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resumo 
 

 

O presente trabalho foi dedicado ao pré-tratamento de biomassa lenho-celulósica 
através de dois solventes alternativos – líquidos iónicos (LIs) e fluídos 
supercríticos (FSCs). 
O estudo com líquidos iónicos focou-se em propor uma nova metodologia para o 
pré-tratamento da palha de trigo com o líquido iónico acetato de 1-etil-3-
metilimidazólio ([emim][OAc]), que permitiu o fracionamento da mesma em 
frações de celulose, hemicelulose e lenhina num simples processo de três 
etapas. Com este processo de pré-tratamento foram estudadas diferentes 
temperaturas (80-140°C) e tempos (2-18h) de dissolução da biomassa no 
[emim][OAc]. A técnica de Espectroscopia de Infravermelho com Transformadas 
de Fourier (FTIR) permitiu efetuar análises qualitativas e quantitativas de todas 
as frações obtidas nos pré-tratamentos realizados. Para as frações ricas em 
celulose foram efetuados ensaios de hidrólise enzimática para avaliar o conteúdo 
em glucose. Além disso, a dependência da recuperação destas mesmas frações 
nas diferentes condições experimentais do pré-tratamento foi avaliada através de 
análises de regressão linear múltipla. O pré-tratamento a 140°C durante 6h deu o 
melhor resultado, no que toca à recuperação das frações ricas em celulose, onde 
se obteve uma recuperação de 37.1% (m/m) relativamente à massa inicial de 
biomassa utilizada. Para as mesmas condições, também foram obtidos 
resultados com elevada pureza, tanto para a fração de hemicelulose (96% em 
hidratos de carbono), bem como para a fração em lenhina (97%). Do mesmo 
modo, foi verificado um elevado teor em glucose (81.1% m/mbiomassa) presente na 
fração celulósica. No final de cada pré-tratamento realizado, o LI foi recuperado 
atingindo sempre valores de recuperação superiores a 86% (m/m). Para avaliar a 
pureza dos LIs após os pré-tratamentos utilizou-se a técnica de espectroscopia 
de ressonância magnética nuclear (RMN). Para além disso, os LIs recuperados 
foram analisados através da técnica eletroforese capilar (EC) para investigar a 
presença de compostos fenólicos de valor acrescentado. Desta análise, foi 
possível verificar a presença de compostos de vanilina e seus derivados, bem 
como outros produtos derivados da lenhina. 
O outro estudo centrou-se num processo de auto-hidrólise assistido com CO2 da 
palha de trigo, com o objetivo de dissolver seletivamente a fração hemicelulósica. 
A formação in situ de ácido carbónico resultou numa maior dissolução da 
hemicelulose comparativamente a um processo de auto-hidrólise da palha de 
trigo em condições análogas (temperatura e razão líquido-sólido (RLS)). Um 
aumento da quantidade de CO2 obtido através da diminuição da quantidade de 
biomassa levou a um aumento de mais de 60% de xilo-oligossacáridos (XOS) 
dissolvidos. Nomeadamente, a 210°C foi verificada uma recuperação de 
15.75g·L

-1
 em XOS comparativamente a uma recuperação de 9.54 g·L

-1 
obtida 

num processo de auto-hidrólise sem adição de CO2. Nestas condições, foi 
também verificado um enriquecimento de 20% (m/m) em glucose no sólido 
recuperado.  
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abstract 

 
The present work is devoted to the pre-treatment of lignocellulosic biomass by 
two alternative solvents – ionic liquids (ILs) and supercritical fluids (SCF). 
The IL study was focus on proposing a new methodology for the wheat straw pre-
treatment with the ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate 
([emim][OAc]), that allowed to obtain cellulose, hemicellulose and lignin-rich 
fractions in a rapid and simple three-step fractionation process. Various 
temperatures (80-140°C) and processing times (2-18h) of the pre-treatment were 
studied. The quantitative and qualitative analysis of each lignocellulosic biomass 
fractions were determined by FTIR measurements. The glucan content in 
recovered cellulose-rich fractions was investigated by an enzymatic hydrolysis. 
Cellulose recovery dependency on pre-treatment conditions was ascertained 
through the regression analysis. The optimal result for the recovery of the 
cellulose-rich fraction was obtained at 140°C during 6h achieving 37.1 % (w/w) of 
the initial biomass loading. For the same conditions, optimal results were also 
produced regarding the amount of the glucan present (81.1 % w/wbiomass) in 
cellulose-rich fractions, the carbohydrate enrichment in the hemicellulose fraction 
(96% wt) and the purity of lignin (97% wt).The recovery of IL was performed after 
each pre-treatment and the obtained yields were up to 86% (w/w). The recovered 
ILs were analyzed by 

13
C- and 

1
HNMR in order to verify their purities. The 

presence of value-added phenolic compounds in the recovered ILs was analyzed 
by capillary electrophoresis. Vanillin and its derivatives, as well as other lignin-
based products were identified. 
The other study was centered in a CO2-assisted autohydrolysis treatment of 
wheat straw, in order to selectively dissolve the hemicellulose fraction. The in situ 
formation of carbonic acid resulted in a higher hemicellulose dissolution in 
comparison to autohydrolysis of wheat straw with analogous conditions 
(temperature and LSR). In addition, higher amount of CO2 obtained by the 
relative reduction of biomass amount treatment guided to an increase by more 
than 60% of xylo-oligosaccharides (XOS) recovered. Namely, at 210°C a XOS 
recovery of 15.75 g·L

-1
 was obtained versus a 9.54 g·L

-1
 recovery with an 

autohydrolysis pre-treatment without CO2 addition. Furthermore, an enrichment of 
20% (w/w) of the glucan content in the recovered solid fraction was also verified 
at the same conditions with the CO2-assisted autohydrolysis pre-treatment. 
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1. Introduction 

1.1 Green Chemistry 

According to Anastas et al.1 Green Chemistry is “the design, development, and 

implementation of chemical products and processes to reduce or eliminate the use and generation 

of substances hazardous to human health and the environment”. It is an innovative, non-

regulatory, economically driven approach toward sustainability. Green Chemistry aims to design 

and utilize matter and energy in a way that increases performance and value while protecting 

human health and the environment.2 This definition is also elucidated by the Twelve Principles of 

Green Chemistry that are used as a design framework (Figure 1). The principles of Green 

Chemistry need to become essential for future chemistry, in order to integrate sustainability into 

science and its innovations. It is also needed the application of these principles at early stages of 

the product development.  

 
 

Figure 1 – Twelve Principles of Green Chemistry (adapted from Anastas et al.)
1
  

 Green Chemistry is an important tool in achieving sustainability. The Brundtland Commission 

(1987)3 defined sustainable development as “development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs”. The challenges 

of global sustainability are complex, in a way that the three dimensions of sustainability, 

environmental, social and economic must be recognized. These three elements are essential to 

move sustainability forward.  
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The application of the Twelve Principles of Green Chemistry demonstrated the possibility of 

achieving this synergism by working at the most fundamental level.4 Green Chemistry provides 

solutions to such global challenges as climate change, sustainable agriculture, energy, toxics in the 

environment, and the depletion of natural resources. 

A major concern regarding sustainability is the release of hazardous substances into the 

environment. Green Chemistry can have a significant impact in this area. It is important to use 

alternative solvents to organic solvents in order to decrease the negative environmental impact 

generated by the last ones, namely the release of volatile organic compounds (VOCs), hazardous 

air pollutants (HAPs). A green alternative to organic solvents is the use of ionic liquids and 

supercritical fluids. For instance, considering the supercritical fluids, supercritical carbon dioxide 

(scCO2) can be used. This compound has an easily accessible critical point and is non-toxic, non-

flammable and inexpensive.5 Regarding to ionic liquids (ILs), these salts are attractive because of 

their negligible vapor pressure, thermal stability6 and great solvent power.7 Their low vapor 

pressure reduces the risk of exposure which is an advantage related to classical VOCs.7 This class 

of solvents has the potential to design next generation of ILs thus is a significant promise for 

improved environmental benefits.8 However, the “green” concept of ILs sometimes is 

questionable as limited data about toxicity and biodegradability are available. Thus, it is important 

that ILs should be treated with the same caution as other solvents.7, 9-11 Nevertheless, ILs are still 

considered as more environmentally friendly compared to the other organic counterparts.7 

1.2 Biorefinery Concept 

The National Renewable Energy Laboratory defined Biorefinery as “a facility that integrates 

conversion process and equipments to produce fuels, power, chemicals and materials from 

biomass.” The main goal of the biorefinery is the generation of a variety of goods from different 

biomass feedstocks through a combination of technologies.12-14 In other words it is the production 

of high-value low-volume (HVLV) and low-value high-volume (LVHV) products. The operations are 

designed to minimize the waste streams by converting LVHV intermediates into energy, while 

HVLV products enhance profitability.12 The biorefinery concept is presented in Figure 2.  

 The efficient production of transportation biofuels is seen as one of the main promoting 

factors for the future development of biorefineries.15 Once, biofuels have the potential to reduce 

greenhouse-gas emissions and to contribute to energy security by diversifying supply sources. 

Also, to respond to determined mitigation measures, such as the EU directive16 which put the 

objective to achieve a 20% share of energy from the renewable resources. Referring to biofuels in 
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Portugal, it is necessary to accomplish a level of 10% by 2020. Additionally, a reduction of 

greenhouse-gas emissions of 20% by 2020 was also established.17 Although, the implementation 

of biofuels as main source of energy is still a difficult and challenging process due to the 

technological limitations.17 However, to satisfy social and environmental aspects of biofuel 

production, a complex biorefinery concept must be explored leading to a maximal valorization of 

non-food and non-feed competitive feedstocks. 

 
Figure 2 – The Biorefinery Concept (Adapted from Carvalheiro et al.).

18
 

1.3 Lignocellulosic Feedstock 

 Within biorefinery processes the major lignocellulosic feedstock are lignocellulosic biomass, 

such as softwood (Pine, Spruce), hardwood (Willow, Poplar and Eucalyptus), grasses (Miscanthus, 

Switchgrass). In addition, agricultural residues (wheat straw, sugarcane, bagasse and corn stover), 

forest residues (sawdust, thinning rests), domestic and municipal solid wastes, and food industry 

residues are considered as biomass too.19 Annually are produced approximately 200 billion tones 

worldwide which make this type of biomass a potential source of a clean, uniform and a low-cost 

raw material for large-scale and environmentally sustainable biorefineries.20  

Lignocellulosic biomass from agricultural residues, forestry wastes, waste paper are currently 

being studied due to their potential use as a starting material for production of 

bioenergy/biofuels.20 Furthermore, using this type of biomass can also minimize the competition 

with the food/feed chain, which represents an advantage comparatively to 1st generation 

biofuels.21 Since, the 1st generation of biofuels appear unsustainable regarding to the source of 

feedstocks, including the impact that it may cause on biodiversity and land use.22 From 

lignocellulosic biomass not only biofuels (bioethanol, biobutanol) can be produced, but also other 
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valued-added products such as reducing sugars, organic acids (acetic acid, propionic acids and 

butyric acid), compost (organic fertilizer), bio-composites, furfural and its derivatives and other 

miscellaneous compounds.23 

 Lignocellulosic biomass is composed mainly of cellulose (35-50%), hemicellulose (20-35%) 

and lignin (5-30%).24 The composition of lignocellulose materials depends mainly on the species, 

age and origin of biomass. The contents of macromolecular materials in some residues and waste 

crops are illustrated in Figure 3.  

 
Figure 3 - Contents of cellulose (%C), hemicellulose (%H) and lignin (%L) in common residues and wastes. 
(Adapted from Sun et al.)

25
 

A simplified picture of the lignocellulosic materials’ macromolecular structure is that, 

cellulose forms a skeleton which is surrounded by other substances forming a matrix 

(hemicelluloses) and encrusting (lignin) materials.26 Cellulose and hemicellulose represent the 

carbohydrate fraction, while lignin is a very complex and amorphous phenylpropanoid polymer. 

Cellulose (C6H10O5)n is a homopolysaccharide composed of      glucopyranose units linked 

together by (1  4)-glycosidic bonds generating cellobiose units. Cellulose is located 

predominantly in the secondary cell wall. Cellulose molecules are completely linear and have a 

strong tendency to form intra- and intermolecular hydrogen bonds. Bundles of cellulose 

molecules are thus aggregated together in form of microfibrils where highly ordered (crystalline) 
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regions are alternatives to less ordered (amorphous) regions. Microfibrils build up fibrils and 

finally cellulose fibers. The example of cellulose structure is presented in Figure 4.  
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Figure 4 - Cellulose stereochemical formula. The dimeric unit repeated is cellobiose. 

The number of glucose units that make up one single chain of cellulose is recognized as 

degree of polymerization (DP). Molecular weight measurements have shown that wood cellulose 

consists of about 10000 glucose residues. Based on properties cellulose in solution behaves like 

most of synthetic polymers, so this means that the molecules have no preferred structure in 

solution.26 In terms of solubility cellulose is insoluble in water and other common solvents due to 

its fibril structure and the presence of intra- and intermolecular hydrogen bonds. At the same 

time is hygroscopic at normal atmospheric conditions absorbing around 8-14% of water. In order 

to accomplish various demands for its industrial applications, cellulose is often modified by 

chemical, physical, enzymatic or, genetic procedures to improve solubility and others properties 

of the polymer.27 Cellulose is mostly hydrolyzed to sugar monomers, and then converted into 

alcohols (ethanol, butanol), hydrogen or methane by fermentation process. Apart from 

biofuel/bioenergy production, cellulose can be also used for the production of other valuable 

products, such as hydroxymethylfurfural (HMF) and levulinic acid.28 

 Hemicellulose is a non-crystalline, highly branched, water-insoluble heteropolysaccharide. 

Similarly to cellulose most of hemicelluloses has a supporting function in the cell walls.26 The term 

hemicellulose represents a family of polysaccharides such as arabino-xylans, gluco-mannans, 

galactans, and others which have different composition and structure depending on their source 

and the extraction method.29 The high complexity of hemicellulose, namely type, ratio contents of 

sugar units and structural conformation, is associated to the different building blocks present 

(Figure 5). 
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Figure 5 - Chemical structure of sugar building blocks. 

The major type of hemicellulose polymers’ content is xylans which have different structures 

depending on the type of branching. As can be seen from Figure 6, the backbone consists of 

     xylopyranose units, linked by (1  4)-bonds. Most hemicelluloses have a DP of only 200. 

Additionally, the highly branched structure of hemicellulose and the presence of acetyl groups 

linked to the polymer chain lead to lack of crystalline structure of hemicellulose. 

Hemicelluloses are relatively easily hydrolyzed by acids to their monomeric compounds 

consisting of pentoses (D-xylose and L-arabinose), hexoses (D-glucose, D-mannose and D-

galactose), and small amounts of desoxyhexoses (L-rhamnose and L-fucose) in addition to 

glucuronic acids (D-glucuronic acid, 4-O-methyl-D-glucuronic acid and D-galacturonic acid). 
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Figure 6 – Chemical structure of xylans’ backbone. 

Xylans can be isolated using alkali solutions such as KOH or NaOH. However, disadvantage of 

alkali extractions is almost complete hemicelluloses deacetylation. Then, the polysaccharides can 

be precipitated from the alkaline extract by acidification (acetic acid). The addition of a neutral 

organic solvent, for example ethanol, results in a more complete precipitation.26 Hemicelluloses 

are used as emulsifiers, stabilizers and binders in food, pharmaceutical (as food fibers, therapeutic 

agent in lowered immune conditions),30 cosmetics industries, production of xylitol, xylo-

oligosaccharides (used as prebiotic ),31 furfural and other value-added products.32  

Lignin is an amorphous three-dimensional polymer of phenylpropane units which has an 

important role in the cell's endurance and development. Thus, it affects the transport of water, 
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nutrients and metabolites in the plant cell. More specifically these phenylpropane units are three 

monolignol precursors, coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol (Figure 7) with 

various degrees of oxygenation/substitution on the aromatic ring. Moreover, these precursors are 

covalently linked to hemicelluloses.33 

OH
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O

OH

OH

(b)

O

OH

O

OH

(c)

OH

 
Figure 7 – Chemical structure of the three lignin precursors: (a) p-coumaryl alcohol, (b) coniferyl alcohol, (c) 
sinapyl alcohol.  

The nature of the lignin polymerization reactions results in the formation of a three-

dimensional, highly-branched network of essentially infinite molecular weight (Figure 8).26 In 

terms of properties, high polydispersity degree characterizes lignin structure, once different 

branching and bonding in otherwise similar molecules are encountered. Lignin has a very low 

solubility in most solvents and exhibited a low viscosity. The polymeric properties are also 

extremely important when evaluating the suitability of lignin by-products for technical 

applications. Other issue is the isolation of lignin from wood without causing degradation. 

 

Figure 8 – Macromolecular representation of lignin structure.
34
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Lignin has been used as a low-value heating fuel, binder, dispersant and emulsifier. Recently, 

there is noticed a growing interest in the characterization of isolated lignin extracted from 

different crop residues in order to find novel applications. Lignin can be used as source of polyols 

for various applications such as the synthesis of polyurethane and phenol–formaldehyde resins, 

for the production of bioproducts such as vanillin, guaiacol and other phenolic compounds.35 

Beyond that it can also be used in automotive brakes, wood panel products, biodispersants, 

polyurethane foams, epoxy resins for printed circuit boards and surfactants.36 

1.4 Ionic Liquids  

ILs are salts composed of large organic cations and organic or inorganic anions with low 

lattice energy leading to low melting point usually below 100°C.37 Although ILs possess 

immeasurable combinations of anions and cations (more than 106), only a small number (≈1000) 

of these compounds are described and characterized in the literature.11 Examples of cations and 

anions studied are illustrated In Figure 8.  
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Figure 9 - – Chemical structures of cations and anions commonly used to form ILs. Ri=1,…,7 = alkyl 
group(Adapted from Zakrzewska et al.).
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The ionic nature of ionic liquids results in several physical and chemical advantages over 

conventional and molecular organic solvents such as negligible flammability and vapor pressure, 

thermal stability and highly solvating capacity either for polar and nonpolar compounds,10, 38-41 

large electrochemical window and high conductivity.6 Due to its unique properties ILs are 

interesting as an alternative to VOCs with the aim to facilitate sustainable chemistry. Since a large 

number of cationic and anionic structural combinations is possible, desired physicochemical 

properties of ILs for a particular processes can be easily tuned.42 Thus hydrophobicity, viscosity or 

density can be adjusted by changing the alkyl chain of the cation.43, 44 The viscosity is sometimes 

one of the obstacles in chemical reactions due to mass transfer limitations, once viscosity values’ 
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for ILs can be generally up to 3 times higher than that of conventional organic solvents.45 The 

water content in ILs can be considered as an impurity in a way that it was found that decreases 

the solubility of carbohydrates.46 Also, their solvent properties can be varied by adjusting the 

anion and the alkyl constituents of the cation. 

Due to the outstanding ILs’ properties they have been applied in numerous areas such as 

(bio-) catalysis,47 organic synthesis,48 separations processes such as liquid-liquid extraction,49-51 

electrochemistry in solar and fuel cells,52-54 lubricants,55 and cosmetics.56  

1.5 Supercritical Fluids  

 A supercritical fluid (SCF) is a state above the critical temperature, Tc, and critical pressure, 

Pc, but below the pressure required to condensate  into a solid.57 Under these conditions, some 

properties of the fluid are placed between those of a gas and those of a liquid. Namely, the 

density of a supercritical fluid is similar to a liquid and its viscosity is similar to a gas, although its 

diffusivity is intermediate between the two states.57 It is also important to point out the great 

solvating power of the SCF similar to a liquid. SCFs’ solvent power is the highest for non-polar or 

slightly polar compounds.58 At the critical point, the density of the gas phase becomes equal to 

that of the liquid phase, thus the phase distinction between vapor and liquid disappears (Figure 

10). 

The most commons SCFs are presented in Table 1, their critical parameters where can also be 

seen. Carbon dioxide (CO2) is frequently chosen as supercritical fluid due to its moderated critical 

constants, inertness, low cost, availability in pure form and the easy recovery after use. 

 
Figure 10 - Definition of supercritical state for a pure component.

59
 

In biomass pre-treatment water is often present or added deliberately. It was shown that 

supercritical water (scH2O) develops acidic characteristics at high temperatures (at 220°C results a 

pH of 5.5).59 However, to achieve critical conditions of water comparing with critical conditions of 
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CO2 demands much more energy. Thus combining both compounds can reduce significantly the 

energy demand. 

 

Table 1 – Critical parameters of the most common compounds. (Adapted from Jessop and Leitner).
57

 

 

 

 

  

 

 As matter of fact it was shown that water in 

contact with CO2 becomes acidic due to formation 

and dissociation of carbonic acid60 (Equation 

1). By the dissolution of CO2, the pH of water-CO2 

mixture decreases to approximately 3.0 (depending on pressure and temperature).60 

 

              
       

          (Equation 1) 

 

Use of SCF as an alternative to conventional solvents (organic acids) offers attractive 

possibilities, such as the facile removal of CO2 by the depressurization without the contamination 

of the reaction mixture, and reduction of operational costs since further neutralization can be 

omitted. Also, the formation of waste particles and, consequent corrosion of the equipment can 

be overcome by introducing CO2 in a autohydrolysis treatment.59 Therefore the significance of SCF 

for a sustainable chemistry can be underlined.61 

Due to their tunable properties SFCs are used in different areas such as food processing (such 

as decaffeination of green coffee beans or recovery of aromas and flavors from herbs and spices) 

adsorptive and chromatographic separations,58 separations or/and extractions,62-64 

pharmaceuticals applications.65 

1.6 Biomass Pre-treatments 

Lignocellulosic biomass is a complex three-dimensional structure constituted by cellulose, 

hemicellulose and lignin. The concrete use of these lignocellulosic fractions requires a pre-

treatment that allows the biomass fractionation into cellulose, hemicellulose and lignin fractions. 

The principal goal of lignocellulosic pre-treatment is to turn cellulose more easily hydrolysable by 
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removing hemicellulose and lignin, reducing the surface area, and reducing crystallinity.66 Hence, 

the pre-treatment step is the central key in a biorefinery to convert lignocellulosic biomass into 

fuels and chemicals.67 A schematic representation of the goal in biomass pre-treatment is 

illustrated in Figure 11. Therefore, the selection of an efficient pre-treatment method should take 

in account various features. Namely, (1) result in high recovery of all carbohydrates; (2) to 

improve sugar yields; (3) to avoid formation of inhibitory by-products to the subsequent 

hydrolysis and fermentation process; and, (4) require low capital and operational costs.67-69 

Hereafter it is extremely important that all pre-treatment methods must be reassessed at more 

industrial-like conditions referring to the whole integrated process taking into account the 

different types of lignocellulosic biomass.68  

The pre-treatment methods can be categorized according to various criteria.25, 68-70 Among 

these pre-treatment criteria they can be divided into conventional and alternative methods. Since 

this thesis is based on alternative methods, namely ionic liquids and supercritical fluids, just a 

brief introduction to conventional methods is presented below. 

 

Figure 11 - Schematic of the role of pre-treatment.
71

 

1.6.1 Conventional Methods 

Conventional pre-treatment methods can be classified as biological, physical, chemical and 

physical-chemical. Depending upon the pre-treatment method chosen different effects might be 

caused. These effects are clearly presented in Table 2. It is important to notice that the selection 

of the feasible pre-treatment method for a specific process configuration with a certain type of 

co-products is not necessarily optimal for another process configuration.68 
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Table 2 – Types of pre-treatment methods (Adapted from Mohammad et al.),
70

 Carolina et al.
72

 ). 

Pre-

treatment 

Examples of Process Effect 

Biological Fungi and actinomycetes Delignification 

Physical 

Milling 

Irradiation 

 

Hydrothermolysis 

Increase surface area and pores size; 

Partial depolymerize of lignin; 

Disrupts plan cell; 

Partial hydrolysis of hemicelluloses. 

Chemical 

Alkaline Hydrolysis (Na
+
, K

+
, Ca

+
 

and NH
4+

) 

Acid Hydrolysis (H2SO4, HCl and 

HNO3) 

Organosolv (ethanol, acetone) 

Wet Oxidation (water/air or O2, 

T>120°C) 

Ozonolysis 

Decrease cellulose crystallinity; 

Partial or complete hydrolysis of 

hemicellulose; 

Delignification. 

Physical-

Chemical 

Steam Explosion 

(autohydrolysis, SO2 addition) 

Liquid hot water (LHW) 

Ammonia fiber explosion 

(AFEX) 

Irradiation (Microwave) 

Combination of all effects referred to 

above. 

 

It is also important to point out that none of these pre-treatments is highly selective and 

efficient. Also, these methods are frequently environmentally detrimental, creating hazardous 

pollutants and demanding much energy. Moreover, conventional pre-treatments use severe 

conditions, such as strong base or mineral acids. Thus, new, less toxic, green methodologies are 

currently studied. Examples of new methodologies are ionic liquids and SFCs which have already 

demonstrated promising perspectives against conventional methods.  

 

 

 

 



1 - Introduction 

13 

 

1.6.2 Alternative Methods 

1.6.2.1 Pre-treatment with Ionic Liquids 

In 2002, Rogers and co-workers73 have demonstrated that imidazolium-based ILs can 

efficiently dissolve cellulose. These ILs show a relatively low viscosity and stronger hydrogen 

bonding basicity,46 which facilitates the breakdown of inter and intramolecular hydrogen bonds. 

More specifically Sun et al.74 report the 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) for 

dissolution of cellulose due to its desirable properties such as low toxicity, viscosity and 

corrosiveness, low melting point (< -20°C) and favorable biodegradability. The importance of a 

strong hydrogen bond basicity46 that facilitates the breakdown of inter- and intramolecular 

hydrogen bonds is commonly known. Imidazolium acetate ILs exhibit a promising dissolution 

behavior for cellulose, although there is a lack of thermal properties of these ILs. The calorimetric 

analyses of [emim][OAc] were performed by Wender et al.,75 where a significant mass loss is 

observed for temperatures close to 200°C. From thermal gravimetric analysis (TGA) 

measurements it can be concluded that acetate generally decreases the thermal stability, which 

was reported by Ohno et al.76   

 ILs are not only capable of dissolving cellulose, but can be good solvent for other 

biomaterials, such as lignin77 and even wood.78, 79 When wood dissolution was investigated in ILs, 

the water content and the particle size of wood chip had large effects on the dissolution 

efficiency. As mentioned before the water content reduces the solubility of carbohydrates. Sun et 

al.74 investigated the effect of wood chip particle size (0.125 - 1.000 mm) of southern yellow pine 

(softwood) and red oak (hardwood) in [emim][OAc] and 1-butyl-3-methylimidazolium chloride 

([bmim][Cl]) at 110°C for 16h. A 98% of dissolution of southern yellow pine for the smaller 

particles (<0.125 mm) with [emim][OAc] was obtained. As it was expected, smaller particles have 

larger surface areas, which cause more efficient dissolution. In the same study the effect of initial 

wood load was also investigated. It was found that an optimum wood load would be 

approximately 5 parts of wood added to 100 parts of IL that resulted in 98.5% of wood 

dissolution. In addition, Zavrel et al.21 performed high-throughput screening systems where six ILs 

capable to completely dissolve cellulose were identified. Among the studied ILs, [emim][OAc] was 

the most efficient solvent for cellulose. The same result was reported from Coutinho and co-

workers40 where among eight ILs studied [emim][OAc] was the best candidate to dissolve 

cellulose. In fact the basicity of the acetate anion makes the dissolution more efficient at 
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disrupting the inter- and intramolecular hydrogen bonds.74 However, it should be noted that IL 

selection for wood dissolution not only depends on water content, wood chip particle size, wood-

to-IL ratio, but also on wood type, stirring and dissolution conditions (time and temperature). 

1.6.2.1.1 Fractionation of Lignocellulosic Material 

One challenge of wood pre-treatment is the recovery of all lignocellulosic materials released 

from wood. A general procedure is the processing of the biphasic mixture (lignocellulosic material 

and IL at the certain solid/liquid ratio) at determined temperature and time with rigorous 

stirring.19 It is important to note that to improve efficiency of the pre-treatment complete 

dissolution is required. Usually, after the dissolution step the regeneration of biomass with a 

precipitating solvent addition is performed. Cellulose can be separated from IL by the addition of 

anti-solvents, such as water,78 acetone/water solution (1:1) (v/v),74 NaOH 0,1M.80 According to 

Dadi et al.81 the regenerated cellulose is completely modified and its crystallinity matrix is 

changed to an amorphous structure. The natural crystalline form (Cellulose I) is transformed into 

Cellulose II, which is more stable. Thus, this amorphous structure allows an enhancement of 

enzymatic hydrolysis that can produce high sugar yields, and consequently produce biofuels from 

lignocellulosic biomass with IL pre-treatment.82-85  

Lee at al.86 has reported a selective method for lignin extraction from maple wood flour in 

various ILs at 80°C within 24h. [Emim][OAc] provided a very good extractability of the lignin (4.4 g 

lignin/kg IL from a 50g/Kg of wood flour/IL solution). Despite wood flour presents a very low 

solubility in [emim][OAc] (<5 g/kg) compared with the high solubility of free cellulose (>100 g/kg). 

An interesting compromise between high lignin solubility and low wood flour solubility was 

achieved in [emim][OAc]. Thus, the removal of lignin increases the access of cellulose fraction, 

and results in a high amount of available cellulose (in this case, over 90%) for enzymatic 

hydrolysis.  

Up to now only few works report the complete fractionation of biomass into the main 

constituents.19, 33, 87-89 A pre-treatment of 2% (w/w) sugarcane bagasse with 1-butyl-3-

methylimidazolium chloride ([bmim][Cl]) at 110°C for 4h was performed.33 The complete 

dissolution was achieved followed by precipitation in acetone/water (9:1) (v/v) and extraction 

with 3% NaOH solution. The biomass was fractionated into 36.78% cellulose, 26.04% 

hemicellulose and 10.51% lignin, giving 47.17% (w/w) and 33.85% (w/w) of the original 

polysaccharides and 54.62% (w/w) of the original lignin. About 26.67% of the original bagasse was 

lost. This fractionation method resulted in a high purity of cellulose fractions (> 92%). In addition, 
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[bmim][Cl] was easily recycled after concentration (removal of water) and treatment with 

acetonitrile. Additional research was focused on 1-allyl-3-methylimidazolium chloride ([amim][Cl]) 

used as solvent to dissolve and fractionate a solution of 5% (w/v) bamboo powder/IL at 100°C for 

12h.88 After dissolution, bamboo was regenerated with distilled water, followed by consecutively 

extraction with 0.5M NaOH solution at 80°C for 3h with a solid-to-liquid ratio (SLR) of 1:30 (g/mL). 

After that, the obtained solid residue was washed with distilled water and, then cellulose-rich 

residual was extracted with 70% ethanol containing 1.0M NaOH at 80°C for 3h. Hemicellulose was 

extracted by the adjustment of the solution to a pH 5.5, followed by concentration (removal of 

water under reduced pressure) and precipitation with 3 volumes of 95% ethanol. To recover 

lignin-rich fraction, ethanol was removed under reduced pressure and the remaining solution was 

acidified to pH 1.5-2. A content of 93.88% and 92.02% wt of glucose was obtained for cellulose 

and hemicellulose-fractions, respectively, along with a recovery of lignin-fraction containing a 

small amount of carbohydrates (2.19% wt). However, it was noticed that the lignin and 

hemicellulose fractions were slightly degraded due to [amim][Cl] treatment. Rice hulls, a biomass 

rarely investigated with IL pre-treatment was reported by Lynam et al.89 The effect of [amim][Cl], 

[emim][OAc] and 1-hexyl-3-methylimidazolium chloride ([hmim][Cl]) was investigated in a 10% 

(w/w) mixture of rice hulls/IL. The effect of temperature (90 or 110°C) and time (4 or 8h) on 

dissolution were studied. It was found that [emim][OAc] at 110°C within 8h completely removes 

lignin using 95% ethanol as a precipitating agent. In addition, [emim][OAc] was the only one that 

gave complete removal of lignin while a solid fraction mainly consisting of cellulose was obtained. 

However, higher hemicellulose content is removed when the lower temperature (90°C) was used. 

Another interesting study was reported by Simmons and co-workers87 where it was investigated a 

mixture for precipitation of cellulose and lignocellulose biomass from solutions with [emim][OAc]. 

The main goal of this mixture is to prevent the formation of gel phases during precipitation of 

cellulose or cellulose-rich biomass fractions from concentrated IL solutions. It was defined as an 

optimum molar ratio composition of acetone: ethanol: IL solvent mixture to be 4:6:1:1. After the 

dissolution of 10% (w/w) (corn stover/IL) 93% cellulose, 80% hemicellulose and 58% lignin of the 

initial composition were recovered. Moreover, a novel method to recover IL after pre-treatment 

without the addition of acid or other catalysts was also studied. Basically, this method comprises 

an IL-acetone-ethanol-water phase-splitting process where a recovery of 89% from initial IL was 

achieved. Considering other studies ,33, 74, 80 a new fractionation method was developed to obtain 

high purity samples.19 A dissolution of 5% (w/w) initial load of wheat straw/[emim][OAc] at 120°C 

for 6h was performed. Biomass was fractionated into the main components which purities were 
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measured by FTIR (Fourier Transform Infrared Spectroscopy) analysis. It was verified high 

carbohydrate content in 86% cellulose and 85% hemicellulose samples while 87% of pure lignin 

was obtained. The recovery of [emim][OAc] was up to 94.9% from the initial mass. 

Determining the optimal dissolution conditions, temperature and time, appears to be 

essential when working with lignocellulosic biomass. The increase in dissolution temperature 

increases the diffusivity, both adding thermal energy to the system and by decreasing IL’s 

viscosity. Longer times allows the IL to penetrate farther into the biomass.89 However, higher 

temperatures and times do not guarantee the efficiency of the pre-treatment. For instance, the 

effect of pre-treatment’s temperature (50 – 130°C) and time (0.5 – 70h) was reported by Lee at 

al.86 A higher content of lignin was extracted and lower content of biomass was recovered with 

increasing pre-treatment temperatures. The increase in pre-treatment time led to increased lignin 

extraction while little cellulose and hemicellulose was recovered up to a 70h pre-treatment. 

Regarding IL’s thermostability it was recommended that moderately short dissolution times 

should be applied for [emim][OAc],74 and that the degradation temperature of [emim][OAc] can 

be 200°C.75 It is also expected that higher temperatures favor hemicellulose hydrolysis with 

[emim][OAc].  

It is important to emphasize that an ideal set of conditions that is feasible to every aspect 

probably will not exist. However, it is important to consider that the optimum dissolution 

conditions should be determined in order to avoid depolymerization as well as formation of low 

molecular products.90 

Concerning to “Biorefinery Concept” the ILs recycle is a crucial aspect related to economical 

applicability of the IL pre-treatment process, once this novel solvent is more expensive than 

conventional organic solvents. The effect of IL recycling was analyzed through the pre-treatment 

of cotton stalk with [emim][OAc], which maintained its effectiveness upon 3 recycles.91 The 

amount of extracted lignin decreased with an increase of number of cycles due to the continuous 

accumulation of biomass components, mainly lignin.86 Additionally, it was confirmed that 

[emim][OAc] could be reused even six times without losses in biomass pre-treatment.19 

1.6.2.2 Biomass Pre-treatment with sub-/supercritical CO2 / water  

For lignocellulose ethanol bioproduction, hemicelluloses are commonly removed during the 

initial step of biomass processing in order to destroy the lignocellulosic materials’ complex 

structure. Cellulose and hemicellulose must be hydrolyzed into their respective monomers 

(sugars) to enhance enzymatic hydrolysis. Once again the pre-treatment step is crucial in this 
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process, so that selective fractionation from biomass can be achieved. Different pre-treatment 

methods towards a selective fractionation of hemicellulose from biomass have been developed 

covering the use of acids, water (liquid or steam), organic solvents and alkaline agents. The two 

last methods also remove lignin with hemicellulose which in turn can decrease the bioprocess’ 

valorization once lignin-derived compounds usually act as microbial growth inhibitors. Therefore, 

acid/water/steam pre-treatments are usually applied yielding a selective dissolution of 

hemicelluloses and a production of hemicellulose-rich liquids that can be partially or totally 

hydrolyzed into oligomeric and monomeric sugars. Moreover, cellulose-rich solids are 

recuperated for further bioprocessing.46, 71  

The autohydrolysis process uses compress hot water (pressure above saturation point) and 

temperatures usually between 150 – 230°C with reaction times that can vary from seconds up to 

hours.46 Hydronium ions generated in situ by water autoionization and acetic acid resulting from 

acetyl substituents of hemicelluloses act as catalysts in this process. Several studies reported a 

relatively high hemicellulose recovery (55 – 84%) combined with low levels of inhibitory by-

products92, 93 although, the dissolved hemicellulose, available mainly in oligomeric form, is a 

drawback to bioethanol production by autohydrolysis process. Steam explosion process consists 

of heating the material (preferably below 240°C) using high-pressure steam up to few minutes 

where this thermomechanochemical process led to a desegregation of lignocellulosic matrix. The 

steam condenses under the high pressure thereby “wetting” the material, that it is then 

“exploded” when the pressure within the reactor is rapidly released.46 Similarly to autohydrolysis, 

steam explosion treatments yielded high solubilized hemicellulose also in oligomeric form. 

However, slight lignin is present along with dissolution. The addition of acid catalysts, such as 

H2SO4 or SO2 is known to improve sugar yields.94  

Hydrothermal technologies, especially sub- and supercritical treatments have been 

investigated for lignocellulosic materials pre-treatments. In these treatments sub- (near its critical 

conditions) or supercritical water and supercritical CO2 are used. Previous studies demonstrated 

the pre-treatment of cellulose with scH2O followed by enzymatic hydrolysis for biofuel and 

chemicals production.95 Due to the high solvent and catalytic capacity of scH2O this kind of fluid 

has been reported to be suitable for processing fermentable hexoses from lignocellulosic 

materials owing to the efficient lignin separation and cellulose hydrolysis.96, 97 As referred to in 

section 1.5, water under sub- or supercritical conditions behaves differently that under normal 

conditions. It is expected that the acidic characteristics developed by scH2O enable the disruption 

of chemical bonds. Thus, hemicellulose can be separated from the lignocellulose and enzymatic 
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digestibility of cellulose can be increased. However, it was found that the hydrolyzed 

hemicelluloses monomers can further react to furfural and other toxic by-products.46 

Furthermore, in scH2O hexoses generated from cellulose decompose rapidly into non-fermentable 

fragmentation products mainly erythrose and HMF. Figure 12 illustrates the water phase diagram 

where the typical ranges for different water-based pre-treatments are presented. In subcritical 

water the decomposition of hexoses is slower than in scH2O. Thus, several studies were 

performed in a sub-/supercritical combined process, i.e. lignocelluloses are pretreated and 

hydrolyzed in scH2O to remove lignin and to produce oligosaccharides from cellulose, followed by 

a secondary hydrolysis in subcritical water to convert oligosaccharides into fermentable hexoses. 

Comparatively to the conventional hydrothermal treatments, the combined sub-/supercritical 

process demonstrates a much higher reaction rate, requires neither the use of additional catalyst, 

nor inhibits reaction of intermediates.98, 99 

 
Figure 12 - Water phase diagram: (A) Autohydrolysis; (B) Subcritical conditions; (C) Supercritical 
conditions.

46
 

Supercritical carbon dioxide (scCO2) mostly used as an extraction solvent is studied in 

lignocellulosic pretreatments. One of the first works reported that the use of scCO2 did not cause 

significant change in microscopic morphology of wood.100 Kim et al.101 investigated the effect of 

scCO2 on raw lignocellulose with different moistures contents at various pretreatment conditions 

(temperature, time and pressure). Within this particular experiment it was found that an increase 

in moisture content to 73% (w/w) at 214 bar and 165°C resulted in a significant increase of final 

sugar yields from the enzymatic hydrolysis. Therefore, it was concluded that the moisture content 

has a pronounced effect in pretreatments with scCO2. A study reported by Van Walsum 

demonstrated an increase of xylan hydrolysis by the addition of CO2 to a autohydrolysis pre-

treatment of beech wood.102 On the other hand, a study showed that the addition of CO2 in 

autohydrolysis process at 100 bar did not lead to a higher degree of biomass dissolution.103 In this 

case, the effect of the acidic pH system water/CO2 was not achieved. The employment of CO2 
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usually decreases the temperature of the process leading to a minor xylose degradation and a 

higher yield of the reaction.46 Additionally, the use of scCO2 can overcome the drawbacks 

(corrosion, formation of waste particles) resulted from the conventional pre-treatments with 

organic acids, once CO2 can be neutralized by a simple pressure reduction. 

The present work is devoted to the pre-treatment of lignocellulosic biomass by two 

alternative solvents – ionic liquids (ILs) and supercritical fluids (SCFs). In Chapter 2 is presented 

the wheat straw pre-treatment with 1-ethyl-3-methylimidazolium acetate [emim][OAc]. The aim 

of this study is to present a new methodology where a complete fractionation of the wheat straw 

biomass into cellulose, hemicellulose and lignin is accomplished. Moreover, the effect of 

temperature and processing time on the pre-treatment of the wheat straw with [emim][OAc] was 

studied. To evaluate the efficiency of a new method on the production of cellulose for further 

potential applications, the enzymatic hydrolysis of cellulose-rich fractions was performed. The 

dependency of cellulose-rich fractions from the applied conditions was evaluated by a regression 

analysis concerning the cellulose recovery (% (w/w)) and the glucan content (%w/wbiomass). 

Additionally, the presence of phenolic compounds in the recovered ILs was investigated through a 

capillary electrophoresis (CE) methodology. The other part of the work is presented in Chapter 3 

which is dedicated to a CO2 assisted autohydrolysis pre-treatment of wheat straw. The objective 

of this study was to investigate the effect of CO2 addition in an autohydrolysis treatment of wheat 

straw, in order to selectively dissolve the hemicellulose fraction. Moreover, the effect of 

temperature and non-isothermal reaction time on the composition of both liquid and solid 

fractions was evaluated by the severity factor (Log R0). Additionally, the influence of CO2 density 

was also analyzed through the application of Peng-Robinson Equation of State (PR-EOS). 
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2. IL Pre-treatment 

2.1 Materials and Methods 

2.1.1 Materials 

For the pre-treatment experiments [emim][OAc] IL was used (>95% purity, Iolitec GmbH, 

Heilbronn, Germany). The water content was measured to be 2800 ppm by a volumetric Karl – 

Fischer titration. Prior to use, [emim][OAc] was dried under vacuum at room temperature for at 

least 24 hours. Wheat straw was the feedstock material, supplied by Estação Nacional de 

Melhoramento de Plantas (Elvas, Portugal). The material was ground with a knife mill (IKA® 

WERKE, MF 10 basic, Germany) to particles smaller than 0.5 mm, and stowed at room 

temperature. The wheat straw moisture was found to be 8% (w/w).  

For the IL pre-treatment experiments the following reagents were used: 1M and 4M HCl 

aqueous solutions prepared from fuming 37%(w/w) HCl bought from Merck – Darmstadt, 

Germany; 1M and 3% (w/w) NaOH aqueous solutions prepared from pure (99%) NaOH pellets 

supplied from Eka Chemicals/Akzonobel - Bohus, Sweden. To prepare HCl and NaOH aqueous 

solutions, distilled water (17 MΩcm-1) produced by the PURELAB Classic of Elga system was used. 

From 4M HCl aqueous solution, an acidic water solution (pH   2) was prepared. Ethanol (purity of 

96% (v/v)) and acetonitrile were bought from Carlo Erba Group - Arese, Italy. Paper filter 

membranes (Ø=47 mm, nº 1, 1.2 µm porosity) obtained from Whatman, GE Healthcare Life 

Generations - Buckinghamshire, United Kingdom, and nylon filters (Ø=47 mm, 0.45 µm porosity) 

from Merck Millipore, Country Cork, Ireland, were used. For FTIR analysis, all samples were 

prepared with KBr (  99% trace metal basis) purchased from Sigma-Aldrich Co. (St. Louis, MO, 

USA). Deuterium oxide with an isotopic purity > 99.8 % from Fluka, Sigma-Aldrich Química, S.L. 

Sintra, Portugal, was used to prepare IL samples for NMR analyses.  

Enzymatic hydrolysis was performed using a 0,1M sodium citrate buffer (pH 4.8) prepared 

from citric acid monohydrate (99.7% purity) and tris-sodium citrate (>99% purity), both bought 

from VWR International Ltd. - Leicester, England; a 2% (w/w) sodium azide solution was prepared 

from sodium azide (99% purity; Merck - Darmstadt, Germany). Commercial enzymes Celluclast® 

1.5L (activity 60 FPU·g-1, 105.89 FPU·mL-1) and β-glucosidase Novozym 188 (activity 64 NPGU·g-1, 

797.25 pNPGU·mL-1), both purchased from Novozymes - Bagsvaerd, Denmark, were used in this 

work. 

Capillary electrophoresis (CE) analysis was performed using an electrolyte solution containing 

15mM of sodium tetraborate decahydrate (>99.5% from Sigma-Aldrich, Aldrich Co., St. Louis, MO, 
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USA) in 10% (v/v) methanol (>99,9% from Carlo Erba Group, Arese, Italy). This solution was 

adjusted to pH 9.13 using 0.1M NaOH.  

Nylon syringe filters (Ø=13mm, 0.22µm porosity), purchased from Red® analytical, 

Cambridgeshire, UK, were used to filtrate all the samples before running on HPLC and CE.  

 

2.1.2 Pre-treatment of the wheat straw using [emim][OAc] 

A new methodology was developed based on our previous work dedicated to this subject.104 

Various pre-treatment times and temperatures were examined using a constant biomass/IL ratio 

of 5% (w/w). A schematic presentation of the described method is shown in Figure 13. 

 

Figure 13 - Schematic presentation of the optimized method. 

In a 15mL vial [emim][OAc] was mixed with the wheat straw under a continuous stirring for a 

defined period of time and temperature. The pre-treatment times and temperatures used in this 

work are shown in Table 3. After dissolution, a 3% NaOH was added until the vial was filled up. 
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Next, the mixture was transferred to a 100mL Erlenmeyer flask and a vigorous agitation was 

applied during 1h. To the formed solution 3% NaOH was added to promote the regeneration of 

cellulose. The resulting solution was subject to a centrifugation (Digicen 21R centrifuge, Orto 

Alresa, Madrid, Spain) at 6000rpm, 20°C for 20min. The supernatant was filtrated under vacuum 

and distilled water was used to wash the cellulose pellet. A new centrifugation step (6000rpm, 

20°C for 20min) was performed and both supernatant and cellulose pellet were filtrated. During 

the vacuum filtration, the cellulose pellet was washed with distilled water until the filtrate 

demonstrated neutral pH (measured with pH indicator strips from Merck Millipore, Country Cork, 

Ireland). Subsequently, cellulose was collected and dried in the oven at 60°C for at least 24h. 

 

Table 3 - Pre-treatment temperature and time studied in this work. 

T/°C 80 100 120 140 

t/h 12 18 6 12 18 2 6 2 6 

 

Water was evaporated under reduced pressure (Rotavapor R-210/215, Büchi, Flawil, 

Switzerland) from the filtrate to a final volume of 30mL. Then, the solution was adjusted to 

pH=6.8 (GLP 21 pH meter, Crison, Barcelona, Spain) with 4M and 1M HCl solutions, and 

hemicellulose was precipitated with 3 volumes of 96% EtOH with the continuous stirring. Once 

again, the resulting solution was centrifuged at the conditions referred earlier. After the first 

centrifugation, the liquid fraction was filtrated while the solid fraction (hemicellulose) remained 

on the centrifugation flasks. This first liquid fraction was kept to further use. Distilled water was 

added to the centrifugation flasks in order to wash the hemicellulose precipitate and a last 

centrifugation step was performed. After that, using the same filter, the hemicellulose precipitate 

was filtrated and continuously rinsed with distilled water. The washing water was also kept to 

posterior use, and hemicellulose was dried at 60°C for at least 24h in the oven. Ethanol present in 

the first liquid fraction was evaporated under reduced pressure and the solution was acidified to 

pH 2, with a 4M HCl solution, to precipitate the lignin material. The solution was heated up to 

70°C for 30min and a subsequent filtration was performed without cooling. The lignin material 

was washed with 10mL of acidified water (pH   2) and dried in the oven at 60°C for at least 24h.  

For [emim][OAc] recovery, the washing water from the hemicellulose precipitation step was 

added to the remaining filtrate (from the lignin filtration) to guarantee that all the IL used is 

recovered. The solution was then neutralized with the NaOH pellets and water was removed 

under the reduced pressure resulting in a solid containing NaCl and IL. Subsequently, 130mL of 
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acetonitrile was added to dissolve IL and the salt was removed by filtration. Acetonitrile was 

removed under reduced pressure and the recovered IL was dried for at least 24h under vacuum. 

All the pre-treatment experiments were at least duplicated and all the weighing was made 

using an XS205 DualRange analytical balance, Mettler Toledo, Ohio, USA.  

2.1.3 Chemical Analysis 

2.1.3.1 FTIR characterization of fractionated samples 

Perkin Elmer BX Series Spectrum (San Jose, CA, USA) was used to scan all samples. This model 

features a temperature-stabilized DTGS detector and a KBr beam splitter and is capable of routine 

mid-IR work. The operating system used to analyze all the spectra was Spectrum software Version 

5.3.1, Perkin Elmer, Inc., San Jose, CA, USA). Thirty two scans were taken for each sample with a 

resolution of 4cm-1 in an absorbance mode in the range of 4000-400cm-1. For each spectrum the 

air background spectrum was subtracted. 

For the composition analysis two calibration curves were built – carbohydrates and lignin – 

using an acid hydrolyzed wheat straw with known composition as a standard.105 For the 

preparation of these curves, bands with a maximum linearity were selected. Specifically, 898cm-1 

band for carbohydrates and the range at 1503-1537cm-1 for lignin were used. All samples were 

scanned at least three times and the average number was used. For each series of analyzes 

calibration curves were validated. 

2.1.3.2 NMR analysis of recovered IL 

Bruker ARX-400 spectrometer was used to analyze 1H NMR and 13C NMR spectra of all the 

recovered ILs using deuterium oxide solution as a solvent.  

2.1.3.3 Capillary electrophoresis of recovered IL 

Electrophoretic analyses for the presence of phenolic compounds in each recovered IL were 

carried out using an Agilent Technologies CE system (Waldbronn, Germany) equipped with a 

diode array detector (UV-DAD). An uncoated fused silica extended light-path capillary from 

Agilent, i.d.=50µm, total length 62 cm (56cm to the detector) was also used. The Agilent 3D-CE 

ChemStation data software (Rev B.04.01) was used to perform qualitative analysis of the 

electropherograms. The temperature in capillary was kept constant at 30°C and it was 

preconditioned by rinsing sequentially a 1M sodium hydroxide, 0.1M sodium hydroxide and Milli-

Q water, for 20 minutes each solution. Between runs, the capillary was washed with 0.1M NaOH 

followed by buffer solutions. Electropherograms were recorded at 200, 280, 320 and 375 nm, and 
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phenolic compounds were identified by electrophoretic comparisons (migration times and UV 

spectra) with authentic phenolic standards. Before performing CE, all the IL samples were 

subjected to a solid phase extraction (SPE) to concentrate and separate the phenolic compounds 

from the IL solution through a non-polar surface. The SPE was performed to remove polar non-

phenolic compounds such as sugars and salts, thus reducing the absorption of [emim][OAc] in the 

selected UV wavelengths. Separation columns (C18 ec, 6 mL, 1000mg) from Chromabond®, 

(Macherey-Nagel GmbH&Co. KG, Düren, Germany) were used. The columns were preconditioned 

with methanol, and then neutralized with ultrapure water (18.2 MΩcm-1, PURELAB) using a high 

vacuum system (VacElut 20 Manifold Tall Glass Basin from Agilent Technologies, Santa Clara, CA, 

USA). The recovered ILs were loaded in the columns, and ultrapure water was used to the water-

soluble constituents and simultaneously to remove the IL. The phenolic compounds were then 

eluted with absolute methanol and concentrated under vacuum prior to CE analysis.  

2.1.4 Enzymatic Hydrolysis 

Cellulose-rich samples obtained from all the pre-treatments at different conditions were 

subjected to enzymatic hydrolysis, in order to determine the glucan content. The adopted 

procedure was based on the standard NREL protocol.106 The Optic Ivymen® System (Spain) 

incubator shaker was used to perform the enzymatic hydrolysis at 150 rpm and 50°C for 72h. 

After hydrolysis all vials were placed in a hot bath (approximately 95°C) for 5 minutes for enzymes 

denaturation. The concentration of reducing sugars was then analyzed by an HPLC system (Agilent 

1100 series HPLC system, Santa Clara, CA, USA) using a Bio-Rad Aminex HPX-87H column 

(Hercules, CA, USA). A 5mM sulphuric acid was used as a mobile phase. Before running HPLC, all 

samples were filtrated. The set conditions of the column were: 50°C, 0.6mL·min-1 flow rate 5µL 

injection volume and the acquisition time of 15min for standards and 30min for samples. Glucose 

standards with concentrations of 0.25, 0.50, 1.00, 1.75, 2.50 and 5.00g·L-1 were used to construct 

the calibration curve. The determination of glucan content was made by multiplying glucose with 

a conversion factor of 0.90.107 

2.1.5 Experimental Errors 

Standard deviation error (u) was determined for all the obtained results. All weighing was 

made considering a u(m)=0.1mg. For all different dissolution conditions in the wheat straw pre-

treatment, the applied temperature demonstrated a u(T)=1°C. An arbitrary error of 5% was 

defined to all the FTIR measurements. 
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2.2 Results 

2.2.1 Wheat straw pre-treatment with [emim][OAc] 

This work was devoted to the fractionation of the wheat straw from the pre-treatment with 

[emim][OAc] using a new fractionation pathway based on previously developed methodology.104 

The results of the wheat straw pre-treatment with [emim][OAc] at settled conditions, as well as 

the yield of IL recovery, are presented in Table 4. Considering the temperature effect, it can be 

stated that temperature is more important parameter regarding the recovery of cellulose-rich 

fractions. At 140°C the amount of cellulose-rich fractions obtained (38.4% and 37.1% (w/w)) were 

equivalent to the content of the cellulose fraction in the native biomass (38.9% (w/w)). An 

irrelevant effect in the recovery of hemicellulose-rich fractions was verified, where no clear trend 

was observed at different temperatures (80-140°C). The obtained recovery of hemicellulose 

varied between 17.4% and 20.8% (w/w) of the initial biomass. A similar effect was also observed 

for lignin fractions recovery, except those performed at the higher studied temperature. At 140°C, 

the amount of lignin-rich fractions decreased from ≈10%(w/w) (average observed for the other 

studied temperatures) to ≈7%(w/w). Regarding the effect of the pre-treatment time, its increase 

did not affect significantly the amount of lignocellulosic materials recovered. Only at 80°C, a 

minor effect of the pre-treatment time was verified, where an additional 6h pre-treatment up to 

18h led to a decrease by 7%(w/w) of the cellulose recovery. 

 

Table 4 - Results of the wheat straw pre-treatment with [emim][OAc]: fractionation at various pre-
treatment temperatures and times. The yield of IL recovery after each pre-treatment is depicted. 

T/°C t/h 

Lignocellulosic materials
a
 

IL recovery/ 

%(w/w) 

Cellulose-rich Hemicellulose-rich Lignin-rich 

native 38.9
b
 23.5

b
 18.0

b
 

80 

12 57.4 17.4 10.1 91.3 

18 50.4 17.6 8.9 95.5 

100 

6 44.2 19.7 8.9 86.7 

12 48.0 18.7 8.5 94.9 

18 42.1 17.4 10.2 93.2 
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120 

2 45.4 18.8 10.9 91.4 

6 44.5 19.8 11.6 85.9 

140 

2 38.4 20.8 6.9 95.8 

6 37.1 18.2 7.6 90.3 

a 
%(w/w) of dry weight, 

b 
Wheat straw macromolecular composition.

105
 

Concerning the IL recovery at the different conditions, the attained results were at a similar 

level ranging from 85.9% (w/w) to 95.8% (w/w). However, a noteworthy effect of temperature 

can be observed in the color of the recovered ILs after pre-treatment. Figure 14 shows the color 

of the fresh [emim][OAc] and ILs recovered from the pre-treatment at various temperatures. The 

color of the recovered [emim][OAc] became deeper with an increase of the pre-treatment 

temperature comparatively with the color of the fresh IL, probably due to temperature effect on 

the lignin degradation products. 

 

Figure 14 - Color of the fresh [emim][OAc] and recovered ILs after the wheat straw pre-treatment at 
different dissolution temperatures: (a) 80°C; (b) 100°C; (C) 120°C and (d) 140°C. 

2.2.2 FTIR Characterization 

2.2.2.1 Qualitative Analysis 

Fourier Transform Infrared (FTIR) technique was selected to analyze the chemical 

characterization of the solid materials recovered from pre-treatments. The main chemical bond 

vibrations of lignocellulosic materials are identified in the region of 1800-800cm-1. The 

characteristic absorption bands attributed to carbohydrates – cellulose and hemicellulose – are 

1161, 1112-1120 and 897cm-1. Absorption bands at 1376, 1061 and 1025cm-1 are also recognized 
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as cellulose characteristic bands. Characteristic bands of hemicellulose are observed at 1251, 

1046 and 990-996cm-1.108-110 The lignin characteristic absorption bands are displayed at 1718, 

1702, 1654, 1508, 1597, 1458, 1420, 1261, 1242, 1224, 1127, 1033 and 840cm-1.111, 112 An 

absorption band at 1734cm-1, which is characteristic for untreated lignocellulosic biomass, is 

associated to ester-linked acetyl, feruloyl and p-coumaroyl groups between hemicellulose and 

lignin.113 All the above-mentioned bands are characterized in detail elsewhere.104 

The FTIR spectra of lignocellulosic materials obtained after the pre-treatment of the wheat 

straw in [emim][OAc] at different conditions were analyzed. 

All spectra of cellulose-rich fractions presented the characteristic vibration bands of cellulose 

in the region of 1250-850cm-1. The obtained samples using temperatures at 100, 120, 140°C 

presented well-defined vibrations bands at 897, 1025, 1061, 1161 cm-1. However, the experiments 

at 80°C demonstrated a slight difference in the shape of cellulose characteristics bands that were 

not well-defined. Additionally, a vibration band at 1376cm-1 assigned to bending of C-H group in 

cellulose of the native wheat straw was also observed. Furthermore, the band at 1112cm-1 is 

detected in all the cellulose-rich samples, but with low intensity. Pre-treatment at 140°C for a 2h 

cellulose-rich fraction exhibits a pronounced band at 996cm-1 which indicates the presence of 

arabinosyl side chains (arabinose). Insignificant bands at 1420, 1508, 1654cm-1 are observed in all 

cellulose spectra indicating the presence of lignin. Moreover, the band at 1734cm-1 which is 

related to ester-linked groups between hemicellulose and lignin appears only in spectra of 

cellulose-rich fractions recovered from both pre-treatments at 80°C. Besides, absorption bands at 

2850 and 2920cm-1 that are attributed to asymmetric and symmetric C-H stretching of CH, CH2 

and CH3 are present in all the spectra. 

FTIR spectra of hemicellulose-rich fractions presented characteristic absorption bands at 

1251, 1046 and 990-996cm-1. The various hemicellulose-rich samples recovered from the pre-

treatments at different conditions exhibited a great similarity. Moreover, a vibration band at 

2918cm-1 is visualized in all the spectra. 

The lignin-rich samples’ spectra displayed numerous vibration bands owing to the complex 

structure of lignin. All the recovered lignin materials were successfully fractionated revealing all 

the lignin characteristic bands. Absorption bands are observed at 1127, 1508, 1597 and 1654cm-1 

in all the recovered lignin-rich samples. Also, an absorption band at 1033cm-1 which is related to 

the aromatic C-H bond in the plane deformation for guaiacyl units is clearly identified in all the 

lignin samples. Vibration bands at 2850 and 2920cm-1 are present in lignin-rich samples, except in 
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samples recovered at 120°C and 140°C both for 6h. The absence of carbohydrates is plainly 

observed in all the lignin-rich samples. 

2.2.2.2 Quantitative Analysis 

Based on FTIR measurements, a quantitative analysis was performed for each recovered solid 

fraction in order to evaluate the efficiency of the new method to fractionate lignocellulose. The 

quantification was made for carbohydrate and lignin contents following the same technique 

presented elsewhere.104, 114 The composition determined for the recovered solid fractions at 

different pre-treatment conditions is presented in Table 5. A general overview indicates that 

different temperatures and times applied in the pre-treatment of the wheat straw with 

[emim][OAc] had a significant effect on the purity of the fractionated materials. 

 

Table 5 - Results of the FTIR quantification of the fractionated samples obtained at different pre-treatment 
temperatures and times. 

T/°C t/h 

Purity/%wt 

Carbohydrate 

yield/% 
Cellulose Hemicellulose Lignin* 

Carbohydrates Lignin Carbohydrates Lignin 

80 

12 64 6 78 6 67 81 

18 79 7 83 7 61 87 

100 

6 80 9 80 6 63 82 

12 80 7 88 6 78 88 

18 90 8 92 7 65 86 

120 

2 67 8 80 7 69 73 

6 86 8 96 6 92 92 

140 

2 84 8 73 7 72 76 

6 91 6 96 8 97 82 

*Lignin samples were free from carbohydrates. 
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The recovered carbohydrate fractions – cellulose and hemicellulose – showed that for each 

temperature, the prolonged pre-treatment time resulted in higher carbohydrate content. 

Likewise, higher temperatures led to the higher carbohydrate content. For instance, the pre-

treatment at 80°C for 18h gave the carbohydrate content of 79% wt in cellulose-rich samples, 

while in the pre-treatment at 140°C during 6h a 91% wt carbohydrate content was obtained. 

Following the same line for hemicellulose-rich samples, pre-treatment at 80°C for 18h gave the 

carbohydrate content of 83% wt, while at 140°C during 6h a 96% wt carbohydrate content was 

attained. The lignin content of both cellulose and hemicellulose fractions was relatively low 

varying from ≈6% to ≈9% wt. On the other hand, the temperature seemed not to have a 

pronounced effect on the purity of the recovered lignin-rich solid fractions in the pre-treatments 

performed at 80 and 100°C. However, at 120 and 140°C, longer time such as 6h, resulted in high 

pure solid lignin-rich fractions with 92 and 97% wt of purity, respectively. One of the greatest 

accomplishes was that all the lignin-rich fractions obtained were free from carbohydrates. 

Additionally, it can be assumed that dissolution times superior to 12h led to a decrease in the 

lignin purity. 

2.2.3 Enzymatic Hydrolysis 

After FTIR analysis of cellulose-rich samples enzymatic hydrolysis was performed in order to 

investigate the amount of the glucan present in cellulose-rich samples. Glucose yields (% 

w/wbiomass) and the amount (mg) of pure cellulose recovered after each pre-treatment, as well as 

the quantity of other compounds present on cellulose-rich fractions, are displayed in Table 6. The 

amount of pure cellulose was determined by equation 2. 

                                             (  
        

)
    (          ) 

Considering the results presented in Table 6, it can be noticed that with the pre-treatment 

temperature increase, an enrichment of the glucan content from 59.8 to 81.1% (w/wbiomass) is 

observed. The same trend is visualized with the increase of pre-treatment time at one fixed 

temperature. Furthermore, it can be also observed that higher temperatures (120°C and 140°C) 

resulted in a more efficient fractionation by the lower amount of other compounds present in 

cellulose fractions. However, in the experiments using 140°C, a lower amount of pure cellulose 

was achieved in comparison to pre-treatments at 120°C. 
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Table 6 - Glucose yields (% w/wbiomass) and the amounts (mg) of pure cellulose and other compounds 
present on the recovered cellulose after pre-treatment at different conditions. 

Pre-treatment 

conditions 

%Cellulose 

/(w/wbiomass) 

Cellulose 

/mg 

Other compounds* 

/mg 

T/°C t/h 

80 

12 59.8 79.0 53.1 

18 60.9 70.7 45.3 

100 

6 67.9 69.1 32.7 

12 67.5 74.6 35.9 

18 71.9 69.5 27.2 

120 

2 73.8 77.1 27.2 

6 78.2 79.9 22.4 

140 

2 74.8 66.1 22.3 

6 81.1 69.2 16.2 

*Other compounds are mainly hemicellulose and lignin. 

 

 

2.2.4 NMR Analysis 

The purity of the recovered ILs after pre-treatments was verified using 1H- and 13C-NMR 

techniques. The determined chemical shifts of pure [emim][OAc] were as follows: 1HNMR (400 

MHz; D2O) δ(ppm): 1.34 (t, 3H, NCH2CH3); 1.77 (s, 3H, CH3COO); 3.76 (s, 3H, NCH3); 4.10 (q, 2H, 

NCH2CH3); 7.32 (d, 2H, NCHCHN); 8.58. (s, 1H, CH3COOH). 13CNMR (D20) δ(ppm): 14.44 (NCH2CH3); 

23.26 (CH3COO); 35.55 (NCH3); 44.73 (NCH2CH3) 121.81 (NCHCHN); 123.37 (NCHCHN); 135.52 

(NCHN) and 181.21 (CH3COO). 

2.2.5 Capillary Electrophoresis Analysis 

The change in the IL color after the pre-treatment with an increase of the pre-treatment 

temperature coupled to the loss of almost ≈50% (w/w) of lignin present in the wheat straw led to 

investigate the presence of phenolic compounds associated to the delignification process during 
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the pre-treatment with IL. Coupling SPE with CE it was possible to identify the presence of 

phenolic compounds in the IL solutions. As an example, Figure 15 shows the electropherogram 

recorded at 320 nm for the phenolic profile of the recovered IL after the pre-treatment at 100°C 

during 18h. By comparison with electrophoretic data obtained with authentic standards, it was 

possible to identify vanillin, ferulic acid and coumaric acid with >90% matching. Another 

unidentified phenolic compound (migration time 7.922min) with a characteristic flavonoid 

spectrum115 was also detected. Between the four studied temperatures the phenolic compounds 

identified were the same. However, it was verified that the most abundant compound differs 

according to the pre-treatment temperature. Vanillin was a major compound in the recovered ILs 

from the pre-treatments occurred at 100 and 120°C, but at 140°C the unidentified phenolic 

compound  was the main component present. This was probably due to some degradation caused 

by the effect of temperature.  

 

Figure 15- Electropherogram recorded at 320 nm showing the phenolic profile of the recovered IL after pre-
treatment at 100°C during 18h. 

2.3 Discussion 

2.3.1 A three-step fractionation process 

A novel three-step fractionation process was developed. Comparatively to previous work, the 

increase of NaOH concentration from 0.1 M to 3% (≈ 0,75 M) leads to a more effective 

fractionation of wheat straw into cellulose, hemicellulose and lignin-rich fractions. In this work, 

the cellulose-rich material is obtained directly by the addition of an anti-solvent. Obtained results 
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show that the increase of the hydroxyl group concentration leads to higher solubility of lignin and 

hemicellulosic fractions, therefore, the fractionation process of the carbohydrate-rich material is 

eliminated. This is contrary to the previous work where the carbohydrate-rich fraction was 

obtained and subsequently fractionated into cellulose and hemicellulose was needed.104 

 

2.3.2 Effect of temperature and time on the pre-treatment of biomass 

The effect of the pre-treatment temperature (80-140°C) and time (2-18h) was studied 

regarding the recovery and purity of the separated lignocellulosic materials. As it is presented in 

Table 4 and Table 5, at higher temperatures lower amounts of cellulose-rich fractions were 

recovered, although more pure fractions were achieved. Likewise, longer times at a set 

temperature gave higher purity cellulose-rich fractions. On the other hand, by changing the 

conditions on the pre-treatment, approximately the same amount of hemicellulose-rich fractions 

was obtained. Therefore, the temperature and time have no significant effect on hemicellulose 

recovery. Notwithstanding, the pre-treatments at 120°C and 140°C during 6h gave high pure 

hemicellulose-rich fractions attaining a 96% wt carbohydrate content. The same trend was 

observed in the purity of lignin-rich fractions, where at 120°C and 140°C during 6h the fractions 

with higher purities (92 and 97% wt, respectively), were obtained. Additionally, close to a 4% 

(w/w) mass loss of the lignin-rich fraction was noticed with increasing temperature from 120°C to 

140°C. This can be justified by the fact that the recovery of lignin can be hampered due to 

stronger interactions between lignin and [emim][OAc] at higher temperatures, and 140°C is 

closeness to the glass transition temperature of lignin (165°C).116 

The temperature affects the viscosity as well as the conductivity of ILs. The [emim][OAc] IL 

exhibits a relatively low viscosity that facilitates dissolution of cellulose at lower temperatures. 

The increase in the dissolution temperature increases the diffusivity, both adding thermal energy 

to the system. However, at higher temperatures thermal degradation of cellulose can occur.117 

Longer times allow the IL to penetrate further into the biomass. 

The pre-treatment efficiency of the new method at different pre-treatment conditions was also 

evaluated by enzymatic hydrolysis of the cellulose-rich fractions. The results of enzymatic 

hydrolysis (Table 6) followed the same trend exhibited by FTIR results (Table 4). It is clearly visible 

that at lower temperatures not only glucan is present in cellulose-rich fractions. A larger amount 

of other compounds, mainly hemicellulose and lignin, are also present. With the temperature 

increase, enrichment in the glucan content is observed. At the highest temperature studied, an 

81.1% (w/wbiomass) content of glucan was obtained, comparatively to only 59.8% (w/wbiomass) of the 
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glucan content obtained from the pre-treatment at 80°C (for 12h process). Concerning the 

amount of pure cellulose present in each cellulose-rich fraction (Table 6), the higher values 

obtained for samples recovered at lower temperatures are a consequence of the increase amount 

of the cellulose-rich material recovered. The selection of the best set of conditions should have in 

consideration the final use of these fractions. For example, for biofuel production it will probably 

be more feasible to obtain higher mass of cellulose, even with lower purity, as long as the 

contamination compounds will not interfere with the rate and performance of enzymatic 

hydrolysis process. In this way, higher yield of glucose can be accessed for fermentation. On the 

other hand, high purity cellulose is desirable to produce value added derivative products. Thus, 

pre-treatment with ILs can be perfectly tuned for biomass processing in biorefinery. 

Since the different conditions studied had a direct effect on cellulose recovery, a multiple 

linear regression with an interaction factor (Equation 3) was made to describe the dependency of 

cellulose recovery on pre-treatments temperature and time. 

                      (          )   

where y is the desired response, T and t correspond to temperature and time and 

(                ) are the regression coefficients. Matlab® software (version 7.12.0.635) was 

used to determine the regression coefficients by minimizing the sum of the squares of the 

deviations of the data from the model (least-squares fit). Regression coefficients were calculated 

with a 95% level of confidence. The obtained and adjusted models are  

                                    with R2 = 0.96 and  

                                  with R2 = 0.97, where RC – cellulose recovery (% 

w/w); %C - glucan yield from the enzymatic hydrolysis (w/wbiomass); T – temperature (°C); t – time 

(h). From the analysis of the results, it can be assumed a strong dependency between the 

different pre-treatment conditions and the recovery of cellulose-rich fractions – in terms of the 

quantity recovered as well as of the enhancement of the enzymatic hydrolysis (Figure 16). 
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Figure 16- Representation of the adjusted model for %cellulose (w/wbiomass) obtained from the enzymatic 
hydrolysis. ( ) experimental data. 

The optimal result achieved in this work for the recovery of cellulose-rich fractions (37.1% 

(w/w)) was obtained at 140°C during 6h. Furthermore, the same conditions gave the optimal 

result in terms of higher amount of the glucan present (81.1% w/wbiomass) in cellulose-rich 

fractions. At such conditions a recovery of 18.2% (w/w) was obtained for hemicellulose-rich 

fractions (purity of 96% wt), and for lignin-rich fractions a recovery of 7.6% (w/w) was attained 

(purity of 97% wt). Also, at the end of the process it was recovered 90.3% (w/w) of [emim][OAc] 

from the initial load. Nevertheless, the choice of the optimal pre-treatment conditions has to be 

optimized according to the biomass and the IL used.  

An interesting association can be performed on the relation between the amount of energy 

required for the pre-treatment process and the purity of the fractionated lignocellulosic materials. 

An estimation of the energy spent was calculated according to Equation 4. The molar heat 

capacity (Cpm) of [emim][OAc] for each dissolution temperature was estimated from the results 

reported for [bmim][OAc]118 which were adjusted for the temperatures examined in this work 

taking into account the difference between the literature data for [bmim][OAc]118 and for 

[emim][OAc].119 The estimated energy values obtained are illustrated in Figure 17. 

             (       )         (          ) 
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Figure 17- Graphical presentation of the amount of energy spent in the pre-treatments at the different 
dissolution conditions. The vertical bars present various pre-treatment time in the following manner: light 
blue – 2 hours, dark blue – 6 hours, red – 12 hours, green – 18 hours. 

Considering the cellulose-rich fraction recovered from the pre-treatment at 100°C for 18h 

(purity of 90% wt) and those recovered from the pre-treatment at 120°C during 6h (purity of 86% 

wt), a slight difference is observed in the purity of cellulose samples, but in terms of the energy 

required a significant increase of ≈47 kJ·h is noticed. On the other hand, an increase of 20°C 

(140°C) in the pre-treatment temperature gave an increase of 5% wt in purity (from 86 to 91% 

wt), with a small noticeable increase in the energy demand (from 27.1 to 29.9 kJ·h). Concerning 

the purity of hemicellulose-rich fractions, an identical result was obtained for the experiments at 

120 and 140°C during 6h (96% wt). However, a demand of an extra 2.8 kJ·h is required. The same 

tendency can be observed in the case of the purity of lignin-rich fractions recovered at the same 

conditions referred earlier. Also, a difference of ≈5% wt between purity of lignin-rich fractions 

from 120°C and 140°C was attained. Once again, the selection of the best pre-treatment 

conditions in terms of energetic consumption should be taken into account according to the final 

use of the processed lignocellulosic materials. 

2.3.3 Ionic liquid recovery 

The [emim][OAc] recovery obtained in the presented method at different dissolution conditions 

was mainly superior to 90% (w/w) from the original IL load (Table 4). The presence of impurities 

within the recovered ILs was analyzed by 13C- and 1H-NMR analysis. Although negligible 

differences in chemical shifts are visualized between all recovered ILs and the pure [emim][OAc], 
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the intensity of the chemical shifts related to carbons in position 9 and 10 decreases significantly. 

According to 1H NMR analysis, the same difference in chemical shift is observed to hydrogen in 

position 10. The aforementioned chemical shifts are associated with the acetate anion (Figure 18). 

Therefore, this can suggest the substitution of the acetate anion by hydroxide anion, for instance, 

due to the use of NaOH as the antisolvent and a pH neutralizer in the IL recovery step. 

 

Figure 18- 
1
H NMR spectra of the a) pure [emim][OAc]; b) recovered [emim][OAc] from pre-treatment at 

140°C, 6h. 

From Figure 14 it is clearly visible that ILs’ color became increasingly darker with the 

temperature increase. Currently, very limited information concerning the chemical analysis of the 

recovered ILs is available. Due to the similarity of the color revealed by the recovered ILs with that 

exhibited by the lignin material, and a loss of ≈36-62% (w/w) of the lignin material from the 

theoretical lignin,105 it was found crucial to study the presence of phenolic compounds in the 

recovered ILs. Additionally, a few papers also refer that the dark color exhibited by the recovered 

ILs is due to the presence of lignin materials.86, 120, 121 In fact, Lee et al. 86 reported that the 

accumulation of lignin in [emim][OAc] is given by the high solubility of lignin in this IL.  

In fact, after SPE-CE analysis (Figure 15), the presence of phenolic compounds, namely vanillin and 

phenolic acids, in the recovered ILs suggests the presence of lignin degradation products. Thus, 

the change in color intensity with increased temperatures could indicate the existence of other 

compounds in the recovered IL. 
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3. CO2 assisted Pre-treatment 

3.1 Materials and Methods 

3.1.1 Materials 

Wheat straw was supplied by Estação Nacional de Melhoramento de Plantas (Elvas, Portugal). 

The material was ground with a knife mill (IKA® WERKE, MF 10 basic, Germany) to particles smaller 

than 1.5 mm, and stowed at room temperature. The wheat straw moisture was found to be 8% 

(w/w). A CO2 with purity  99.99% bought from Air Liquide, AlphaGaz™ gamma, Paris, France was 

used. For post-processing filtrations, paper filters (Ø=150 mm, nº 1238) from Filter-Lab, Microchip 

Technology Inc., Arizona, USA were used. For all experiments the following reagents were used: 

distilled water (17 MΩcm-1) produced by the PURELAB Classic Elga system, 72% (w/w) H2SO4 

aqueous solution was prepared from concentrated H2SO4 solution (96% purity) bought from 

Panreac Química, Barcelona, Spain. In addition, ethanol of 96% purity (v/v) for gas phase 

capturing was acquired from Carlo Erba Group - Arese, Italy. 

3.1.2 CO2-assisted autohydrolysis of wheat straw 

The CO2-assisted autohydrolysis treatments of wheat straw were performed in a stainless 

steel 600 mL reactor (series 4560, Parr Instruments Company, Moline, Illinois, USA). The reactor 

was equipped with two four-blade turbine impellers, and the temperature and pressure were 

controlled by a Parr PID controller, model 4842. An external fabric mantle was used to heat the 

reactor, while an internal stainless steel loop was used to cool with cold water the system. In 

Figure 19 is illustrated a representation of the apparatus used. 

 

Figure 19 - The scheme of CO2-assisted autohydrolysis pre-treatment apparatus. 1 – CO2 cylinder; 2 – 
magnetic drive; 3 – heating mantle; 4 – thermo par; 5 – pressure transducer; 6 – depressurization valve; 7 – 
vial filled with ethanol; 8 – pressure and temperature PID controller. 
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The CO2-assisted autohydrolyses of wheat straw were carried out at three temperatures, 

namely 180, 200 and 210°C, selected based on the literature data.92 An initial pressure of 60 bar 

at room temperature was maintained constant in all experiments. The reaction mixtures were 

prepared in the following manner: the liquid to solid ratio was maintained equal in all reactions 

however various mixture loadings versus volume of the reactor were used: – 250g of H2O/25g of 

wheat straw; 150g of H2O/15g of wheat straw and 75g of H2O/7.5g of wheat straw. A fixed 

agitation speed of 70 rpm was used. When the final desired temperature was attained, the 

reactor was rapidly cooled down to quench the reaction. A slow depressurization (2 bar minute-1) 

of the reaction mixture was executed when the temperature was lower than 20°C to minimise the 

presence of volatile compounds in the vapour phase. The depressurised gas phase passed through 

a vial placed in the ice bag filled with known amount of ethanol. This procedure allows for 

dissolution of volatile compounds for posterior qualitative and quantitative analyses. The liquid 

(liquor) and solid fractions were recovered through filtration. A GPL 21 pH meter (Crison, 

Barcelona, Spain) was used to measure the pH of the recovered liquors.  

The effect of temperature and non-isothermal operational mode on the composition of both 

liquid and solid fractions was evaluated in the function of the severity factor (Log R0)
122 according 

to the following equation: 

   ∫  
(
 ( )    
     

)
  

 

 

 (          ) 

, where t is time expressed in minutes, T abbreviates temperature (°C) and 14.75 is an empirical 

parameter related with temperature and activation energy. The qualitative and quantitative 

analyses of all fractions were performed using the procedures presented below. 

3.1.3 Chemical Analyses 

3.1.3.1 Characterization of the feedstock material composition 

The feedstock material was ground in a knife mill to a particle size <0.5 mm and the moisture 

was determined by drying at 105°C for at least 16h to obtain constant weight. The biomass was 

characterized for glucan, xylan, arabinan and acetyl groups after treatment with 72% (w/w) H2SO4 

according to the standard methods.123 Syringe filters (0.2 µm) from Whatman, GE Healthcare Life 

Generations, Buckinghamshire, United Kingdom were used to filtrate all samples before running 

on HPLC. Monosaccharides (glucose, xylose and arabinose) and acid acetic were analysed by high 

performance liquid chromatography (HPLC). An Agilent 1100 series HPLC system, Santa Clara, CA, 

USA equipped with a Bio-Rad Aminex HPX-87H column (Hercules, CA, USA) was used. The set 
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conditions of the column were: 50°C, 0.4mL·min-1 flow rate with 5mM H2SO4. A refractive index 

(RI) detector was employed to examine sugars and acetic acid content. The acid insoluble residue 

was considered as Klason lignin after correction for the acid insoluble ash (determined by igniting 

the content at 575 °C for 5 h). Protein quantification was performed by the Kjeldahl method using 

the Nx6.25 conversion factor.124 

3.1.3.2 Characterization of the processed solids 

The solid fractions were washed with distilled water at room temperature, and oven-dried at 

40°C for at least 48h. The processed solids recovered were subjected to the same chemical 

characterisation of the feedstock except the determination of protein and ash.123 

3.1.3.3 Liquor and post-hydrolysate characterization 

The concentration of reducing sugars (glucose, xylose and arabinose), as well as acetic acid, 

furfural and hydroxymethylfurfural (HMF) present in the liquor recovered from the CO2 pre-

treatment were analyzed by HPLC. In this case, a flow rate of 0.6 mL·min-1 and furfural and HMF 

analyses occurred with UV/VIS detector at 280nm. The liquor sample was subjected to hydrolysis 

with 4% (w/w) H2SO4 at 121°C for 1h in an autoclave (Uniclave, Portugal) to convert soluble 

hemicelluloses into their constituent sugar monomers.125 After post-hydrolysis, oligosaccharides 

concentrations were expressed as the increase in sugar monomers analyzed through HPLC. 

3.1.3.4 Gas phase 

The gas phase recovered during slow depressurization was analyzed by HPLC to examine the 

presence of volatile degradation products, namely furfural, and acetic acid. 
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3.2 Results 

3.2.1 Feedstock composition 

Chemical composition of the wheat straw used in this work is presented in Table 7. The wheat 

straw moisture was found to be at the level of 8% (w/w). A total of 63% (w/w) of wheat straw 

biomass are polysaccharides among which 38.5% (w/w) is cellulose (estimated as glucan). Wheat 

straw hemicellulose is constituted by a -D-(1,4)-linked xylopyranosyl backbone, substituted with 

arabinofuranose, 4-O-methylglucuronic acid, acetyl groups, xylose and phenolic acids.92 The total 

hemicellulose was measured as the sum of xylan, arabinan and acetyl groups content revealing 

24.9% (w/w). In relation to the Klason lignin content, the obtained value was corrected for the ash 

content of acid insoluble residue and it was determined to be at the level of 17.7% (w/w). The 

obtained data are in a good agreement to those reported by Carvalheiro et al.92 

Table 7 - Macromolecular composition of wheat straw (% of dried weigh). 

Component This work
a
 Carvalheiro et al.

92
 

Cellulose
b
 38.5±0.1 38.9±0.2 

Hemicellulose 24.9 23.5 

    Xylan 19.1±0.6 18.0±0.3 

    Arabinan 3.0±0.1 3.0±0.2 

  Acetyl groups 2.7±0.2 2.5±0.1 

Klason lignin 17.7±0.1 18.0±0.5 

Ash 10.7±0.1 9.70±0.03 

Protein 4.7±0.1 4.5±0.5 

Others 3.5 5.5 

a
 Average of two replicates; 

b
 Determined as glucan; 

C
 Determined by difference. 

 

3.2.2 Composition of the liquors 

The wheat straw CO2-assisted autohydrolyses resulted in liquors containing a mixture of sugar 

oligomers (mainly XOS), monosaccharides (glucose, xylose and arabinose), acetic acid (from acetyl 

groups present in hemicelluloses) and sugars degradation products, namely HMF and furfural. 

According to the literature reports, the formation of these chemicals depends on the pre-

treatment conditions that are biomass type, temperature and treatment time. The composition of 

liquors obtained from the CO2-assisted autohydrolysis at various conditions is depicted in Table 8. 
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Table 8 – Composition of the liquors (gL
-1

) from CO2–assisted autohydrolysis of wheat straw with initial CO2 
pressure equal to 60 bar. 

Biomass loading 250/25
a
 150/15

a
 75/7.5

a
 

T (°C) 210 180 200 210 180 200 210 

Log R0 3.54 2.58 3.16 3.44 2.60 3.08 3.48 

pH 3.85 4.38 4.13 3.93 4.55 4.39 4.03 

Composition (g·L
-1

) 

XOS 10.03 5.46 11.38 11.79 10.64 12.91 15.75 

GlcOS 4.34 3.52 3.43 3.20 5.24 5.09 4.14 

AcO 0.70 1.48 1.22 1.11 1.78 1.28 1.21 

Xylose 3.40 2.04 2.44 4.03 0.49 0.51 3.34 

Arabinose 0.86 1.17 1.25 2.04 0.42 0.51 2.14 

Glucose 1.20 1.13 1.22 1.76 0.38 0.40 2.03 

Acetic Acid 2.36 0.60 1.03 3.03 1.14 1.59 2.71 

HMF 0.14 0.00 0.08 0.20 0.03 0.04 0.13 

Furfural 5.38 0.06 0.52 4.60 0.33 0.72 3.19 

Klason Lignin
b
 0.44 0.31 0.48 0.22 0.21 0.31 0.23 

a
 g of water/g of wheat straw; 

b 
dissolved lignin (g); XOS - xylooligosaccharides; GlcOS - gluco-oligosaccharides; AcO - 

acetyl groups linked to oligosaccharides. 

 

Xylooligosaccharides (XOS) were the main components present in liquors in all reactions. 

Considering all biomass loading studied, the highest amount of XOS produced was found to be at 

the most severe condition. On the other hand, at the highest biomass loading (250/25) and at 

210°C, the concentration of XOS is 10.03 g·L-1 and it is comparable to the concentration (10.64 g·L-

1) obtained with the lowest biomass loading (75/7.5), but at the less severe conditions (180°C). 

The remaining oligosaccharides (GlcOS and AcO) exhibited a significant concentration in the liquid 

fraction, which decrease with the increase of the severity of the conditions. On the other hand, 

xylose was the main monosaccharide present in all assays, revealing the highest concentration 

value at the most severe conditions. The same trend can be observed for monomers of glucose, 

arabinose as well as for acetic acid. The sugar degradation products, HMF and furfural, were 

detected in low amount in reactions executed except the reactions at the harshest conditions for 

which an increase is more pronounced as furfural concentration increases by 9 and 4.5 time in 

case of transition from 200 to 210C for 150/15 and 75/7.5 biomass loading, respectively. The 

analysis of the influence of CO2 amount shows that larger amount of CO2 obtained by the relative 

reduction of biomass amount present in the reactor by half guides to an increase of XOS 
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recovered by 1/3 (at 210°C) and is counterbalanced by a reduction of xylose and furfural 

concentrations by a 17% and 30%, correspondingly. 

3.2.3 Composition of the processed solids 

The results of the composition of the processed solids as well as the solid yield are 

demonstrated in Table 9. The hydrolysis condition affects the solid yield recovery. The elevated 

temperature and thus Log R0 guides to the decrease of the solid yield and it decreases from 

approximately 70-78% to around 55% depending on the biomass loading used. 

Table 9 - The solid phase composition (g(100g processed solids)
-1

) and solid yield (g(100g feedstock)
-1

) 
obtained after CO2-assisted autohydrolysis of wheat straw for different biomass loading. 

Biomass loading
a
 250/25 150/15 75/7.5 

T (°C) 210 180 200 210 180 200 210 

Log R0 3.54 2.58 3.16 3.44 2.60 3.08 3.48 

Solid Yield 56.27 77.84 60.54 55.98 70.54 62.89 54.56 

Glucan 58.41 45.50 49.89 55.56 54.10 54.36 64.33 

Xylan 8.90 15.56 6.72 5.00 9.16 5.89 2.23 

Arabinan 0.04 0.53 0.00 0.00 0.06 0.00 0.00 

Acetyl groups 1.35 2.63 0.46 0.00 2.67 1.21 0.00 

Klason Lignin 28.30 19.99 23.87 28.88 20.99 21.52 26.74 

a
 g of water/g of wheat straw. 

 

On the other hand, the amount of xylan in the processed solids decrease as the severity of the 

conditions increase and a complete removal of arabinan from the processed solids is verified 

except for the reaction at 180C in which a noticeable amount of arabinan (0.53 g(100g 

feedstock)-1) was detected in the solid phase. Additionally, harsher reaction conditions facilitate 

the complete dissolution of acetyl groups as they are absent in the solid phase. Additionally it can 

be observed that the applied treatment does influence neither cellulose nor Klason lignin. 

 

3.2.4 Composition of the recovered gas phase 

The presence of significant amounts of furfural was detected in the gas phase recovered from 

the reaction mixture depressurization procedure. Figure 20 depicts the influence of the biomass 

loading and reaction temperature on the amount of furfural recovered from the gas phase. The 

increase of furfural formation is observed with the increase of the process temperature. 
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Furthermore, lower amount of biomass loaded to the reactor counterbalanced by the larger 

amount of CO2 presented affects the furfural removal as well. 

 

Figure 20 - Furfural concentration in the recovered gas phase from depressurization for the studied 
temperatures and biomass loadings. Green bar - 250g of water/25g of biomass, blue bar - 150g of 
water/15g of biomass, red bar - 75g of water/7.5 g of biomass. 

3.3 Discussion 

3.3.1 Effect of temperature 

The wheat straw CO2-assisted autohydrolyses were carried out at three temperatures (180, 

200 and 210°C). The temperature selection has been performed based on the literature data.92 

Two different biomass loadings were used to study the influence of temperature (Table 8). In case 

of both examined ratios (150/15 and 75/7.5) the release of xylose and XOS increased with the 

increase of temperature of the process. In fact the increase of reaction severity is responsible for 

the in situ water autohydrolysis that enables the disruption of the recalcitrant structure and, 

hence, guides to easier hydrolysis of hemicellulose producing XOS-rich liquors.126 Similarly to 

xylose and XOS, the increase of arabinose and acetic acid concentrations is observed with the 

increase of temperature. At 210°C a 3-fold higher acetic acid concentration in the liquor was 

observed than at 200°C. Furthermore, achieved results permit to conclude that higher 

temperature of the process lead to the formation of more sugar derived degradation products. 

Although at 180 and 200°C an insignificant concentrations of furfural and HMF were detected but 

at 210°C furfural in concentration equals to 4.60 g·L-1 was observed. It is caused by the fact that at 

the examined condition, 85% of initial xylan present in the raw feedstock was dissolved while for 

example at 180°C much lower xylan dissolution occurred 37%. It is worth to underline that at the 

same conditions the concentration of HMF remains very low (0.20 g·L-1) although the dissolution 
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of cellulose occurs 19.3%. Therefore the severity of the pre-treatment seems to be insufficient to 

produce degradation products such as HMF. 

The chemical composition of the processed solids (Table 9) shows the enrichment of glucan 

and lignin contents with the increase of temperature. At the most severe condition 19.3% of 

glucan present in raw feedstock was dissolved to the liquid fraction. In addition, a high recovery of 

91% of lignin from the initial amount of lignin present in wheat straw (Table 7) was also attained 

and only a 0.22g of lignin was dissolved to the liquor. This strongly indicates that the CO2 presence 

does not drive to the significant dissolution of lignin. The amount of xylan present in the 

processed solid decreased with the increase of temperature, and at 210°C a recovery of 14.6% 

was obtained. Therefore to achieve a complete removal more severe conditions are required 

although the results obtained in this work as well as presented in literature92 show that at higher 

temperature more degradation products are formed (Table 8). A complete removal of acetyl 

groups and arabinan from the solid was attained at 210°C. 

The pH of the liquor obtained after the CO2-assisted treatments varies with temperature. The 

increase of the pre-treatment temperature led to lower pH for the same biomass loading. These 

results are in good agreement with the previous observation. The higher temperature decreases 

the solubility of gases therefore less CO2 is soluble in the liquid phase. Following the 

aforementioned explanation, after the depressurization, the equilibrium in the system can be 

achieved easier thus the pH of the liquor should be higher as it is observed. 

 

3.3.2 Effect of CO2 

3.3.2.1 Influence of CO2 presence 

The obtained results show that the presence of in-situ formed carbonic acid enhances the 

hydrolysis of hemicellulose fractions. A previous literature results demonstrate that with pure 

xylan, carbonic acid significantly increases hydrolysis activity comparing to the CO2-free 

autohydrolysis process.102 Similar conclusion can be taken from the results presented in this work 

as they illustrate that addition of CO2 guide to an increase of XOS concentration when compared 

to CO2-free autohydrolysis as reported elsewhere.92 It is especially evident for the same severity 

factor (Log R0 = 3.53) and for the same biomass loading (250g water/25g biomass) as reported in 

literature92. An increase by 65% and 100% of XOS and xylose concentration respectively can be 

observed. The presence of GlcOS (gluco-oligosaccharides) in the liquor was also found to be 

higher when CO2 was added (6-fold higher) to the reaction. This indicates that the presence of CO2 
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leads to the dissolution of cellulose, even in less severe conditions than without CO2
92 but further 

degradation of hexoses to HMF was negligible as HMF was detected in the minimal concentration 

(0.14 g·L-1). On the other hand, the presence of CO2 contributes to the formation of further 

degradation products from hemicellulose fraction e.g. furfural. This is caused by the easier 

degradation of pentoses to furfural while hexoses are less susceptible for the degradation to 

HMF. 

Furthermore, CO2 plays an important role in the pH of hydrolysate. It was found that pH varies 

from 3.85 to 4.55. The decrease of the hydrolysate pH can be explained by the fact that carbonic 

acid is formed in-situ especially that no additional acetic acid comparing to CO2-free 

autohydrolysis reaction92 is produced. Conversely, Walsum et al.127 revealed that CO2 addition 

drive to increase of the final pH of the hydrolysate in comparison to autohydrolysis without CO2. 

This inconsistence in results between presented by Walsum et al.127 and in this work comes from 

the difference in the reaction conditions. The work of Walsum shows that the CO2/water ratio is 

equals to 0.04 while in this work the CO2/water ratio is at least 3-fold higher. Therefore, relatively 

higher amount of CO2 guides to considerable lower pH created in the course of the reaction, thus 

after the depressurisation, CO2 dissolved in the liquid phase acts as acidifier of the medium. 

Comparison of this result with that obtained by Carvalheiro et al.92 illustrates that the amount of 

XOS depends on the CO2 presence, and the same concentration of XOS can be achieved at less 

severe conditions. To produce 10 g·L-1 of XOS a 5°C higher temperature is needed that also 

translates to by 11% higher Log R0. 

The effect of CO2 is also observed in the composition of the processed solids. The main 

differences between treatments with and without CO2
92 are visible in enrichment of glucan 

content and Klason lignin in case of CO2-assisted reactions, as well as a complete removal of 

arabinan. In addition, lower xylan content is observed in the wheat straw CO2 pre-treatment. It 

indicates that CO2 augment the dissolution of hemicellulose (xylan, arabinan and acetyl groups) 

and retains cellulose and lignin. 

3.3.2.2 Influence of CO2 concentration 

To examine the influence of CO2 on the obtained results, the CO2 concentration has been 

calculated. For this purpose the Peng-Robinson equation of state (PR-EOS) with the initial 

temperature of 20°C and pressure of 60 bar were used. The CO2 density was calculated using the 

following relation: 
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The constants used are: Tc (CO2) = 304.2K; Pc (CO2) = 73.8 bar; ω (acentric factor) = 0.228;
128 R 

(gas constant) = 8.31410-2 L·bar·K-1·mol-1. 

 

Table 10 - The CO2 density predicted by the Peng-Robinson (PR-EOS), as well as number of CO2 moles 
present in the reactor at initial conditions. 

Biomass loading 
a
 250/25 150/15 75/7.5 

ρ(CO2)/mol·dm
-3

 5.071 

“Head space” 
b
/mL 325.0 435.0 517.5 

n(CO2)/mol 1.65 2.21 2.62 

a
 g of H2O/g of wheat straw; 

b
 “Head space” was determined by the difference between  the reactor volume 

(600 mL) and the volume occupied by the biomass loaded. 

 

The CO2 amount affects the XOS recovery. The increase of CO2 concentration makes liquors 

more reach in hemicellulose products. Figure 21 depicts that at 210°C, an increase of 17% and 

57% of XOS concentration is attained with the reduction of water/wheat straw loading from 

250/25 to 150/15 and to 75 g of H2O/7.5 g of wheat straw, respectively. 
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Figure 21- The XOS concentration (g·L
-1

) as a function of CO2 number of moles at 210C. The data for CO2-
free reaction (■) taken from literature.
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A biomass loading reduction by half (from 150/15 to 75/7.5) led to an increase of number of 

moles of CO2 by more than 20% (Table 10). Therefore it is expected that more CO2 present in the 

system should catalyse hydrolysis of hemicellulose to XOS by the in-situ generation of carbonic 

acid thus pH of hydrolysate should be lower. As it is expected the XOS concentration increases 

with the increase of CO2 concentration in the system however the pH of the solution became less 

acidic. This controversial result can be explained by the fact that after the CO2 decompression, a 

prolonged time is needed to achieve the equilibrium in the system. In other words, the pH 

measurement done immediately after the experiment is performed at non-equilibrium 

conditions. Furthermore, time needed to achieve the equilibrium is strongly depended on the 

amount of water present in the system due to the diffusion limitation of CO2 in the liquid phase. 

3.3.3 Volatile products 

The volatile compounds being formed from the hemicellulose fraction has been found in the 

gaseous phase. The obtained data depicted in Figure 20 show that the biomass loading and 

reaction temperature plays an important role in the amount of furfural recovered. The increase of 

furfural formation is observed with the increase of the process temperature as well as a function 

of CO2 present. Temperature effect on furfural formation has already been discussed in this work. 

Other important aspect influencing the furfural volatility is the presence of acetic acid. To 

examine the acid-base interaction between furfural and acetic acid, the effect of different 

contents of acetic acid on the distribution behaviour of furfural and the solvent properties of the 

weak acid on carbon dioxide has to be taken into account. The literature results show that up to a 

concentration of 5 wt% acetic acid has modifier properties and enhances furfural extraction.129 

Other interest aspect is that, although acetic acid is present in the liquor it was not detected 

in the gas phase entrapped after the reaction. The estimation of the VLE data for system 

CO2+water+acetic acid shows that at the reaction conditions, the solubility of acetic acid is 

negligible.130 This occurs also due to the fact that in the presence of CO2 exists equilibria between 

CO2, H2O and acetic acid thus acetic acid is dissolved in water not only in molecular but also ionic 

form131 inhibiting its volatility. 
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4. Conclusions 

Lignocellulosic biomass is among the most promising renewable feedstocks for the 

production of energy and chemicals. Due to the complex and recalcitrance structure of 

lignocellulosic materials pre-treatment technologies are needed in order to valorize the low value 

feedstock. This work showed the potential existing in two different alternative solvents, namely 

ionic liquids and supercritical fluids, which were successfully used in the pre-treatment of wheat 

straw.  

A new methodology of fractionation of the wheat straw into cellulose, hemicellulose and 

lignin-rich fractions at various temperature and the pre-treatment time using [emim][OAc] in a 

rapid and simple three-step process was developed. Among studied parameters (temperature 

(80-140°C) and time (2-18h)), higher temperature and prolonged reaction time favored 

production of high purity of fractionated lignocellulosic materials, as well as the release of glucose 

from cellulose-rich fractions. In more detail, the wheat straw pre-treatment at 140°C and at 6h 

gave the highest purity fractions of lignocellulosic materials (91% wt cellulose, 96% wt 

hemicellulose and 97% wt lignin) and a glucan content of 81.1% (w/wbiomass). Moreover, the 

presence of valued-added phenolic compounds (e.g. vanillin) was detected in the recovered ILs. 

After IL pre-treatment it was possible to recover cellulose, hemicellulose and lignin-rich solid 

fractions, along with a recovery of [emim][OAc] mainly superior than 90% (w/w) from the initial IL 

load. 

Second type of alternative solvent used in the biomass fractionation was applied in the 

autohydrolysis process. The CO2-assisted autohydrolysis treatment of wheat straw was 

investigated, in order to selectively dissolve the hemicellulose fraction. In other words, the 

autohydrolysis with CO2 allowed to produce a liquid fraction rich in hemicellulose (mainly in 

oligomeric form) and a solid containing mainly glucan together with lignin. The in-situ formation 

of carbonic acid resulted in a higher hemicellulose dissolution in comparison to CO2-free 

autohydrolysis of wheat straw at the analogous conditions (temperature and LSR). Additionally, 

higher amount of CO2 obtained by the relative reduction of biomass amount treatment guided to 

an increase by more than 60% of XOS recovered. Furthermore, an enrichment of 20% (w/w) of 

the glucan content in the recovered solid fraction was also verified at the same conditions with 

the CO2-assisted autohydrolysis pre-treatment. One of the principle advantages of the use of CO2 

over the conventional solvents, namely organic acids, is facile removal of CO2 by the 

depressurization without the contamination of the reaction mixture.  
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Several mathematical, analytical, chemical and biochemical techniques employed in the 

analysis of the executed processes have been used. Regression analyses, Fourier-transform 

Infrared Spectroscopy, High Performance Liquid Chromatography, Nuclear Magnetic Resonance, 

Solid Phase Extraction, Capillary Electrophoresis, enzymatic hydrolysis, post-hydrolysis, 

quantitative acid hydrolysis were used in this work proving their robustness, versatility, and 

usefulness in the executed works. 

Both presented alternative processes demonstrate several technological and environmental 

benefits, mainly related to solvent recycle, limited equipment corrosion, reduction of operational 

costs (no catalysts are needed) and lower water usage. Thus, examined processes facilitate their 

integration in the broader concepts such as biorefinery and in general are in the agreement with 

the Green Chemistry approach. 

Within the biorefinery framework it can be sustained the production of value-added 

products from the both presented alternative methods, specifically cellulose-rich fractions which 

can be subjected to enzymatic hydrolysis for bioethanol production, extraction of phenolic 

compounds, production of XOS and other bio-based products. Therefore, an integrated 

biorefinery approach that enables the selective fractionation of wheat straw into its main 

molecular components and its subsequent individual upgrade is one of the advantages of the 

examined processes. 

The study of different biomass and ILs as well as different processing conditions 

(temperature, time, biomass/IL ratio) should be investigated in order to verify the 

applicability and versatility of the optimized method developed. The major costs involved in 

the overall process could be associated to ionic liquid losses, thus ionic liquid recovery should 

be one of the principle aims of future works. Additionally, further studies are required for the 

purification of the recovered ILs and the extraction of phenolic compounds from ILs. Furthermore, 

to perform a quantitative CE of the phenolic compounds produced during the pre-treatments 

would be also advantageous to evaluate the economic efficiency of the process.  

Regarding the effect of CO2 in an autohydrolysis process, additional studies are needed in 

order to determine the optimal conditions at which the consensus between 

temperature/initial pressure along with hemicellulose dissolution is attained without the 

extensive degradation product formation. In addition, to construct the equipment that 

permits for on-line measurements of pH and analysis of phase compositions.  

Moreover, the scale up of the optimized pre-treatments should be attained to verify the 

feasibility for a future application in industry. 
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