginal likelihood is a well defined Bayesian quantity whereas such reliability
index is not available in maximum likelihood method.

7.3. Rao-blackwellisation

Note that in Figure13, the best performance was achieved by HP+RBSMCESS, where the Rao-
Blackwellisation and the Effective Sample Size were taken into account, in addition to the
hyperparameter learning. The proposed scheme appeared functional.

Figure 13 shows the Cumulative Error of subject D, where the black dotted line shows the
Cumulative Error corresponding to random classification. Since the Cumulative Error with
the proposed algorithms grows slower than the random classification, the results appeared to
indicate that the algorithms were functional. Figure 13 appears to indicate that the proposed
γt-learning, as well as the Rao-Blackwellised SMC, was functional.
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7.4. Effective sample size

From the trajectory of the Effective Sample Size (ESS), we observed that the ESS was generally
large if resampling was performed at each step. This could be attributable to the fact that the
purpose of resampling was to avoid degeneracy of samples, i.e., to bring in more diversity in
the samples. Table 5 appears to indicate that the computation time with ESS was significantly
reduced since it avoided sampling when ESS did not become smaller than a threshold value.

7.5. Higher-order harmonics

Taking the higher-order harmonics into account generally improved the prediction capabili‐
ties, except for subject E, as was seen in Table 6. One future research project could be to develop
an algorithm to choose appropriate frequency components automatically. The number of
frequency components is also related to the overfitting problem in machine learning, where
the number of parameters is large compared with the number of data available, which
sometimes results in performance degradation.

7.6. Multi-class classification problem

The extension of the two-class problem to the four-class classification problem discussed in
Section 4.2 was nontrivial. One of the difficulties can be seen from the term Ck ,q in (17) - (19),
where the values of equation (18) must be well-separated from each other for the four classes.
The experimental results reported in subsection 6.4, however, appeared reasonable. The
Cumulative Errors shown in Figure.16 appeared to indicate that the learning was functional.

8. Conclusion

This paper proposed Bayesian sequential learning algorithms for SSVEP sequential classifica‐
tion problems in a principled manner. Two experiments were conducted: one involving a two-
class problem, and the other involving a four-class problem. The stimuli consisted of a
flickering checkerboard at frequencies ranging from 4.29 to 10.0 Hz. The algorithms were
implemented by the Sequential Monte Carlo. One of the points of the proposed algorithms
was their hyperparameter learning, enabling it to automatically adjust to environmental
changes, including changes in the subjects' physical conditions as well as their environments.
Computation costs were also measured, which appeared to indicate that the algorithms could
be implemented in real time. The proposed algorithms appeared functional. The proposed
sequential algorithms are applicable to other brain signals besides EEG.

In the experiments performed in this study, the subjects were asked to look at the stimuli. A
future research project is to examine sequential classification problems with covert selective
attention [20], [21] where subjects are asked to pay attention to stimuli without eyeball
movements. This project is in progress and will be reported in a future paper.
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Appendix

Update Equations of zk |k -1 and Sk

The update equations of zk |k -1 and Sk  can be summarized as follows:

vk |k -1 =vk -1|k -1

V k |k -1 =V k -1|k -1 + δk
-1

Sk =Ψk
T (xk ;uk )V k |k -1Ψk (xk ;uk ) + 1

zk |k -1 =Ψk
T (xk ;uk )vk |k -1

Kk =V k |k -1Ψk (xk ;uk )Sk
-1

vk |k =vk |k -1 + Kk (zk - zk |k -1)

V k |k =V k |k -1 - KkΨk
T (xk ;uk )V k |k -1

Where vk |k -1≔E vk | Θ1:k -1 , vk |k≔E vk | Θ1:k , V k |k -1≔Cov vk | Θ1:k -1 , V k |k≔Cov vk | Θ1:k ,
zk |k -1 = E zk | Θ1:k -1 , and Sk =Var zk | Θ1:k -1 .
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